WorldWideScience

Sample records for parietal cortex based

  1. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  2. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  3. Motor role of parietal cortex in a monkey model of hemispatial neglect.

    Science.gov (United States)

    Kubanek, Jan; Li, Jingfeng M; Snyder, Lawrence H

    2015-04-21

    Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.

  4. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit "autonoetic consciousness" is thought to emerge by retrieval of memory of personally experienced events ("episodic memory"). During episodic retrieval, functional imaging studies consistently show....... The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self...

  5. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  7. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  8. The contribution of the human posterior parietal cortex to episodic memory.

    Science.gov (United States)

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  9. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    Science.gov (United States)

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Transcranial direct current stimulation over the parietal cortex alters bias in item and source memory tasks.

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F

    2016-10-01

    Neuroimaging data have shown that activity in the lateral posterior parietal cortex (PPC) correlates with item recognition and source recollection, but there is considerable debate about its specific contributions. Performance on both item and source memory tasks were compared between participants who were given bilateral transcranial direct current stimulation (tDCS) over the parietal cortex to those given prefrontal or sham tDCS. The parietal tDCS group, but not the prefrontal group, showed decreased false recognition, and less bias in item and source discrimination tasks compared to sham stimulation. These results are consistent with a causal role of the PPC in item and source memory retrieval, likely based on attentional and decision-making biases. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  12. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  13. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  14. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  15. Attenuating illusory binding with TMS of the right parietal cortex

    OpenAIRE

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of featur...

  16. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex.

    Science.gov (United States)

    Pisella, Laure

    2017-06-01

    Visual perception involves complex and active processes. We will start by explaining why visual perception is dependent on visuospatial working memory, especially the spatiotemporal integration of the perceived elements through the ocular exploration of visual scenes. Then we will present neuropsychology, transcranial magnetic stimulation and neuroimaging data yielding information on the specific role of the posterior parietal cortex of the right hemisphere in visuospatial working memory. Within the posterior parietal cortex, neuropsychology data also suggest that there might be dissociated neural substrates for deployment of attention (superior parietal lobules) and spatiotemporal integration (right inferior parietal lobule). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...

  18. The contribution of the human posterior parietal cortex to episodic memory

    OpenAIRE

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, poten...

  19. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  20. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  1. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  2. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  3. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    Directory of Open Access Journals (Sweden)

    Fumi eKatsuki

    2012-05-01

    Full Text Available The dorsolateral prefrontal and posterior parietal cortex are two parts of a broader brain network involved in the control of cognitive functions such as working memory, spatial attention, and decision making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the dorsolateral prefrontal cortex to influence memory performance, attention allocation and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the dorsolateral prefrontal and posterior parietal cortex, and their underlying mechanisms.

  4. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  5. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  6. Posterior parietal cortex mediates encoding and maintenance processes in change blindness.

    Science.gov (United States)

    Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung

    2010-03-01

    It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human

  7. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    Pandya, D.N.; Seltzer, B.

    1982-01-01

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  8. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Matteo Filippini

    2018-04-01

    Full Text Available Summary: The posterior parietal cortex is well known to mediate sensorimotor transformations during the generation of movement plans, but its ability to control prosthetic limbs in 3D environments has not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets located at various depths and directions and tested whether the reach goal position can be extracted from parietal signals. The reach goal location was reliably decoded with accuracy close to optimal (>90%, and this occurred also well before movement onset. These results, together with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a suitable site to decode the entire prehension action, to be considered in the development of brain-computer interfaces. : Filippini et al. show that it is possible to use parietal cortex activity to predict in which direction the arm will move and how far it will reach. This opens up the possibility of neural prostheses that can accurately guide reach and grasp using signals from this part of the brain. Keywords: neuroprosthetics, offline neural decoding, reaching in depth, monkey, V6A, machine learning, visuomotor transformations, hand guidance, prehension, robotics

  9. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.

    Directory of Open Access Journals (Sweden)

    Peter J Fried

    Full Text Available Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3 and a handful of specialized visual regions (V4, V5/MT+ in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.

  10. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  11. Automatic and Intentional Number Processing Both Rely on Intact Right Parietal Cortex: A Combined fMRI and Neuronavigated TMS Study

    Science.gov (United States)

    Cohen Kadosh, Roi; Bien, Nina; Sack, Alexander T.

    2012-01-01

    Practice and training usually lead to performance increase in a given task. In addition, a shift from intentional toward more automatic processing mechanisms is often observed. It is currently debated whether automatic and intentional processing is subserved by the same or by different mechanism(s), and whether the same or different regions in the brain are recruited. Previous correlational evidence provided by behavioral, neuroimaging, modeling, and neuropsychological studies addressing this question yielded conflicting results. Here we used transcranial magnetic stimulation (TMS) to compare the causal influence of disrupting either left or right parietal cortex during automatic and intentional numerical processing, as reflected by the size congruity effect and the numerical distance effect, respectively. We found a functional hemispheric asymmetry within parietal cortex with only the TMS-induced right parietal disruption impairing both automatic and intentional numerical processing. In contrast, disrupting the left parietal lobe with TMS, or applying sham stimulation, did not affect performance during automatic or intentional numerical processing. The current results provide causal evidence for the functional relevance of right, but not left, parietal cortex for intentional, and automatic numerical processing, implying that at least within the parietal cortices, automatic, and intentional numerical processing rely on the same underlying hemispheric lateralization. PMID:22347175

  12. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance.

    Science.gov (United States)

    Ribeiro, Jéssica Alves; Marinho, Francisco Victor Costa; Rocha, Kaline; Magalhães, Francisco; Baptista, Abrahão Fontes; Velasques, Bruna; Ribeiro, Pedro; Cagy, Mauricio; Bastos, Victor Hugo; Gupta, Daya; Teixeira, Silmar

    2018-03-01

    Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

  13. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    Science.gov (United States)

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  14. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  15. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  17. The flexible use of multiple cue relationships in spatial navigation : A comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions

    NARCIS (Netherlands)

    Compton, DM; Griffith, HR; McDaniel, WF; Foster, RA; Davis, BK

    Rats prepared with lesions of the prefrontal cortex, posterior parietal cortex, hippocampus, or medial septal area were tested for acquisition of a number of variations of the open-field water maze using a version of place learning assessment described by Eichenbaum, Stewart, and Morris (1991).

  18. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  19. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    Science.gov (United States)

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  20. Posterior parietal cortex and long-term memory: some data from laboratory animals

    OpenAIRE

    Myskiw, Jociane C.; Izquierdo, Iván

    2012-01-01

    The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determin...

  1. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  2. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    Science.gov (United States)

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  3. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study

    Science.gov (United States)

    Ferri, Stefania; Rizzolatti, Giacomo

    2015-01-01

    Abstract The present fMRI study examined whether upper‐limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object‐related (e.g., grasping), skin‐displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three‐level network including occipito‐temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin‐displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. Hum Brain Mapp 36:3845–3866, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley

  4. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  5. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Karabanov, Anke N; Christensen, Mark Schram

    2014-01-01

    A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC) is important for sensorimotor integration and sense of agency (SoA). We used repetitive transcranial magnetic stimulation (rTMS) to explore the role of the IPC during a validated SoA detection...

  6. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  7. Differential roles of polar orbital prefrontal cortex and parietal lobes in logical reasoning with neutral and negative emotional content.

    Science.gov (United States)

    Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan

    2018-05-14

    To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive

  8. Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation

    Directory of Open Access Journals (Sweden)

    Benjamin Thürer

    2017-08-01

    Full Text Available The motor learning literature shows an increased retest or transfer performance after practicing under unstable (random conditions. This random practice effect (also known as contextual interference effect is frequently investigated on the behavioral level and discussed in the context of mechanisms of the dorsolateral prefrontal cortex and increased cognitive efforts during movement planning. However, there is a lack of studies examining the random practice effect in motor adaptation tasks and, in general, the underlying neural processes of the random practice effect are not fully understood. We tested 24 right-handed human subjects performing a reaching task using a robotic manipulandum. Subjects learned to adapt either to a blocked or a random schedule of different force field perturbations while subjects’ electroencephalography (EEG was recorded. The behavioral results showed a distinct random practice effect in terms of a more stabilized retest performance of the random compared to the blocked practicing group. Further analyses showed that this effect correlates with changes in the alpha band power in electrodes over parietal areas. We conclude that the random practice effect in this study is facilitated by mechanisms within the parietal cortex during movement execution which might reflect online feedback mechanisms.

  9. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  10. Effect of transcranial magnetic stimulation (TMS on parietal and premotor cortex during planning of reaching movements.

    Directory of Open Access Journals (Sweden)

    Pierpaolo Busan

    Full Text Available BACKGROUND: Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL and premotor cortex (PM, and their activation seems to take place in parallel. METHODOLOGY: The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS during planning of reaching movements under visual guidance. PRINCIPAL FINDINGS: A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation. CONCLUSIONS: This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.

  11. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  12. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic

  13. [Neuroanatomy of the Parietal Association Areas].

    Science.gov (United States)

    Kobayashi, Yasushi

    2016-11-01

    The parietal association cortex comprises the superior and inferior parietal lobules, the precuneus and the cortices in the intraparietal, parietooccipital and lunate sulci. By processing somatic, visual, acoustic and vestibular sensory information, the parietal association cortex plays a pivotal role in spatial cognition and motor control of the eyes and the extremities. Sensory information from the primary and secondary somatosensory areas enters the superior parietal lobule and is transferred to the inferior parietal lobule. Visual information is processed through the dorsal visual pathway and it reaches the inferior parietal lobule, the intraparietal sulcus and the precuneus. Acoustic information is transferred posteriorly from the primary acoustic area, and it reaches the posterior region of the inferior parietal lobule. The areas in the intraparietal sulcus project to the premotor area, the frontal eye fields, and the prefrontal area. These areas are involved in the control of ocular movements, reaching and grasping of the upper extremities, and spatial working memory. The posterior region of the inferior parietal lobule and the precuneus both project either directly, or indirectly via the posterior cingulate gyrus, to the parahippocampal and entorhinal cortices. Both these areas are strongly associated with hippocampal functions for long-term memory formation.

  14. Lower Choline and Myo-Inositol in Temporo-Parietal Cortex Is Associated With Apathy in Amnestic MCI.

    Science.gov (United States)

    Tumati, Shankar; Opmeer, Esther M; Marsman, Jan-Bernard C; Martens, Sander; Reesink, Fransje E; De Deyn, Peter P; Aleman, André

    2018-01-01

    Apathy is a common symptom in patients with amnestic mild cognitive impairment (aMCI) and is associated with an increased risk of progression to Alzheimer's disease (AD). The neural substrates underlying apathy in aMCI may involve multiple brain regions, including the anterior cingulate cortex and the temporo-parietal region. Here we investigated neurometabolites in brain regions that may underlie apathy in aMCI patients using proton magnetic resonance spectroscopy ( 1 H-MRS). Twenty-eight aMCI patients with varying degrees of apathy and 20 matched controls underwent 1 H-MRS. Spectra were acquired from single voxels in the posterior cingulate cortex (PCC), dorsal anterior cingulate cortex (DACC), right dorsolateral prefrontal cortex (DLPFC), and right temporo-parietal cortex (TPC). Apathy was measured with the Apathy Evaluation Scale (AES). Spearman partial correlations between metabolite concentrations in each region and severity of apathy were determined. Additionally, analyses of covariance (ANCOVA) were performed to determine whether metabolite changes differed between patients with or without clinically-diagnosed apathy. The degree of apathy was found to be negatively correlated with choline and myo-inositol (mI) in the TPC. Additional exploratory analyses suggested that N-acetylaspartate (NAA)/mI ratio was reduced in aMCI without clinical apathy but not in aMCI with clinical apathy. In the DACC, glutamate and glutamine (Glx) levels tended to be higher in the aMCI with apathy group compared to controls and reduced in association with depression scores. In conclusion, apathy in aMCI patients was associated with neurometabolite changes indicative of altered membranal integrity and glial function in the right TPC. Findings also indicated that in a clinically-diagnosed aMCI cohort, apathy symptoms may be suggestive of neural changes that are distinct from aMCI without apathy.

  15. Lower Choline and Myo-Inositol in Temporo-Parietal Cortex Is Associated With Apathy in Amnestic MCI

    Directory of Open Access Journals (Sweden)

    Shankar Tumati

    2018-04-01

    Full Text Available Apathy is a common symptom in patients with amnestic mild cognitive impairment (aMCI and is associated with an increased risk of progression to Alzheimer’s disease (AD. The neural substrates underlying apathy in aMCI may involve multiple brain regions, including the anterior cingulate cortex and the temporo-parietal region. Here we investigated neurometabolites in brain regions that may underlie apathy in aMCI patients using proton magnetic resonance spectroscopy (1H-MRS. Twenty-eight aMCI patients with varying degrees of apathy and 20 matched controls underwent 1H-MRS. Spectra were acquired from single voxels in the posterior cingulate cortex (PCC, dorsal anterior cingulate cortex (DACC, right dorsolateral prefrontal cortex (DLPFC, and right temporo-parietal cortex (TPC. Apathy was measured with the Apathy Evaluation Scale (AES. Spearman partial correlations between metabolite concentrations in each region and severity of apathy were determined. Additionally, analyses of covariance (ANCOVA were performed to determine whether metabolite changes differed between patients with or without clinically-diagnosed apathy. The degree of apathy was found to be negatively correlated with choline and myo-inositol (mI in the TPC. Additional exploratory analyses suggested that N-acetylaspartate (NAA/mI ratio was reduced in aMCI without clinical apathy but not in aMCI with clinical apathy. In the DACC, glutamate and glutamine (Glx levels tended to be higher in the aMCI with apathy group compared to controls and reduced in association with depression scores. In conclusion, apathy in aMCI patients was associated with neurometabolite changes indicative of altered membranal integrity and glial function in the right TPC. Findings also indicated that in a clinically-diagnosed aMCI cohort, apathy symptoms may be suggestive of neural changes that are distinct from aMCI without apathy.

  16. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    Science.gov (United States)

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  17. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    DEFF Research Database (Denmark)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe

    2013-01-01

    magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified...... reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann...... of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first...

  18. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  19. Subtle gray matter changes in temporo-parietal cortex associated with cardiovascular risk factors.

    Science.gov (United States)

    de Toledo Ferraz Alves, Tânia Corrêa; Scazufca, Márcia; Squarzoni, Paula; de Souza Duran, Fábio Luiz; Tamashiro-Duran, Jaqueline Hatsuko; Vallada, Homero P; Andrei, Anna; Wajngarten, Mauricio; Menezes, Paulo R; Busatto, Geraldo F

    2011-01-01

    Vascular risk factors may play an important role in the pathophysiology of Alzheimer's disease (AD). While there is consistent evidence of gray matter (GM) abnormalities in earlier stages of AD, the presence of more subtle GM changes associated with vascular risk factors in the absence of clinically significant vascular events has been scarcely investigated. This study aimed to examine GM changes in elderly subjects with cardiovascular risk factors. We predicted that the presence of cardiovascular risk would be associated with GM abnormalities involving the temporal-parietal cortices and limbic structures. We recruited 248 dementia-free subjects, age range 66-75 years, from the population-based "São Paulo Ageing and Health Study", classified in accordance to their Framingham Coronary Heart Disease Risk (FCHDR) score to undergo an MRI scan. We performed an overall analysis of covariance, controlled to total GM and APOE4 status, to investigate the presence of regional GM abnormalities in association with FCHDR subgroups (high-risk, medium-risk, and low-risk), and followed by post hoc t-test. We also applied a co-relational design in order to investigate the presence of linear progression of the GM vulnerability in association with cardiovascular risk factor. Voxel-based morphometry showed that the presence of cardiovascular risk factors were associated with regional GM loss involving the temporal cortices bilaterally. Those results retained statistical significance after including APOE4 as a covariate of interest. We also observed that there was a negative correlation between FCHDR scores and rGM distribution in the parietal cortex. Subclinical cerebrovascular abnormalities involving GM loss may provide an important link between cardiovascular risk factors and AD.

  20. Amygdala, Pulvinar & Inferior Parietal Cortex Contribute to Early Processing of Faces without Awareness

    Directory of Open Access Journals (Sweden)

    Vanessa eTroiani

    2013-06-01

    Full Text Available The goals of the present study were twofold. First, we wished to investigate the neural correlates of stimulus-driven processing of stimuli strongly suppressed from awareness and in the absence of top-down influences. We accomplished this using a novel approach in which participants performed an orthogonal task atop a flash suppression noise image to prevent top-down search. Second, we wished to investigate the extent to which amygdala responses differentiate between suppressed stimuli (fearful faces and houses based on their motivational relevance. Using continuous flash suppression in conjunction with fMRI, we presented fearful faces, houses, and a no stimulus control to one eye while participants performed an orthogonal task that appeared atop the flashing Mondrian image presented to the opposite eye. In 29 adolescents, we show activation in subcortical regions, including the superior colliculus, amygdala, thalamus, and hippocampus for suppressed objects (fearful faces and houses compared to a no stimulus control. Suppressed stimuli showed less activation compared to a no stimulus control in early visual cortex, indicating that object information was being suppressed from this region. Additionally, we find no activation in regions associated with conscious processing of these percepts (fusiform gyrus and/or parahippocampal cortex as assessed by mean activations and multi-voxel patterns. A psychophysiological interaction analysis that seeded the amygdala showed task-specific (fearful faces greater than houses modulation of right pulvinar and left inferior parietal cortex. Taken together, our results support a role for the amygdala in stimulus-driven attentional guidance towards objects of relevance and a potential mechanism for successful suppression of rivalrous stimuli.

  1. Transient contribution of left posterior parietal cortex to cognitive restructuring.

    Science.gov (United States)

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-03-17

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring.

  2. Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stimuli.

    Science.gov (United States)

    Klostermann, Ellen C; Loui, Psyche; Shimamura, Arthur P

    2009-09-01

    In neuroimaging studies, the left ventral posterior parietal cortex (PPC) is particularly active during memory retrieval. However, most studies have used verbal or verbalizable stimuli. We investigated neural activations associated with the retrieval of short, agrammatical music stimuli (Blackwood, 2004), which have been largely associated with right hemisphere processing. At study, participants listened to music stimuli and rated them on pleasantness. At test, participants made old/new recognition judgments with high/low confidence ratings. Right, but not left, ventral PPC activity was observed during the retrieval of these music stimuli. Thus, rather than indicating a special status of left PPC in retrieval, both right and left ventral PPC participate in memory retrieval, depending on the type of information that is to be remembered.

  3. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM study.

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka

    Full Text Available Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  4. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Laman, D.M.; Honk, E.J. van; Vergouwen, A.C.M.; Koerselman, F.

    2009-01-01

    The aim of this treatment study was to evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) over the right parietal cortex in depression. In a double-blind, sham-controlled design ten consecutive sessions of 2 Hz rTMS (inter-pulse interval 0.5 s) at 90% motor

  5. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Functional Heterogeneity in Posterior Parietal Cortex Across Attention and Episodic Memory Retrieval

    Science.gov (United States)

    Hutchinson, J. Benjamin; Uncapher, Melina R.; Weiner, Kevin S.; Bressler, David W.; Silver, Michael A.; Preston, Alison R.; Wagner, Anthony D.

    2014-01-01

    While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes. PMID:23019246

  7. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    Science.gov (United States)

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  8. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic

  9. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    Science.gov (United States)

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to

  10. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    Directory of Open Access Journals (Sweden)

    Carter eWendelken

    2015-01-01

    Full Text Available Reasoning depends on the contribution of posterior parietal cortex (PPC. But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: 1 reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing, 2 reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC, and 3 reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest. Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL. Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific

  11. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  12. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  13. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Lateralization of the posterior parietal cortex for internal monitoring of self- versus externally generated movements.

    Science.gov (United States)

    Ogawa, Kenji; Inui, Toshio

    2007-11-01

    Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings.

  15. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  16. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Katrin Hanken

    2016-09-01

    Full Text Available Background: Fatigue in multiple sclerosis (MS patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1,5mA was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20min of a 40min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5mA over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. TDCS was delivered for 20min before patients performed a 20min lasting visual vigilance task.Results: Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in reaction time associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation.Conclusions: Anodal tDCS over the right parietal cortex can counteract the increase in reaction times during vigilance performance but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  17. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Hanken, Katrin; Bosse, Mona; Möhrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1.5 mA) was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20 min of a 40-min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5 mA) over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. tDCS was delivered for 20 min before patients performed a 20-min lasting visual vigilance task. Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in RT associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation. Anodal tDCS over the right parietal cortex can counteract the increase in RTs during vigilance performance, but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  18. Reward value-based gain control: divisive normalization in parietal cortex.

    Science.gov (United States)

    Louie, Kenway; Grattan, Lauren E; Glimcher, Paul W

    2011-07-20

    The representation of value is a critical component of decision making. Rational choice theory assumes that options are assigned absolute values, independent of the value or existence of other alternatives. However, context-dependent choice behavior in both animals and humans violates this assumption, suggesting that biological decision processes rely on comparative evaluation. Here we show that neurons in the monkey lateral intraparietal cortex encode a relative form of saccadic value, explicitly dependent on the values of the other available alternatives. Analogous to extra-classical receptive field effects in visual cortex, this relative representation incorporates target values outside the response field and is observed in both stimulus-driven activity and baseline firing rates. This context-dependent modulation is precisely described by divisive normalization, indicating that this standard form of sensory gain control may be a general mechanism of cortical computation. Such normalization in decision circuits effectively implements an adaptive gain control for value coding and provides a possible mechanistic basis for behavioral context-dependent violations of rationality.

  19. Connectivity changes underlying neurofeedback training of visual cortex activity.

    Directory of Open Access Journals (Sweden)

    Frank Scharnowski

    Full Text Available Neurofeedback based on real-time functional magnetic resonance imaging (fMRI is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM, we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity.

  20. Glucose phosphorylation rate in rat parietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Broendsted, H.E.; Gjedde, A. (Department of General Physiology and Biophysics, Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using (6-{sup 14}C)glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO{sub 2} and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author).

  1. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    Science.gov (United States)

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  2. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    Science.gov (United States)

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  3. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Amir Kheradmand

    2017-10-01

    Full Text Available We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i neurobehavioral aspects of orientation constancy, (ii sensory models that address the neurophysiology underlying perception of upright, and (iii the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function.

  4. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  6. Posterior parietal cortex is critical for the encoding, consolidation, and retrieval of a memory that guides attention for learning.

    Science.gov (United States)

    Schiffino, Felipe L; Zhou, Vivian; Holland, Peter C

    2014-02-01

    Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    Science.gov (United States)

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P < 0.001; odds ratio: 8.77, P < 0.001; odds ratio: 5.44, P = 0.011; odds ratio: 8.33, P = 0.006; respectively). Stimulation of the intraparietal sulcus was associated with the occurrence of sensory illusions or hallucinations (odds ratio: 8.68, P < 0.001) and eyeball/eyelid movements or sensations (odds ratio: 4.35, P = 0.047). To our knowledge, this is the only currently available complete

  8. Auditory and visual connectivity gradients in frontoparietal cortex.

    Science.gov (United States)

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning.

    Science.gov (United States)

    Grabner, Roland H; Rütsche, Bruno; Ruff, Christian C; Hauser, Tobias U

    2015-07-01

    The successful acquisition of arithmetic skills is an essential step in the development of mathematical competencies and has been associated with neural activity in the left posterior parietal cortex (PPC). It is unclear, however, whether this brain region plays a causal role in arithmetic skill acquisition and whether arithmetic learning can be modulated by means of non-invasive brain stimulation of this key region. In the present study we addressed these questions by applying transcranial direct current stimulation (tDCS) over the left PPC during a short-term training that simulates the typical path of arithmetic skill acquisition (specifically the transition from effortful procedural to memory-based problem-solving strategies). Sixty participants received either anodal, cathodal or sham tDCS while practising complex multiplication and subtraction problems. The stability of the stimulation-induced learning effects was assessed in a follow-up test 24 h after the training. Learning progress was modulated by tDCS. Cathodal tDCS (compared with sham) decreased learning rates during training and resulted in poorer performance which lasted over 24 h after stimulation. Anodal tDCS showed an operation-specific improvement for subtraction learning. Our findings extend previous studies by demonstrating that the left PPC is causally involved in arithmetic learning (and not only in arithmetic performance) and that even a short-term tDCS application can modulate the success of arithmetic knowledge acquisition. Moreover, our finding of operation-specific anodal stimulation effects suggests that the enhancing effects of tDCS on learning can selectively affect just one of several cognitive processes mediated by the stimulated area. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality.

