WorldWideScience

Sample records for parental melt composition

  1. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    Science.gov (United States)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  2. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  3. Evolution of Shock Melt Compositions in Lunar Agglutinates

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.

    2015-01-01

    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  4. The parent magma of the nakhlite meteorites - Clues from melt inclusions

    Science.gov (United States)

    Harvey, Ralph P.; Mcsween, Harry Y., Jr.

    1992-01-01

    Several forms of trapped liquid found within nakhlite meteorites have been examined, including interstitial melt and magmatic inclusions within the cores of large olivine grains. Differences in the mineralogy and texture between two types of trapped melt inclusions, and between these inclusions and the mesostasis, indicate that vitrophyric inclusions are most appropriate for estimating the composition of a nakhlite parental magma in equilibrium with early-forming olivine and augite. Parent liquids were calculated from the mineralogy of large inclusions in Nakhla and Governador Valadares, using a system of mass-balance equations solved by linear regression methods. The chosen parental liquids were cosaturated in olivine and augite and had Mg/Fe values consistent with measured augite/liquid Kds. These parental magma compositions are similar to other published compositions for Nakhla, Chassigny, and Shergotty parental melts, and may correspond to a significant magma type on Mars.

  5. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt

    Science.gov (United States)

    Rollinson, Hugh; Mameri, Lucan; Barry, Tiffany

    2018-06-01

    Polymineralic inclusions interpreted as melt inclusions in chromite from the dunitic Moho Transition Zone in the Maqsad area of the Oman ophiolite have been analysed and compositions integrated using a rastering technique on the scanning electron microscope. The inclusions now comprise a range of inter-grown hydrous phases including pargasite, aspidolite, phlogopite and chlorite, indicating that the parental melts were hydrous. Average inclusion compositions for seven samples contain between 23.1 and 26.8 wt% MgO and 1.7-3.6 wt% FeO. Compositions were corrected to allow for the low FeO concentrations using coexisting olivine compositions. These suggest that the primary melt has between 20 and 22 wt% MgO and 7-9.7 wt% FeO and has an affinity with boninitic melts, although the melts have a higher Ti content than most boninites. Average rare earth element concentrations suggest that the melts were derived from a REE depleted mantle source although fluid-mobile trace elements indicate a more enriched source. Given the hydrous nature of the inclusions this enrichment could be fluid driven. An estimate of the melt temperature can be made from the results of homogenisation experiments on these inclusions and suggests 1300 °C, which implies for a harzburgite solidus, relatively shallow melting at depths of <50 km and is consistent with a boninitic origin. The current "basaltic" nature of the chromite host to highly magnesian melt inclusions suggests that the dunitic Moho Transition Zone operated as a reaction filter in which magnesian melts were transformed into basalts by the removal of high magnesian olivines, particularly in areas where the Moho Transition Zone is unusually thick. We propose therefore that podiform mantle chromitites, even those with an apparent MORB-like chemical signature, have crystallised from a highly magnesian parental melt. The data presented here strongly support the view that this took place in a subduction initiation setting.

  6. Evolution of Shock Melt Compositions in Lunar Regoliths

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.

    2016-01-01

    Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.

  7. Tin in granitic melts: The role of melting temperature and protolith composition

    Science.gov (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  8. Constraints on the Parental Melts of Enriched Shergottites from Image Analysis and High Pressure Experiments

    Science.gov (United States)

    Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.

    2012-01-01

    Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.

  9. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  10. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    OpenAIRE

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; S. V. Chaplyanko; L. V. Gritsyuk; L. P. Tkachenko

    2012-01-01

    It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  11. Melt compositions and processes in the kimberlite provience of southern West Greenland

    DEFF Research Database (Denmark)

    Pilbeam, Llewellyn; Nielsen, Troels; Waight, Tod Earle

    2011-01-01

    ] whilst the silica content and H2O/CO2 ratio of the bulk rocks increases towards Sisimuit [2, 3]. A common carbonatite rich end-member is implicated [2]. This is in contrast to the prevailing dogma of a continuum from carbonatite though aillikite to kimberlite with increasing melting degree [4......]. The authors have demonstrated that a process of DFC (digestion fractional crystallisation) whereby the cognate olivine crystallisation is coupled to entrained xenocrystic orthopyroxene assimilation is a key process during the formation of the Majugaa occurrence of the Manitsoq region [5]. Mass balance...... considerations are here applied to the Majuagaa bulk rock in term of the DFC mechanism obtaining an estimate of parental melt and magma composition for the Majuagaa kimberlite. We use bulk rock major and trace element geochemistry together with mineral chemistry to investigate the range of melt compositions...

  12. Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes

    DEFF Research Database (Denmark)

    Jakobsen, J.K.; Tegner, Christian; Brooks, Kent

    2010-01-01

    Abstract Troctolite blocks with compositions akin to the Hidden Zone are exposed in a tholeiitic dyke cutting across the Skaergaard intrusion, East Greenland. Plagioclase in these blocks contains finely crystallised melt inclusions that we have homogenised to constrain the parental magma to 47...... province. New major- and trace element compositions for the FG-1 dyke swarm, previously taken to represent Skaergaard magmas, overlap with the entire range of the regional flood basalt succession and do not form a coherent suite of Skaergaard like melts. These dykes are therefore re-interpreted as feeder...

  13. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    Science.gov (United States)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D>1) in alkali-poor melt compositions. From our experimental data we present an model that combines

  14. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  15. Low melting high lithia glass compositions and methods

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  16. Melt density and the average composition of basalt

    Science.gov (United States)

    Stolper, E.; Walker, D.

    1980-01-01

    Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.

  17. Viscosity and electrical conductivity of glass melts as a function of waste composition

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wiley, J.R.

    1979-01-01

    Radioactive waste at the Savannah River Plant contains high concentrations of nonradioactive compounds of iron and aluminum. Simulated waste compositions containing varying ratios of iron to aluminum were added to glass melts to determine the effect on the melt properties. Waste containing high-aluminum increased the melt viscosity, but waste containing high-iron reduced the melt viscosity. Aluminum and iron both reduced the melt conductivity

  18. Melt Inclusion Analysis of RBT 04262 with Relationship to Shergottites and Mars Surface Compositions

    Science.gov (United States)

    Potter, S. A.; Brandon, A. D.; Peslier, A. H.

    2015-01-01

    Martian meteorite RBT 04262 is in the shergottite class. It displays the two lithologies typically found in "lherzolitic shergottites": one with a poikilitic texture of large pyroxene enclosing olivine and another with non-poikilitic texture. In the case of RBT 04262, the latter strongly ressembles an olivine- phyric shergottite which led the initial classification of this meteorite in that class. RBT 04262 has been studied with regards to its petrology, geochemistry and cosmic ray exposure and belongs to the enriched oxidized end-member of the shergottites. Studies on RBT 04262 have primarily focused on the bulk rock composition or each of the lithologies independently. To further elucidate RBT 04262's petrology and use it to better understand Martian geologic history, an in-depth study of its melt inclusions (MI) is being conducted. The MI chosen for this study are found within olivine grains. MI are thought to be trapped melts of the crystallizing magma preserved by the encapsulating olivine and offer snapshots of the composition of the magma as it evolves. Some MI, in the most Mg-rich part of the olivine of olivine-pyric shergottites, may even be representative of the meteorite parent melt.

  19. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  20. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  1. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  2. Compositions of melts for growth of functional single crystals of complex oxides and other compounds

    Science.gov (United States)

    Soboleva, L. V.

    2008-12-01

    The melt compositions ( M c) are calculated for growing crystals with valuable physical properties. The calculation is based on the compositions of the invariant points of the liquidus curves for 33 congruently and 12 incongruently melting solid phases of 42 fusibility diagrams of binary systems. These systems include Na, Ca, Ba, Mg, and Y aluminates; Bi and Pb germanates; Li, K, Ba, and Bi borates; Ba, Fe, Sr, and Bi titanates; Li, K, Cs, Ba, Zn, Ca niobates; Li, Pb, and Gd molibdates; Pb and Nd tungstates; etc. More than 60 studies with data on the experimentally found melt compositions ( M e) for growing the noted crystals are analyzed. It is shown that the melt compositions M c and M e for growth of congruently and incongruently melting crystals are similar. Large-size stoichiometric crystals of high optical quality are grown using these melt compositions. Nonstoichiometric crystals of low structural quality are grown from melt compositions either corresponding to the stoichiometric ratio of the components ( M s) or similar to the compositions at invariant points ( M i). In these cases, a large difference is observed between the melt compositions M c, M s, and M e.

  3. Limitations on the Estimation of Parental Magma Temperature Using Olivine-melt Equilibria: Hotspots Not So Hot

    Science.gov (United States)

    Natland, J. H.