    Science.gov (United States)

    Crescentini, Cristiano; Aglioti, Salvatore M; Fabbro, Franco; Urgesi, Cosimo

    2014-05-01

    Religiousness and spirituality (RS) are two ubiquitous aspects of human experience typically considered impervious to scientific investigation. Nevertheless, associations between RS and frontoparietal neural activity have been recently reported. However, much less is known about whether such activity is causally involved in modulating RS or just epiphenomenal to them. Here we combined two-pulse (10 Hz) Transcranial Magnetic Stimulation (TMS) with a novel, ad-hoc developed RS-related, Implicit Association Test (IAT) to investigate whether implicit RS representations, although supposedly rather stable, can be rapidly modified by a virtual lesion of inferior parietal lobe (IPL) and dorsolateral prefrontal cortex (DLPFC). A self-esteem (SE) IAT, focused on self-concepts nonrelated to RS representations, was developed as control. A specific increase of RS followed inhibition of IPL demonstrating its causative role in inducing fast plastic changes of religiousness/spirituality. In contrast, DLPFC inhibition had more widespread effects probably reflecting a general role in the acquisition or maintenance of task-rules or in controlling the expression of self-related representations not specific to RS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Predicting oculomotor behaviour from correlated populations of posterior parietal neurons.

    Science.gov (United States)

    Graf, Arnulf B A; Andersen, Richard A

    2015-01-23

    Oculomotor function critically depends on how signals representing saccade direction and eye position are combined across neurons in the lateral intraparietal (LIP) area of the posterior parietal cortex. Here we show that populations of parietal neurons exhibit correlated variability, and that using these interneuronal correlations yields oculomotor predictions that are more accurate and also less uncertain. The structure of LIP population responses is therefore essential for reliable read-out of oculomotor behaviour.

  12. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  13. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    Science.gov (United States)

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.

  14. Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task.

    Directory of Open Access Journals (Sweden)

    Mathieu d'Acremont

    Full Text Available In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI, young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

  15. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Mental reversal of imagined melodies: a role for the posterior parietal cortex.

    Science.gov (United States)

    Zatorre, Robert J; Halpern, Andrea R; Bouffard, Marc

    2010-04-01

    Two fMRI experiments explored the neural substrates of a musical imagery task that required manipulation of the imagined sounds: temporal reversal of a melody. Musicians were presented with the first few notes of a familiar tune (Experiment 1) or its title (Experiment 2), followed by a string of notes that was either an exact or an inexact reversal. The task was to judge whether the second string was correct or not by mentally reversing all its notes, thus requiring both maintenance and manipulation of the represented string. Both experiments showed considerable activation of the superior parietal lobe (intraparietal sulcus) during the reversal process. Ventrolateral and dorsolateral frontal cortices were also activated, consistent with the memory load required during the task. We also found weaker evidence for some activation of right auditory cortex in both studies, congruent with results from previous simpler music imagery tasks. We interpret these results in the context of other mental transformation tasks, such as mental rotation in the visual domain, which are known to recruit the intraparietal sulcus region, and we propose that this region subserves general computations that require transformations of a sensory input. Mental imagery tasks may thus have both task or modality-specific components as well as components that supersede any specific codes and instead represent amodal mental manipulation.

  17. Temporo-Parietal and Fronto-Parietal Lobe Contributions to Theory of Mind and Executive Control: An fMRI Study of Verbal Jokes

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChan

    2015-09-01

    Full Text Available ‘Getting a joke’ always requires resolving an apparent incongruity but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes, exaggeration jokes and ambiguity jokes. For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG was associated with bridging-inference jokes, suggesting involvement of these regions with ‘theory of mind’ processing. The ventral fronto-parietal lobe (IPL and IFG was associated with both exaggeration and ambiguity jokes, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, ventral anterior cingulate cortex (vACC, and parahippocampal gyrus. These results allow a more precise account of the neural

  18. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility

    Science.gov (United States)

    Tapia, Evelina; Mazzi, Chiara; Savazzi, Silvia; Beck, Diane M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0 to 130 ms after the onset of the stimulus (SOA) in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window. PMID:24584900

  19. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  20. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

    Science.gov (United States)

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2013-07-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

  1. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects

    International Nuclear Information System (INIS)

    Goto, Masami; Ino, Kenji; Yano, Keiichi; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi

    2013-01-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)

  2. Anodal transcranial direct current stimulation of parietal cortex enhances action naming in Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Rosa eManenti

    2015-04-01

    Full Text Available Background: Corticobasal Syndrome (CBS is a neurodegenerative disorder that overlaps both clinically and neuropathologically with Frontotemporal dementia and is characterized by apraxia, alien limb phenomena, cortical sensory loss, cognitive impairment, behavioural changes and aphasia. It has been recently demonstrated that transcranial direct current stimulation (tDCS improves naming in healthy subjects and in subjects with language deficits.Objective: The aim of the present study was to explore the extent to which anodal transcranial direct current stimulation (anodal tDCS over the parietal cortex (PARC could facilitate naming performance in CBS subjects. Methods: Anodal tDCS was applied to the left and right PARC during object and action naming in seventeen patients with a diagnosis of possible CBS. Participants underwent two sessions of anodal tDCS (left and right and one session of placebo tDCS. Vocal responses were recorded and analyzed for accuracy and vocal Reaction Times (vRTs. Results: A shortening of naming latency for actions was observed only after active anodal stimulation over the left PARC, as compared to placebo and right stimulations. No effects have been reported for accuracy.Conclusions: Our preliminary finding demonstrated that tDCS decreased vocal reaction time during action naming in a sample of patients with CBS. A possible explanation of our results is that anodal tDCS over the left PARC effects the brain network implicated in action observation and representation. Further studies, based on larger patient samples, should be conducted to investigate the usefulness of tDCS as an additional treatment of linguistic deficits in CBS patients.

  3. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  4. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  5. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  6. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  7. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  8. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  9. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.

    Directory of Open Access Journals (Sweden)

    Benjamin T Dunkley

    Full Text Available Post-traumatic stress disorder (PTSD is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18 versus a military control (all males, mean age = 33.05, n = 19 group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.

  10. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  11. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  12. Modulation of fronto-parietal connections during the rubber hand illusion

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Ritterband-Rosenbaum, Anina; Christensen, Mark Schram

    2017-01-01

    Accumulating evidence suggests that parieto-frontal connections play a role in adjusting body ownership during the Rubber Hand Illusion (RHI). Using a motor version of the rubber hand illusion paradigm, we applied single-site and dual-site transcranial magnetic stimulation (TMS) to investigate...... and during three RHI conditions: a) agency and ownership, b) agency but no ownership and c) neither agency nor ownership. Parietal-motor communication differed among experimental conditions. The induction of action ownership was associated with an inhibitory parietal-to-motor connectivity, which...... cortico-spinal and parietal-frontal connectivity during perceived rubber hand ownership. Healthy volunteers received a conditioning TMS pulse over left anterior intraparietal sulcus (aIPS) and a test TMS pulse over left primary motor cortex (M1). Motor Evoked Potentials (MEPs) were recorded at rest...

  13. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

    Science.gov (United States)

    Marangon, Mattia; Kubiak, Agnieszka; Króliczak, Gregory

    2015-01-01

    The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  14. Deficits in visual search for conjunctions of motion and form after parietal damage but with spared hMT+/V5.

    Science.gov (United States)

    Dent, Kevin; Lestou, Vaia; Humphreys, Glyn W

    2010-02-01

    It has been argued that area hMT+/V5 in humans acts as a motion filter, enabling targets defined by a conjunction of motion and form to be efficiently selected. We present data indicating that (a) damage to parietal cortex leads to a selective problem in processing motion-form conjunctions, and (b) that the presence of a structurally and functional intact hMT+/V5 is not sufficient for efficient search for motion-form conjunctions. We suggest that, in addition to motion-processing areas (e.g., hMT+/V5), the posterior parietal cortex is necessary for efficient search with motion-form conjunctions, so that damage to either brain region may bring about deficits in search. We discuss the results in terms of the involvement of the posterior parietal cortex in the top-down guidance of search or in the binding of motion and form information.

  15. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  16. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  17. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masami; Ino, Kenji; Yano, Keiichi [University of Tokyo Hospital, Department of Radiological Technology, Bunkyo-ku, Tokyo (Japan); Abe, Osamu [Nihon University School of Medicine, Department of Radiology, Itabashi-ku, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Hayashi, Naoto [University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Miyati, Tosiaki [Kanazawa University, Graduate School of Medical Science, Kanazawa (Japan); Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo Hospital, Department of Radiology and Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Iwatsubo, Takeshi [University of Tokyo, Department of Neuropathology, Bunkyo-ku, Tokyo (Japan); Yamashita, Fumio [Iwate Medical University, Department of Radiology, Yahaba, Iwate (Japan); Matsuda, Hiroshi [Integrative Brain Imaging Center National Center of Neurology and Psychiatry, Department of Nuclear Medicine, Kodaira, Tokyo (Japan); Collaboration: Japanese Alzheimer' s Disease Neuroimaging Initiative

    2013-07-15

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)

  18. Uncertain relational reasoning in the parietal cortex.

    Science.gov (United States)

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Clinical evidence of parietal cortex dysfunction and correlation with extent of allodynia in CRPS type 1.

    Science.gov (United States)

    Cohen, H; McCabe, C; Harris, N; Hall, J; Lewis, J; Blake, D R

    2013-04-01

    Unusual symptoms such as digit misidentification and neglect-like phenomena have been reported in complex regional pain syndrome (CRPS), which we hypothesized could be explained by parietal lobe dysfunction. Twenty-two patients with chronic CRPS attending an in-patient rehabilitation programme underwent standard neurological examination followed by clinical assessment of parietal lobe function and detailed sensory testing. Fifteen (68%) patients had evidence of parietal lobe dysfunction. Six (27%) subjects failed six or more test categories and demonstrated new clinical signs consistent with their parietal testing impairments, which were impacting significantly on activities of daily living. A higher incidence was noted in subjects with >1 limb involvement, CRPS affecting the dominant side and in left-handed subjects. Eighteen patients (82%) had mechanical allodynia covering 3-57.5% of the body surface area. Allochiria (unilateral tactile stimulation perceived only in the analogous location on the opposite limb), sensory extinction (concurrent bilateral tactile stimulation perceived only in one limb), referred sensations (unilateral tactile stimulation perceived concurrently in another discrete body area) and dysynchiria (unilateral non-noxious tactile stimulation perceived bilaterally as noxious) were present in some patients. Greater extent of body surface allodynia was correlated with worse parietal function (Spearman's rho = -0.674, p = 0.001). In patients with chronic CRPS, detailed clinical examination may reveal parietal dysfunction, with severity relating to the extent of allodynia. © 2012 European Federation of International Association for the Study of Pain Chapters.

  20. Posterior parietal cortex role in a sensorimotor task performance Papel do córtex parietal posterior na realização de uma tarefa sensório-motora

    Directory of Open Access Journals (Sweden)

    Sergio Nader

    2008-06-01

    Full Text Available This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when individuals had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG alpha absolute power changes. The sample was composed for 23 health subjects, both sexes, with ages varying between 25 and 40 years, absence of mental and physical illness, right handed and don't make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position factors in left parietal posterior cortex (PPC (p=0.001. Through the experimental task employed, this area demonstrated a differentiated activity involving expectation, planning and preparedness in the ball's drop task.O estudo tentou elucidar mecanismos eletrofisiológicos e corticais envolvidos em ações antecipatórias quando os sujeitos testados tiveram que apreender bolas em queda livre; especificamente através de mudanças na potência absoluta na banda alfa da eletrencefalografia quantitativa (EEGq. A amostra foi composta por 23 sujeitos sadios, ambos os sexos, idade entre variando entre 25 e 40 anos, sem comprometimento físico e mental, destros, e não fazer uso de nenhuma substância psicoativa ou psicotrópicos até o momento do estudo. O experimento consistiu de uma tarefa de apreensão de bolas em queda livre. A análise three-way ANOVA demonstrou uma interação entre os fatores momento e posição no córtex parietal posterior (CPP esquerdo (p=0,001. Através da tarefa experimental empregada, esta área demonstrou uma atividade diferenciada envolvendo expectativa, planejamento e prontidão na tarefa de queda de bolas.

  1. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  2. The mirror mechanism in the parietal lobe.

    Science.gov (United States)

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing.

    Science.gov (United States)

    Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H; Arkill, Kenton P; Neal, Christopher R; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-01-01

    Parietal podocytes are fully differentiated podocytes lining Bowman's capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman's capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman's capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman's capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman's capsule, rather than transdifferentiation from PECs to parietal podocytes.

  4. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia.

    Directory of Open Access Journals (Sweden)

    Enrico Premi

    Full Text Available BACKGROUND: Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI is a promising tool to carefully describe disease signature from the earliest disease phase. OBJECTIVE: To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers to the clinical phase of the disease (GRN- related Frontotemporal Dementia. METHODS: Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo, Fractional Amplitude of Low Frequency Fluctuation (fALFF and Degree Centrality (DC were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy. RESULTS: Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found. CONCLUSIONS: GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.

  5. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex.

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro; Cammarota, Martín; Vianna, Monica R M; Izquierdo, Iván; Medina, Jorge H

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.

  6. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  7. 10 Hz rTMS over right parietal cortex alters sense of agency during self-generated movements

    Directory of Open Access Journals (Sweden)

    Anina eRitterband-Rosenbaum

    2014-06-01

    Full Text Available A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC is important for sensorimotor integration and sense of agency (SoA. We used repetitive transcranial magnetic stimulation (rTMS to explore the role of the IPC during a validated SoA detection task. 12 healthy, right-handed adults were included. The effects of rTMS on subjects’ SoA during self-generated movements were explored. The experiment consisted of 1/3 self-generated movements and 2/3 computer manipulated movements that introduced uncertainty as to whether the subjects were agents of an observed movement. Subjects completed three sessions, in which subjects received online rTMS over the right IPC (active condition, over the vertex (CZ (sham condition or no TMS but a sound-matched control. We found that rTMS over right IPC significantly altered SoA of the non-perturbed movements. Following IPC stimulation subjects were more likely to experience self-generated movements as being externally perturbed compared to the control site (P=0.002 and the stimulation-free control (P=0.042. The data support the importance of IPC activation during sensorimotor comparison in order to correctly determine the agent of movements.

  8. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  9. Spatial summation in macaque parietal area 7a follows a winner-take-all rule

    NARCIS (Netherlands)

    Oleksiak, Anna; Klink, P. Christiaan; Postma, Albert; van der Ham, Ineke J.M.; Lankheet, Martin J.M.; van Wezel, Richard Jack Anton

    2011-01-01

    While neurons in posterior parietal cortex have been found to signal the presence of a salient stimulus among multiple items in a display, spatial summation within their receptive field in the absence of an attentional bias has never been investigated. This information, however, is indispensable

  10. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Interlaminar differences in the pyramidal cell phenotype in parietal cortex of an Indian bat, cynopterus sphinx.

    Science.gov (United States)

    Srivastava, U C; Pathak, S V

    2010-10-30

    To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.

  12. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  13. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  14. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  15. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  16. Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

    Science.gov (United States)

    Gong, Mengyuan

    2018-01-01

    Abstract Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection. PMID:29497703

  17. Orbitofrontal cortex contribution to working memory. N-back ERP study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    Remarkable progress in cognitive neuroscience has revealed the involvement of the prefrontal cortex and the orbitofrontal cortex in human working memory, but the orbitofrontal cortex is still one of the least understood regions in the human brain. To elucidate the contribution of the orbitofrontal cortex to human working memory, we studied electroencephalography (EEG) P300 activity in n-back task. We elicited early P3 around 300 ms and late P3 around 360 ms of P300 components in n-back event related potentials (ERP). The amplitudes of the respective peaks changed depending on the working memory load (0-back, 1-back, 2-back, 3-back). We used source analysis to evaluate the orbitofrontal cortex in P3 components. A source model was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and late P3 components in the n-back ERP. This source model had more than 99% of GOF (goodness of fit) in n-back ERP. It gave us an insight of brain activity at the positions where sources existed. Early P3 was mainly produced by the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the inferior parietal lobule, the medial posterior parietal and the visual cortex. Late P3 was mainly produced by the medial premotor, the lateral premotor, the frontal pole and the orbitofrontal cortex. The contribution of the frontal pole and the orbitofrontal cortex had peaks around 390 ms which were later than late P3 component. In this study, the method to evaluate the orbitofrontal cortex activity in n-back ERP was provided. Our results elicited the involvement of the orbitofrontal cortex in late P3 component of n-back ERP. (author)

  18. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  19. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    Science.gov (United States)

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  20. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  1. Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus.

    Science.gov (United States)

    Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare

    2010-07-30

    Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.

    Science.gov (United States)

    Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D

    2018-04-18

    Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.

  3. Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.

    Science.gov (United States)

    Liang, Wei-Kuang; Juan, Chi-Hung

    2012-08-01

    The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.

  4. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  6. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  7. Connectivity-based parcellation of the human orbitofrontal cortex.

    Science.gov (United States)

    Kahnt, Thorsten; Chang, Luke J; Park, Soyoung Q; Heinzle, Jakob; Haynes, John-Dylan

    2012-05-02

    The primate orbitofrontal cortex (OFC) is involved in reward processing, learning, and decision making. Research in monkeys has shown that this region is densely connected with higher sensory, limbic, and subcortical regions. Moreover, a parcellation of the monkey OFC into two subdivisions has been suggested based on its intrinsic anatomical connections. However, in humans, little is known about any functional subdivisions of the OFC except for a rather coarse medial/lateral distinction. Here, we used resting-state fMRI in combination with unsupervised clustering techniques to investigate whether OFC subdivisions can be revealed based on their functional connectivity profiles with other brain regions. Examination of different cluster solutions provided support for a parcellation into two parts as observed in monkeys, but it also highlighted a much finer hierarchical clustering of the orbital surface. Specifically, we identified (1) a medial, (2) a posterior-central, (3) a central, and (4-6) three lateral clusters spanning the anterior-posterior gradient. Consistent with animal tracing studies, these OFC clusters were connected to other cortical regions such as prefrontal, temporal, and parietal cortices but also subcortical areas in the striatum and the midbrain. These connectivity patterns provide important implications for identifying specific functional roles of OFC subdivisions for reward processing, learning, and decision making. Moreover, this parcellation schema can provide guidance to report results in future studies.

  8. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  9. The parietal memory network activates similarly for true and associative false recognition elicited via the DRM procedure.

    Science.gov (United States)

    McDermott, Kathleen B; Gilmore, Adrian W; Nelson, Steven M; Watson, Jason M; Ojemann, Jeffrey G

    2017-02-01

    Neuroimaging investigations of human memory encoding and retrieval have revealed that multiple regions of parietal cortex contribute to memory. Recently, a sparse network of regions within parietal cortex has been identified using resting state functional connectivity (MRI techniques). The regions within this network exhibit consistent task-related responses during memory formation and retrieval, leading to its being called the parietal memory network (PMN). Among its signature patterns are: deactivation during initial experience with an item (e.g., encoding); activation during subsequent repetitions (e.g., at retrieval); greater activation for successfully retrieved familiar words than novel words (e.g., hits relative to correctly-rejected lures). The question of interest here is whether novel words that are subjectively experienced as having been recently studied would elicit PMN activation similar to that of hits. That is, we compared old items correctly recognized to two types of novel items on a recognition test: those correctly identified as new and those incorrectly labeled as old due to their strong associative relation to the studied words (in the DRM false memory protocol). Subjective oldness plays a strong role in driving activation, as hits and false alarms activated similarly (and greater than correctly-rejected lures). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Attention and alcohol cues: a role for medial parietal cortex and shifting away from alcohol features?

    Directory of Open Access Journals (Sweden)

    Thomas Edward Gladwin

    2013-12-01

    Full Text Available Attention plays a central role in theories of alcohol dependence; however, its precise role in alcohol-related biases is not yet clear. In the current study, social drinkers performed a spatial cueing task designed to evoke conflict between automatic processes due to incentive salience and control exerted to follow task-related goals. Such conflict is a potentially important task feature from the perspective of dual-process models of addiction. Subjects received instructions either to direct their attention towards pictures of alcoholic beverages, and away from non-alcohol beverages; or to direct their attention towards pictures of non-alcoholic beverages, and away from alcohol beverages. A probe stimulus was likely to appear at the attended location, so that both spatial and non-spatial interference was possible. Activation in medial parietal cortex was found during Approach Alcohol versus Avoid Alcohol blocks. This region is associated with the, possibly automatic, shifting of attention between stimulus features, suggesting that subjects may have shifted attention away from certain features of alcoholic cues when attention had to be directed towards an upcoming stimulus at their location. Further, activation in voxels close to this region was negatively correlated with riskier drinking behavior. A tentative interpretation of the results is that risky drinking may be associated with a reduced tendency to shift attention away from potentially distracting task-irrelevant alcohol cues. The results suggest novel hypotheses and directions for future study, in particular towards the potential therapeutic use of training the ability to shifting attention away from alcohol-related stimulus features.

  11. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

    DEFF Research Database (Denmark)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin

    2013-01-01

    Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting...... the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d......' and the coefficient of variation in reaction times (RT(CV) ). Diffusion-weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent...

  12. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of visuospatial Attention

    Directory of Open Access Journals (Sweden)

    Yan eWu

    2016-03-01

    Full Text Available The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS and diffusion magnetic resonance imaging (MRI techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. TMS results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus, with the ipsilateral inferior frontal gyrus, and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  13. Disturbance of visual search by stimulating to posterior parietal cortex in the brain using transcranial magnetic stimulation

    Science.gov (United States)

    Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo

    2009-04-01

    In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.

  14. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation

    OpenAIRE

    Hanken, Katrin; Bosse, Mona; M?hrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    BACKGROUND: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. OBJECTIVES: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. METHODS: In study I, a randomized double-blind placebo-controll...

  15. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.

    Science.gov (United States)

    Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P

    2009-12-01

    Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.

  16. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  17. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    Science.gov (United States)

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices.

    Science.gov (United States)

    Robison, Matthew K; McGuirk, William P; Unsworth, Nash

    2017-08-01

    The present study examined the relative contributions of the prefrontal cortex (PFC) and posterior parietal cortex (PPC) to visual working memory. Evidence from a number of different techniques has led to the theory that the PFC controls access to working memory (i.e., filtering), determining which information is encoded and maintained for later use whereas the parietal cortex determines how much information is held at 1 given time, regardless of relevance (i.e., capacity; McNab & Klingberg, 2008; Vogel, McCollough, & Machizawa, 2005). To test this theory, we delivered transcranial DC stimulation (tDCS) to the right PFC and right PPC and measured visual working memory capacity and filtering abilities both during and immediately following stimulation. We observed no evidence that tDCS to either the PFC or PPC significantly improved visual working memory. Although the present results did not allow us to make firm theoretical conclusions about the roles of the PFC and PPC in working memory, the results add to the growing body of literature surrounding tDCS and its associated behavioral and neurophysiological effects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    OpenAIRE

    Katrin Hanken; Katrin Hanken; Mona Bosse; Kim Möhrke; Paul Eling; Andreas Kastrup; Andrea Antal; Helmut Hildebrandt; Helmut Hildebrandt

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anoda...