    2004-12-01

    Estimates of temperatures of magmas parental to picritic tholeiites using olivine-melt equilibria and FeO-MgO relationships depend strongly on the assumption that a liquid composition, usually a glass, is related to the most magnesian olivine in the rock, or to an olivine composition in equilibrium with mantle peridotite, along an olivine-controlled liquid line of descent. The liquid Fe2+/Fe3+ also has to be known; where data exist, average values from wet chemical determinations are used. Crystallization histories of tholeiitic picrites from islands, spreading ridges, and large igneous provinces, however, usually reveal them to be hybrid rocks that are assembled by two types of magma mixing: 1) between a) differentiated magmas that are on olivine-plagioclase or olivine-plagioclase-clinopyroxene cotectics and b) crystal sludges with abundant olivine that may have accumulated from liquids crystallizing olivine alone; and 2) between primitive magma strains in which olivine crystallized either alone or with other silicate minerals at elevated pressure on separate liquid lines of descent. Many picrites give evidence that both types of mixing have occurred. If either type has occurred, the assumption of olivine-control linking a glass and an olivine composition can only circumstantially be correct. Oxidation state can also be underestimated and therefore FeO contents overestimated if basalts have degassed S, as at Hawaii. In Case 1, hybrid host glass compositions often have higher FeO at given MgO content than liquids which produced many olivine crystals in the rock. In Case 2, the separate parental melt strains are revealed by diversity of compositions of both melt inclusions and Cr-spinel and are most often interpreted to mean local heterogeneity of the mantle source. The inclusions do not always affirm an olivine-controlled liquid line of descent. Instead, inclusions with Gorgona, but not in MORB. Where fresh glass is lacking (e.g., Gorgona), bulk-rock compositions

  4. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia

    Directory of Open Access Journals (Sweden)

    O. Kiseleva

    2017-07-01

    Full Text Available The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan (SEPES ophiolites. Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites. The chromitites are classified into type I and type II based on their Cr#. Type I (Cr# = 59–85 occurs in both northern and southern branches, whereas type II (Cr# = 76–90 occurs only in the northern branch. PGE contents range from ∑PGE 88–1189 ppb, Pt/Ir 0.04–0.42 to ∑PGE 250–1700 ppb, Pt/Ir 0.03–0.25 for type I chromitites of the northern and southern branches respectively. The type II chromitites of the northern branch have ∑PGE contents higher than that of type I (468–8617 ppb, Pt/Ir 0.1–0.33. Parental melt compositions, in equilibrium with podiform chromitites, are in the range of boninitic melts and vary in Al2O3, TiO2 and FeO/MgO contents from those of type I and type II chromitites. Calculated melt compositions for type I chromitites are (Al2O3melt = 10.6–13.5 wt.%, (TiO2melt = 0.01–0.44 wt.%, (Fe/Mgmelt = 0.42–1.81; those for type II chromitites are: (Al2O3melt = 7.8–10.5 wt.%, (TiO2melt = 0.01–0.25 wt.%, (Fe/Mgmelt = 0.5–2.4. Chromitites are further divided into Os-Ir-Ru (I and Pt-Pd (II based on their PGE patterns. The type I chromitites show only the Os-Ir-Ru pattern whereas type II shows both Os-Ir-Ru and Pt-Pd patterns. PGE mineralization in type I chromitites is represented by the Os-Ir-Ru system, whereas in type II it is represented by the Os-Ir-Ru-Rh-Pt system. These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction. However, the chromitites and PGE mineralization of the southern

  5. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    Science.gov (United States)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  6. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  7. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  8. Deducing Water Concentrations in the Parent Magma of Cumulate Clinopyroxene and Olivine: Implications for a Hydrous Parent Melt of a Primitive Deccan Lava

    Science.gov (United States)

    Seaman, S. J.

    2017-12-01

    Water concentrations of clinopyroxene megacrysts in the Powai ankaramite flow, located near Mumbai, Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. The Powai flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of 10-20 micron diameter melt inclusions. Olivine phenocrysts host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.3 and 8.2 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water- richer and water-poorer boundary layers where water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Melt inclusions in olivine phenocrysts preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  9. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition

    Science.gov (United States)

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.

    2014-01-01

    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  10. Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.

  11. Melt inclusion evidence for a volatile-enriched (H2O, Cl, B) component in parental magmas of Gorgona Island komatiites

    Science.gov (United States)

    Kamenetsky, V.; Sobolev, A.; McDonough, W.

    2003-04-01

    Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the

  12. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  13. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  14. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    Science.gov (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  15. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments

    International Nuclear Information System (INIS)

    Dai, Donghua; Gu, Dongdong

    2014-01-01

    Highlights: • Thermal behavior and densification activity during SLM of composites are simulated. • Temperature distributions and melt pool dimensions during SLM are disclosed. • Motion behaviors of gaseous bubbles in laser induced melt pool are elucidated. • Simulation results show good agreement with the obtained experimental results. - Abstract: Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation

  16. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  17. Epoxy resins and low melting point alloy composites

    OpenAIRE

    Ł. Wierzbicki; J. Stabik

    2011-01-01

    Purpose: The goal of this work was to describe manufacturing process of polymer matrix composite materials reinforced with Wood’s alloy particles and to observe changes of structure.Design/methodology/approach: Polymer matrix composite materials reinforced with the Wood’s alloy particles fabricating method was developed during the investigations, making it possible to obtain materials with good mechanical, electrical and thermal properties . Microscopic examination of samples cross- sections ...

  18. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type and crystallizat......Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...... and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...

  19. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  20. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  1. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  2. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  3. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs.

    Science.gov (United States)

    Jun, Du; Guomin, Zhao; Mingzhu, Pan; Leilei, Zhuang; Dagang, Li; Rui, Zhang

    2017-07-15

    Nanocellulose reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were prepared using melt compounding. The effects of nanocellulose types (CNCs and CNFs) and nanocellulose content (1, 2, 3, 4, 5, 6 and 7wt%) on the crystallization, thermal and mechanical properties of PHBV composites were systematically compared in this study. The thermal stability of PHBV composites was improved by both CNCs and CNFs. CNFs with a higher thermal stability leaded to a higher thermal stability of PHBV composites. Both CNCs and CNFs induced a reduction in the crystalline size of PHBV spherulites. Furthermore, CNCs could act as a better nucleating agent for PHBV than did CNFs. CNCs and CNFs showed reinforcing effects in PHBV composites. At the equivalent content of nanocellulose, CNCs led to a higher tensile modulus of PHBV composites than did CNFs. 1wt% CNCs/PHBV composites exhibited the most optimum mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation of TiC/Ni3Al Composites by Upward Melt Infiltration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiC/Ni3Al composites have been prepared using upward infiltration method. The densificstion was performed by both Ni3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni3Al has been evidenced by finding Ni3(Al,Ti)C after fast cooling in the TiC/Ni3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni3Al composite processed by upward infiltration had a flexural strength of 1476 Mpa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 Mpa(m). Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.

  5. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences

    Science.gov (United States)

    Liang, Y.; Schiemenz, A.; Xia, Y.; Parmentier, E.

    2009-12-01

    In a companion numerical study [1], we explored the spatial distribution of high porosity harzburgite and dunite channels produced by reactive dissolution of orthopyroxene (opx) in an upwelling mantle column and identified a number of new features. In this study, we examine the geochemical consequences of channelized melt flow under the settings outlined in [1] with special attention to the transport of compositionally heterogeneous melts and their interactions with the surrounding peridotite matrix during melt migration in the mantle. Time-dependent transport equations for a trace element in the interstitial melt and solids that include advection, dispersion, and melt-rock reaction were solved in a 2-D upwelling column using the high-order numerical methods outlined in [1]. The melt and solid velocities were taken from the steady state or quasi-steady state solutions of [1]. In terms of trace element fractionation, the simulation domain can be divided into 4 distinct regions: (a) high porosity harzburgite channel, overlain by; (b) high porosity dunite channel; (c) low porosity compacting boundary layer surrounding the melt channels; and (d) inter-channel regions outside (c). In the limit of local chemical equilibrium, melting in region (d) is equivalent to batch melting, whereas melting and melt extraction in (c) is more close to fractional melting with the melt suction rate first increase from the bottom of the melting column to a maximum near the bottom of the dunite channel and then decrease upward in the compacting boundary layer. The melt composition in the high porosity harzburgite channel is similar to that produced by high-degree batch melting (up to opx exhaustion), whereas the melt composition in the dunite is a weighted average of the ultra-depleted melt from the harzburgite channel below, the expelled melt from the compacting boundary layer, and melt produced by opx dissolution along the sidewalls of the dunite channel. Compaction within the dunite

  6. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa)

    Science.gov (United States)