  1. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    International Nuclear Information System (INIS)

    Zhao Kunyuan; Wang Bin; Long Jinfeng; Li Lixin; Shen Xiaojun

    2010-01-01

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  3. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  4. Fronto-parietal coding of goal-directed actions performed by artificial agents.

    Science.gov (United States)

    Kupferberg, Aleksandra; Iacoboni, Marco; Flanagin, Virginia; Huber, Markus; Kasparbauer, Anna; Baumgartner, Thomas; Hasler, Gregor; Schmidt, Florian; Borst, Christoph; Glasauer, Stefan

    2018-03-01

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment. © 2017 Wiley Periodicals, Inc.

  5. [Successive subcortical hemorrhages in the superior parietal lobule and postcentral gyrus in a 23-year-old female].

    Science.gov (United States)

    Sato, K; Yoshikawa, H; Komai, K; Takamori, M

    1998-04-01

    We report a non-hypertensive 23-year-old female with successive hemorrhages in parietal subcortical regions. She had first experienced a transient pain in the left upper extremity one month before admission. She noticed dysesthesia in the same limb and weakness on her left hand, and, five days after, visited our hospital because of suddenly developed convulsion in the limb and loss of consciousness for a few minutes. Neurological examination revealed distal dominant flaccid paresis, positive pathological reflex and touch and position sense disturbances in the affected limb. Brain CT detected two high-density areas in the parietal lobe. Brain MRI demonstrated an acute phase subcortical hematoma in the left postcentral gyrus and a subacute phase one in the left superior parietal lobule. SPECT indicated hypoperfusion in the left frontal and parietal cortex. Cerebral angiography showed no abnormal findings. Her symptoms gradually improved, but left ulnar-type pseudoradicular sensory impairment remained on discharge. We considered the hemorrhage in this patient have arisen from rupture of cavernous hemangioma, because she was relatively young, the hematomas were oval in shape and successively developed in the left parietal lobe. Our patient suggests that a subcortical hemorrhage in the post-central gyrus causes flaccid paresis and pyramidal tract involvement.

  6. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  7. Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements.

    Science.gov (United States)

    Zangemeister, W H; Canavan, A G; Hoemberg, V

    1995-11-01

    Transcranial magnetic stimulation (TMS) of human motor cortex typically evoked motor responses. TMS has failed to elicit eye movements in humans, whereas prolongations of saccadic latency have been reported with TMS. In previous studied we demonstrated that saccades can be abolished or saccadic trajectories can be changed through TMS in the 100 msec before saccade onset. This effect was especially marked when TMS was applied parietally. TMS never influenced a saccade in flight. Simulations of predictive experimental saccades that were impaired through TMS of the frontal or parietal cortex demonstrated especially that the dynamics of small saccades were markedly influenced, resulting in a significant decrease in acceleration and amplitude, or an almost complete inhibition. The impact of inhibition through TMS was critically dependent on timing: early TMS (-70 msec) had a much larger inhibitory effect than late TMS (-20 msec) on experimental saccades. Differential timing of TMS in influencing the cortical control signal is demonstrated through simulations of a reciprocally innervated eye movement model that paralleled empirically determined changes in eye movement dynamics after real TMS. There is a reasonable match between the model and the experimental data. We conclude that the inhibitory action of a presaccadic disturbance, such as a TMS pulse, on saccadic programming is inversely related to timing and amplitude of the predicted saccade.

  8. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.

  9. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans.

    Directory of Open Access Journals (Sweden)

    Alberto Gallace

    Full Text Available The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.

  10. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  11. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  13. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  14. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    Directory of Open Access Journals (Sweden)

    Fatemeh Mirsafi

    2017-05-01

    Full Text Available Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group received no injections, the sham group received intraperitoneal injections of distilled water solution containing salt and polysorbate (solvent of levothyroxine, and the experimental group received once-daily, intraperitoneal injections of 0.5 mg/kg levothyroxine for a 10-day period to become hyperthyroid rats. The hyperthyroid rats were then mated, and all pregnant rats were killed on the 20th day of gestation. Fetuses were removed, fixed, and processed for histological procedures. The fetuses were sagitally sectioned at 5 µ thickness and stained with hematoxylin-eosin (H and E technique. The sections were examined using a light microscope and Motic software. Results The results showed no significant difference in the studied variables between the sham and control groups. A significantly increase in body weight and a significant decrease in crown-rump length of embryos was observed in the experimental group when compared to the control group. The mean total thickness of the parietal cortex, ventricular layer, and intermediate layer of embryos showed a significant decrease in the experimental group compared to the control and sham groups. The mean number of cells also showed a significant decrease in the intermediate and ventricular layers in the experimental group compared to the control and sham groups. Conclusions This study showed that maternal hyperthyroidism leads to a reduction in development of the parietal cortex in embryos. Maternal hyperthyroidism can disturb the growth and development of embryos.

  15. Low intensity areas observed T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Imon, Yukari [Hiroshima Univ. (Japan). School of Medicine

    1996-02-01

    We retrospectively studied magnetic resonance images of the brain in 158 patients (8 cases of amyotrophic lateral sclerosis, 16 cases of Alzheimer`s disease, 8 cases of Parkinson`s disease, 53 cases of multiple cerebral infarct, 20 cases of other central nervous system (CNS) diseases, and 53 cases without any CNS disease) to examine the appearance of T2-weighted low signal intensity areas (LIA) in the cerebral cortex. The age of subjects ranged from 36 to 85 years with the mean 65.0 and SD 9.9 years. LIA in the motor and sensory cortices, and brain atrophy were evaluated visually on axial images of the spin-echo sequence obtained with a 1.5 tesla system. The incidence of LIA in the motor cortex was significantly higher in all CNS diseases than in cases without any CNS disease, but not significantly different among CNS diseases. LIA in the motor cortex showed a correlation with age, temporal and parietal atrophy. The appearance of LIA in the sensory cortex correlated with that of LIA in the motor cortex, and parietal atrophy. These results suggest that LIA may appear according to age and be associated with the accumulation of nonheme iron in the cortex, especially in patients with CNS diseases. (author)

  16. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  17. Parietal podocytes in normal human glomeruli.

    Science.gov (United States)

    Bariety, Jean; Mandet, Chantal; Hill, Gary S; Bruneval, Patrick

    2006-10-01

    Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithelial protein-1, podocin, nephrin, synaptopodin, and alpha-actinin-4), podocyte synthesized proteins (vascular endothelial growth factor and novH), transcription factors (WT1 and PAX2), cyclin-dependent kinase inhibitor p57, and intermediate filaments (cytokeratins and vimentin) was tested. In addition, six normal fetal kidneys were studied to track the ontogeny of parietal podocytes. The podocyte protein labeling detected parietal podocytes in all of the kidneys, was found in 76.6% on average of Bowman's capsule sections, and was prominent at the vascular pole. WT1 and p57 were expressed in some parietal cells, whereas PAX2 was present in all or most of them, so some parietal cells coexpressed WT1 and PAX2. Furthermore, parietal podocytes coexpressed WT1 and podocyte proteins. Cytokeratin-positive cells covered a variable part of the capsule and did not express podocyte proteins. Tuft-capsular podocyte bridges were present in 15.5 +/- 3.7% of the glomerular sections. Parietal podocytes often covered the juxtaglomerular arterioles and were present within the extraglomerular mesangium. Parietal podocytes were present in fetal kidneys. Parietal podocytes that express the same epitopes as visceral podocytes do exist along Bowman's capsule in the normal adult kidney. They are a constitutive cell type of the Bowman's capsule. Therefore, their role in physiology and pathology should be investigated.

  18. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  19. Examining the role of the temporo-parietal network in memory, imagery and viewpoint transformations

    Directory of Open Access Journals (Sweden)

    Kiret eDhindsa

    2014-09-01

    Full Text Available The traditional view of the medial temporal lobe (MTL focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g. O’Keefe (1976; Ekstrom et al. (2003; King et al. (2002. According to our BBB model (Byrne et al. (2007, these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal ’window’. Such imagery is necessarily egocentric and forms part of visuospatial working memory, where it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al. (2012; Zhang et al. (2012 supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object 1 from visuospatial working memory (we assume working memory due to the order of tasks and the consistency viewpoint, but long-term memory is also possible, 2 after a rotation of viewpoint, or 3 after a rotation and translation (judgement of relative direction. We found performance-related activity in both tasks requiring viewpoint rotation in the core medial temporal to medial parietal. These results are consistent with the BBB model and shed further light on the mechanisms underlying spatial memory, mental imagery and viewpoint

  20. Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter

    2014-10-01

    Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.

  1. Parietal disruption alters audiovisual binding in the sound-induced flash illusion.

    Science.gov (United States)

    Kamke, Marc R; Vieth, Harrison E; Cottrell, David; Mattingley, Jason B

    2012-09-01

    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  3. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  4. Perceptual difficulty in source memory encoding and retrieval: prefrontal versus parietal electrical brain activity.

    Science.gov (United States)

    Kuo, Trudy Y; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval--remembering relationships between a core item and some additional attribute of an event--engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than others, the role of source retrieval difficulty on prefrontal activity has received little attention. We examined memory for conjunctions of object shape and color when color was an integral part of the depicted object, and when monochrome objects were surrounded by colored frames. Source accuracy was reliably worse when shape and color were spatially separated, but prefrontal activity did not vary across the object-color and frame-color conditions. The insensitivity of prefrontal ERPs to this perceptual manipulation of difficulty stands in contrast to their sensitivity to encoding task: deliberate voluntary effort to integrate objects and colors during encoding reduced prefrontal activity during retrieval, but perceptual organization of stimuli did not. The amplitudes of ERPs over parietal cortex were larger for frame-color than object-color stimuli during both study and test phases of the memory task. Individual variability in parietal ERPs was strongly correlated with memory accuracy, which we suggest reflects a contribution of visual working memory to long-term memory. We discuss multiple bottlenecks for source memory performance.

  5. Bilateral front-parietal polymicrogyria accompanied by cobblestone lissencephaly: 3T MR imaging findings of a case

    International Nuclear Information System (INIS)

    Bozkurt, Y.; Battal, B.; Ozcan, E.; Kocaoglu, M.

    2012-01-01

    Full text: Background: The cerebral cortex develops in three overlapping stages: cell proliferation, neuronal migration, and cortical organization. Lissencephaly (smooth brain) is a severe malformation of the cerebral cortex that results from impaired neuronal migration. Polymicrogyria is a disorder of late migration or cortical organization, and supposed to reflect a disruption of normal neuronal migration with subsequent disordered cortical organization. A combination of cobblestone lissencephaly and polymicrogyria is very rare in the same patient's brain. Objective: To present clinical and 3T magnetic resonance (MR) imaging findings of a 17-year-old male with bilateral fronto-parietal polimicrogyria accompanied by cobblestone lissencaphaly. Materials and methods: A 17-year-old male who had seizures and involuntary muscular spasm from birth, was referred to our Hospital. The patient was evaluated by a complete history, physical examination, a laboratory work-up, and cranial MR examination for evaluate the central nervous system. Results: A sharp wave paroxysm in the left temporal area was observed in the electroencephalogram (EEG). The neurological examination of our patient was normal. A slight increase have seen in the aspartate aminotransferase (SGOT) levels. The other biochemical tests were found to be normal. Cranial MR imaging showed an irregular nodular cortex with hypomyelination of the white matter at the lateral and posterior part of the right occipital lobe. We also observed the changes compatible with polymicrogyria in a large area of the medial parts of the bilateral temporal and parietal lobes. Conclusion: The role of radiological modalities for diagnosis of cortical formation disorders are very important. MR imaging are fairly useful for evaluation of these anomalies

  6. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  7. Early sensitivity of left perisylvian cortex to relationality in nouns and verbs.

    Science.gov (United States)

    Williams, Adina; Reddigari, Samir; Pylkkänen, Liina

    2017-06-01

    The ability to track the relationality of concepts, i.e., their capacity to encode a relationship between entities, is one of the core semantic abilities humans possess. In language processing, we systematically leverage this ability when computing verbal argument structure, in order to link participants to the events they participate in. Previous work has converged on a large region of left posterior perisylvian cortex as a locus for such processing, but the wide range of experimental stimuli and manipulations has yielded an unclear picture of the region's exact role(s). Importantly, there is a tendency for effects of relationality in single-word studies to localize to posterior temporo-parietal cortex, while argument structure effects in sentences appear in left superior temporal cortex. To characterize these sensitivities, we designed two MEG experiments that cross the factors relationality and eventivity. The first used minimal noun phrases and tested for an effect of semantic composition, while the second employed full sentences and a manipulation of grammatical category. The former identified a region of the left inferior parietal lobe sensitive to relationality, but not eventivity or combination, beginning at 170ms. The latter revealed a similarly-timed effect of relationality in left mid-superior temporal cortex, independent of eventivity and category. The results suggest that i) multiple sub-regions of perisylvian cortex are sensitive to the relationality carried by concepts even in the absence of arguments, ii) linguistic context modulates the locus of this sensitivity, consistent with prior studies, and iii) relationality information is accessed early - before 200ms - regardless of the concept's event status or syntactic category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2013-02-01

    Full Text Available In functional neuroimaging studies, ventral parietal cortex (VPC is recruited by very different cognitive tasks. Explaining the contributions VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ and in the angular gyrus (AG, respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be

  9. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    Science.gov (United States)

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  10. Patterns of morphological integration between parietal and temporal areas in the human skull.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Bastir, Markus

    2017-10-01

    Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis. © 2017 Wiley Periodicals, Inc.

  11. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information.

    Science.gov (United States)

    Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P

    2013-03-01

    In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Brodmann Areas 39 and 40: Human Parietal Association Area and Higher Cortical Function].

    Science.gov (United States)

    Sakurai, Yasuhisa

    2017-04-01

    The anatomy and function of the angular gyrus (Brodmann Area 39) and supramarginal gyrus (Brodmann Area 40) are described here. Both gyri constitute the inferior part of the parietal lobe. Association fibers from the angular gyrus project to the dorsolateral prefrontal cortex via the superior longitudinal fasciculus (SLF) II/arcuate fasciculus (AF), whereas those from the supramarginal gyrus project to the ventrolateral prefrontal cortex via SLF III/AF. Damage to the left angular gyrus causes kanji agraphia (lexical agraphia) and mild anomia, whereas damage to the left supramarginal gyrus causes kana alexia (phonological dyslexia) and kana agraphia (phonological agraphia). Damage to either gyrus causes Gerstmann's syndrome (finger agnosia, left-right disorientation, agraphia and acalculia) and verbal short-term memory impairment. "Angular alexia with agraphia" results from damage to the middle occipital gyrus posterior to the angular gyrus. Alexia and agraphia, with lesions in the angular or supramarginal gyrus, are characterized by kana transposition errors in reading words, which suggests the impairment of sequential phonological processing.

  13. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... affect participants' performance accuracy, it affected how observers adjusted their response times after making an error. We therefore suggest that activation increases in superior frontal gyri for misses relative to correct responses may not be critical for signal detection performance, but rather...

  14. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecto; Bonhage, Corinna; Küssner, Mats B; Jacobs, Arthur M

    2013-11-01

    This study investigates neural correlates of music-evoked fear and joy with fMRI. Studies on neural correlates of music-evoked fear are scant, and there are only a few studies on neural correlates of joy in general. Eighteen individuals listened to excerpts of fear-evoking, joy-evoking, as well as neutral music and rated their own emotional state in terms of valence, arousal, fear, and joy. Results show that BOLD signal intensity increased during joy, and decreased during fear (compared to the neutral condition) in bilateral auditory cortex (AC) and bilateral superficial amygdala (SF). In the right primary somatosensory cortex (area 3b) BOLD signals increased during exposure to fear-evoking music. While emotion-specific activity in AC increased with increasing duration of each trial, SF responded phasically in the beginning of the stimulus, and then SF activity declined. Psychophysiological Interaction (PPI) analysis revealed extensive emotion-specific functional connectivity of AC with insula, cingulate cortex, as well as with visual, and parietal attentional structures. These findings show that the auditory cortex functions as a central hub of an affective-attentional network that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF with AC during the joy condition, taken to reflect that SF is sensitive to social signals with positive valence. During fear music, SF showed functional connectivity with visual cortex and area 7 of the superior parietal lobule, taken to reflect increased visual alertness and an involuntary shift of attention during the perception of auditory signals of danger. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  16. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  17. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  18. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations.

    Science.gov (United States)

    Dhindsa, Kiret; Drobinin, Vladislav; King, John; Hall, Geoffrey B; Burgess, Neil; Becker, Suzanna

    2014-01-01

    The traditional view of the medial temporal lobe (MTL) focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g., O'Keefe, 1976; King et al., 2002; Ekstrom et al., 2003). According to our BBB model (Byrne et al., 2007), these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal "window." Such imagery is necessarily egocentric and forms part of visuospatial working memory, in which it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al., 2012; Zhang et al., 2012) supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object (1) from visuospatial working memory (we assume transient working memory due to the order of tasks and the absence of change in viewpoint, but long-term memory retrieval is also possible), (2) after a rotation of viewpoint, or (3) after a rotation and translation of viewpoint (judgment of relative direction). We found performance-related activity in both tasks requiring viewpoint rotation (ROT and JRD, i.e., conditions 2 and 3) in the core medial temporal to medial parietal circuit identified by the BBB model. These results are consistent with the

  20. Encefalomenigocele atrésico parietal Parietal atresic encephalomeningocele

    Directory of Open Access Journals (Sweden)

    Liliana Rivera Oliva

    2011-09-01

    Full Text Available El encefalocele es una anomalía congénita rara, en la que una porción del encéfalo protruye a través de un orificio craneal (evaginación, generalmente situado en la línea media. Clínicamente se caracteriza por una masa epicraneal, de consistencia blanda, muchas veces acompañada de trastornos psicomotores, convulsiones y trastornos de la visión. Se presenta el caso de un recién nacido con diagnóstico de encefalomeningocele atrésico parietal, intervenido quirúrgicamente y con evolución satisfactoria.The encephalocele is a uncommon congenital anomaly where a portion of encephalon protrudes through a cranial orifice (evagination, generally located in the middle line. Clinically, it is characterized by a soft epicranial mass often accompanied or psychomotor disorders, convulsions and vision disorders. This is the case of a newborn diagnosed with parietal atresic encephalomeningocele operated on with a satisfactory evolution.

  1. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    Smits, Marion; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan

    2007-01-01

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  4. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  5. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Seeing without the Occipito-Parietal Cortex: Simultagnosia as a Shrinkage of the Attentional Visual Field

    Directory of Open Access Journals (Sweden)

    François Michel

    2004-01-01

    Full Text Available Following bi-parietal lesions patient AT showed a severe inability to relocate her attention within a visual field which perimetry proved to be near-normal. An experimental approach with tasks testing visuo-spatial attention demonstrated a shrinkage of A.T.’s attentional visual field. With her visual attention narrowed to a kind of functional tunnel vision, the patient exhibited simultanagnosia (Wolpert, 1924, a symptom previously described in 1909 by Balint under the label of Psychic paralysis of “Gaze”. In striking contrast AT showed an efficient and effortless perception of complex natural scenes, which, according to recent work in normal subjects, necessitate few if any attentional resources.

  7. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    International Nuclear Information System (INIS)

    Liu, Arthur K.; Marcus, Karen J.; Fischl, Bruce; Grant, P. Ellen; Young Poussaint, Tina; Rivkin, Michael J.; Davis, Peter; Tarbell, Nancy J.; Yock, Torunn I.

    2007-01-01

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications

  8. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo

    2016-12-01

    Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  10. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  11. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  12. Comparative neuroimaging in children with cerebral palsy using fMRI and a novel EEG-based brain mapping during a motor task--a preliminary investigation.

    Science.gov (United States)

    Lee, Jae Jin; Lee, Dong Ryul; Shin, Yoon Kyum; Lee, Nam Gi; Han, Bong S; You, Sung Joshua Hyun

    2013-01-01

    The purpose of this study was to compare topographical maps using a novel EEG-based brain mapping system with fMRI in normal and children with cerebral palsy (CP) during a grasping motor task. A normal child (mean ± SD = 13 ± 0 yrs) and four children with CP (mean ± SD = 10.25 ± 2.86 yrs) were recruited from a local community school and medical center. A novel EEG-based brain mapping system with 30 scalp sites (an extension of the 10-20 system) and a 3T MR scanner were used to observe cortical activation patterns during a grasping motor task. Descriptive analysis. In the EEG brain mapping data, the sensorimotor cortex (SMC) and inferior parietal cortex (IPC) were activated in all of the children. The children with CP showed additional activation areas in the premotor cortex (PMC), superior parietal cortex (SPC), and prefrontal cortex (PFC). In the fMRI brain mapping data, SMC activation was observed in all of the children, and the children with CP showed additional activation areas in the PMC and primary somatosensory cortex (PSC). The EEG-based topographical maps were equivalent to the maps obtained from fMRI during the grasping motor task. The results indicate that our novel EEG-based brain mapping system is useful for probing cortical activation patterns in normal children and children with CP.

  13. Individual Differences in Reasoning and Visuospatial Attention are Associated with Prefrontal and Parietal White Matter Tracts in Healthy Older Adults

    Science.gov (United States)

    Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren

    2016-01-01

    Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750

  14. Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder

    DEFF Research Database (Denmark)

    Bas-Hoogendam, Janna Marie; van Steenbergen, Henk; Nienke Pannekoek, J.

    2017-01-01

    was used, focusing on the basal ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of self-reported social anxiety...... symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby, the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were...

  15. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder.

    Science.gov (United States)

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C

    2015-01-01

    Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.

  16. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  17. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  18. Excitatory stimulation of the right inferior parietal cortex lessens implicit religiousness/spirituality.

    Science.gov (United States)

    Crescentini, Cristiano; Di Bucchianico, Marilena; Fabbro, Franco; Urgesi, Cosimo

    2015-04-01

    Although religiousness and spirituality (RS) are considered two fundamental constituents of human life, neuroscientific investigation has long avoided the study of their neurocognitive basis. Nevertheless, recent investigations with brain imaging and brain damaged patients, and more recently with brain stimulation methods, have documented important associations between RS beliefs and experiences and frontoparietal neural activity. In this study, we further investigated how individuals' implicit RS self-representations can be modulated by changes in right inferior parietal lobe (IPL) excitability, a key region associated to RS. To this end, we combined continuous theta burst stimulation (cTBS), intermittent TBS (iTBS), and sham TBS with RS-related, Implicit Association Test (IAT) and with a control self-esteem (SE) IAT in a group of fourteen healthy adult individuals. A specific decrease of implicit RS, as measured with the IAT effect, was induced by increasing IPL excitability with iTBS; conversely cTBS, which is supposedly inhibitory, left participants' implicit RS unchanged. The performance in the control SE-IAT was left unchanged by any TBS stimulation. These data showed the causative role of right IPL functional state in mediating plastic changes of implicit RS. Implications of these results are also discussed in the light of the variability of behavioral effects associated with TBS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Heritability analysis of surface-based cortical thickness estimation on a large twin cohort

    Science.gov (United States)

    Shen, Kaikai; Doré, Vincent; Rose, Stephen; Fripp, Jurgen; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Thompson, Paul M.; Wright, Margaret J.; Salvado, Olivier

    2015-03-01

    The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

  20. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results.

    Science.gov (United States)

    Reneman, Liesbeth; Majoie, Charles B L M; Flick, Herman; den Heeten, Gerard J

    2002-02-01

    The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single-voxel proton ((1)H) MR spectroscopy. Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance. NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = -.550, P spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.