    Soltys, Ashton; Giuliani, Andrea; Phillips, David

    2018-04-01

    The compositions of kimberlite melts at depth and upon emplacement in the upper crust remain elusive. This can be attributed to the unquantified effects of multiple processes, such as alteration, assimilation, xenocryst contamination, and fractional crystallisation. The inability to accurately constrain the composition and physical properties of kimberlite melts prevents a comprehensive understanding of their petrogenesis. To improve constraints on the compositions of kimberlite melts, we have combined modal analysis including the discrimination of xenocrystic from magmatic phases, with mineral chemistry determinations to reconstruct a whole-rock composition. We apply this approach to a sample of "fresh" macrocrystic hypabyssal kimberlite (sample BK-1) from the Bultfontein mine (Kimberley, South Africa). The accuracy of this whole-rock reconstruction method is validated by the similarity between reconstructed and measured whole-rock compositions. A series of corrections are then applied to account for the effects of post-emplacement serpentinisation, pre-emplacement olivine crystallisation, and the inclusion and assimilation of mantle material. This approach permits discernment of melt compositions at different stages of kimberlite evolution. The primitive melt parental to the Bultfontein kimberlite is estimated to contain 17.4-19.0 wt% SiO2, 20.2-22.8 wt% MgO, 20.9-21.9 wt% CaO, 2.1-2.3 wt% P2O5, 1.2-1.4 wt% TiO2, 0.9-1.1 wt% Al2O3, and 0.6-0.7 wt% K2O, and has a Mg# of 83.4-84.4. Primary volatile contents (i.e., after an attempt to account for volatile loss) are tentatively estimated at 2.1-2.2 wt% H2O and 22.9-25.4 wt% CO2. This composition is deficient in SiO2, MgO and H2O, but enriched in CaO and CO2 compared with most previous estimates of primitive kimberlite melts. We suggest that the primitive melt parental to the Bultfontein kimberlite was a transitional silicate-carbonate melt, which was progressively enriched in SiO2, MgO, Al2O3, Cr2O3, and Na2O through

  7. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    International Nuclear Information System (INIS)

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stölken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-01

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 × 1.3 mm square spot directly onto the surface of the sample, using irradiances between 10 12 and 10 13  W/cm 2 , which resulted in calculated peak pressures between 50 and 150 GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528 μm. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated

  8. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High......-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized...... that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide...

  9. Evaluation of a Melt Infiltrated SiC/SiC Ceramic Matrix Composite

    Science.gov (United States)

    2017-12-20

    temperature performance of a state- of-the-art CMC provides evidence that this new class of materials can, or perhaps cannot, meet the harsh...and elevated temperature . This report describes tensile, creep, and fatigue testing procedures and presents the results. 15. SUBJECT TERMS ceramic...matrix composites, creep, dwell fatigue, fatigue, high temperature , melt infiltrated, SiC/SiC 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  10. Melt-processable, radiation cross-linkable E--CTFE copolymer compositions

    International Nuclear Information System (INIS)

    Robertson, A.B.; Schaffhauser, R.J.

    1976-01-01

    Melt-processable, radiation cross-linkable ethylene/chlorotrifluoroethylene copolymer compositions are provided which contain about 0.1 to 5 percent by weight of the copolymer of a radiation cross-linking promoter, about 0.01 to 5 percent by weight of an anti-oxidant and about 0.1 to 30 precent by weight of an acid scavenger. Such compositions do not give off odors when irradiated to cross-link the copolymer and do not develop bubbles after irradiation. 15 claims, no drawings

  11. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China); Wang, Lianfeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Jia, Min [Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 200436 (China); Cheng, Lingyu [Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Yan, Biao, E-mail: 84016@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China)

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO{sub 3}) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO{sub 3} particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO{sub 3} precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320–722 MPa. The microhardness and elastic modulus are around 250 HV and 215 GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO{sub 3} composites can be a potential biomedical metallic materials in the medical field. - Highlights: • 316L SS/CaSiO{sub 3} composites were fabricated by selective laser melting. • Microstructure, mechanical properties, corrosion resistance of samples was studied. • Composites is a ductile material and mixed mode of ductile and brittle fracture. • Composites is a potential biomedical metallic materials in the medical field.

  12. Determination of enthalpy–temperature–composition relations in incongruent-melting phase change materials

    International Nuclear Information System (INIS)

    Desgrosseilliers, Louis; Allred, Paul; Groulx, Dominic; White, Mary Anne

    2013-01-01

    This paper demonstrates that liquidus line (T-x) data can be obtained from calorimetric determinations of phase transition enthalpy profiles (H-T) for incongruent-melting phase change materials (PCMs) more efficiently than using traditional cooling curves. An accurate and reliable equilibrium mixture enthalpy model bridges the H-T and T-x gap to provide a full suite of high density H-T-x data to assist latent heat energy storage researchers to evaluate composition-dependent two-phase equilibrium processes. The proposed method is validated for T-history method H-T determinations of 1:1 diluted sodium acetate trihydrate in water, and can also be used with other laboratory calorimetric techniques used to determine the phase transition enthalpy profiles of incongruent-melting compounds. -- Highlights: • H-T data can also be used to obtain valuable liquidus region T-x data. • Applies to all incongruent-melting compounds with known thermodynamic properties. • Reduces the effort and cost of assessing full suite H-T-x data for PCMs. • Uses existing T-x or H-T data of incongruent-melting PCMs to determine the other

  13. Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes

    DEFF Research Database (Denmark)

    Jakobsen, J.K.; Tegner, Christian; Brooks, Kent

    2010-01-01

    province. New major- and trace element compositions for the FG-1 dyke swarm, previously taken to represent Skaergaard magmas, overlap with the entire range of the regional flood basalt succession and do not form a coherent suite of Skaergaard like melts. These dykes are therefore re-interpreted as feeder...

  14. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-01-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression

  15. Methods of vitrifying waste with low melting high lithia glass compositions

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  16. Summary report on microstructure and composition of silicate melts containing simulated Hanford waste

    International Nuclear Information System (INIS)

    Daniel, J.L.

    1975-04-01

    Specimens of silicate melt es containing simulated Hanford waste were studied by microscopy and microprobe methods to determine microstructural and compositional characteristics. The two glass specimens were representative of glasses prepared with Hanford basalt and with sea sand as the source of SiO 2 . Samples of both glasses were studied in detail at locations near the top, bottom, center, and sides of the melts. Both glasses were of a highly uniform microstructure and composition. The basalt glass contained metallic iron inclusions around the periphery near the glass/crucible interface, and small increases in Si content adjacent to the pores occurring throughout the glass. The sand glass contained no iron, its Si composition was uniform, and the average pore size was somewhat smaller (about 2 μm) than in the basalt glass. The Ca nominally added to the sand glass could not be detected. Both glasses contained a random scattering of a micron-sized ''bright'' phase whose composition was identical to the matrix or containing elements not detectable by microprobe methods. (U.S.)

  17. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  18. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration

    International Nuclear Information System (INIS)

    Lenz, F; Krenkel, W

    2011-01-01

    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi 2 and Ti 3 SiC 2 in the matrix of the composite.

  19. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    Science.gov (United States)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  20. Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator

    International Nuclear Information System (INIS)

    Jiang, Juan; Li, Gu; Tan, Nanshu; Ding, Qian; Mai, Kancheng

    2012-01-01

    Highlights: ► The supported calcium pimelate β-zeolite was prepared. ► The β-nucleation of zeolite was enhanced dramatically through reaction. ► High β-phase content iPP composites were obtained by introducing the β-zeolite into iPP. - Abstract: In order to prepare the zeolite filled β-iPP composites, the calcium pimelate as β-nucleator supported on the surface of zeolite (β-zeolite) was prepared by the interaction between calcified zeolite and pimelic acid. The β-nucleation, crystallization behavior and melting characteristic of zeolite, calcified zeolite and β-zeolite filled iPP composites were investigated by differential scanning calorimetry and wide-angle X-ray diffractometer. The results indicated that addition of the zeolite and calcified zeolite as well as β-zeolite increased the crystallization temperature of iPP. The zeolite and calcified zeolite filled iPP composites mainly crystallized in the α-crystal form and the strong β-heterogeneous nucleation of β-zeolite results in the formation of only β-crystal in β-zeolite filled iPP composites. The zeolite filled β-iPP composites with high β-crystal contents (above 0.90) can be easily obtained by adding β-zeolite into iPP matrix.

  1. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    Science.gov (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO 3 ) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO 3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO 3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO 3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.

  2. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  3. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    OpenAIRE

    A. A. Karimov; M A. Gornova; V. A. Belyaev

    2017-01-01

    Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in sp...

  4. The system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb2Ln composition

    International Nuclear Information System (INIS)

    Badalova, M.A.; Chamanova, M.; Dodkhoev, E.S.; Badalov, A.; Abdusalyamova, M.N.

    2015-01-01

    Present article is devoted to system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb 2 Ln composition. The melting enthalpy was estimated. The temperature value was determined.

  5. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    Science.gov (United States)

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  6. Melting of corrosion-resistant steel of martensite class with given phase composition

    International Nuclear Information System (INIS)

    Grashchenkov, P.M.; Kachanov, E.B.; Stetsenko, N.V.; Moshkevich, E.I.; Bunina, T.I.