  1. Projections to early visual areas V1 and V2 in the calcarine fissure from parietal association areas in the macaque.

    Directory of Open Access Journals (Sweden)

    Elena eBorra

    2011-06-01

    Full Text Available Non-extrastriate projections to area V1 in monkeys, now demonstrated by several anatomical studies, are potential substrates of physiologically documented multisensory effects in primary sensory areas. The full network of projections among association and primary areas, however, is likely to be complex and is still only partially understood. In the present report, we used the anterograde tracer biotinylated dextran amine to investigate projections to areas V1 and V2 from subdivisions of the parietal association cortex in macaque. Parietal cortex was chosen to allow comparisons between projections from this higher association area and from other previously reported areas. In addition, we were interested in further elucidating pathways to areas V1 and V2 from parietal areas, as potentially contributing to attention and active vision. Of eight cases, three brains had projections only to area V2, and the five others projected to both areas V1 and V2. Terminations in area V1 were sparse. These were located in supragranular layers I, II, upper III; occasionally in IVB; and in layer VI. Terminations in V2 were denser, and slightly more prevalent in the supragranular layers. For both areas, terminations were in the calcarine region, corresponding to the representation of the peripheral visual field. By reconstructions of single axons, we demonstrated that four of nine axons had collaterals, either to V1 and V2 (n=1 or to area V1 and a ventral area likely to be TEO (n=3. In area V1, axons extended divergently in layer VI as well as layer I. Overall, these and previous results suggest a nested connectivity architecture, consisting of multiple direct and indirect recurrent projections from association areas to area V1. Terminations in area V1 are not abundant, but could be potentiated by the network of indirect connections.

  2. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.

  3. Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation

    Science.gov (United States)

    Iglói, Kinga; Doeller, Christian F.; Paradis, Anne-Lise; Benchenane, Karim; Berthoz, Alain; Burgess, Neil; Rondi-Reig, Laure

    2015-01-01

    To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task. PMID:24947462

  4. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  5. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    Directory of Open Access Journals (Sweden)

    Sarah Meyer

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  6. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits.

    Science.gov (United States)

    Meyer, Sarah; Kessner, Simon S; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2016-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  7. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  8. Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.

    Science.gov (United States)

    Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A

    2017-04-01

    Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    Science.gov (United States)

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.

    Science.gov (United States)

    Wang, Runchun M; Thakur, Chetan S; van Schaik, André

    2018-01-01

    This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.

  11. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator

    Directory of Open Access Journals (Sweden)

    Runchun M. Wang

    2018-04-01

    Full Text Available This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons. This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.

  12. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  13. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  14. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Separating recognition processes of declarative memory via anodal tDCS: boosting old item recognition by temporal and new item detection by parietal stimulation.

    Science.gov (United States)

    Pisoni, Alberto; Turi, Zsolt; Raithel, Almuth; Ambrus, Géza Gergely; Alekseichuk, Ivan; Schacht, Annekathrin; Paulus, Walter; Antal, Andrea

    2015-01-01

    There is emerging evidence from imaging studies that parietal and temporal cortices act together to achieve successful recognition of declarative information; nevertheless, the precise role of these regions remains elusive. To evaluate the role of these brain areas in declarative memory retrieval, we applied bilateral tDCS, with anode over the left and cathode over the right parietal or temporal cortices separately, during the recognition phase of a verbal learning paradigm using a balanced old-new decision task. In a parallel group design, we tested three different groups of healthy adults, matched for demographic and neurocognitive status: two groups received bilateral active stimulation of either the parietal or the temporal cortex, while a third group received sham stimulation. Accuracy, discriminability index (d') and reaction times of recognition memory performance were measurements of interest. The d' sensitivity index and accuracy percentage improved in both active stimulation groups, as compared with the sham one, while reaction times remained unaffected. Moreover, the analysis of accuracy revealed a different effect of tDCS for old and new item recognition. While the temporal group showed enhanced performance for old item recognition, the parietal group was better at correctly recognising new ones. Our results support an active role of both of these areas in memory retrieval, possibly underpinning different stages of the recognition process.

  16. Use of explicit memory cues following parietal lobe lesions.

    Science.gov (United States)

    Dobbins, Ian G; Jaeger, Antonio; Studer, Bettina; Simons, Jon S

    2012-11-01

    The putative role of the lateral parietal lobe in episodic memory has recently become a topic of considerable debate, owing primarily to its consistent activation for studied materials during functional magnetic resonance imaging studies of recognition. Here we examined the performance of patients with parietal lobe lesions using an explicit memory cueing task in which probabilistic cues ("Likely Old" or "Likely New"; 75% validity) preceded the majority of verbal recognition memory probes. Without cues, patients and control participants did not differ in accuracy. However, group differences emerged during the "Likely New" cue condition with controls responding more accurately than parietal patients when these cues were valid (preceding new materials) and trending towards less accuracy when these cues were invalid (preceding old materials). Both effects suggest insufficient integration of external cues into memory judgments on the part of the parietal patients whose cued performance largely resembled performance in the complete absence of cues. Comparison of the parietal patients to a patient group with frontal lobe lesions suggested the pattern was specific to parietal and adjacent area lesions. Overall, the data indicate that parietal lobe patients fail to appropriately incorporate external cues of novelty into recognition attributions. This finding supports a role for the lateral parietal lobe in the adaptive biasing of memory judgments through the integration of external cues and internal memory evidence. We outline the importance of such adaptive biasing through consideration of basic signal detection predictions regarding maximum possible accuracy with and without informative environmental cues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sequential inference as a mode of cognition and its correlates in fronto-parietal and hippocampal brain regions.

    Directory of Open Access Journals (Sweden)

    Thomas H B FitzGerald

    2017-05-01

    Full Text Available Normative models of human cognition often appeal to Bayesian filtering, which provides optimal online estimates of unknown or hidden states of the world, based on previous observations. However, in many cases it is necessary to optimise beliefs about sequences of states rather than just the current state. Importantly, Bayesian filtering and sequential inference strategies make different predictions about beliefs and subsequent choices, rendering them behaviourally dissociable. Taking data from a probabilistic reversal task we show that subjects' choices provide strong evidence that they are representing short sequences of states. Between-subject measures of this implicit sequential inference strategy had a neurobiological underpinning and correlated with grey matter density in prefrontal and parietal cortex, as well as the hippocampus. Our findings provide, to our knowledge, the first evidence for sequential inference in human cognition, and by exploiting between-subject variation in this measure we provide pointers to its neuronal substrates.

  18. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    Science.gov (United States)

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  19. Theory of mind difficulties in patients with alcohol dependence: beyond the prefrontal cortex dysfunction hypothesis.

    Science.gov (United States)

    Maurage, François; de Timary, Philippe; Tecco, Juan Martin; Lechantre, Stéphane; Samson, Dana

    2015-06-01

    Previous studies have shown that alcohol-dependent (AD) individuals have difficulties inferring other people's emotion, understanding humor, and detecting a faux pas. This study aimed at further understanding the nature of such "Theory of Mind" (ToM) difficulties. A total of 34 recently detoxified AD and 34 paired controls were compared based on 2 nonverbal and video-based false belief tasks. These tasks were designed to identify 3 different types of deficits: (i) a deficit in dealing with the general task demands, (ii) a selective deficit in self-perspective inhibition, and (iii) a deficit in tracking the other person's mental state. (i) and (ii) are compatible with the hypothesis of a prefrontal cortex dysfunction being at the origin of AD individuals' social difficulties, while (iii) would suggest the possible contribution of a dysfunction of the temporo-parietal junction in explaining the social difficulties. Group analyses highlighted that AD individuals performed worse on the 2 false belief tasks than controls. Individual analyses showed, however, that just under half of the AD individuals were impaired compared to controls. Moreover, most of the AD individuals who were impaired showed a deficit in tracking the other person's belief. This deficit was linked to disease-related factors such as illness duration, average alcohol consumption, and craving but not to general reasoning abilities, depression, anxiety, or demographic variables. Just under half of the AD individuals tested showed a ToM deficit, and in most cases, the deficit concerned the tracking of other people's mental states. Such a type of deficit has previously been associated with lesions to the temporo-parietal brain areas, indicating that a prefrontal cortex dysfunction may not be the sole origin of the social cognition deficits observed in alcohol dependence. Copyright © 2015 by the Research Society on Alcoholism.

  20. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals.

    Science.gov (United States)

    Bonino, Daniela; Ricciardi, Emiliano; Bernardi, Giulio; Sani, Lorenzo; Gentili, Claudio; Vecchi, Tomaso; Pietrini, Pietro

    2015-02-01

    Although vision offers distinctive information to space representation, individuals who lack vision since birth often show perceptual and representational skills comparable to those found in sighted individuals. However, congenitally blind individuals may result in impaired spatial analysis, when engaging in 'visual' spatial features (e.g., perspective or angle representation) or complex spatial mental abilities. In the present study, we measured behavioral and brain responses using functional magnetic resonance imaging in sighted and congenitally blind individuals during spatial imagery based on a modified version of the mental clock task (e.g., angle discrimination) and a simple recognition control condition, as conveyed across distinct sensory modalities: visual (sighted individuals only), tactile and auditory. Blind individuals were significantly less accurate during the auditory task, but comparable-to-sighted during the tactile task. As expected, both groups showed common neural activations in intraparietal and superior parietal regions across visual and non-visual spatial perception and imagery conditions, indicating the more abstract, sensory independent functional organization of these cortical areas, a property that we named supramodality. At the same time, however, comparisons in brain responses and functional connectivity patterns across experimental conditions demonstrated also a functional lateralization, in a way that correlated with the distinct behavioral performance in blind and sighted individuals. Specifically, blind individuals relied more on right parietal regions, mainly in the tactile and less in the auditory spatial processing. In sighted, spatial representation across modalities relied more on left parietal regions. In conclusions, intraparietal and superior parietal regions subserve supramodal spatial representations in sighted and congenitally blind individuals. Differences in their recruitment across non-visual spatial processing in

  1. Posterior cortex epilepsy surgery in childhood and adolescence: Predictors of long-term seizure outcome.

    Science.gov (United States)

    Ramantani, Georgia; Stathi, Angeliki; Brandt, Armin; Strobl, Karl; Schubert-Bast, Susanne; Wiegand, Gert; Korinthenberg, Rudolf; van Velthoven, Vera; Zentner, Josef; Schulze-Bonhage, Andreas; Bast, Thomas

    2017-03-01

    We aimed to investigate the long-term seizure outcome of children and adolescents who were undergoing epilepsy surgery in the parietooccipital cortex and determine their predictive factors. We retrospectively analyzed the data of 50 consecutive patients aged 11.1 (mean) ± 5.1 (standard deviation) years at surgery. All patients but one had a magnetic resonance imaging (MRI)-visible lesion. Resections were parietal in 40%, occipital in 32%, and parietooccipital in 28% cases; 24% patients additionally underwent a resection of the posterior border of the temporal lobe. Etiology included focal cortical dysplasia in 44%, benign tumors (dysembryoplastic neuroepithelial tumor, ganglioglioma, angiocentric glioma, and pilocystic astrocytoma) in 32%, peri- or postnatal ischemic lesions in 16%, and tuberous sclerosis in 8% cases. At last follow-up (mean 8 years, range 1.5-18 years), 60% patients remained seizure-free (Engel class I): 30% had discontinued and 20% had reduced antiepileptic drugs. Most seizure recurrences (71%) occurred within the first 6 months, and only three patients presented with seizures ≥2 years after surgery. Independent predictors of seizure recurrence included left-sided as well as parietal epileptogenic zones and resections. Longer epilepsy duration to surgery was identified as the only modifiable independent predictor of seizure recurrence. Our study demonstrates that posterior cortex epilepsy surgery is highly effective in terms of lasting seizure control and antiepileptic drug cessation in selected pediatric candidates. Most importantly, our data supports the early consideration of surgical intervention in children and adolescents with refractory posterior cortex epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  3. Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Janna Marie Bas-Hoogendam

    2017-01-01

    An international multi-center mega-analysis on the largest database of SAD structural T1-weighted 3T MRI scans to date was performed to compare GM volume of SAD-patients (n = 174 and healthy control (HC-participants (n = 213 using voxel-based morphometry. A hypothesis-driven region of interest (ROI approach was used, focusing on the basal ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of self-reported social anxiety symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby, the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were not replicated. Our findings emphasize the importance of large sample imaging studies and the need for meta-analyses like those performed by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA Consortium.

  4. Visual cortex entrains to sign language.

    Science.gov (United States)

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  5. Amodal processing in human prefrontal cortex.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  6. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  7. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  8. Laminar thickness alterations in the fronto-parietal cortical mantle of patients with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Elseline Hoekzema

    Full Text Available Although Attention-Deficit/Hyperactivity Disorder (ADHD was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43 and without ADHD (n = 41, as well as a group of adult neurotypical individuals (n = 31, adult patients with a history of stimulant treatment (n = 31 and medication-naïve adults with ADHD (n = 24. We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally. Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.

  9. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  10. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  11. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory.

    Science.gov (United States)

    Li, Siyao; Cai, Ying; Liu, Jing; Li, Dawei; Feng, Zifang; Chen, Chuansheng; Xue, Gui

    2017-04-01

    Mounting evidence suggests that multiple mechanisms underlie working memory capacity. Using transcranial direct current stimulation (tDCS), the current study aimed to provide causal evidence for the neural dissociation of two mechanisms underlying visual working memory (WM) capacity, namely, the scope and control of attention. A change detection task with distractors was used, where a number of colored bars (i.e., two red bars, four red bars, or two red plus two blue bars) were presented on both sides (Experiment 1) or the center (Experiment 2) of the screen for 100ms, and participants were instructed to remember the red bars and to ignore the blue bars (in both Experiments), as well as to ignore the stimuli on the un-cued side (Experiment 1 only). In both experiments, participants finished three sessions of the task after 15min of 1.5mA anodal tDCS administered on the right prefrontal cortex (PFC), the right posterior parietal cortex (PPC), and the primary visual cortex (VC), respectively. The VC stimulation served as an active control condition. We found that compared to stimulation on the VC, stimulation on the right PPC specifically increased the visual WM capacity under the no-distractor condition (i.e., 4 red bars), whereas stimulation on the right PFC specifically increased the visual WM capacity under the distractor condition (i.e., 2 red bars plus 2 blue bars). These results suggest that the PPC and PFC are involved in the scope and control of attention, respectively. We further showed that compared to central presentation of the stimuli (Experiment 2), bilateral presentation of the stimuli (on both sides of the fixation in Experiment 1) led to an additional demand for attention control. Our results emphasize the dissociated roles of the frontal and parietal lobes in visual WM capacity, and provide a deeper understanding of the neural mechanisms of WM. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  13. A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse

    Science.gov (United States)

    Radulovic, Jelena

    2016-01-01

    Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation. We investigated the cellular connectivity in this RSC→M2 projection in the mouse using optogenetic photostimulation, retrograde labeling, and electrophysiology. Axons from RSC formed monosynaptic excitatory connections onto M2 pyramidal neurons across layers and projection classes, including corticocortical/intratelencephalic neurons (reciprocally and callosally projecting) in layers 2–6, pyramidal tract neurons (corticocollicular, corticopontine) in layer 5B, and, to a lesser extent, corticothalamic neurons in layer 6. In addition to these direct connections, disynaptic connections were made via posterior parietal cortex (RSC→PPC→M2) and anteromedial thalamus (RSC→AM→M2). In the reverse direction, axons from M2 monosynaptically excited M2-projecting corticocortical neurons in the RSC, especially in the superficial layers of the dysgranular region. These findings establish an excitatory RSC→M2 corticocortical circuit that engages diverse types of excitatory projection neurons in the downstream area, suggesting a basis for direct communication from dorsal hippocampal networks involved in spatial memory and navigation to neocortical networks involved in diverse aspects of sensorimotor integration and motor control. SIGNIFICANCE STATEMENT Corticocortical pathways interconnect cortical areas extensively, but the cellular connectivity in these pathways remains largely uncharacterized. Here, we

  14. Semantic strategy training increases memory performance and brain activity in patients with prefrontal cortex lesions.

    Science.gov (United States)

    Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson

    2013-03-01

    Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Recovery from Spatial Neglect with Intra- and Transhemispheric Functional Connectivity Changes in Vestibular and Visual Cortex Areas—A Case Study

    Directory of Open Access Journals (Sweden)

    Julian Conrad

    2018-03-01

    Full Text Available ObjectiveVestibular signals are involved in higher cortical functions like spatial orientation and its disorders. Vestibular dysfunction contributes, for example, to spatial neglect which can be transiently improved by caloric stimulation. The exact roles and mechanisms of the vestibular and visual systems for the recovery of neglect are not yet known.MethodsResting-state functional connectivity (fc magnetic resonance imaging was recorded in a patient with hemispatial neglect during the acute phase and after recovery 6 months later following a right middle cerebral artery infarction before and after caloric vestibular stimulation. Seeds in the vestibular [parietal operculum (OP2], the parietal [posterior parietal cortex (PPC; 7A, hIP3], and the visual cortex (VC were used for the analysis.ResultsDuring the acute stage after caloric stimulation the fc of the right OP2 to the left OP2, the anterior cingulum, and the para/hippocampus was increased bilaterally (i.e., the vestibular network, while the interhemispheric fc was reduced between homologous regions in the VC. After 6 months, similar fc increases in the vestibular network were found without stimulation. In addition, fc increases of the OP2 to the PPC and the VC were seen; interhemispherically this was true for both PPCs and for the right PPC to both VCs.ConclusionImprovement of neglect after caloric stimulation in the acute phase was associated with increased fc of vestibular cortex areas in both hemispheres to the para-hippocampus and the dorsal anterior cingulum, but simultaneously with reduced interhemispheric VC connectivity. This disclosed a, to some extent, similar but also distinct short-term mechanism (vestibular stimulation of an improvement of spatial orientation compared to the long-term recovery of neglect.

  16. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    , right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.

  17. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.

    Science.gov (United States)

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-05-01

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Task context impacts visual object processing differentially across the cortex

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J.; Baker, Chris I.

    2014-01-01

    Perception reflects an integration of “bottom-up” (sensory-driven) and “top-down” (internally generated) signals. Although models of visual processing often emphasize the central role of feed-forward hierarchical processing, less is known about the impact of top-down signals on complex visual representations. Here, we investigated whether and how the observer’s goals modulate object processing across the cortex. We examined responses elicited by a diverse set of objects under six distinct tasks, focusing on either physical (e.g., color) or conceptual properties (e.g., man-made). Critically, the same stimuli were presented in all tasks, allowing us to investigate how task impacts the neural representations of identical visual input. We found that task has an extensive and differential impact on object processing across the cortex. First, we found task-dependent representations in the ventral temporal and prefrontal cortex. In particular, although object identity could be decoded from the multivoxel response within task, there was a significant reduction in decoding across tasks. In contrast, the early visual cortex evidenced equivalent decoding within and across tasks, indicating task-independent representations. Second, task information was pervasive and present from the earliest stages of object processing. However, although the responses of the ventral temporal, prefrontal, and parietal cortex enabled decoding of both the type of task (physical/conceptual) and the specific task (e.g., color), the early visual cortex was not sensitive to type of task and could only be used to decode individual physical tasks. Thus, object processing is highly influenced by the behavioral goal of the observer, highlighting how top-down signals constrain and inform the formation of visual representations. PMID:24567402

  19. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Hirano, Masaharu

    1998-01-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  20. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    1998-11-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  1. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.

    Science.gov (United States)

    Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya

    2015-01-01

    Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p right superior parietal cortex, cuneus, and precuneus (p theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).

  3. Functional segregation and integration within fronto-parietal networks.

    Science.gov (United States)

    Parlatini, Valeria; Radua, Joaquim; Dell'Acqua, Flavio; Leslie, Anoushka; Simmons, Andy; Murphy, Declan G; Catani, Marco; Thiebaut de Schotten, Michel

    2017-02-01

    Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Pure apraxia of speech due to infarct in premotor cortex.

    Science.gov (United States)

    Patira, Riddhi; Ciniglia, Lauren; Calvert, Timothy; Altschuler, Eric L

    Apraxia of speech (AOS) is now recognized as an articulation disorder distinct from dysarthria and aphasia. Various lesions have been associated with AOS in studies that are limited in precise localization due to variability in size and type of pathology. We present a case of pure AOS in setting of an acute stroke to localize more precisely than ever before the brain area responsible for AOS, dorsal premotor cortex (dPMC). The dPMC is in unique position to plan and coordinate speech production by virtue of its connection with nearby motor cortex harboring corticobulbar tract, supplementary motor area, inferior frontal operculum, and temporo-parietal area via the dorsal stream of dual-stream model of speech processing. The role of dPMC is further supported as part of dorsal stream in the dual-stream model of speech processing as well as controller in the hierarchical state feedback control model. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    Science.gov (United States)

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  6. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs

    Science.gov (United States)

    Lepore, Frederick E.; Noe, Adrianne

    2013-01-01

    Upon his death in 1955, Albert Einstein’s brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein’s entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein’s sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein’s brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein’s brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein’s parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein’s brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein’s brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci. PMID:23161163

  7. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  9. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  10. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    Science.gov (United States)

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  11. Parietal and early visual cortices encode working memory content across mental transformations.

    Science.gov (United States)

    Christophel, Thomas B; Cichy, Radoslaw M; Hebart, Martin N; Haynes, John-Dylan

    2015-02-01

    Active and flexible manipulations of memory contents "in the mind's eye" are believed to occur in a dedicated neural workspace, frequently referred to as visual working memory. Such a neural workspace should have two important properties: The ability to store sensory information across delay periods and the ability to flexibly transform sensory information. Here we used a combination of functional MRI and multivariate decoding to indentify such neural representations. Subjects were required to memorize a complex artificial pattern for an extended delay, then rotate the mental image as instructed by a cue and memorize this transformed pattern. We found that patterns of brain activity already in early visual areas and posterior parietal cortex encode not only the initially remembered image, but also the transformed contents after mental rotation. Our results thus suggest that the flexible and general neural workspace supporting visual working memory can be realized within posterior brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  13. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    Science.gov (United States)

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  14. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith

    2011-11-01

    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  15. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  16. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence.

    Science.gov (United States)

    Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E

    2018-04-01

    The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication

    Directory of Open Access Journals (Sweden)

    Domenica Veniero

    2017-06-01

    Full Text Available Transcranial electrical stimulation (tES is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two “inhibitory” tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each with a montage targeting right parietal cortex (right parietal–left frontal, electrode-sizes: 3cm × 3cm–7 cm × 5 cm, while performing a perceptual line bisection (landmark task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control. In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS (expected to entrain “inhibitory” alpha oscillations and to cathodal transcranial direct current stimulation (c-tDCS (shown to suppress neuronal spiking activity. In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham. However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.

  18. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    SA Journal of Radiology ... Magnetic resonance imaging (MRI) has been associated with either diffuse polymicrogyria around the entire extent of the sylvian fissure or in the posterior aspects of the parietal regions, in which case it is called posterior parietal ... This article discusses the possible embryological origin of these

  19. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    Science.gov (United States)

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  20. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  1. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Ye, Ting; Peng, Jing; Nie, Binbin; Gao, Juan; Liu, Jiangtao; Li, Yang; Wang, Gang; Ma, Xin; Li, Kuncheng

    2012-01-01

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  2. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  3. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    , right inferior parietal lobule, left insula and particularly, and left medial frontal cortex. PMID:27909422

  4. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music

    DEFF Research Database (Denmark)

    Green, Anders Christian; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans

    2012-01-01

    , participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous...... exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory...

  5. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory

    Science.gov (United States)

    Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.

    2011-01-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients’ memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. PMID:21345344

  6. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory.

    Science.gov (United States)

    Berryhill, Marian E; Chein, Jason; Olson, Ingrid R

    2011-04-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients' memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Functional brain networks involved in decision-making under certain and uncertain conditions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J. [Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, MA (United States); Mian, Asim Z. [Boston University School of Medicine, Department of Radiology, Boston, MA (United States); Budson, Andrew E. [VA Boston Healthcare System, Boston, MA (United States)

    2018-01-15

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  8. Functional brain networks involved in decision-making under certain and uncertain conditions

    International Nuclear Information System (INIS)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J.; Mian, Asim Z.; Budson, Andrew E.