    1979-01-01

    Introduced is a melting procedure for the EhP410U (vacuum arc remelted) and VNC-2M (electroslag remelted) stainless steels with carbon (carbon ferrochrome) and nickel additions to ensure a present phase composition. Magnetizability of cold specimens of the EhP410U steel should be within the limits 17.0-19.5 mV by a special device. During melting of the second steel controlled are not only cold specimens magnetizability of which should be not less than 16 mV, but hot as well (at 25O-400 deg C) by the level of magnetizability not higher than 0.5 mV. During vacuum arc remelting nitrogen content reduces in general by 0.014% and manganese content - by 0.23%; correspondingly the magnetizability of specimens insceases approximately by 1 mV. During electroslag remelting chemical and phase composition practically are not changed. Total and diffusible hydrogen contents in the vacuum remelted steel is rather low (1-5 and 0.03-0.35 cm 3 /100 gs), which provides increased reliability of the articles

  7. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  8. Influence of electron beam Irradiation on PP/Piassava fiber composite prepared by melt extrusion process

    International Nuclear Information System (INIS)

    Gomes, Michelle G.; Ferreira, Maiara S.; Oliveira, Rene R.; Silva, Valquiria A.; Teixeira, Jaciele G.; Moura, Esperidiana A.B.

    2013-01-01

    In the latest years, the interest for the use of natural fibers in materials composites polymeric has increased significantly due to their environmental and technological advantages. Piassava fibers (Attalea funifera) have been used as reinforcement in the matrix of thermoplastic and thermoset polymers. In the present work (20%, in mass), piassava fibers with particle sizes equal or smaller than 250 μm were incorporated in the polypropylene matrix (PP) no irradiated and polypropylene matrix containing 10 % and 30 % of polypropylene treated by electron-beam radiation at 40 kGy (PP/PPi/Piassava). The composites PP/Piassava and PP/PPi/Piassava were prepared by using a twin screw extruder, followed by injection molding. The composite material samples obtained were treated by electron-beam radiation at 40 kGy, using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air. After irradiation treatment, the irradiated and non-irradiated specimens tests samples were submitted to thermo-mechanical tests, melt flow index (MFI), sol-gel analysis, X-Ray diffraction (XRD) and scanning electron microscopy (SEM). (author)

  9. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys.

    Science.gov (United States)

    Takahashi, Riku; Sun, Tao Lin; Saruwatari, Yoshiyuki; Kurokawa, Takayuki; King, Daniel R; Gong, Jian Ping

    2018-04-01

    Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation. A low-melting-point alloy that can transform from a load-bearing solid state to a free-deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single-component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel-structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir: Chapter 7

    Science.gov (United States)

    Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.

  11. On determination of melt composition by liquidus curves for a number of oxide systems for crystal formation

    International Nuclear Information System (INIS)

    Soboleva, L.V.

    1991-01-01

    Consideration is given to liquidus curves in 31 phase diagrams of a series of borate, aluminate, silicate, germanate, titanate and other systems with unlimited mutual solubility in liquid state. Proposed optimal compositions of melts for preparation of crystals of compounds, forming in these systems, were calculated

  12. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  13. Microstructure of reaction zone in WCp/duplex stainless steels matrix composites processing by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80gm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter

  14. Properties of PP/MWCNT-COOH /PP composites made by melt mixing versus solution cast /melt mixing methods

    International Nuclear Information System (INIS)

    Reinholds, I; Roja, Z; Zicans, J; Meri, R Merijs; Bitenieks, J

    2015-01-01

    An approach on improvement of the properties of polypropylene / carbon nanotube (PP/CNT) composites is reported. PP blend compositions with carboxylic acid functionalized multi-walled carbon nanotubes (MWCNT-COOH) at filler content 1.0 wt.% were researched. One part of the composites was manufactured by direct thermoplastic mixing PP with the filler, but the other one was made from solution casted masterbatch with the following thermoplastic mixing. An increase of mechanical properties (Young's modulus, storage modulus and tensile strength), compared to an increase of glass transition temperature indicated a reinforcement effect of CNTs on PP matrix, determined from the tensile tests and differential mechanical analysis (DMA), while the elongation was reduced, compared to PP matrix. By differential scanning calorimetry (DSC) analysis, the effect of nanofiller on the reorganization of PP crystallites was observed. A noticeable enhanced effect on increase of the crystallization temperature was indicated for masterbatch manufactured composite. An increase of thermal stability was also observed, compared to pristine PP and the composite made by direct thermoplastic mixing PP with the filler

  15. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach

    Science.gov (United States)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.

    2017-03-01

    In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.

  16. Effects of ZrB{sub 2} on substructure and wear properties of laser melted in situ ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chao, Yuhjin [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Luo, Zhen, E-mail: lz@tju.edu.cn [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Cai, Yangchuan [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-01

    Graphical abstract: - Highlights: • Laser beam partly disperses ZrB{sub 2} particle clusters and showing dispersed particles state after matrix solidification. • Laser melting process narrower cellular spacing in composites than AA6061 matrix. • Compared with matrix alloy, crystal orientation near melted layer edge of the composites is almost random duo to heterogeneous nucleation in melt and pinning effect of laser dispersed ZrB{sub 2} nanoparticles at solidification front. • Laser melted layer shows better wear properties than matrix and composite without laser melting. - Abstract: Aluminum matrix composites reinforced by in situ ZrB{sub 2} particles were successfully fabricated from an Al-KBF{sub 4}-K{sub 2}ZrF{sub 6} system via a direct melt reaction. A laser surface melting strategy is used to improve the surface strength of the in situ ZrB{sub 2p}/6061Al composite, which includes a series of laser-melted composites with different laser power processed by a 2 kW YAG laser generator. XRD and EDS results demonstrated the existence of ZrB{sub 2} nanoparticles in the composite. After laser melting, the penetration depth of the molten pool increases with increasing power density. OM and SEM analysis indicate that the laser melting process yields narrower cellular spacing of the matrix and partly disperses the ZrB{sub 2} particle clusters. Compared with laser-melted matrix alloys, the crystal orientations near the melted layers edge of the composite are almost random due to heterogeneous nucleation in the melt and the pinning effect of laser-dispersed ZrB{sub 2} nanoparticles at the solidification front. Wear test results show that the laser melted layer performs better at wear resistance than both the substrate and the matrix AA6061 by measuring wear mass loss. Compared with composite samples prepared without laser melting, the wear mass loss of the laser melted composites decreased from 61 to 56 mg under a load of 98 N for 60 min.

  17. Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body

    Science.gov (United States)

    van Niekerk, Deon; Keil, Klaus

    2011-10-01

    We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A-) 881314, A-882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide-silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact-melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre-existing heterogeneity in the parent body or with redistribution of metal during impact processes.

  18. Processing effects in production of composite prepreg by hot melt impregnation

    Science.gov (United States)

    Chmielewski, C.; Jayaraman, K.; Petty, C. A.

    1993-06-01

    The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.

  19. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-03-01

    Full Text Available Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  20. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting.

    Science.gov (United States)

    Shuai, Cijun; Zhou, Yuanzhuo; Yang, Youwen; Feng, Pei; Liu, Long; He, Chongxian; Zhao, Mingchun; Yang, Sheng; Gao, Chengde; Wu, Ping

    2017-03-17

    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  1. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  2. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi

    2015-01-01

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  3. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design.

    Science.gov (United States)

    Djuris, Jelena; Ioannis, Nikolakakis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2014-02-01

    This study investigates the application of hot-melt extrusion for the formulation of carbamazepine (CBZ) solid dispersions, using polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus, BASF, Germany) and polyoxyethylene-polyoxypropylene block copolymer (Poloxamer 407). In agreement with the current Quality by Design principle, formulations of solid dispersions were prepared according to a D-optimal mixture experimental design, and the influence of formulation composition on the properties of the dispersions (CBZ heat of fusion and release rate) was estimated. Prepared solid dispersions were characterized using differential scanning calorimetry, attenuated total reflectance infrared spectroscopy and hot stage microscopy, as well as by determination of the dissolution rate of CBZ from the hot-melt extrudates. Solid dispersions of CBZ can be successfully prepared using the novel copolymer Soluplus. Inclusion of Poloxamer 407 as a plasticizer facilitated the processing and decreased the hardness of hot-melt extrudates. Regardless of their composition, all hot-melt extrudates displayed an improvement in the release rate compared to the pure CBZ, with formulations having the ratio of CBZ : Poloxamer 407 = 1 : 1 showing the highest increase in CBZ release rate. Interactions between the mixture components (CBZ and polymers), or quadratic effects of the components, play a significant role in overall influence on the CBZ release rate. © 2013 Royal Pharmaceutical Society.

  4. Fluctuation-induced conductivity in melt-textured Pr-doped YBa2Cu3O7-δ composite superconductor

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa

    2018-01-01

    In this study, the effects of thermal fluctuations on the electrical conductivity in melt-textured YBa2Cu3O7-δ, Y0.95Pr0.05Ba2Cu3O7-δ and (YBa2Cu3O7-δ)0.95–(PrBa2Cu3O7-δ)0.05 composite superconductor were considered. The composite superconductor samples were prepared through the top seeding method...... using melt-textured NdBa2Cu3O7-d seeds. The resistivity measurements were performed with a low-frequency, low-current AC technique in order to extract the temperature derivative and analyze the influence of the praseodymium ion on the normal superconductor transition and consequently on the fluctuation...

  5. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF, MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    Directory of Open Access Journals (Sweden)

    A. A. Karimov

    2017-01-01

    Full Text Available Evidence of melt-rock reaction between suprasubduction zone (SSZ peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr# in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts.