    2018-01-01

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  9. Agnosia for mirror stimuli: a new case report with a small parietal lesion.

    Science.gov (United States)

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier

    2014-11-01

    Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  11. Abnormal resting state effective connectivity within the default mode network in major depressive disorder: A spectral dynamic causal modeling study.

    Science.gov (United States)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Liu, Wenlei; Wang, Huaning; Leung, Hoi-Chung; Tian, Ping; Zhang, Linchuan; Guo, Fan; Cui, Long-Biao; Yin, Hong; Lu, Hongbing; Tan, Qingrong

    2017-07-01

    Understanding the neural basis underlying major depressive disorder (MDD) is essential for the diagnosis and treatment of this mental disorder. Aberrant activation and functional connectivity of the default mode network (DMN) have been consistently found in patients with MDD. It is not known whether effective connectivity within the DMN is altered in MDD. The primary object of this study is to investigate the effective connectivity within the DMN during resting state in MDD patients before and after eight weeks of antidepressant treatment. We defined four regions of the DMN (medial frontal cortex, posterior cingulate cortex, left parietal cortex, and right parietal cortex) for each participant using a group independent component analysis. The coupling parameters reflecting the causal interactions among the DMN regions were estimated using spectral dynamic causal modeling (DCM). Twenty-seven MDD patients and 27 healthy controls were included in the statistical analysis. Our results showed declined influences from the left parietal cortex to other DMN regions in the pre-treatment patients as compared with healthy controls. After eight weeks of treatment, the influence from the right parietal cortex to the posterior cingulate cortex significantly decreased. These findings suggest that the reduced excitatory causal influence of the left parietal cortex is the key alteration of the DMN in patients with MDD, and the disrupted causal influences that parietal cortex exerts on the posterior cingulate cortex is responsive to antidepressant treatment.

  12. Making decisions based on autobiographical memories.

    Science.gov (United States)

    Minxha, Juri; Rutishauser, Ueli

    2015-04-22

    A new human intracranial study by Foster et al. (2015) sheds light on the electrophysiological correlates of intrinsic and task-evoked functional connectivity in lateral and medial parietal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    Science.gov (United States)

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  14. Prefrontal and parietal correlates of cognitive control related to the adult outcome of attention-deficit/hyperactivity disorder diagnosed in childhood.

    Science.gov (United States)

    Schulz, Kurt P; Li, Xiaobo; Clerkin, Suzanne M; Fan, Jin; Berwid, Olga G; Newcorn, Jeffrey H; Halperin, Jeffrey M

    2017-05-01

    The protracted and highly variable development of prefrontal cortex regions that support cognitive control has been purported to shape the adult outcome of attention-deficit/hyperactivity disorder (ADHD). This neurodevelopmental model was tested in a prospectively followed sample of 27 adult probands who were diagnosed with ADHD in childhood and 28 carefully matched comparison subjects aged 21-28 years. Probands were classified with persistent ADHD or remitted ADHD. Behavioral and neural responses to the Stimulus and Response Conflict Task (SRCT) performed during functional magnetic resonance imaging (fMRI) were compared in probands and comparison subjects and in probands with persistent and remitted ADHD. Response speed and accuracy for stimulus, response, and combined conflicts did not differ across groups. Orbitofrontal, inferior frontal and parietal activation was lower in probands than comparison subjects, but only for combined conflicts, when demand for cognitive control was highest. Reduced activation for combined conflicts in probands was almost wholly attributable to the persistence of ADHD; orbitofrontal, inferior frontal, anterior cingulate and parietal activation was lower in probands with persistent ADHD than both probands with remitted ADHD and comparison subjects, but did not differ between probands with remitted ADHD and comparison subjects. These data provide the first evidence that prefrontal and parietal activation during cognitive control parallels the adult outcome of ADHD diagnosed in childhood, with persistence of symptoms linked to reduced activation and symptom recovery associated with activation indistinguishable from adults with no history of ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Intradiploic encephalocele of the left parietal bone: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok [Myongji St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood.

  17. Intradiploic encephalocele of the left parietal bone: A case report

    International Nuclear Information System (INIS)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok

    2015-01-01

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood

  18. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  19. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  20. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  1. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    Science.gov (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  3. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  4. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    Science.gov (United States)

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Regina A. Weilbächer

    2016-12-01

    Full Text Available Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making.

  6. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    Science.gov (United States)

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  8. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  9. The neural correlates of gist-based true and false recognition

    Science.gov (United States)

    Gutchess, Angela H.; Schacter, Daniel L.

    2012-01-01

    When information is thematically related to previously studied information, gist-based processes contribute to false recognition. Using functional MRI, we examined the neural correlates of gist-based recognition as a function of increasing numbers of studied exemplars. Sixteen participants incidentally encoded small, medium, and large sets of pictures, and we compared the neural response at recognition using parametric modulation analyses. For hits, regions in middle occipital, middle temporal, and posterior parietal cortex linearly modulated their activity according to the number of related encoded items. For false alarms, visual, parietal, and hippocampal regions were modulated as a function of the encoded set size. The present results are consistent with prior work in that the neural regions supporting veridical memory also contribute to false memory for related information. The results also reveal that these regions respond to the degree of relatedness among similar items, and implicate perceptual and constructive processes in gist-based false memory. PMID:22155331

  10. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    Science.gov (United States)

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in

  11. Neural Substrates of Similarity and Rule-based Strategies in Judgment

    Directory of Open Access Journals (Sweden)

    Bettina eVon Helversen

    2014-10-01

    Full Text Available Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI, we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved.

  12. Decreased ERp57 Expression in WAG/Rij Rats Thalamus and Cortex; Possible Correlation with Absence Epilepsy.

    Science.gov (United States)

    Sahin, Deniz; Karadenizli, Sabriye; Kasap, Murat; Oztas, Berrin; Kir, Hale Maral; Akpinar, Gurler; Ates, Nurbay

    2018-02-06

    The role of intracellular proteins in the pathogenesis of absence epilepsy were mentioned. These proteins are thought to be related to energy generation, signal transduction, inflammation processes and membrane conductance. The investigation of protein profile of the genetically epileptic rat brains was the main subject of this study. For this, a 2D-gel electrophoresis based comparative proteome analysis was performed using thalamus tissue of genetic absence epileptic WAG/Rij and age matched Wistar rats. Regulated spots displaying differences in their abundance were identified using MALDI-TOF/TOF. Among the six spots (DHRS9, BR44, HINT1, CREM, SPRE and PDIA3/ERp57) the highest mascot score was attributed to ERp57 a neuroprotective/neurodegenerative system associated protein. Western Blot analyses were performed to validate changes occurring at ERp57 in thalamus and also identify changes in fronto-parietal cortex. Reductions in the expression levels of ERp57 were detected in the thalamic and the fronto-parietal brain regions of the WAG/Rij rats in comparison to Wistar rats. Such difference might be associated with the pathogenic mechanisms dictating the absence epilepsy. Lower levels of ERp57 may be playing an important role in the development of spontaneous seizures activity seen in the absence epileptic WAG/Rij rats strain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Abnormal Brain Activation During Theory of Mind Tasks in Schizophrenia: A Meta-Analysis.

    Science.gov (United States)

    Kronbichler, Lisa; Tschernegg, Melanie; Martin, Anna Isabel; Schurz, Matthias; Kronbichler, Martin

    2017-10-21

    Social cognition abilities are severely impaired in schizophrenia (SZ). The current meta-analysis used foci of 21 individual studies on functional abnormalities in the schizophrenic brain in order to identify regions that reveal convergent under- or over-activation during theory of mind (TOM) tasks. Studies were included in the analyses when contrasting tasks that require the processing of mental states with tasks which did not. Only studies that investigated patients with an ICD or DSM diagnosis were included. Quantitative voxel-based meta-analyses were done using Seed-based d Mapping software. Common TOM regions like medial-prefrontal cortex and temporo-parietal junction revealed abnormal activation in schizophrenic patients: Under-activation was identified in the medial prefrontal cortex, left orbito-frontal cortex, and in a small section of the left posterior temporo-parietal junction. Remarkably, robust over-activation was identified in a more dorsal, bilateral section of the temporo-parietal junction. Further abnormal activation was identified in medial occipito-parietal cortex, right premotor areas, left cingulate gyrus, and lingual gyrus. The findings of this study suggest that SZ patients simultaneously show over- and under-activation in TOM-related regions. Especially interesting, temporo-parietal junction reveals diverging activation patterns with an under-activating left posterior and an over-activating bilateral dorsal section. In conclusion, SZ patients show less specialized brain activation in regions linked to TOM and increased activation in attention-related networks suggesting compensatory effects. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  14. Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children.

    Science.gov (United States)

    Thijssen, Sandra; Ringoot, Ank P; Wildeboer, Andrea; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya

    2015-09-01

    Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Magnetic resonance (MR) scans were acquired from 566 children from the Generation R study who participated in the Berkeley Puppet Interview and whose parents had completed the Child Behavior Checklist. Linear regression analyses were used to examine associations between aggression and amygdala and hippocampal volume. We performed surface-based analyses to study the association between aggression and cortical thickness, surface area, and gyrification. Aggressive behavior was associated with smaller amygdala (p left precentral cortex (p right inferior parietal, supramarginal, and postcentral cortex (p Gender moderated the association between aggression and cortical thickness in the right medial posterior cortex (p = .001) and the right prefrontal cortex (p right precentral, postcentral, frontal, and parietal cortex (p = .01). Moreover, aggression was associated with decreased gyrification in the right occipital and parietal cortex (p = .02). We found novel evidence that childhood aggressive behavior is related to decreased amygdala volume, decreased sensorimotor cortical thickness, and decreased global right hemisphere gyrification. Aggression is related to cortical thickness in regions associated with the default mode network, with negative associations in boys and positive associations in girls.

  15. Boosting Memory by tDCS to Frontal or Parietal Brain Regions? A Study of the Enactment Effect Shows No Effects for Immediate and Delayed Recognition

    Directory of Open Access Journals (Sweden)

    Beat Meier

    2018-06-01

    Full Text Available Boosting memory with transcranial direct current stimulation (tDCS seems to be an elegant way to optimize learning. Here we tested whether tDCS to the left dorsolateral prefrontal cortex or to the left posterior parietal cortex would boost recognition memory in general and/or particularly for action phrases enacted at study. During study, 48 young adults either read or enacted simple action phrases. Memory for the action phrases was assessed after a retention interval of 45 min and again after 7-days to investigate the long-term consequences of brain stimulation. The results showed a robust enactment effect in both test sessions. Moreover, the decrease in performance was more pronounced for reading than for enacting the phrases at study. However, tDCS did not reveal any effect on subsequent recognition memory performance. We conclude that memory benefits of tDCS are not easily replicated. In contrast, enactment at study reliably boosts subsequent memory.

  16. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  17. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  18. Parietal lesions produce illusory conjunction errors in rats

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2012-05-01

    Full Text Available When several different objects are presented, visual objects are perceived correctly only if their features are identified and then bound together. Illusory-conjunction errors result when an object is correctly identified but is combined incorrectly. The parietal cortex (PPC has been shown repeatedly to play an important role in feature binding. The present study builds on a series of recent studies that have made use of visual search paradigms to elucidate the neural system involved in feature binding. This experiment attempts to define the role the PPC plays in binding the properties of a visual object that varies on the features of color and size in rats. Rats with PPC lesions or control surgery were exposed to three blocks of 20 trials administered over a 1-week period, with each block containing ten-one feature and ten-two feature trials. The target object consisted of one color object (e.g. black and white and one size object (e.g. short and tall. Of the ten one feature trials, five of the trials were tailored specifically for size discrimination and five for color discrimination. In the two-feature condition, the animal was required to locate the targeted object among four objects with two objects differing in size and two objects differing in color. The results showed a significant decrease in learning the task for the PPC lesioned rats compared to controls, especially for the two-feature condition. Based on a subsequent error analysis for color and size, the results showed a significant increase in illusory conjunction errors for the PPC lesioned rats relative to controls for color and relative to color discrimination, suggesting that the PPC may support feature binding as it relates to color. There was an increase in illusory conjunctions errors for both the PPC lesioned and control animals for size, but this appeared to be due to a difficulty with size discrimination.

  19. The role of the right temporo-parietal junction in social decision-making.

    Science.gov (United States)

    Bitsch, Florian; Berger, Philipp; Nagels, Arne; Falkenberg, Irina; Straube, Benjamin

    2018-03-26

    Identifying someone else's noncooperative intentions can prevent exploitation in social interactions. Hence, the inference of another person's mental state might be most pronounced in order to improve social decision-making. Here, we tested the hypothesis that brain regions associated with Theory of Mind (ToM), particularly the right temporo-parietal junction (rTPJ), show higher neural responses when interacting with a selfish person and that the rTPJ-activity as well as cooperative tendencies will change over time. We used functional magnetic resonance imaging (fMRI) and a modified prisoner's dilemma game in which 20 participants interacted with three fictive playing partners who behaved according to stable strategies either competitively, cooperatively or randomly during seven interaction blocks. The rTPJ and the posterior-medial prefrontal cortex showed higher activity during the interaction with a competitive compared with a cooperative playing partner. Only the rTPJ showed a high response during an early interaction phase, which preceded participants increase in defective decisions. Enhanced functional connectivity between the rTPJ and the left hippocampus suggests that social cognition and learning processes co-occur when behavioral adaptation seems beneficial. © 2018 Wiley Periodicals, Inc.

  20. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  1. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms.

    Science.gov (United States)

    Burciu, Roxana G; Hess, Christopher W; Coombes, Stephen A; Ofori, Edward; Shukla, Priyank; Chung, Jae Woo; McFarland, Nikolaus R; Wagle Shukla, Aparna; Okun, Michael S; Vaillancourt, David E

    2017-09-01

    Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  3. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  4. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  6. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  7. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex

    Science.gov (United States)

    Grossman, Emily D.; Srinivasan, Ramesh

    2011-01-01

    Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex “control” site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks. PMID:21715670

  8. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  9. Significance of parietal projection in radiosotope scintigraphy of the brain

    International Nuclear Information System (INIS)

    Fomchenkov, E.P.

    1978-01-01

    The diagnostic value of the isotope scintigraphy of the brain in the parieal projection with the change of the dip angle of the gamma-chamber detector to the plane of the physiological horizontal was revealed. The observation was made on 100 patients with suspected presence of the volumetric process of the brain. Three variants of placing were studied: the parietal projection - standard (collimator plane parallel to the plane of physiological horizontal and strictly perpendicular to the sagittal plane); the placing with an angle of 30 deg between the detector plane and the physiological horizontal, opened at the front (posterio-parietal); placing with an angle of 30 deg between the detector plane and the physiological horizontal opened at the back (anterio-parietal). A comparative analysis of scintigrams with focal processes of the brain showed the largest informativeness of the proposed modification of the parietal projection in the form of a change of the dip angle of the gamma-chamber detector plane to the plane of the physiological horizontal opened at the back; this makes it possible to reveal more thoroughly the focus of the increased, pathological accumulation of the isotope in different parts of the skull, where the use of as standard placing is of small informativeness

  10. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  11. The structure of the parietal pleura and its relationship to pleural liquid dynamics in sheep.

    Science.gov (United States)

    Albertine, K H; Wiener-Kronish, J P; Staub, N C

    1984-03-01

    We studied the parietal pleura of six sheep to obtain information on pleural structure, blood supply, and lymphatic drainage. In the strict sense, the parietal pleura is composed of a single layer of mesothelial cells and a uniform layer of loose, irregular connective tissue (about 23 micron in width) subjacent to the mesothelial cells. The parietal pleural blood vessels are 10-15 micron from the pleural space. Tracer substances put in the pleural space are removed at specific locations. Colloidal carbon and chick red blood cells are cleared by the parietal pleural lymphatics located over the intercostal spaces at the caudal end of the thoracic wall and over the lateral sides of the pericardial sac. In these areas the mesothelial cells have specialized openings, the stomata, that directly communicate with the underlying lymphatic lacunae. Cells and particulate matter in the pleural space are cleared only by the parietal pleural lymphatics. Compared to the visceral pleura, we believe the thinness of the parietal pleura, the closeness of its blood vessels to the pleural space, and its specialized lymphatic clearance pathways, together indicate that the parietal pleura plays a major role in pleural liquid and protein dynamics in sheep.

  12. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule.

    Science.gov (United States)

    Chen, Quanjing; Garcea, Frank E; Jacobs, Robert A; Mahon, Bradford Z

    2018-06-01

    Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.

  13. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Evaluation of Cerebral Cortex Function in Clients with Bipolar Mood Disorder I (BMD I Compared With BMD II Using QEEG Analysis

    Directory of Open Access Journals (Sweden)

    Ali Khaleghi

    2015-10-01

    Full Text Available Objective: Early diagnosis of type I and type II bipolar mood disorder is very challenging particularly in adolescence. Hence, we aimed to investigate the cerebral cortex function in these patients, using quantitative electroencephalography analysis to obtain significant differences between them.Methods: Thirty- eight adolescents (18 patients with bipolar disorder I and 20 with BMD II participated in this study. We recorded the electroencephalogram signals based on 10-20 international system by 21 electrodes in eyes open and eyes closed condition resting conditions. Forty seconds segments were selected from each recorded signals with minimal noise and artifacts. Periodogram Welch was used to estimate power spectrum density from each segment. Analysis was performed in five frequency bands (delta, theta, alpha, beta and gamma, and we assessed power, mean, entropy, variance and skewness of the spectrums, as well as mean of the thresholded spectrum and thresholded spectrogram. We only used focal montage for comparison. Eventually, data were analyzed by independent Mann-Whitney test and independent t test.Results: We observed significant differences in some brain regions and in all frequency bands. There were significant differences in prefrontal lobe, central lobe, left parietal lobe, occipital lobe and temporal lobe between BMD I and BMD II (P < 0.05. In patients with BMD I, spectral entropy was compared to patients with BMD II. The most significant difference was observed in the gamma frequency band. Also, the power and entropy of delta frequency band was larger in the left parietal lobe in the BMD I patients compared to BMD II patients (P < 0.05. In the temporal lobe, significant differences were observed in the spectrum distribution of beta and gamma frequency bands (P < 0.05.Conclusion: The QEEG and entropy measure are simple and available tools to help detect cerebral cortex deficits and distinguish BMD I from BMD II.

  15. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    Science.gov (United States)

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  16. Network based statistical analysis detects changes induced by continuous theta burst stimulation on brain activity at rest.

    Directory of Open Access Journals (Sweden)

    Chiara eMastropasqua

    2014-08-01

    Full Text Available We combined continuous theta burst stimulation (cTBS and resting state (RS -fMRI approaches to investigate changes in functional connectivity (FC induced by right dorso-lateral prefrontal cortex (DLPFC cTBS at rest in a group of healthy subjects. Seed based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40 respectively was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  17. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  18. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Glucose phosphorylation rate in rat rarietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    International Nuclear Information System (INIS)

    Broendsted, H.E.; Gjedde, A.

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using [6- 14 C]glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO 2 and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author)

  20. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  1. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults.

    Science.gov (United States)

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-08-15

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early-onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations.

  2. Effect of visual experience on structural organization of the human brain: A voxel based morphometric study using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Shilpi, E-mail: modi_shilpi@yahoo.co.in [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Bhattacharya, Manisha, E-mail: manishab10@gmail.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Singh, Namita, E-mail: namita23m@gmail.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Tripathi, Rajendra Prasad, E-mail: director@inmas.drdo.in [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Khushu, Subash, E-mail: skhushu@yahoo.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India)

    2012-10-15

    Objective: To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. Materials and methods: High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. Results: VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Conclusion: Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness.

  3. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    Science.gov (United States)

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of visual experience on structural organization of the human brain: A voxel based morphometric study using DARTEL

    International Nuclear Information System (INIS)

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-01-01

    Objective: To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. Materials and methods: High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. Results: VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Conclusion: Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness

  5. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    Science.gov (United States)

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2010-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. PMID:20525011

  6. Orbitofrontal Cortex Encodes Memories within Value-Based Schemas and Represents Contexts That Guide Memory Retrieval

    Science.gov (United States)

    Farovik, Anja; Place, Ryan J.; McKenzie, Sam; Porter, Blake; Munro, Catherine E.

    2015-01-01

    There are a substantial number of studies showing that the orbitofrontal cortex links events to reward values, whereas the hippocampus links events to the context in which they occur. Here we asked how the orbitofrontal cortex contributes to memory where context determines the reward values associated with events. After rats learned object–reward associations that differed depending on the spatial context in which the objects were presented, neuronal ensembles in orbitofrontal cortex represented distinct value-based schemas, each composed of a systematic organization of the representations of objects in the contexts and positions where they were associated with reward or nonreward. Orbitofrontal ensembles also represent the different spatial contexts that define the mappings of stimuli to actions that lead to reward or nonreward. These findings, combined with observations on complementary memory representation within the hippocampus, suggest mechanisms through which prefrontal cortex and the hippocampus interact in support of context-guided memory. PMID:26019346

  7. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  8. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Science.gov (United States)

    Lim, Julian; Tan, Jiat Chow; Parimal, Sarayu; Dinges, David F; Chee, Michael W L

    2010-02-05

    Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  9. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Directory of Open Access Journals (Sweden)

    Julian Lim

    Full Text Available BACKGROUND: Most prior studies on selective attention in the setting of total sleep deprivation (SD have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. CONCLUSIONS/SIGNIFICANCE: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  10. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  11. Parietal cells-new perspectives in glomerular disease

    NARCIS (Netherlands)

    Miesen, L.; Steenbergen, E.; Smeets, B.

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and

  12. The impact of egocentric vs. allocentric agency attributions on the neural bases of reasoning about social rules.

    Science.gov (United States)

    Canessa, Nicola; Pantaleo, Giuseppe; Crespi, Chiara; Gorini, Alessandra; Cappa, Stefano F

    2014-09-18

    We used the "standard" and "switched" social contract versions of the Wason Selection-task to investigate the neural bases of human reasoning about social rules. Both these versions typically elicit the deontically correct answer, i.e. the proper identification of the violations of a conditional obligation. Only in the standard version of the task, however, this response corresponds to the logically correct one. We took advantage of this differential adherence to logical vs. deontical accuracy to test the different predictions of logic rule-based vs. visuospatial accounts of inferential abilities in 14 participants who solved the standard and switched versions of the Selection-task during functional-Magnetic-Resonance-Imaging. Both versions activated the well known left fronto-parietal network of deductive reasoning. The standard version additionally recruited the medial parietal and right inferior parietal cortex, previously associated with mental imagery and with the adoption of egocentric vs. allocentric spatial reference frames. These results suggest that visuospatial processes encoding one's own subjective experience in social interactions may support and shape the interpretation of deductive arguments and/or the resulting inferences, thus contributing to elicit content effects in human reasoning. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  14. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  15. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  16. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  17. Parietal and occipital encephalocele in same child: A rarest variety of double encephalocele.

    Science.gov (United States)

    Sharma, Somnath; Ojha, Bal Krishan; Chandra, Anil; Singh, Sunil Kumar; Srivastava, Chhitij

    2016-05-01

    An encephalocele is a protrusion of the brain and/or meninges through a defect in the skull. Based on the location of the skull defect they are classified into sincipital, basal, occipital or parietal varieties. Occurrence of more than one Encephalocele in a patient is very rare and very few cases of double encephalocele are reported. We report an interesting case where a parietal and an occipital encephalocele were present together. The patient was a 2 months boy who was brought to us with complaints of two swelling on the scalp since birth. Neuroimaging studies confirmed it to be a case of double encephalocele. The rarity of the findings prompted us to report this case. The presentation and management of the case along with and review of the relevant literature is presented. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  19. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  20. Imaging the neurobiological substrate of atypical depression by SPECT

    International Nuclear Information System (INIS)

    Pagani, Marco; Salmaso, Dario; Nardo, Davide; Jonsson, Cathrine; Larsson, Stig A.; Jacobsson, Hans; Gardner, Ann

    2007-01-01

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in 99m Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  1. Muscarinic responses of gastric parietal cells

    International Nuclear Information System (INIS)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G.

    1991-01-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the [Ca]i transient

  2. Visual attention capacity: a review of TVA-based patient studies.

    Science.gov (United States)

    Habekost, Thomas; Starrfelt, Randi

    2009-02-01

    Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity, and measurements are highly reliable. As the method is theoretically founded, it also has high validity. TVA-based assessment has recently been used to investigate a broad range of neuropsychological and neurological conditions. We present the method, including the experimental paradigm and practical guidelines to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical networks that include several regions outside the visual system. The two visual capacity parameters are functionally separable, but seem to rely on largely overlapping brain areas.

  3. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-10-01

    Spontaneous dissociative alterations in awareness and perception among highly suggestible individuals following a hypnotic induction may result from disruptions in the functional coordination of the frontal-parietal network. We recorded EEG and self-reported state dissociation in control and hypnosis conditions in two sessions with low and highly suggestible participants. Highly suggestible participants reliably experienced greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 frequency band during hypnosis than low suggestible participants. These findings suggest that highly suggestible individuals exhibit a disruption of the frontal-parietal network that is only observable following a hypnotic induction. Copyright © 2011 Society for Psychophysiological Research.

  4. Functional anatomy of top-down visuospatial processing in the human brain : evidence from rTMS

    NARCIS (Netherlands)

    Aleman, A; Schutter, DJLG; Ramsey, NF; van Honk, J; Kessels, RPC; Hoogduin, JM; Postma, A; Kahn, RS; de Haan, EHF

    The hypothesis was tested that visuospatial mental imagery relies on processing in the posterior parietal lobe. Using repetitive transcranial magnetic stimulation (rTMS) in a cross-over, sham-controlled design, we compared involvement of right posterior parietal cortex with primary visual cortex.

  5. The inferior parietal lobule and recognition memory : expectancy violation or successful retrieval?

    OpenAIRE

    O'Connor, Akira R.; Han, Sanghoon; Dobbins, Ian G.

    2010-01-01

    Functional neuroimaging studies of episodic recognition demonstrate an increased lateral parietal response for studied versus new materials, often termed a retrieval success effect. Using a novel memory analog of attentional cueing, we manipulated the correspondence between anticipated and actual recognition evidence by presenting valid or invalid anticipatory cues (e. g., "likely old") before recognition judgments. Although a superior parietal region demonstrated the retrieval success patter...

  6. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  7. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  8. Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.

    Science.gov (United States)

    Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J

    2018-05-06

    Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.

  9. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    Science.gov (United States)

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  10. Cortical activation in patients with functional hemispherectomy.

    Science.gov (United States)

    Leonhardt, G; Bingel, U; Spiekermann, G; Kurthen, M; Müller, S; Hufnagel, A

    2001-10-01

    Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere.

  11. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  12. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    Science.gov (United States)

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    Science.gov (United States)

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.

  14. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  16. 78 FR 48068 - Topramezone; Pesticide Tolerances

    Science.gov (United States)

    2013-08-07

    ... morphometric measurements (e.g., hippocampus, and parietal cortex). Topramezone is classified as ``not likely... weight, and decreases in brain morphometric measurements (e.g., hippocampus, and parietal cortex). 3... (RFA) (5 U.S.C. 601 et seq.), do not apply. This final rule directly regulates growers, food processors...

  17. Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies-Methodological considerations

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2017-01-01

    the effect of transient perturbations on functional brain organization. This concurrent TMS-fMRI study applied TMS perturbation to occipital and parietal cortices with the aim to 'mimick' neglect and hemianopia. Based on the challenges and interpretational limitations of our own study we aim to provide...

  18. Parietal epithelial cells and podocytes in glomerular diseases

    NARCIS (Netherlands)

    Smeets, B.; Moeller, M.J.

    2012-01-01

    In recent years, it has become apparent that parietal epithelial cells (PECs) play an important role within the renal glomerulus, in particular in diseased conditions. In this review, we examine current knowledge about the role of PECs and their interactions with podocytes in development and under

  19. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  20. Kinesthetic alexia due to left parietal lobe lesions.

    Science.gov (United States)

    Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro

    2002-01-01

    To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel

  1. From Thirst to Satiety: The Anterior Mid-Cingulate Cortex and Right Posterior Insula Indicate Dynamic Changes in Incentive Value

    Directory of Open Access Journals (Sweden)

    Christoph A. Becker

    2017-05-01

    Full Text Available The cingulate cortex and insula are among the neural structures whose activations have been modulated in functional imaging studies examining discrete states of thirst and drinking to satiation. Building upon these findings, the present study aimed to identify neural structures that change their pattern of activation elicited by water held in the mouth in relation to the internal body state, i.e., proportional to continuous water consumption. Accordingly, participants in a thirsty state were scanned while receiving increments of water until satiety was reached. As expected, fluid ingestion led to a clear decrease in self-reported thirst and the pleasantness ratings of the water ingested. Furthermore, linear decreases in the blood oxygenation level dependent (BOLD response to water ingestion were observed in the anterior mid-cingulate cortex (aMCC and right posterior insula as participants shifted towards the non-thirsty state. In addition, regions in the superior temporal gyrus (STG, supplementary motor area (SMA, superior parietal lobule (SPL, precuneus and calcarine sulcus also showed a linear decrease with increasing fluid consumption. Further analyses related single trial BOLD responses of associated regions to trial-by-trial ratings of thirst and pleasantness. Overall, the aMCC and posterior insula may be key sites of a neural network representing the motivation for drinking based on the dynamic integration of internal state and external stimuli.

  2. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    International Nuclear Information System (INIS)

    Tessa, Carlo; Vignali, Claudio; Lucetti, Claudio; Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario; Cecchi, Paolo; Baldacci, Filippo; Giannelli, Marco; Bonuccelli, Ubaldo

    2012-01-01

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  3. Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

    Directory of Open Access Journals (Sweden)

    Yinghua Yu

    2018-01-01

    Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

  4. Perfusion impairments on brian SPECT in patients with developmental language disorder: comparison with MR findings

    International Nuclear Information System (INIS)

    Ryu, Y. H.; Shin, E. J.; Kim, J. K.; Yoon, P. H.; Jeon, T. J.; Jeon, J. D.; Lee, J. D.

    1999-01-01

    Development language disorder (DLD) is diagnosed when there is a failure of normal language development in a child with normal nonverbal intelligence. Because previous study had not demonstrated consistent and specific neuroimaging findings of DLD, we performed a retrospective review in search of common functional and structural abnormalties in pre-school aged DLD children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with infantile autism (AD). 50 children between 4 and 9 years of age with DLD (n=24) infantile autism (n=26) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of DLD and infantile autism was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 24 DLD patients, 10 revealed decreased perfusion of the thalami, followed by hypoperfusion of cerebellar hemisphere (n=9), frontal cortex (n=5), temporal cortex (n=5), parietal cortex (n=1). Of those 26 AD patients, 18 revealed hypoperfusion of the cerebellar hemisphere, followed by hypoperfusion of the thalami (n=16), parietal cortex (n=10), temporal cortex (n=4). Frontal hypoperfusion was significantly frequently seen in DLD, whereas, cerebellar hemispheric and parietal hypoperfusion was frequently seen in AD.All AD and DLD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. SPECT may be useful and more sensitive modality in reflecting pathophysiology of DLD and AD as evidenced by previous MRI and postmortem studies although they had normal MRI. And further studies are necessary to determine the significant of the thalamic hypoperfusion

  5. Perfusion impairments on brian SPECT in patients with developmental language disorder: comparison with MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Y H [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Shin, E J; Kim, J K; Yoon, P H; Jeon, T J; Jeon, J D; Lee, J D [College of Medicine, Inje Univ., Pusan (Korea, Republic of)

    1999-07-01

    Development language disorder (DLD) is diagnosed when there is a failure of normal language development in a child with normal nonverbal intelligence. Because previous study had not demonstrated consistent and specific neuroimaging findings of DLD, we performed a retrospective review in search of common functional and structural abnormalties in pre-school aged DLD children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with infantile autism (AD). 50 children between 4 and 9 years of age with DLD (n=24) infantile autism (n=26) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of DLD and infantile autism was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 24 DLD patients, 10 revealed decreased perfusion of the thalami, followed by hypoperfusion of cerebellar hemisphere (n=9), frontal cortex (n=5), temporal cortex (n=5), parietal cortex (n=1). Of those 26 AD patients, 18 revealed hypoperfusion of the cerebellar hemisphere, followed by hypoperfusion of the thalami (n=16), parietal cortex (n=10), temporal cortex (n=4). Frontal hypoperfusion was significantly frequently seen in DLD, whereas, cerebellar hemispheric and parietal hypoperfusion was frequently seen in AD.All AD and DLD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. SPECT may be useful and more sensitive modality in reflecting pathophysiology of DLD and AD as evidenced by previous MRI and postmortem studies although they had normal MRI. And further studies are necessary to determine the significant of the thalamic hypoperfusion.

  6. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    Directory of Open Access Journals (Sweden)

    Adam M P Miller

    2014-08-01

    Full Text Available Spatial navigation requires representations of landmarks and other navigation cues. The retrosplenial cortex (RSC is anatomically positioned between limbic areas important for memory formation, such as the hippocampus and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the hippocampus. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the hippocampus and as a target of the hippocampal-dependent systems consolidation of long-term memory.

  7. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition.

    Science.gov (United States)

    Miller, Adam M P; Vedder, Lindsey C; Law, L Matthew; Smith, David M

    2014-01-01

    Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.

  8. Investigation of Parietal Polysaccharides from Retama raetam Roots ...

    African Journals Online (AJOL)

    These results indicate the presence of the homogalacturonans and rhamnogalacturonans in pectin. This study constitutes the preliminary data obtained in the biochemical analysis of the parietal compounds of the roots of a species which grows in an arid area in comparison with those of its aerial parts. Keywords: Retama ...

  9. Parietal seeding of unsuspected gallbladder carcinoma after laparoscopic cholecystectomy.

    Science.gov (United States)

    Marmorale, C; Scibé, R; Siquini, W; Massa, M; Brunelli, A; Landi, E

    1998-01-01

    Laparoscopic cholecystectomy (VALC) represents the treatment of choice for the symptomatic gallstones. However the occurrence of an adenocarcinoma of the gallbladder results a controindication for this surgical technique. We present a case of a 52 years old woman who underwent a VALC; histology revealed a gallbladder adenocarcinoma. For this reason the patient underwent a second operation that is right hepatic trisegmentectomy. Six months later the patient presented with a parietal recurrence at the extraction site of the gallbladder. We discuss the possible mechanism responsible for carcinomatous dissemination during laparoscopic surgery and we raccommend the use of some procedures in order to limit the risk and eventually to treat a neoplastic parietal seeding. These complications suggest the problem about the utility and the future played by video assisted laparoscopic surgery in the diagnosis and treatment of intraabdominal malignancies.

  10. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    Science.gov (United States)

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  11. EEG UPPER/LOW ALPHA FREQUENCY POWER RATIO RELATES TO TEMPORO-PARIETAL BRAIN ATROPHY AND MEMORY PERFORMANCES IN MILD COGNITIVE IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2013-10-01

    Full Text Available Objective: temporo-parietal cortex thinning is associated to mild cognitive impairment (MCI due to Alzheimer disease (AD. The increase of EEG upper/low alpha power ratio has been associated with AD-converter MCI subjects. We investigated the association of alpha3/alpha2 ratio with patterns of cortical thickness in MCI.Methods: 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG recording and high resolution 3D magnetic resonance imaging (MRI. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of upper/low alpha power ratio . Difference of cortical thikness among the groups was estimated. Pearson’s r was used to assess the topography of the correlation between cortical thinning and memory impairment.Results: High upper/low alpha power ratio group had total cortical grey matter (CGM volume reduction of 471 mm2 than low upper/low alpha power ratio group (p

  12. Frontoparietal regions may become hypoactive after intermittent theta burst stimulation over the contralateral homologous cortex in humans.

    Science.gov (United States)

    He, Xiaofei; Lan, Yue; Xu, Guangqing; Mao, Yurong; Chen, Zhenghong; Huang, Dongfeng; Pei, Zhong

    2013-12-01

    Brain injury to the dorsal frontoparietal networks, including the posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC), commonly cause spatial neglect. However, the interaction of these different regions in spatial attention is unclear. The aim of the present study was to investigate whether hyperexcitable neural networks can cause an abnormal interhemispheric inhibition. The Attention Network Test was used to test subjects following intermittent theta burst stimulation (iTBS) to the left or right frontoparietal networks. During the Attention Network Test task, all subjects tolerated each conditioning iTBS without any obvious iTBS-related side effects. Subjects receiving real-right-PPC iTBS showed significant enhancement in both alerting and orienting efficiency compared with those receiving either sham-right-PPC iTBS or real-left-PPC iTBS. Moreover, subjects exposed to the real-right-DLPFC iTBS exhibited significant improvement in both alerting and executive control efficiency, compared with those exposed to either the sham-right-DLPFC or real-left-DLPFC conditioning. Interestingly, compared with subjects exposed to the sham-left-PPC stimuli, subjects exposed to the real-left-PPC iTBS had a significant deficit in the orienting index. The present study indicates that iTBS over the contralateral homologous cortex may induce the hypoactivity of the right PPC through interhemispheric competition in spatial orienting attention.

  13. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco eDavare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the reaching circuit remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  14. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    Science.gov (United States)

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe.

    Directory of Open Access Journals (Sweden)

    Xuntao Yin

    Full Text Available Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI data in normal participants, and evaluated their attention performance using attention network test (ANT, which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.

  16. Voxel-based analysis of cerebral glucose metabolism in AD and non-AD degenerative dementia using statistical parametric mapping

    International Nuclear Information System (INIS)

    Li Zugui; Gao Shuo; Zhang Benshu; Ma Aijun; Cai Li; Li Dacheng; Li Yansheng; Liu Lei

    2008-01-01

    Objective: It is know that Alzheimer's disease (AD) and non-AD degenerative dementia have some clinical features in common. The aim of this study was to investigate the specific patterns of regional, cerebral glucose metabolism of AD and non-AD degenerative dementia patients, using a voxel-based 18 F-fluorodeoxyglucose (FDG) PET study. Methods: Twenty-three AD patients and 24 non-AD degenerative dementia patients including 9 Parkinson's disease with dementia(PDD), 7 frontal-temporal dementia (FTD), 8 dementia of Lewy bodies (DLB) patients, and 40 normal controls (NC)were included in the study. To evaluate the relative cerebral metabolic rate of glucose (rCMRglc), 18 F-FDG PET imaging was performed in all subjects. Subsequently, statistical comparison of PET data with NC was performed using statistical parametric mapping (SPM). Results: The AD-associated FDG imaging pattern typically presented as focal cortical hypometabolism in bilateral parietotemporal association cortes and(or) frontal lobe and the posterior cingulate gyms. As compared with the comparative NC, FTD group demonstrated significant regional reductions in rCMRglc in bilateral frontal, parietal lobes, the cingulate gyri, insulae, left precuneus, and the subcortical structures (including right putamen, right medial dorsal nucleus and ventral anterior nucleus). The PDD group showed regional reductions in rCMRglc in bilateral frontal cortexes, parietotemporal association cortexes, and the subcortical structures (including left caudate, right putamen, the dorsomedial thalamus, lateral posterior nucleus, and pulvinar). By the voxel-by-voxel comparison between the DLB group and NC group, regional reductions in rCMRglc included bilateral occipital cortexes, precuneuses, frontal and parietal lobes, left anterior cingulate gyms, right superior temporal cortex, and the subcortical structures including putamen, caudate, lateral posterior nucleus, and pulvinar. Conclusions: The rCMRglc was found to be different

  17. Bilateral parietal extradural metastatic ewing's sarcoma simulating acute epidural hematoma

    International Nuclear Information System (INIS)

    Aslam, E.; Imran, M.; Faridi, N.M.

    2006-01-01

    Sarcomas usually metastasize to lugs. The following case report describes an unusual metastasis of Ewing's sarcoma to extradural parietal region bilaterally. The primary was found at lower end of ulna. (author)

  18. Multicenter prospective randomized study comparing the technique of using a bovine pericardium biological prosthesis reinforcement in parietal herniorrhaphy (Tutomesh TUTOGEN) with simple parietal herniorrhaphy, in a potentially contaminated setting.

    Science.gov (United States)

    Nedelcu, Marius; Verhaeghe, Pierre; Skalli, Mehdi; Champault, Gerard; Barrat, Christophe; Sebbag, Hugues; Reche, Fabian; Passebois, Laurent; Beyrne, Daniel; Gugenheim, Jean; Berdah, Stephane; Bouayed, Amine; Michel Fabre, Jean; Nocca, David

    2016-03-01

    The use of parietal synthetic prosthetic reinforcement material in potentially contaminated settings is not recommended, as there is a risk that the prosthesis may become infected. Thus, simple parietal herniorrhaphy, is the conventional treatment, even though there is a significant risk that the hernia may recur. Using new biomaterials of animal origin presently appears to offer a new therapeutic solution, but their effectiveness has yet to be demonstrated. The purpose of this multicenter prospective randomized single-blind study was to compare the surgical treatment of inguinal hernia or abdominal incisional hernia by simple parietal herniorrhaphy without prosthetic reinforcement (Group A), with Tutomesh TUTOGEN biological prosthesis reinforcement parietal herniorrhaphy (Group B), in a potentially contaminated setting. We examined early postoperative complications in the first month after the operation, performed an assessment after one year of survival without recurrence and analyzed the quality of life and pain of the patients (using SF-12 health status questionnaire and Visual Analog Pain Scale) at 1, 6, and 12 months, together with an economic impact study. Hundred and thirty four patients were enrolled between January 2009 and October 2010 in 20 French hospitals. The groups were comparable with respect to their enrollment characteristics, their history, types of operative indications and procedures carried out. At one month post-op, the rate of infectious complications (n(A) = 11(18.33%) vs. n(B) = 12(19.05%), p = 0.919) was not significantly different between the two groups. The assessment after one year of survival without recurrence revealed that survival was significantly greater in Group B (Group A recurrence: 10, Group B: 3; p = 0.0475). No difference in the patients' quality of life was demonstrated at 1, 6, or 12 months. However, at the 1 month follow-up, the "perceived health" rating seemed better in the group with Tutomesh (p

  19. Deconstructing visual scenes in cortex: gradients of object and spatial layout information.

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J; Baker, Chris I

    2013-04-01

    Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity.

  20. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Rowe, C.C.; Barnden, L.R.; Nicholas, C.; Nowakowski, K.; Boundy, K.

    2000-01-01

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    Science.gov (United States)

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  4. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia

    Directory of Open Access Journals (Sweden)

    Mitsouko van Assche

    2016-01-01

    Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI. Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.

  5. Regional intercostal bulging of the parietal pleura

    International Nuclear Information System (INIS)

    Jantsch, H.; Greene, R.; Lechner, G.; Mavritz, W.; Pichler, W.; Winkler, M.; Zadrobilek, E.

    1989-01-01

    This paper describes bedside radiographs with localized intercostal bulging as the sole indication of tension pneumothorax in six patients with acute deterioration in gas exchange. Relief of the pneumothorax was followed by a rush of gas from the tension space and a prompt improvement in gas exchange. The authors concluded the regional intercostal bulging of the parietal pleura may be the sole indicator of life-threatening tension pneumothorax in patients on mechanical ventilation

  6. Parietal cells?new perspectives in glomerular disease

    OpenAIRE

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman?s capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertain...

  7. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    Science.gov (United States)

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-08-01

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of rearranged vision on event-related lateralizations of the EEG during pointing.

    Science.gov (United States)

    Berndt, Isabelle; Franz, Volker H; Bülthoff, Heinrich H; Gotz, Karl G; Wascher, Edmund

    2005-01-01

    We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the, which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing.

  9. Metabolic Hyperactivity of the Medial Posterior Parietal Lobes in Psychogenic Tremor

    Directory of Open Access Journals (Sweden)

    Peter Hedera

    2012-05-01

    Full Text Available Background: The pathophysiology of psychogenic movement disorders, including psychogenic tremor (PT, is only emerging. Case Report: This is a single case report of a patient who met diagnostic criteria for PT. He underwent positron emission tomography (PET of brain with 18F-deoxyglucose at resting state. His PET study showed symmetrically increased 18F-deoxyglucose uptake in both posterior medial parietal lobes. There was no corresponding abnormality on structural imaging. Discussion: Hypermetabolism of the medial aspects of posterior parietal lobes bilaterally may reflect abnormal activity of sensory integration that is important in the pathogenesis of PT. This further supports the idea that non-organic movement disorders may be associated with detectable functional brain abnormalities.

  10. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. El arte parietal, espejo de las sociedades paleolíticas

    Directory of Open Access Journals (Sweden)

    Georges SAUVET

    2009-12-01

    Full Text Available RESUMEN: El presente trabajo aboga por un estudio del arte parietal como instrumento del conocimiento de la geografía humana de las sociedades de cazadores y de la evolución de sus redes de alianza, durante el Paleolítico superior. Tomando como ejemplo el componente figurativo de este arte y un amplio corpus de 3981 figuras procedentes de 154 yacimientos franceses y españoles, se demuestra que las asociaciones entre especies animales diferentes obedecen a reglas simples y coherentes, que se dejan fácilmente exprimir por un modelo formal. El análisis de doce sub-conjuntos sincrónicos y diacrónicos evidencia la movilidad de las connexiones interregionales (por ejemplo el desarrollo del Solutrense cantábrico en relación con los centros peninsulares y con escaso contacto con el sudoeste francés, al contrario de la situación que prevalece durante el Magdaleniense medio-superior. Sin embargo conforta la idea que las variaciones regionales operan dentro de un sistema de pensamiento religioso relativamente estable. Una segunda fase del trabajo se propone describir la estructuración del arte parietal a un nivel mucho más fino, teniendo en cuenta la diversidad formal de cada figura y sus relaciones topológicas con las demás. Una larga base de datos está en curso de elaboración para su tratamiento con las técnicas de "extracción de conocimiento" (Knowledge Discovery in Databases. Unos resultados preliminares dejan esperar que una base de datos de este tipo servirá el objetivo y proporcionará une visión más precisa y segura de la historia de los pueblos paleolíticos, dado que la fuente del estilo propio de cada grupo debe buscarse en la construcción gráfica de paneles complejos.ABSTRACT: This paper pleads in favour of the study of parietal art as a means to investigate the human geography of palaeolithic hunter-gatherers in Europe and the evolution of their alliance networks. Taking the example of the figurative component of Rock

  13. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  14. Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus.

    Science.gov (United States)

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2015-08-12

    Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has

  15. Intrinsic frequency biases and profiles across human cortex.

    Science.gov (United States)

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across

  16. Decreased Fronto-Parietal and Increased Default Mode Network Activation is Associated with Subtle Cognitive Deficits in Elderly Controls

    Directory of Open Access Journals (Sweden)

    Davide Zanchi

    2017-12-01

    Full Text Available Background: Cognitive functions progressively deteriorate during aging and neurodegenerative diseases. The present study aims at investigating differences in working memory performance as well as functional brain changes during the earliest stages of cognitive decline in health elderly individuals. Methods: 62 elderly individuals (41 females, including 41 controls (35 females and 21 middle cognitive impairment subjects (6 females, underwent neuropsychological assessment at baseline and an fMRI examination in a N-back paradigm contrasting 2-back vs. 0-back condition. Upon a 18 months follow-up, we identified stable controls (sCON with preserved cognition and deteriorating controls (dCON with -1SD decrease of performances in at least two neuropsychological tests. Data analyses included accuracy and reaction time (RT for the 2-back condition and general linear model (GLM for the fMRI sequence. Results: At the behavioral level, sCON and dCON performed better than MCI in terms of accuracy and reaction time. At the brain level, functional differences in regions of the fronto-parietal network (FPN and of the Default Mode Network (DFM were observed. Significantly lower neural activations in the bilateral inferior and middle frontal gyri were found in MCI versus both dCON / sCON and for dCON versus sCON. Significantly increased activations in the anterior cingulate cortex and posterior cingulate cortex and bilateral insula were found in MCI versus both dCON / sCON and in dCON versus sCON. Conclusion: The present study suggests that brain functional changes in FPN and DMN anticipate differences in cognitive performance in healthy elderly individuals with subsequent subtle cognitive decline.