  6. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions

    Science.gov (United States)

    Ren, Zhong-Yuan; Wu, Ya-Dong; Zhang, Le; Nichols, Alexander R. L.; Hong, Lu-Bing; Zhang, Yin-Hui; Zhang, Yan; Liu, Jian-Qiang; Xu, Yi-Gang

    2017-07-01

    Olivine-hosted melt inclusions within lava retain important information regarding the lava's primary magma compositions and mantle sources. Thus, they can be used to infer the nature of the mantle sources of large igneous provinces, which is still not well known and of the subject of debate. We have analysed the chemical compositions and Pb isotopic ratios of olivine-hosted melt inclusions in the Dali picrites, Emeishan Large Igneous Province (LIP), SW China. These are the first in-situ Pb isotope data measured for melt inclusions found in the Emeishan picrites and allow new constraints to be placed on the source lithology of the Emeishan LIP. The melt inclusions show chemical compositional variations, spanning low-, intermediate- and high-Ti compositions, while their host whole rocks are restricted to the intermediate-Ti compositions. Together with the relatively constant Pb isotope ratios of the melt inclusions, the compositional variations suggest that the low-, intermediate- and high-Ti melts were derived from compositionally similar sources. The geochemical characteristics of melt inclusions, their host olivines, and whole-rocks from the Emeishan LIP indicate that Ca, Al, Mn, Yb, and Lu behave compatibly, and Ti, Rb, Sr, Zr, and Nb behave incompatibly during partial melting, requiring a pyroxenite source for the Emeishin LIP. The wide range of Ti contents in the melt inclusions and whole-rocks of the Emeishan basalts reflects different degrees of partial melting in the pyroxenite source at different depths in the melting column. The Pb isotope compositions of the melt inclusions and the OIB-like trace element compositions of the Emeishan basalts imply that mixing of a recycled ancient oceanic crust (EM1-like) component with a peridotite component from the lower mantle (FOZO-like component) could have underwent solid-state reaction, producing a secondary pyroxenite source that was subsequently partially melted to form the basalts. This new model of pyroxenite

  7. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  8. Effect of cationic composition of electrolyte on kinetics of lead electrolytic separation in chloride melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Makarov, D.V.

    1995-01-01

    The mechanism has been studied and kinetic parameters of the process of Pb(2) ion electrochemical reduction have been ascertained for different individual melts of alkali metal chlorides and their mixtures, using methods of linear voltammetry chronopotentiometry and chronoamperometry. It has been ascertained that cations in the melts of alkali metal chlorides affect stability of [PbCl n ] 2-n ions. The data obtained suggest that the strength of the complexes increases in the series NaCl-KCl-CsCl. In the melt of sodium chloride the electrode process is limited by diffusion, whereas in the melts of KCl, CsCl, CsCl-NaCl with cesium chloride content exceeding 70 mol% lead electrochemical reduction is controlled by preceding dissociation of the complexes. 10 refs., 3 figs., 2 tabs

  9. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  10. Nanoparticle dispersion effect of laser-surface melting in ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen, E-mail: lz-tju@163.com [Tianjin University, School of Material Science and Engineering (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (China)

    2017-04-15

    Zirconium diboride (ZrB{sub 2p}, 15 vol%)/6061 aluminum (Al) composites were fabricated via in situ reaction. The existence, morphologies, and dispersion degree of the in situ ZrB{sub 2} particles with size from tens to hundreds of nanometers were studied by X-ray diffractometry, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. As the particle-settlement effect becomes dominant during the composite fabrication process, ZrB{sub 2} nanoparticles agglomerate to a certain extent in some areas of the as-cast composites. A laser-surface melting (LSM) strategy was applied to disperse agglomerated ZrB{sub 2} nanoparticles in as-cast composites, and the ZrB{sub 2} nanoparticle dispersion is affected visibly by LSM. After LSM, nanoparticles tend to distribute along the grain boundary. Particle clusters were dispersed in an explosive orientation and the particle diffusion distance varied in terms of its radius and melt-viscosity vicinity. High-resolution transmission electron microscopy showed the existence of a subgrain structure near the ZrB{sub 2}–Al interface after LSM. This may increase the yield strength when a dislocation tangle forms.

  11. School-Based BMI and Body Composition Screening and Parent Notification in California: Methods and Messages

    Science.gov (United States)

    Madsen, Kristine A.; Linchey, Jennifer

    2012-01-01

    Background: School-based body mass index (BMI) or body composition screening is increasing, but little is known about the process of parent notification. Since 2001, California has required annual screening of body composition via the FITNESSGRAM, with optional notification. This study sought to identify the prevalence of parental notification…

  12. Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin

    Science.gov (United States)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.

    2011-12-01

    A fundamental question in the genesis of komatiites is whether these rocks originate from partial melting of dry and hot mantle, 400-500 °C hotter than typical sources of MORB and OIB magmas, or if they were produced by hydrous melting of the source at much lower temperatures, similar or only moderately higher than those known today. Gorgona Island, Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona komatiites remains controversial, mostly because of the uncertain origin of volatile components which they appear to contain. These volatiles could equally result from shallow level magma contamination, melting of a "damp" mantle or fluid-induced partial melting of the source due to devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine-hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by relatively high contents of volatile components and boron (0.2-1.0 wt.% H 2O, 0.05-0.08 wt.% S, 0.02-0.03 wt.% Cl, 0.6-2.0 μg/g B), displaying positive anomalies in the overall depleted, primitive mantle (PM) normalized trace element and REE spectra ([La/Sm] n = 0.16-0.35; [H 2O/Nb] n = 8-44; [Cl/Nb] n = 27-68; [B/Nb] n = 9-30, assuming 300 μg/g H 2O, 8 μg/g Cl and 0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003-1006). The inclusions range in δ11B values from - 11.5 to + 15.6 ± 2.2‰ (1 SE), forming two distinct trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived components, altered oceanic crust or marine sediments by ascending komatiite magma cannot readily account for the volatile contents and B isotope variations. Alternatively, injection of < 3wt.% of a 11B enriched fluid to the mantle source could

  13. Melting Behavior and Thermolysis of NaBH4−Mg(BH42 and NaBH4−Ca(BH42 Composites

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-04-01

    Full Text Available The physical properties and the hydrogen release of NaBH4–Mg(BH42 and NaBH4−Ca(BH42 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − xMg(BH42, x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydride composites. In the xNaBH4–(1 − xCa(BH42 system, eutectic melting is not observed. Interestingly, eutectic melting in metal borohydrides systems leads to partial thermolysis and hydrogen release at lower temperatures and the control of sample melting may open new routes for obtaining high-capacity hydrogen storage materials.

  14. Effect of nanofiller on fibril formation in melt-drawn HDPE/PA6 microfibrillar composite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Fortelný, Ivan; Kaprálková, Ludmila; Hromádková, Jiřina

    2015-01-01

    Roč. 55, č. 9 (2015), s. 2133-2139 ISSN 0032-3888 R&D Projects: GA ČR(CZ) GA13-15255S; GA ČR GAP106/11/1069 Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.719, year: 2015

  15. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  16. A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes

    Directory of Open Access Journals (Sweden)

    M. Pichavant

    2005-06-01

    Full Text Available We present an empirical model of sulphur solubility that allows us to calculate f S2 if P, T, fO2 and the melt composition, including H2O and S, are known. The model is calibrated against three main experimental data bases consisting in both dry and hydrous silicate melts. Its prime goal is to calculate the f S2 of hydrous basalts that currently lack experimental constraints of their sulphur solubility behaviour. Application of the model to Stromboli, Vesuvius, Vulcano and Etna eruptive products shows that the primitive magmas found at these volcanoes record f S2 in the range 0.1-1 bar. In contrast, at all volcanoes the magmatic evolution is marked by dramatic variations in f S2 that spreads over up to 9 orders of magnitude. The f S2 can either increase during differentiation or decrease during decompression to shallow reservoirs, and seems to be related to closed versus open conduit conditions, respectively. The calculated f S2 shows that the Italian magmas are undersaturated in a FeS melt, except during closed conduit conditions, in which case differentiation may eventually reach conditions of sulphide melt saturation. The knowledge of f S2, fO2 and fH2O allows us to calculate the fluid phase composition coexisting with magmas at depth in the C-O-H-S system. Calculated fluids show a wide range in composition, with CO2 mole fractions of up to 0.97. Except at shallow levels, the fluid phase is generally dominated by CO2 and H2O species, the mole fractions of SO2 and H2S rarely exceeding 0.05 each. The comparison between calculated fluid compositions and volcanic gases shows that such an approach should provide constraints on both the depth and mode of degassing, as well as on the amount of free fluid in magma reservoirs. Under the assumption of a single step separation of the gas phase in a closed-system condition, the application to Stromboli and Etna suggests that the main reservoirs feeding the eruptions and persistent

  17. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    Science.gov (United States)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  18. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  19. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    Science.gov (United States)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  20. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites

    International Nuclear Information System (INIS)

    Karantzalis, A.E.; Lekatou, A.; Tsirka, K.