  17. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  18. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  19. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Long Duration Head Down Tilt Bed Rest and Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2017-01-01

    We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor

  1. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Science.gov (United States)

    Wu, Xiu-Jie; Xing, Song; Trinkaus, Erik

    2013-01-01

    We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  2. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Directory of Open Access Journals (Sweden)

    Xiu-Jie Wu

    Full Text Available We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen. In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  3. Brain expansion in patients with type II diabetes following insulin therapy: a preliminary study with longitudinal voxel-based morphometry.

    Science.gov (United States)

    Chen, Zhiye; Li, Jinfeng; Sun, Jie; Ma, Lin

    2014-01-01

    We performed a longitudinal analysis based on magnetic resonance (MR) imaging to investigate the brain structural and perfusion changes caused by insulin therapy in patients with type II diabetes. High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo images and flow-sensitive alternating inversion recovery (FAIR) images were obtained from 11 patients with type II diabetes before and 1 year after initiation of insulin therapy and 11 normal controls. Brain volume changes were investigated by a longitudinal voxel-based morphometry (VBM), and perfusion changes were evaluated by FAIR imaging between baseline and follow-up data. Significant regional gray matter (GM) expansion located in bilateral frontal, parietal, and left occipital lobes, and regional white matter (WM) expansion was shown in left precentral subcortical WM and right angular subcortical WM after insulin therapy (P Brain hyperperfusion was detected in bilateral frontal cortex, left occipital cortex, and right temporal cortex after insulin therapy (P brain expansion and hyperperfusion were demonstrated 1 year after initiation of insulin therapy, and insulin therapy could contribute to the brain volume gainment in the patients with type II diabetes. Copyright © 2013 by the American Society of Neuroimaging.

  4. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  5. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  6. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  7. Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite.

    Science.gov (United States)

    El Filali, Z; de Boer, P A C M; Pieneman, A W; de Lange, R P J; Jansen, R F; Ter Maat, A; van der Schors, R C; Li, K W; van Straalen, N M; Koene, J M

    2015-12-01

    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite.

  8. An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex

    Science.gov (United States)

    Van Essen, David C.; Drury, Heather A.; Dickson, James; Harwell, John; Hanlon, Donna; Anderson, Charles H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database. PMID:11522765

  9. An integrated software suite for surface-based analyses of cerebral cortex

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  10. Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study

    International Nuclear Information System (INIS)

    Del Sole, Angelo; Lecchi, Michela; Lucignani, Giovanni; Clerici, Francesca; Mariani, Claudio; Maggiore, Laura; Chiti, Arturo; Mosconi, Lisa

    2008-01-01

    The purpose of the study was the identification of group and individual subject patterns of cerebral glucose metabolism (CMRGlu) in patients with Alzheimer's disease (AD) and with amnestic mild cognitive impairment (aMCI). [ 18 F]fluorodeoxyglucose positron emission tomography (PET) studies and neuropsychological tests were performed in 16 aMCI patients (ten women, age 75 ± 8 years) and in 14 AD patients (ten women, age 75 ± 9 years). Comparisons between patient subgroups and with a control population were performed using Statistical Parametric Mapping. Clusters of low CMRGlu were observed bilaterally in the posterior cingulate cortex (PCC), in the precuneus, in the inferior parietal lobule and middle temporal gyrus of AD patients. In aMCI patients, reduced CMRGlu was found only in PCC. Areas of low CMRGlu in PCC were wider in AD compared to aMCI and extended to the precuneus, while low CMRGlu was found in the lateral parietal cortex in AD but not in aMCI patients. Individual subject pattern analysis revealed that 86% of AD patients had low CMRGlu in the PCC (including the precuneus in 71%), 71% in the temporal cortex, 64% in the parietal cortex and 35% in the frontal cortex. Among the aMCI patients, 56% had low CMRGlu in the PCC, 44% in the temporal cortex, 18% in the frontal cortex and none in the parietal cortex. This study demonstrates that both AD and aMCI patients have highly heterogeneous metabolic impairment. This potential of individual metabolic PET imaging in patients with AD and aMCI may allow timely identification of brain damage on individual basis and possibly help planning tailored early interventions. (orig.)

  11. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    Science.gov (United States)

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Classification of Children with Attention-Deficit/Hyperactivity Disorder and Typically Developing Children Based on Electroencephalogram Principal Component Analysis and k-Nearest Neighbor].

    Science.gov (United States)

    Yang, Jiaojiao; Guo, Qian; Li, Wenjie; Wang, Suhong; Zou, Ling

    2016-04-01

    This paper aims to assist the individual clinical diagnosis of children with attention-deficit/hyperactivity disorder using electroencephalogram signal detection method.Firstly,in our experiments,we obtained and studied the electroencephalogram signals from fourteen attention-deficit/hyperactivity disorder children and sixteen typically developing children during the classic interference control task of Simon-spatial Stroop,and we completed electroencephalogram data preprocessing including filtering,segmentation,removal of artifacts and so on.Secondly,we selected the subset electroencephalogram electrodes using principal component analysis(PCA)method,and we collected the common channels of the optimal electrodes which occurrence rates were more than 90%in each kind of stimulation.We then extracted the latency(200~450ms)mean amplitude features of the common electrodes.Finally,we used the k-nearest neighbor(KNN)classifier based on Euclidean distance and the support vector machine(SVM)classifier based on radial basis kernel function to classify.From the experiment,at the same kind of interference control task,the attention-deficit/hyperactivity disorder children showed lower correct response rates and longer reaction time.The N2 emerged in prefrontal cortex while P2 presented in the inferior parietal area when all kinds of stimuli demonstrated.Meanwhile,the children with attention-deficit/hyperactivity disorder exhibited markedly reduced N2 and P2amplitude compared to typically developing children.KNN resulted in better classification accuracy than SVM classifier,and the best classification rate was 89.29%in StI task.The results showed that the electroencephalogram signals were different in the brain regions of prefrontal cortex and inferior parietal cortex between attention-deficit/hyperactivity disorder and typically developing children during the interference control task,which provided a scientific basis for the clinical diagnosis of attention

  13. Repair of large frontal temporal parietal skull defect with digitally reconstructed titanium mesh: a report of 20 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2013-09-01

    Full Text Available Objective To explore the clinical effect and surgical technique of the repair of large defect involving frontal, temporal, and parietal regions using digitally reconstructed titanium mesh. Methods Twenty patients with large frontal, temporal, and parietal skull defect hospitalized in Air Force General Hospital from November 2006 to May 2012 were involved in this study. In these 20 patients, there were 13 males and 7 females, aged 18-58 years (mean 39 years, and the defect size measured from 7.0cm×9.0cm to 11.5cm×14.0cm (mean 8.5cm×12.0cm. Spiral CT head scan and digital three-dimensional reconstruction of skull were performed in all the patients. The shape and geometric size of skull defect was traced based on the symmetry principle, and then the data were transferred into digital precision lathe to reconstruct a titanium mesh slightly larger (1.0-1.5cm than the skull defect, and the finally the prosthesis was perfected after pruning the border. Cranioplasty was performed 6-12 months after craniotomy using the digitally reconstructed titanium mesh. Results The digitally reconstructed titanium mesh was used in 20 patients with large frontal, temporal, parietal skull defect. The surgical technique was relatively simple, and the surgical duration was shorter than before. The titanium mesh fit to the defect of skull accurately with satisfactory molding effect, good appearance and symmetrical in shape. No related complication was found in all the patients. Conclusion Repair of large frontal, temporal, parietal skull defect with digitally reconstructed titanium mesh is more advantageous than traditional manual reconstruction, and it can improve the life quality of patients.

  14. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  15. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Science.gov (United States)

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  16. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tessa, Carlo; Vignali, Claudio [Versilia Hospital, AUSL Versilia, Division of Radiology, Camaiore (Italy); Lucetti, Claudio [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario [University of Florence, Radiodiagnostic Section, Department of Clinical Physiopathology, Florence (Italy); Cecchi, Paolo; Baldacci, Filippo [University of Pisa, Department of Neuroscience, Pisa (Italy); Giannelli, Marco [Azienda Ospedaliero-Universitaria Pisana, Unit of Medical Physics, Pisa (Italy); Bonuccelli, Ubaldo [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); University of Pisa, Department of Neuroscience, Pisa (Italy)

    2012-03-15

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  17. Prefrontal cortex connectivity dysfunction in performing the Fist–Edge–Palm task in patients with first-episode schizophrenia and non-psychotic first-degree relatives

    Directory of Open Access Journals (Sweden)

    Raymond C.K. Chan

    2015-01-01

    Full Text Available Neurological soft signs have been considered one of the promising neurological endophenotypes for schizophrenia. However, most previous studies have employed clinical rating data only. The present study aimed to examine the neurobiological basis of one of the typical motor coordination signs, the Fist–Edge–Palm (FEP task, in patients with first-episode schizophrenia and their non-psychotic first degree relatives. Thirteen patients with first-episode schizophrenia, 14 non-psychotic first-degree relatives and 14 healthy controls were recruited. All of them were instructed to perform the FEP task in a 3 T GE Machine. Psychophysiological interaction (PPI analysis was used to evaluate the functional connectivity between the sensorimotor cortex and frontal regions when participants performed the FEP task compared to simple motor tasks. In the contrast of palm-tapping (PT vs. rest, activation of the left frontal–parietal region was lowest in the schizophrenia group, intermediate in the relative group and highest in the healthy control group. In the contrast of FEP vs. PT, patients with schizophrenia did not show areas of significant activation, while relatives and healthy controls showed significant activation of the left middle frontal gyrus. Moreover, with the increase in task complexity, significant functional connectivity was observed between the sensorimotor cortex and the right frontal gyrus in healthy controls but not in patients with first episode schizophrenia. These findings suggest that activity of the left frontal–parietal and frontal regions may be neurofunctional correlates of neurological soft signs, which in turn may be a potential endophenotype of schizophrenia. Moreover, the right frontal gyrus may play a specific role in the execution of the FEP task in schizophrenia spectrum disorders.

  18. Electrocorticographic Frequency Alteration Mapping of Speech Cortex during an Awake Craniotomy: Case Report

    Science.gov (United States)

    Breshears, J.; Sharma, M.; Anderson, N.R.; Rashid, S.; Leuthardt, E.C.

    2010-01-01

    Objective Traditional electrocortical stimulation (ECS) mapping is limited by the lengthy serial investigation (one location at a time) and the risk of afterdischarges in localizing eloquent cortex. Electrocorticographic frequency alteration mapping (EFAM) allows the parallel investigation of many cortical sites in much less time and with no risk of afterdischarges because of its passive nature. We examined its use with ECS in the context of language mapping during an awake craniotomy for a tumor resection. Clinical Presentation The patient was a 61-year-old right-handed Caucasian male who presented with headache and mild aphasia. Imaging demonstrated a 3-cm cystic mass in the posterior temporal-parietal lobe. The patient underwent an awake craniotomy for the mapping of his speech cortex and resection of the mass. Intervention Using a 32-contact electrode array, electrocorticographic signals were recorded from the exposed cortex as the patient participated in a 3-min screening task involving active (patient naming visually presented words) and rest (patient silent) conditions. A spectral comparison of the 2 conditions revealed specific cortical locations associated with activation during speech. The patient was then widely mapped using ECS. Three of 4 sites identified by ECS were also identified passively and in parallel by EFAM, 2 with statistical significance and the third by qualitative inspection. Conclusion EFAM was technically achieved in an awake craniotomy patient and had good concordance with ECS mapping. Because it poses no risk of afterdischarges and offers substantial time savings, EFAM holds promise for future development as an adjunct intraoperative mapping tool. Additionally, the cortical signals obtained by this modality can be utilized for localization in the presence of a tumor adjacent to the eloquent regions. PMID:19940544

  19. A case of tactile agnosia with a lesion restricted to the post-central gyrus.

    Science.gov (United States)

    Estañol, Bruno; Baizabal-Carvallo, José Fidel; Sentíes-Madrid, Horacio

    2008-01-01

    Tactile agnosia has been described after lesions of the primary sensory cortex but the exact location and extension of those lesions is not clear. We report the clinical features and imaging findings in a patient with an acute ischemic stroke restricted to the primary sensory area (S1). A 73-year-old man had a sudden onset of a left alien hand, without left hemiparesis. Neurological examination showed intact primary sensory functions, but impaired recognition of shape, size (macrogeometrical) and texture (microgeometrical) of objects; damage confined to the post-central gyrus, sparing the posterior parietal cortex was demonstrated on MRI. An embolic occlusion of the anterior parietal artery was suspected as mechanism of stroke. Tactile agnosia with impaired microgeometrical and macrogeometrical features' recognition can result from a single lesion in the primary sensory cortex (S1) in the right parietal hemisphere, sparing other regions of the cerebral cortex which presumably participate in tactile object recognition.

  20. 3-D vision and figure-ground separation by visual cortex.

    Science.gov (United States)

    Grossberg, S

    1994-01-01

    cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  2. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation.

    Science.gov (United States)

    Weiner, Kevin S; Barnett, Michael A; Witthoft, Nathan; Golarai, Golijeh; Stigliani, Anthony; Kay, Kendrick N; Gomez, Jesse; Natu, Vaidehi S; Amunts, Katrin; Zilles, Karl; Grill-Spector, Kalanit

    2018-04-15

    The parahippocampal place area (PPA) is a widely studied high-level visual region in the human brain involved in place and scene processing. The goal of the present study was to identify the most probable location of place-selective voxels in medial ventral temporal cortex. To achieve this goal, we first used cortex-based alignment (CBA) to create a probabilistic place-selective region of interest (ROI) from one group of 12 participants. We then tested how well this ROI could predict place selectivity in each hemisphere within a new group of 12 participants. Our results reveal that a probabilistic ROI (pROI) generated from one group of 12 participants accurately predicts the location and functional selectivity in individual brains from a new group of 12 participants, despite between subject variability in the exact location of place-selective voxels relative to the folding of parahippocampal cortex. Additionally, the prediction accuracy of our pROI is significantly higher than that achieved by volume-based Talairach alignment. Comparing the location of the pROI of the PPA relative to published data from over 500 participants, including data from the Human Connectome Project, shows a striking convergence of the predicted location of the PPA and the cortical location of voxels exhibiting the highest place selectivity across studies using various methods and stimuli. Specifically, the most predictive anatomical location of voxels exhibiting the highest place selectivity in medial ventral temporal cortex is the junction of the collateral and anterior lingual sulci. Methodologically, we make this pROI freely available (vpnl.stanford.edu/PlaceSelectivity), which provides a means to accurately identify a functional region from anatomical MRI data when fMRI data are not available (for example, in patient populations). Theoretically, we consider different anatomical and functional factors that may contribute to the consistent anatomical location of place selectivity

  3. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    Science.gov (United States)

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  4. A Proof of Concept Study of Function-based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared To Typically-Developing Controls

    Directory of Open Access Journals (Sweden)

    Guifang eFu

    2016-06-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a neuroimaging techonology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100ms increments. Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without specific language impairment wore two, 3*5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. Functional data analysis was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular general linear model, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the right inferior frontal cortex and left inferior posterior parietal cortex brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction brain region. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the

  5. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange.

    Science.gov (United States)

    Tang, Honghong; Mai, Xiaoqin; Wang, Shun; Zhu, Chaozhe; Krueger, Frank; Liu, Chao

    2016-01-01

    In daily life, interpersonal interactions are influenced by uncertainty about other people's intentions. Face-to-face (FF) interaction reduces such uncertainty by providing external visible cues such as facial expression or body gestures and facilitates shared intentionality to promote belief of cooperative decisions and actual cooperative behaviors in interaction. However, so far little is known about interpersonal brain synchronization between two people engaged in naturally occurring FF interactions. In this study, we combined an adapted ultimatum game with functional near-infrared spectroscopy (fNIRS) hyperscanning to investigate how FF interaction impacts interpersonal brain synchronization during economic exchange. Pairs of strangers interacted repeatedly either FF or face-blocked (FB), while their activation was simultaneously measured in the right temporo-parietal junction (rTPJ) and the control region, right dorsolateral prefrontal cortex (rDLPFC). Behaviorally, FF interactions increased shared intentionality between strangers, leading more positive belief of cooperative decisions and more actual gains in the game. FNIRS results indicated increased interpersonal brain synchronizations during FF interactions in rTPJ (but not in rDLPFC) with greater shared intentionality between partners. These results highlighted the importance of rTPJ in collaborative social interactions during FF economic exchange and warrant future research that combines FF interactions with fNIRS hyperscanning to study social brain disorders such as autism. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Cortical processes associated with continuous balance control as revealed by EEG spectral power.

    Science.gov (United States)

    Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K

    2015-04-10

    Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The brain and the subjective experience of time. A voxel based symptom-lesion mapping study.

    Science.gov (United States)

    Trojano, Luigi; Caccavale, Michelina; De Bellis, Francesco; Crisci, Claudio

    2017-06-30

    The aim of the study was to identify the anatomical bases involved in the subjective experience of time, by means of a voxel based symptom-lesion mapping (VLSM) study on patients with focal brain damage. Thirty-three patients (nineteen with right-hemisphere lesions -RBD, and fourteen with left lesion- LBD) and twenty-eight non-neurological controls (NNC) underwent the semi-structured QUEstionnaire for the Subjective experience of Time (QUEST) requiring retrospective and prospective judgements on self-relevant time intervals. All participants also completed tests to assess general cognitive functioning and two questionnaires to evaluate their emotional state. Both groups of brain-damaged patients achieved significantly different scores from NNC on the time performance, without differences between RBD and LBD. VLSM showed a cluster of voxels located in the right inferior parietal lobule significantly related to errors in the prospective items. The lesion subtraction analysis revealed two different patterns possibly associated with errors in the prospective items (the right inferior parietal cortex, rolandic operculum and posterior middle temporal gyrus) and in the retrospective items (superior middle temporal gyrus, white matter posterior to the insula). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task.

    Science.gov (United States)

    Li, Xin; Wang, Wenxiao; Wang, Ailin; Li, Peng; Zhang, Junying; Tao, Wuhai; Zhang, Zhanjun

    2017-05-01

    Hypertension is related with cognitive decline in the elderly. The frontal-parietal executive system plays an important role in cognitive aging and is also vulnerable to damage in elderly patients with hypertension. Examination of the brain's functional characteristics in frontal-parietal regions of hypertension is likely to be important for understanding the neural mechanisms of hypertension's effect on cognitive aging. We address this issue by comparing hypertension and control-performers in a functional MRI study. Twenty-eight hypertensive patients and 32 elderly controls were tested with n-back task with two load levels. The hypertensive patients exhibited worse executive and memory abilities than control subjects. The patterns of brain activation changed under different working memory loads in the hypertensive patients, who exhibited reduced activation only in the precentral gyrus under low loads and reduced activation in the middle frontal gyrus, left medial superior frontal gyrus and right precuneus under high loads. Thus, more regions of diminished activation were observed in the frontal and parietal regions with increasing task difficulty. More importantly, we found that lower activation in changed frontal and parietal regions was associated with worse cognitive function in high loads. The results demonstrate the relationship between cognitive function and frontoparietal functional activation in hypertension and their relevance to cognitive aging risk. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.

  9. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  10. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    Science.gov (United States)

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Elena Rykhlevskaia

    2009-11-01

    Full Text Available Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD, a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI to examine macro- and micro-structural impairments in 7-9 year old children with DD, compared to a group of typically developing (TD children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM revealed reduced grey matter (GM bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD.

  12. Neurocognition and PET: strategies for data analysis in activation studies on working memory

    International Nuclear Information System (INIS)

    Hautzel, H.; Mottaghy, F.M.; Schmidt, D.; Mueller, H.-W.; Krause, B. J.

    2003-01-01

    Aim: In cognitive neuroscience regional cerebral blood flow (rCBF) imaging with positron-emission-tomography (PET) is a powerful tool to characterize different aspects of cognitive processes by using different data analysis approaches. By use of an n-back verbal working memory task (varied from 0- to 3-back) we present cognitive subtraction analysis as basic strategy as well as parametric and covariance analyses and discuss the results. Methods: Correlation analyses were performed using the individual performance rate as an external covariate, computing inter-regional correlations, an as network analysis applying structural equation modelling to evaluate the effective connectivity between the involved brain regions. Results: Subtraction analyses revealed a fronto-parietal neuronal network also including the anterior cingulate cortex and the cerebellum. With higher memory load the parametric analysis evidenced linear rCBF increases in prefrontal, pre-motor and inferior parietal areas including the precuneus as well as in the anterior cingulate cortex. The rCBF correlation with the individual performance as external covariate depicted negative correlations in bilateral prefrontal and inferior parietal regions, in the precuneus and the anterior cingulate cortex. The network analysis demonstrated mainly occipito-frontally directed interactions which were predominantly left-hemispheric. Additionally, strong linkages were found between extrastriate and parietal regions as well as within the parietal cortex. Conclusion: The data analysis approaches presented here contribute to an extended and more elaborated understanding of cognitive processes and their different sub-aspects. (orig.) [de

  13. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells.

    NARCIS (Netherlands)

    Smeets, B.; Uhlig, S.; Fuss, A.; Mooren, F.; Wetzels, J.F.M.; Floege, J.; Moeller, M.J.

    2009-01-01

    Cellular lesions form in Bowman's space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal

  14. Functional MRI study of verbal working memory in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Lu Youran; Geng Daoying; Feng Xiaoyuan; Du Yasong; Zhao Zhimin

    2006-01-01

    Objective: To study the verbal working memory of children with attention deficit hyperactivity disorder (ADHD) as well as to explore the characteristics of functional areas of verbal working memory with blood oxygenation level dependent functional magnetic resonance imaging (fMRI). Method: Eighteen children were selected in the study. There were 9 ADHD children with inattention subtype and 9 healthy subjects. All patients and healthy subjects completed the cognitive examination and the block- designed N-block verbal working memory task using a GE 3.0 T MR. Data were analyzed by AFNI software. Result: The neural activations of ADHD's children are lower than that of control under verbal working memory. Especially in the areas of bilateral middle frontal gyri and inferior frontal gyri, bilateral superior parietal lobules and inferior parietal lobules, right basal ganglia in the 1-BACK task. And bilateral middle frontal gyri and inferior frontal gyri, bilateral superior parietal lobules, left cortex inferior parietallobule, right basal ganglia, anterior cingulatecortex in the 2-BACK task. Conclusion: The hypofunctional areas of verbal working memory (including bilateral dorsolateral prefrontal cortex and parietal cortex) can be seen in the ADHD children especially who also has lower activation of anterior cingulate cortex under 2-BACK task. (authors)

  15. The Role of Insula-Associated Brain Network in Touch

    Science.gov (United States)

    Bao, Ruixue

    2013-01-01

    The insula is believed to be associated with touch-evoked effects. In this work, functional MRI was applied to investigate the network model of insula function when 20 normal subjects received tactile stimulation over segregated areas. Data analysis was performed with SPM8 and Conn toolbox. Activations in the contralateral posterior insula were consistently revealed for all stimulation areas, with the overlap located in area Ig2. The area Ig2 was then used as the seed to estimate the insula-associated network. The right insula, left superior parietal lobule, left superior temporal gyrus, and left inferior parietal cortex showed significant functional connectivity with the seed region for all stimulation conditions. Connectivity maps of most stimulation conditions were mainly distributed in the bilateral insula, inferior parietal cortex, and secondary somatosensory cortex. Post hoc ROI-to-ROI analysis and graph theoretical analysis showed that there were higher correlations between the left insula and the right insula, left inferior parietal cortex and right OP1 for all networks and that the global efficiency was more sensitive than the local efficiency to detect differences between notes in a network. These results suggest that the posterior insula serves as a hub to functionally connect other regions in the detected network and may integrate information from these regions. PMID:23936840

  16. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  17. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia.