    2012-01-01

    Monolithic Ni 3 Al and Ni–25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution–reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt–particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni 3 Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris–counter surfaces interactions. - Highlights: ► Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. ► Solidification phenomena examination. ► TiC crystal formation and growth mechanisms. ► Sliding wear examination.

  1. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    Science.gov (United States)

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-07-01

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes

    Science.gov (United States)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Ottolini, Luisa; Hamada, Morihisa

    2017-10-01

    Replacive mantle dunites are considered to be shallow pathways for extraction of mantle melts from their source region. Dunites offer a unique possibility to unravel the compositional variability of the melts produced in the upper mantle, before mixing and crystal fractionation modify their original signature. This study includes a quantification of H2O, Li and trace elements (Ni, Mn, Co, Sc, V, Ti, Zr, Y and HREE) in olivine from large replacive dunite bodies (>20 m) within a mantle section exposed in the Western Italian Alps (Lanzo South ophiolite). On the basis of olivine, clinopyroxene and spinel compositions, these dunites were previously interpreted to be formed by melts with a MORB signature. Variations in Ni, Mn, Co and Ca contents in olivine from different dunite bodies suggested formation by different melt batches. The variable H2O and Li contents of these olivines agree with this idea. Compared to olivine from residual peridotites and olivine phenocrysts in MORB (both having H2O 1 ppm), the Lanzo South dunite olivine has high H2O (18-40 ppm) and low Li (0.35-0.83 ppm) contents. Geochemical modelling suggests that the dunite-forming melts were produced by low melting degrees of a mixed garnet-pyroxenite-peridotite mantle source, with a contribution of a garnet pyroxenite component variable from 20 to 80%. The Lanzo dunites experienced migration of melts geochemically enriched and mainly produced in the lowermost part of the melting region. Extraction of enriched melts through dunite channels are probably characteristic of cold thermal regimes, where low temperatures and a thick mantle lithosphere inhibit mixing with melts produced at shallower depths.

  3. The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites

    Science.gov (United States)

    van Ginneken, M.; Gattacceca, J.; Rochette, P.; Sonzogni, C.; Alexandre, A.; Vidal, V.; Genge, M. J.

    2017-09-01

    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 μm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination - Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures.

  4. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Science.gov (United States)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  5. Melt cationic and anionic composition effect on titanium group metal corrosion in halogenides of alkali earths

    International Nuclear Information System (INIS)

    Tkhaj, V.; Kovalik, O.Yu.; Dikunov, Yu.G.; P'yankova, S.P.

    1997-01-01

    A study was made on interaction of titanium group metals with melts of chlorides and chloride-fluorides of alkaline earth metals and magnesium. It was revealed that the rate of metal corrosion increased from BaCl 2 2 2 2 in chloride series. It is explained by amplification of oxidation activity of salt cation in the series: Ba 2+ 2+ 2+ 2+ . It was also determined that corrosion rate of titanium exceeded the one of zirconium and hafnium, became reducing power of titanium was the highest in the given group

  6. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  7. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kratochvíl, Jaroslav; Kaprálková, Ludmila

    2016-01-01

    Roč. 124, č. 2 (2016), s. 799-805 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : poly (epsilon-caprolactone) * poly (lactic acid) * microfibrillar composites Subject RIV: JI - Composite Materials Impact factor: 1.953, year: 2016

  8. Final report for SERDP WP-2209 Replacement melt-castable formulations for Composition B

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Elizabeth Green [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-19

    During this project we investigated a number of energetic materials both old and new and determined that most of them were unsuitable due to safety or sensitivity reasons. Unsuccessful coformulants include TNAZ and BNFF for volatility reasons, and DAAF due to thermal compatibility issues. The powerful explosive HMX became a focus of the work in later stages as it conferred excellent power while being commonly available in well-regulated particle size lots and is chemically compatible in the melt with many coformulants. Ultimately three preferred formulations emerged from this work: a formulation tested on large scale by ARDEC involving PrNQ and HMX; a formulation tested at ARDEC and LANL using a nitrate salt eutectic and HMX; a formulation tested at LANL using LLM-201 and HMX.

  9. Utilization of poly(methyl methacrylate) – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    OpenAIRE

    M. Lahelin; M. Annala; J. Seppala

    2012-01-01

    Carbon nanotubes (CNTs) were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS) or poly(methyl methacrylate) (PMMA). The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was inc...

  10. Silicon Effects on Properties of Melt Infiltrated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Gyekenyesi, John Z.; Hurst, Janet B.

    2000-01-01

    Silicon effects on tensile and creep properties, and thermal conductivity of Hi-Nicalon SiC/SiC composites have been investigated. The composites consist of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats and a silicon matrix, or a mixture of silicon matrix and SiC particles. The Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained about 24 and 13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has no significant effect on creep and thermal conductivity, but does decrease the primary elastic modulus and stress corresponding to deviation from linear stress-strain behavior.

  11. Effect of halloysite on structure and properties of melt-drawn PCL/PLA microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kratochvíl, Jaroslav; Fortelný, Ivan; Kaprálková, Ludmila; Zhigunov, Alexander; Khunová, V.; Nevoralová, Martina

    2016-01-01

    Roč. 10, č. 5 (2016), s. 381-393 ISSN 1788-618X R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : mechanical properties * poly(epsilon-caprolactone) * poly(lactic acid) Subject RIV: JI - Composite Material s Impact factor: 2.983, year: 2016

  12. Parenting

    Science.gov (United States)

    ... parents, people are always ready to offer advice. Parenting tips, parents' survival guides, dos, don'ts, shoulds ... right" way to be a good parent. Good parenting includes Keeping your child safe Showing affection and ...

  13. Stability of the composites: NiAl - cellular high-melting point metal

    International Nuclear Information System (INIS)

    Belomyttsev, M.Yu.; Kozlov, D.A.

    2006-01-01

    For sintered composite materials (CM) NiAl-W and NiAl-W-Mo the structure and mechanical properties are studied. A comparative analysis of the effect of hot deformation by compression at 1000-1300 Deg C on the integrity of microsamples themselves and tungsten shells of NiAl granules in CM with a cellular structure is accomplished. Local chemical composition of a NiAl/refractory metal interface in CM with cellular structure and free of it is determined. A CM structural state effect on compression yield strength at 1000 Deg C is estimated. The treatment is proposed which permits approaching cellular structured CM oxidation resistance at 1000-1100 Deg C to the level of heat stability of unalloyed NiAl or its alloy with Hf [ru

  14. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Effect of layered silicates and reactive compatibilization on structure and properties of melt-drawn HDPE/PA6 microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kaprálková, Ludmila; Kratochvíl, Jaroslav; Padovec, Z.; Růžička, M.; Hromádková, Jiřina

    2016-01-01

    Roč. 73, č. 6 (2016), s. 1673-1688 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: JI - Composite Materials Impact factor: 1.430, year: 2016

  16. Controlling parental feeding practices and child body composition in ethnically and economically diverse preschool children.

    Science.gov (United States)

    Wehrly, Sarah E; Bonilla, Chantal; Perez, Marisol; Liew, Jeffrey

    2014-02-01

    Controlling parental feeding practices may be associated with childhood overweight, because coercive or intrusive feeding practices may negatively impact children's development of self-regulation of eating. This study examined pressuring or forcing a child (healthy or unhealthy foods) and restricting child from unhealthy or snack foods as two types of controlling feeding practices that explain unique variances in measures of child body composition (BMI, percent body fat, and parental perception of child weight). In an ethnically and economically diverse sample of 243 children aged 4-6years old and their biological parents (89% biological mothers, 8% biological fathers, and 3% step or grand-parent), descriptive statistics indicate ethnic and family income differences in measures of feeding practices and child body composition. Additionally, the two "objective" indices of body composition (BMI and percent body fat) were related to low pressure to eat, whereas the "subjective" index (perceived child weight) was related to restriction. Regression analyses accounting for ethnic and family income influences indicate that pressure to eat and restriction both explained unique variances in the two "objective" indices of body composition, whereas only restriction explained variance in perceived child weight. Findings have implications for helping parents learn about feeding practices that promote children's self-regulation of eating that simultaneously serves as an obesity prevention strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  18. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    that CAIs 100, 160 and CG5 experienced melting in an {sup 16}O-rich ({Delta}{sup 17}O < -20{per_thousand}) nebular gas in the CAI-forming region. The Type C and Type-B-like portions of CAI 6-1-72 experienced melting in an {sup 16}O-depleted ({Delta}{sup 17}O {ge} -13{per_thousand}) nebular gas. CAIs ABC, TS26 and 93 experienced isotopic exchange during re-melting in the presence of an {sup 16}O-poor ({Delta}{sup 17}O {ge} -10{per_thousand}) nebular gas in the chondrule-forming region(s). Subsequently, Allende Type C CAIs experienced post-crystallization isotopic exchange with an {sup 16}O-poor reservoir that affected largely melilite and anorthite. Because pseudomorphic replacement of lacy melilite by grossular, monticellite and forsterite occurred during thermal metamorphism, some oxygen isotopic exchange of melilite and anorthite must have continued after formation of these secondary minerals. We suggest that some or all oxygen isotopic exchange in melilite and anorthite occurred during fluid-assisted thermal metamorphism on the CV parent asteroid. Similar processes may have also affected melilite and anorthite of CAIs in metamorphosed CO chondrites.

  19. Tribological Performance of Ni3Al Matrix Composites Synthesized by Laser Melt Deposition Under Different Scanning Velocities

    Science.gov (United States)

    Huang, Yuchun; Shi, Xiaoliang; Liu, Xiyao; Yan, Zhao; Deng, Xiaobin

    2018-02-01

    In order to study the effect of scanning velocity on the microstructure and tribological properties of Ni3Al matrix composites containing graphene nanoplatelets (NGs), a series of NG samples are successfully synthesized by laser melt deposition under the various scanning velocities from 300 to 500 mm s-1. The sliding friction tests of NG against GCr15 steel balls are carried out under 10 N and 0.2 m s-1 at room temperature. The microstructures, tribological properties and wear mechanisms of the NG samples are analyzed. The results show that the scanning velocity can be optimized to effectively control the surface hardness and relative density, as well as tribological performance of NG. The NG sample synthesized under scanning velocity of 450 mm s-1 has a dense and fine microstructure as well as excellent properties such as higher relative density (98.6%), lower friction coefficient (0.23) and wear rate (5.5 × 10-6 mm3 N-1 m-1). The lower substrate layer with dense and stable structure plays an important role in supporting the upper glaze layer with rich graphene and oxides, as well as nanocrystalline structure, which contributes to the excellent friction-reducing and wear resistance performances of NG. The research results could be used to guide the selection of suitable scanning velocity and study the wear mechanisms of NG for having excellent tribological performance.

  20. Utilization of poly(methyl methacrylate – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    Directory of Open Access Journals (Sweden)

    M. Lahelin

    2012-10-01

    Full Text Available Carbon nanotubes (CNTs were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS or poly(methyl methacrylate (PMMA. The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was increased interfacial adhesion between the components, as for PS and the CNTs, the use of directly melt mixed CNTs gave better resistivity results. Without strong interactions between the CNTs and the matrix, as with PMMA and CNTs, the use of a tailored masterbatch had a significant effect on properties of the final composites. The molecular weight and viscosity of masterbatches can be varied and when the PMMA-masterbatch had optimized viscosity with respect to the PMMA matrix, electrical resistivity of the final composites decreased noticeably.

  1. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    Science.gov (United States)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  2. The Effects of Annealing Temperatures on Composition and Strain in Si x Ge1-x Obtained by Melting Growth of Electrodeposited Ge on Si (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-02-24

    The effects of annealing temperatures on composition and strain in Si x Ge 1- x , obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm -1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si x Ge 1- x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  3. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100)

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-01-01

    The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100°C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~00 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance. PMID:28788521

  4. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100

    Directory of Open Access Journals (Sweden)

    Mastura Shafinaz Zainal Abidin

    2014-02-01

    Full Text Available The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100 substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100 orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  5. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    Science.gov (United States)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem

  6. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning

    Science.gov (United States)

    Treiman, A. H.

    1993-01-01

    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  7. Parental Sources of High-Alumina Alkaline Melts: Nd, Sr, Pb, and O Isotopic Evidence from the Devonian Kiya-Shaltyr Gabbro-Urtite Intrusion, South Siberia

    Science.gov (United States)

    Vrublevskii, V. V.; Gertner, I. F.; Chugaev, A. V.

    2018-04-01

    The isotope geochemistry (ɛNd( t) 4.8-5.4, 206Pb/204Pb in 18.05-18.36, 207Pb/204Pbin 15.53-15.57, 208Pb/204Pb in 37.59-37.83, 87Sr/86Sr( t) 0.7048-0.7057, δ18OSMOW 8-10.5‰) and trace element composition of the Kiya-Shaltyr gabbro-urtite pluton allow us to suggest a heterogeneous source and complex geodynamic settings of the Devonian alkali magmatism in the Kuznetsk Alatau. It is assumed that its evolution took place under conditions of partial mingling of matter of the depleted (PREMA) and enriched (EM) mantle with crustal contamination of the evolving melt. Such an interaction could have been a result of superposition of a mantle plume and an active margin (OIB and IAB components). In fold belts this led to the formation of hybrid high-alumina foidoite magmas.

  8. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.

    1994-01-01

    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  9. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  10. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    Science.gov (United States)

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  11. Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting

    International Nuclear Information System (INIS)

    Choi, Bong-Jae; Kim, Young-Jig; Sung, Si-Young

    2012-01-01

    The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and B4C leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

  12. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    DEFF Research Database (Denmark)

    Andersen, U B; Dige-Petersen, H; Ibsen, H

    1999-01-01

    OBJECTIVE: To study insulin resistance in subjects with strong genetic predisposition to essential hypertension, compared with non-disposed subjects. SUBJECTS: Thirty normotensive subjects aged 18-35 years whose parents both had essential hypertension, and 30 age- and sex matched subjects whose...... correlated to abdominal fat mass but not to insulin sensitivity. CONCLUSION: Subjects with a strong genetic predisposition to essential hypertension had increased diastolic blood pressure compared with subjects with normotensive parents, but they were not insulin resistant. This may be due to the subjects...... for the difference between the means; -0.5; -7.9), but the insulin sensitivity index was similar: 312 versus 362 I(2) min(-1) pmol(-1) kg(-1) (28; -129). The two groups were similar in terms of body composition, exercise capacity and composition of usual diet. Resting and 24-h diastolic blood pressures were...

  13. Disentangling the associations between parental BMI and offspring body composition using the four‐component model

    Science.gov (United States)

    Grijalva‐Eternod, Carlos; Cortina‐Borja, Mario; Williams, Jane; Fewtrell, Mary; Wells, Jonathan

    2016-01-01

    ABSTRACT Objectives This study sets out to investigate the intergenerational associations between the body mass index (BMI) of parents and the body composition of their offspring. Methods The cross‐sectional data were analyzed for 511 parent–offspring trios from London and south‐east England. The offspring were aged 5–21 years. Parental BMI was obtained by recall and offspring fat mass and lean mass were obtained using the four‐component model. Multivariable regression analysis, with multiple imputation for missing paternal values was used. Sensitivity analyses for levels of non‐paternity were conducted. Results A positive association was seen between parental BMI and offspring BMI, fat mass index (FMI), and lean mass index (LMI). The mother's BMI was positively associated with the BMI, FMI, and LMI z‐scores of both daughters and sons and of a similar magnitude for both sexes. The father's BMI showed similar associations to the mother's BMI, with his son's BMI, FMI, and LMI z‐scores, but no association with his daughter. Sensitivity tests for non‐paternity showed that maternal coefficients remained greater than paternal coefficients throughout but there was no statistical difference at greater levels of non‐paternity. Conclusions We found variable associations between parental BMI and offspring body composition. Associations were generally stronger for maternal than paternal BMI, and paternal associations appeared to differ between sons and daughters. In this cohort, the mother's BMI was statistically significantly associated with her child's body composition but the father's BMI was only associated with the body composition of his sons. Am. J. Hum. Biol. 28:524–533, 2016. © 2016 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc. PMID:26848813

  14. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    Science.gov (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  15. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  16. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  17. Child Feeding and Parenting Style Outcomes and Composite Score Measurement in the 'Feeding Healthy Food to Kids Randomised Controlled Trial'.

    Science.gov (United States)

    Duncanson, Kerith; Burrows, Tracy L; Collins, Clare E

    2016-11-10

    Child feeding practices and parenting style each have an impact on child dietary intake, but it is unclear whether they influence each other or are amenable to change. The aims of this study were to measure child feeding and parenting styles in the Feeding Healthy Food to Kids (FHFK) Randomized Controlled Trial (RCT) and test a composite child feeding score and a composite parenting style score. Child feeding and parenting style data from 146 parent-child dyads (76 boys, aged 2.0-5.9 years) in the FHFK study were collected over a 12-month intervention. Parenting style was measured using parenting questions from the Longitudinal Study of Australian Children and the Child Feeding Questionnaire (CFQ) was used to measure child feeding practices. Data for both measures were collected at baseline, 3 and 12 months and then modelled to develop a composite child feeding score and a parenting score. Multivariate mixed effects linear regression was used to measure associations between variables over time. All child feeding domains from the CFQ were consistent between baseline and 12 months ( p parenting style domain scores were consistent over 12 months ( p parenting style score within the FHFK RCT. In conclusion, composite scores have potential applications in the analysis of relationships between child feeding and dietary or anthropometric data in intervention studies aimed at improving child feeding or parenting style. These applications have the potential to make a substantial contribution to the understanding of child feeding practices and parenting style, in relation to each other and to dietary intake and health outcomes amongst pre-school aged children.