    Science.gov (United States)

    van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric

    2016-01-01

    The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.

  18. Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory

    Directory of Open Access Journals (Sweden)

    Anna Heuer

    2016-08-01

    Full Text Available The limited capacity of visual working memory necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial versus feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information or their shape (featural information. We found that TMS over the supramarginal gyrus (SMG selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.

  19. Object-action dissociation: A voxel-based lesion-symptom mapping study on 102 patients after glioma removal

    Directory of Open Access Journals (Sweden)

    Alberto Pisoni

    Full Text Available Data concerning the neural basis of noun and verb processing are inconsistent. Some authors assume that action-verb processing is based on frontal areas while nouns processing relies on temporal regions; others argue that the circuits processing verbs and nouns are closely interconnected in a predominantly left-lateralized fronto-temporal-parietal network; yet, other researchers consider that the primary motor cortex plays a crucial role in processing action verbs. In the present study, one hundred and two patients with a tumour either in the right or left hemisphere were submitted to picture naming of objects and actions before and after surgery. To test the effect of specific brain regions in object and action naming, patients' lesions were mapped and voxel-lesion-symptom mapping (VLSM was computed. Behavioural results showed that left-brain damaged patients were significantly more impaired than right brain-damaged patients. The VLSM showed that these two grammatical classes are segregated in the left hemisphere. In particular, scores in naming of objects correlated with damage to the anterior temporal region, while scores in naming of actions correlated with lesions in the parietal areas and in the posterior temporal cortex. In addition, VLSM analyses carried out on non-linguistic tasks were not significant, confirming that the regions associated with deficits in object and action naming were not generally engaged in all cognitive tasks. Finally, the involvement of subcortical pathways was investigated and the inferior longitudinal fasciculus proved to play a role in object naming, while no specific bundle was identified for actions. Keywords: Object action dissociation, Temporal lesion, Frontal lesion, Voxel-based lesion symptom mapping

  20. Neural basis for generalized quantifier comprehension.

    Science.gov (United States)

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  1. Cancer 'survivor-care': II. Disruption of prefrontal brain activation top-down control of working memory capacity as possible mechanism for chemo-fog/brain (chemotherapy-associated cognitive impairment).

    Science.gov (United States)

    Raffa, R B

    2013-08-01

    Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.

  2. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  3. Statistic rCBF study of extrapyramidal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hiroshi; Nakajima, Takashi; Fukuhara, Nobuyoshi [National Saigata Hospital, Ogata, Niigata (Japan)

    2002-08-01

    We studied regional cerebral blood flow (rCBF) in 16 patients with Parkinson's disease (PD), 2 patients with dementia with Lewy bodies (DLB), 2 patients with progressive supranuclear palsy (PSP), 2 patients with striatonigral degeneration, and 16 normal volunteers, using Three-dimensional stereotactic surface projections (3D-SSP). Decreased rCBF in PD patients was shown in the posterior parietal and occipital cortex. Decreased rCBF in DLB was shown in the frontal, parietal and occipital cortex with relative sparing of the sensorimotor cortex.. Decreased rCBF in PSP was shown in the frontal cortex. Decreased rCBF in SND was shown in the frontal cortex and cerebellum. Statistic rCBF analysis using 3D-SSP was a useful measure for the early differential diagnosis of extrapyramidal disorders. (author)

  4. Body-centred map in parietal eye fields - functional MRI study

    International Nuclear Information System (INIS)

    Brotchie, P.; Chen, D.Y.; Bradley, W.G.

    2002-01-01

    Full text: In order for us to interact with our environment we need to know where objects are around us, relative to our body. In monkeys, a body-centred map of visual space is known to exist within the parietal eye fields. This map is formed by the modulation of neuronal activity by eye and head position (Brotchie et al, Nature 1995; Synder et al, Nature 1998). In humans no map of body centred space has been demonstrated. By using functional MRI we have localised a region along the intraparietal sulcus which has properties similar to the parietal eye fields of monkeys (Brotchie et al, ISMRM, 2000). The aim of this study was to determine if activity in this region is modulated by head position, consistent with a body centered representation of visual space. Functional MRI was performed on 6 subjects performing simple visually guided saccades using a 1.5 Tesla GE Echospeed scanner. 10 scans were performed on the 6 subjects at left and right body orientations. Regions of interest were selected around the intraparietal sulcus proper (IPSP) of both hemispheres and voxels with BOLD signal which correlated with the paradigm (r>0.35) were selected for further analysis. Comparisons of percentage signal change were made between the left and right IPSP using Student t test. Of the 10 MRI examinations, 6 demonstrated statistically significant differences in the amount of signal change between left and right IPSP. In each of these 6 cases, the signal change was greater within the IPSP contralateral to the direction of head position relative to the body. This indicates a modulation of activity within the IPSP related to head position, most likely reflecting modulation of the underlying neuronal activity and suggests the existence of a body-centred encoding of space within the parietal eye fields of humans. Copyright (2002) Blackwell Science Pty Ltd

  5. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  6. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  7. Parietal intradiploic encephalocele: Report of a case and review of the literature.

    Science.gov (United States)

    Arevalo-Perez, Julio; Millán-Juncos, José M

    2015-06-01

    Encephaloceles consist of brain tissue and meninges that has herniated through a skull defect, usually located in the midline. They are seen more commonly in children and very rarely in adults. We present a case of an 84-year-old patient who was incidentally diagnosed with a lytic bone lesion in the right parietal intradiploic space, after computed tomography of the head was performed. A magnetic resonance imaging scan of the brain showed herniation of brain tissue through the defect. Magnetic resonance imaging was crucial in demonstrating the presence of parenchyma and its continuity with the rest of the brain, consequently distinguishing it from other entities. We report the imaging findings of a parietal indradiploic encephalocele with its differential diagnosis and a review of the relevant literature. © The Author(s) 2015.

  8. Advancing functional dysconnectivity and atrophy in progressive supranuclear palsy

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2017-01-01

    Full Text Available Progressive supranuclear palsy syndrome (PSP-S results from neurodegeneration within a network of brainstem, subcortical, frontal and parietal cortical brain regions. It is unclear how network dysfunction progresses and relates to longitudinal atrophy and clinical decline. In this study, we evaluated patients with PSP-S (n = 12 and healthy control subjects (n = 20 at baseline and 6 months later. Subjects underwent structural MRI and task-free functional MRI (tf-fMRI scans and clinical evaluations at both time points. At baseline, voxel based morphometry (VBM revealed that patients with mild-to-moderate clinical symptoms showed structural atrophy in subcortex and brainstem, prefrontal cortex (PFC; supplementary motor area, paracingulate, dorsal and ventral medial PFC, and parietal cortex (precuneus. Tf-fMRI functional connectivity (FC was examined in a rostral midbrain tegmentum (rMT-anchored intrinsic connectivity network that is compromised in PSP-S. In healthy controls, this network contained a medial parietal module, a prefrontal-paralimbic module, and a subcortical-brainstem module. Baseline FC deficits in PSP-S were most severe in rMT network integrative hubs in the prefrontal-paralimbic and subcortical-brainstem modules. Longitudinally, patients with PSP-S had declining intermodular FC between the subcortical-brainstem and parietal modules, while progressive atrophy was observed in subcortical-brainstem regions (midbrain, pallidum and posterior frontal (perirolandic cortex. This suggested that later-stage subcortical-posterior cortical change may follow an earlier-stage subcortical-anterior cortical disease process. Clinically, patients with more severe baseline impairment showed greater subsequent prefrontal-parietal cortical FC declines and posterior frontal atrophy rates, while patients with more rapid longitudinal clinical decline showed coupled prefrontal-paralimbic FC decline. VBM and FC can augment disease monitoring in PSP

  9. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  10. El contexto del arte parietal. La tecnología de los artistas en la Cueva de Tito Bustillo (Asturias

    Directory of Open Access Journals (Sweden)

    Moure Romanillo, Alfonso

    1988-12-01

    Full Text Available This study overlaps in part with a communication presented to the «Colloque International d'Art Parietal Paléolithique» held at Perigueux-Le Thot in december 1984. The technological responses contained in a decorated zone of the cave of Tito Bustillo are analyzed, as well as the activities carried out on living floors related to the preparation and completion of the parietal art.

    El trabajo coincide parcialmente con la comunicación presentada al «Colloque International d'Art Parietal Paléolithique» celebrado en Perigueux-Le Thot, en diciembre de 1984. Se analizan las respuestas tecnológicas contenidas en un área de decoración de la cueva de Tito Bustillo (Asturias, así como las actividades en áreas de estancia relacionadas con la preparación y ejecución del arte parietal.

  11. The where and how of attention-based rehearsal in spatial working memory.

    Science.gov (United States)

    Postle, B R; Awh, E; Jonides, J; Smith, E E; D'Esposito, M

    2004-07-01

    Rehearsal in human spatial working memory is accomplished, in part, via covert shifts of spatial selective attention to memorized locations ("attention-based rehearsal"). We addressed two outstanding questions about attention-based rehearsal: the topography of the attention-based rehearsal effect, and the mechanism by which it operates. Using event-related fMRI and a procedure that randomized the presentation of trials with delay epochs that were either filled with a flickering checkerboard or unfilled, we localized the effect to extrastriate areas 18 and 19, and confirmed its absence in striate cortex. Delay-epoch activity in these extrastriate regions, as well as in superior parietal lobule and intraparietal sulcus, was also lateralized on unfilled trials, suggesting that attention-based rehearsal produces a baseline shift in areas representing the to-be-remembered location in space. No frontal regions (including frontal eye fields) demonstrated lateralized activity consistent with a role in attention-based rehearsal.

  12. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-09-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants' disposition to feel personal distress. This 'orienting' inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants' tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system's involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues--reflecting neural processing necessary for visual perception--occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.

  13. Alterations of benzodiazepine receptor binding potential in anxiety and somatoform disorders measured by 123I-iomazenil SPECT

    International Nuclear Information System (INIS)

    Tokunaga, Mari; Ida, Ituro; Mikuni, Masahiko; Higuchi, Teruhiko.

    1997-01-01

    123 I-iomazenil (IMZ), a newly developed radioligand which acts on benzodiazepine receptors (BZR) as a partial inverse agonist, made it possible to evaluate the function of central BZR by single photon emission tomography (SPECT). To examine the alterations of the binding potential (BP) in the anxiety state, 123 I-IMZ SPECT was performed in five patients with anxiety and somatoform disorders, and five epileptic patients without anxiety symptoms served as a reference. The BP of BZR was determined by using a table look-up procedure based on a three-compartment, two-parameter model in the bilateral superior frontal, inferior frontal, temporal, parietal, occipital, and cerebellar cortex. The mean BP of patients with anxiety and somatoform disorders was significantly decreased in the superior frontal, temporal, and parietal cortex, in comparison with that of epileptic patients. A significant correlation was observed between the anxiety levels scored on the Hamilton anxiety scale and BP in the right temporal cortex and left superior frontal cortex. These changes in BZR revealed by SPECT suggest the usefulness of 123 I-IMZ SPECT to objectively evaluate anxiety levels in patients with anxiety symptoms. (author)

  14. The neural substrates of memory suppression: a FMRI exploration of directed forgetting.

    Science.gov (United States)

    Bastin, Christine; Feyers, Dorothée; Majerus, Steve; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.

  15. The neural substrates of memory suppression: a FMRI exploration of directed forgetting.

    Directory of Open Access Journals (Sweden)

    Christine Bastin

    Full Text Available The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.

  16. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network.

    Science.gov (United States)

    Crone, Julia Sophia; Schurz, Matthias; Höller, Yvonne; Bergmann, Jürgen; Monti, Martin; Schmid, Elisabeth; Trinka, Eugen; Kronbichler, Martin

    2015-04-15

    The intrinsic connectivity of the default mode network has been associated with the level of consciousness in patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in impaired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness, we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network in patients with disorders of consciousness. We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For each subject, we first defined the four key regions of the default mode network employing a subject-specific independent component analysis approach. The resulting regions were then included as nodes in a spectral dynamic causal modeling analysis in order to assess how the causal interactions across these regions as well as the characteristics of neuronal fluctuations change with the level of consciousness. The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. Moreover, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-inhibition and strength of oscillation in this region is correlated with the level of consciousness. These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe brain injury and the intrinsic functional architecture of the default mode network. This impairment might be principally due to the disruption of the mechanisms underlying self-inhibition and neuronal

  17. Neural bases of a specific strategy for visuospatial processing in rugby players.

    Science.gov (United States)

    Sekiguchi, Atsushi; Yokoyama, Satoru; Kasahara, Satoshi; Yomogida, Yukihito; Takeuchi, Hikaru; Ogawa, Takeshi; Taki, Yasuyuki; Niwa, Shin-Ichi; Kawashima, Ryuta

    2011-10-01

    Rugby is one of the most tactically complex sports. Rugby coaching theory suggests that rugby players need to possess various cognitive abilities. A previous study claimed that rugby players have high visuospatial awareness, which is induced by a strategy described as taking a "bird's eye view." To examine if there were differential cortical networks related to visuospatial processing tasks among top-level rugby players and control novices, we compared brain activities during a visuospatial processing task between 20 male top-level rugby players (Top) and 20 control novice males (Novice) using functional magnetic resonance imaging (fMRI). To avoid the effect of differential behavioral performances on brain activation, we recruited novices whose visuospatial ability was expected to match that of the rugby players. We adopted a 3-D mental rotation task during fMRI scanning as a visuospatial processing task. Significantly greater activations from baseline were observed for the Top group than for the Novice group in the right superior parietal lobe and lateral occipital cortex. Significantly greater deactivations from baseline were observed for the Top group than for the Novice group in the right medial prefrontal cortex. The discrepancy between psychobehavioral outputs and the fMRI results suggested the existence of a cognitive strategy among top-level rugby players that differs from that among control novices. The greater activation of the right superior parietal lobe and lateral occipital cortex in top-level rugby players suggested a strategy involving visuospatial cognitive processing with respect to the bird's eye view. In addition, the right medial prefrontal cortex is known to be a part of the default mode networks, suggesting an additional cognitive load for the Top group when using the bird's-eye-view strategy. This further supported the existence of a specific cognitive strategy among top-level rugby players.

  18. The neural basis for novel semantic categorization.

    Science.gov (United States)

    Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray

    2005-01-15

    We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.

  19. An fMRI study on the comparison of different types of false belief reasoning: False belief-based emotion and behavior attribution.

    Science.gov (United States)

    Döhnel, Katrin; Schuwerk, Tobias; Sodian, Beate; Hajak, Göran; Rupprecht, Rainer; Sommer, Monika

    2017-12-01

    False belief (FB) reasoning is a key Theory of Mind (ToM) competence. By 4 years of age, children understand that a person's behavior can be based on a FB about reality. Children cannot understand that a person's emotion can also be based on a FB before the age of six. In order to generate hypothesis on basic processes distinguishing these two types of belief reasoning, the present functional magnetic resonance imaging study in adults directly compares functional activity associated with these two FB tasks. Both tasks were associated with activity in the ToM network including the medial prefrontal cortex and the left temporo-parietal junction. Differential activity was observed in the anterior dorsolateral prefrontal cortex for FB-based emotion relative to behavior attribution. Contrary to FB behavior attribution, FB-based emotion attribution requires the processing of two different mental states: a belief and an emotion and their relation to each other. The activity pattern may reflect the differential demands on cognitive processes associated with the two different belief-based attribution processes. These results shed new light on the still ongoing debate about the nature of the developmental lag between the two FB tasks.

  20. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.

    Science.gov (United States)

    Vartanian, Oshin; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Forbes, Sarah

    2018-02-23

    Contrary to earlier approaches that focused on the contributions of isolated brain regions to the emergence of creativity, there is now growing consensus that creative thought emerges from the interaction of multiple brain regions, often embedded within larger brain networks. Specifically, recent evidence from studies of divergent thinking suggests that kernel ideas emerge in posterior brain regions residing within the semantic system and/or the default mode network (DMN), and that the prefrontal cortex (PFC) regions within the executive control network (ECN) constrain those ideas for generating outputs that meet task demands. However, despite knowing that regions within these networks exhibit interaction, to date the direction of the relationship has not been tested directly. By applying Dynamic Causal Modeling (DCM) to fMRI data collected during a divergent thinking task, we tested the hypothesis that the PFC exerts unidirectional control over the middle temporal gyrus (MTG) and the inferior parietal lobule (IPL), vs. the hypothesis that these two sets of regions exert bidirectional control over each other (in the form of feedback loops). The data were consistent with the former model by demonstrating that the right inferior frontal gyrus (IFG) exerts unidirectional control over MTG and IPL, although the evidence was somewhat stronger in the case of the MTG than the IPL. Our findings highlight potential causal pathways that could underlie the neural bases of divergent thinking. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  1. How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language

    Science.gov (United States)

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Grabowski, Thomas J.

    2014-01-01

    To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language

  2. Resting-State Connectivity of the Left Frontal Cortex to the Default Mode and Dorsal Attention Network Supports Reserve in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Nicolai Franzmeier

    2017-08-01

    Full Text Available Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer’s disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44. Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education and better maintenance of memory in mild cognitive impairment (MCI. Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC and in an independent validation sample (23 MCI/32 HC. Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN, but positively correlated with the dorsal-attention network (DAN. Greater education predicted stronger LFC-DMN-connectivity (anti-correlation and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.

  3. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning.

    Science.gov (United States)

    Tzvi, Elinor; Bauhaus, Leon J; Kessler, Till U; Liebrand, Matthias; Wöstmann, Malte; Krämer, Ulrike M

    2018-03-01

    Cross-frequency coupling is suggested to serve transfer of information between wide-spread neuronal assemblies and has been shown to underlie many cognitive functions including learning and memory. In previous work, we found that alpha (8-13 Hz) - gamma (30-48 Hz) phase amplitude coupling (αγPAC) is decreased during sequence learning in bilateral frontal cortex and right parietal cortex. We interpreted this to reflect decreased demands for visuo-motor mapping once the sequence has been encoded. In the present study, we put this hypothesis to the test by adding a "simple" condition to the standard serial reaction time task (SRTT) with minimal needs for visuo-motor mapping. The standard SRTT in our paradigm entailed a perceptual sequence allowing for implicit learning of a sequence of colors with randomly assigned motor responses. Sequence learning in this case was thus not associated with reduced demands for visuo-motor mapping. Analysis of oscillatory power revealed a learning-related alpha decrease pointing to a stronger recruitment of occipito-parietal areas when encoding the perceptual sequence. Replicating our previous findings but in contrast to our hypothesis, αγPAC was decreased in sequence compared to random trials over right frontal and parietal cortex. It also tended to be smaller compared to trials requiring a simple motor sequence. We additionally analyzed αγPAC in resting-state data of a separate cohort. PAC in electrodes over right parietal cortex was significantly stronger compared to sequence trials and tended to be higher compared to simple and random trials of the SRTT data. We suggest that αγPAC in right parietal cortex reflects a "default-mode" brain state, which gets perturbed to allow for encoding of visual regularities into memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  5. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  6. Caracterización del injerto parietal

    Directory of Open Access Journals (Sweden)

    José Manuel Díaz Fernández

    1996-12-01

    Full Text Available Se realizó un estudio descriptivo, longitudinal y prospectivo de 22 pacientes en los que se utilizó el injerto parietal autógeno para reconstruir defectos del cráneo, en los servicios de Cirugía Maxilofacial y Neurocirugía del Hospital Clinicoquirúrgico Docente "Saturnino Lora", de Santiago de Cuba, desde 1988 hasta 1991. El método de extracción del injerto con división in situ resultó el más empleado y el que ofreció las mejores posibilidades de reconstrucción en cuanto a forma, volumen y flexibilidad, por lo que se recomienda en los defectos pequeños y medianos, sobre todo de la región frontal y áreas adyacentes, donde el contorno y la simetría son los 2 aspectos fundamentales que se deben conseguir. El método de división, in vitro se utilizó en las reconstrucciones de las deformidades de grandes dimensiones, particularmente en aquellas que no incluían la frente. El índice de complicaciones fue bajoIt was carried out a descriptive, longitudinal and prospective study of 22 patients in whom an autogenous parietal graft was used to reconstruct cranial defects at the Maxillofacial Surgery and Neurosurgery Department of the "Saturnino Lora" Clinical and Surgical Teaching Hospital, in Santiago de Cuba, from 1988 to 1991. The graft extraction method with division in situ was the most used and offered the best possibilities for reconstruction as regards form, volume and flexibility. Therefore, it is recommended for small and medium defects, particularly of the frontal region and adjacent areas, where contour and symmetry are the two fundamental aspects to be taken into consideration. The method of division in vitro was used to reconstruct large deformities, specially those in which the forehead was not included. The complications index was low

  7. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  8. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities.

    Science.gov (United States)

    Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome

    2017-09-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  10. Purine-related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer's disease pathology.

    Science.gov (United States)

    Alonso-Andrés, Patricia; Albasanz, José Luis; Ferrer, Isidro; Martín, Mairena

    2018-01-24

    Adenosine, hypoxanthine, xanthine, guanosine and inosine levels were assessed by HPLC, and the activity of related enzymes 5'-nucleotidase (5'-NT), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) measured in frontal (FC), parietal (PC) and temporal (TC) cortices at different stages of disease progression in Alzheimer's disease (AD) and in age-matched controls. Significantly decreased levels of adenosine, guanosine, hypoxanthine and xanthine, and apparently less inosine, are found in FC from the early stages of AD; PC and TC show an opposing pattern, as adenosine, guanosine and inosine are significantly increased at least at determinate stages of AD whereas hypoxanthine and xanthine levels remain unaltered. 5'-NT is reduced in membranes and cytosol in FC mainly at early stages but not in PC, and only at advanced stages in cytosol in TC. ADA activity is decreased in AD when considered as a whole but increased at early stages in TC. Finally, PNP activity is increased only in TC at early stages. Purine metabolism alterations occur at early stages of AD independently of neurofibrillary tangles and β-amyloid plaques. Alterations are stage dependent and region dependent, the latter showing opposite patterns in FC compared with PC and TC. Adenosine is the most affected of the assessed purines. © 2018 International Society of Neuropathology.

  11. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  12. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  13. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  14. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory.

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a "sensory recruitment" model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  15. Multi-voxel decoding and the topography of maintained information during visual working memory

    Directory of Open Access Journals (Sweden)

    Sue-Hyun eLee

    2016-02-01

    Full Text Available The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis that demonstrate decoding of the maintained content in visual cortex, providing support for a ‘sensory recruitment’ model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  16. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  17. Decoding the different states of visual attention using functional and effective connectivity features in fMRI data.

    Science.gov (United States)

    Parhizi, Behdad; Daliri, Mohammad Reza; Behroozi, Mehdi

    2018-04-01

    The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.

  18. An atretic parietal cephalocele associated with multiple intracranial and eye anomalies

    International Nuclear Information System (INIS)

    Saatci, I.; Yelgec, S.; Aydin, K.; Akalan, N.

    1998-01-01

    We present the cranial MRI findings in a 4-month-old girl with an atretic parietal cephalocele associated with multiple cerebral and ocular anomalies including lobar holoprosencephaly, a Dandy-Walker malformation, agenesis of the corpus callosum, grey-matter heterotopia, extra-axial cysts in various locations, bilateral microphthalmia and a retroocular cyst. (orig.)

  19. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  20. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia.

    Science.gov (United States)

    Iuculano, Teresa; Cohen Kadosh, Roi

    2014-01-01

    Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.