  18. Fabrication of Cu-riched W–Cu composites by combustion synthesis and melt-infiltration in ultrahigh-gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Guo, Shibin; Liu, Guanghua; Chen, Yixiang [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jiangtao, E-mail: ljt0012@vip.sina.com [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-15

    Unadulterated Cu-riched W–Cu composites of W27–Cu73, W34–Cu66, W40–Cu60, W49–Cu51 and W56–Cu44 have been prepared by a novel method called combustion synthesis and melt-infiltration in ultrahigh-gravity field, of which W27–Cu73 and W34–Cu66 showed good ductility and W40–Cu60, W49–Cu51 and W56–Cu44 were brittle. In this technique, Cu melt accompanied with a great amount of heat was produced by thermit reaction and infiltrated into W–Cu powder bed. When the powder bed was Cu-riched powder bed such as W50–Cu50 or W60–Cu40, Cu melt would go through the powder bed, reach the bottom of the graphite crucible and then form a heat dissipation channel. Thus the cooling rate was so fast that the product was mixed up with impurity. The problem can be solved by putting some W powders under W50–Cu50 or W60–Cu40 powder bed to prevent the formation of heat dissipation channel.

  19. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  20. Parents.

    Science.gov (United States)

    Hurst, Hunter, Ed.; And Others

    1986-01-01

    This document contains the fifth volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of the family and delinquency, examining the impact of parental behavior on the production of delinquent behavior. "Parents: Neglectful and Neglected" (Laurence D. Steinberg) posits…

  1. A New Method of Constructing a Drug-Polymer Temperature-Composition Phase Diagram Using Hot-Melt Extrusion.

    Science.gov (United States)

    Tian, Yiwei; Jones, David S; Donnelly, Conor; Brannigan, Timothy; Li, Shu; Andrews, Gavin P

    2018-04-02

    Current experimental methodologies used to determine the thermodynamic solubility of an API within a polymer typically involves establishing the dissolution/melting end point of the crystalline API within a physical mixture or through the use of the glass transition temperature measurement of a demixed amorphous solid dispersion. The measurable "equilibrium" points for solubility are normally well above the glass transition temperature of the system, meaning extrapolation is required to predict the drug solubility at pharmaceutically relevant temperatures. In this manuscript, we argue that the presence of highly viscous polymers in these systems results in experimental data that exhibits an under or overestimated value relative to the true thermodynamic solubility. In previous work, we demonstrated the effects of experimental conditions and their impact on measured and predicted thermodynamic solubility points. In light of current understanding, we have developed a new method to limit error associated with viscosity effects for application in small-scale hot-melt extrusion (HME). In this study, HME was used to generate an intermediate (multiphase) system containing crystalline drug, amorphous drug/polymer-rich regions as well as drug that was molecularly dispersed in polymer. An extended annealing method was used together with high-speed differential scanning calorimetry to accurately determine the upper and lower boundaries of the thermodynamic solubility of a model drug-polymer system (felodipine and Soluplus). Compared to our previously published data, the current results confirmed our hypothesis that the prediction of the liquid-solid curve using dynamic determination of dissolution/melting end point of the crystalline API physical mixture presents an underestimation relative to the thermodynamic solubility point. With this proposed method, we were able to experimentally measure the upper and lower boundaries of the liquid-solid curve for the model system. The

  2. Effect of initial porosity on mechanical properties of C/SiC composites fabricated by silicon melt infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, D.S.; Son, D.Y. [Dept. of Materials and Metallurgical Eng., Dong-Eui Univ., Busan (Korea); Lee, S.P. [Dept. of Mechanical Eng., Dong-Eui Univ., Busan (Korea); Park, H.S.; Kim, K.S. [Dreaming and Challenging Co., Changwon (Korea); Jeon, J.H. [Korea Inst. of Machinery and Materials, Changwon (Korea)

    2004-07-01

    Four kinds of raw C/C composites with a density between 1.25{proportional_to}1.66 g/cm{sup 3} were used in order to investigate the effect of the initial porosity of C/C composites on mechanical properties of liquid silicon infiltrated C/SiC composites. The microstructure observation, image analysis and flexural strength test of the composites were performed. The density and microstructural changes with the variation of the initial porosity was discussed in the terms of the infiltration behavior of liquid silicon and the reaction between liquid silicon and matrix carbon. (orig.)

  3. Chemical durability of slag produced by thermal plasma melting of low-level miscellaneous solid wastes. Effects of slag composition

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    Low-level radioactive miscellaneous solid wastes are generated from commercial operation of nuclear power plants and will be generated from decommissioning of nuclear power plants in future. Static leaching tests were carried out in deionized water of 10degC on slag obtained by thermal plasma melting of simulating materials of the miscellaneous solids wastes with surrogate elements of radionuclides. It is found that logarithm of normalized elemental mass loss from the slag is proportional to the basicity represented by mole fractions of main structural oxides of the slag, such as SiO 2 , Al 2 O 3 , CaO, FeO and MgO. The range of static leaching rates from the slag is determined based on the above results and the basicity range of the miscellaneous solid wastes. Then we compared the leaching rates form the slag and from high level waste glasses. On these grounds, we concluded that the slag obtained by thermal plasma melting of miscellaneous solid wastes can stabilize radio-nuclides in it by no means inferior to the high level waste glasses. (author)

  4. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Sreejesh, M. [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Shenoy, Sulakshana [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Sridharan, Kishore, E-mail: kishore@nitk.edu.in [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Kufian, D.; Arof, A.K. [Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nagaraja, H.S., E-mail: nagaraja@nitk.edu.in [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India)

    2017-07-15

    Highlights: • Layered vanadium oxides (MVO) are prepared through melt quenching process. • MVO is hydrothermally treated with graphene oxide to form MVGO composites. • Dopamine detection capacity using MVGO is 0.07 μM with good selectivity. • Sensitivity of dopamine detection is 25.02 μA mM{sup −1} cm{sup −2}. • Discharge capacity of MVGO electrode is 200 mAhg{sup −1} after 10 cycles. - Abstract: Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM{sup −1} cm{sup −2} with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg{sup −1} at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  5. Effect of nanofiller on the behavior of a melt-drawn HDPE/PA6 microfibrillar composite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kaprálková, Ludmila; Kratochvíl, Jaroslav; Kotek, Jiří; Kobera, Libor; Rotrekl, J.; Hromádková, Jiřina

    2015-01-01

    Roč. 132, č. 16 (2015), 41868_1-41868_9 ISSN 0021-8995 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : clay * composite s * mechanical properties Subject RIV: JI - Composite Material s Impact factor: 1.866, year: 2015

  6. Sex composition of children, parental separation, and parity progression: Is Finland a Nordic outlier?

    Directory of Open Access Journals (Sweden)

    Jan Saarela

    2014-01-01

    Full Text Available Background: Previous studies that have studied parental gender preferences for children have analysed either divorce or parity progression. We use Finnish register data that make it possible to study both events simultaneously by following the same couples with children over time. Objective: Our aim is to study how the sex composition of children relates to parental separation and continued childbearing, considering that within the same institutional context both aspects likely reflect gender preferences for children. Methods: We perform parity-specific Cox regressions where parity progression and separation (divorce or split up are treated as two competing events. Results: Our results suggest that, in the 1970s and early 1980s, there was a parental boy preference in Finland, which makes the country different from its Nordic neighbours. Both the risks of divorce and continued childbearing were higher among couples with only girls than among those with only boys. This difference had attenuated considerably since the 1970s, and was practically non-existent in the 1990s. Complementary analyses of married and cohabiting couples' risk of split up and continued childbearing support the conclusion. Conclusions: As compared with the other Nordic countries, Finland seems to have experienced a later development of implementing modern family roles and a more egalitarian distribution of parents' attention to sons and daughters. The lag might be due to a relatively late and fast industrialisation and urbanisation process. Comments: Like in the United States, the boy preference seems to have attenuated over time, which would be in correspondence with an increased secularisation and gender equalisation of society.

  7. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  8. Chemical composition and microstructure of magnetically melt-textured Bi2Sr2Ca0.8Dy0.2Cu2O8-y

    International Nuclear Information System (INIS)

    Stassen, S.; Rulmont, A.; Krekels, T.; Ausloos, M.; Cloots, R.

    1996-01-01

    Dysprosium-doped Bi-based 2212 materials have been synthesized in the presence of a magnetic field, applied perpendicularly to the lateral face of a cylinder, by a melt-textured growth process. Thick (well oriented) layers of different chemical composition have been observed. A dysprosium-doped 2212 phase (the expected D phase) and a dysprosium-free bismuth-rich and strontium-deficient 2212 phase have been found. It is argued that the latter is a so-called M phase. Other impurity phases have been observed, connected with both 2212-type layers. A novel aspect of this work is the calcium solubility at the strontium site in the 2201 structure, and inversely the strontium solubility at the calcium site in the 8250 structure. (orig.)

  9. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    Science.gov (United States)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  10. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting

    Science.gov (United States)

    Zhang, Baicheng; Bi, Guijun; Nai, Sharon; Sun, Chen-nan; Wei, Jun

    2016-06-01

    In this study, micron-size TiB2 particles were utilized to reinforce Inconel 625 produced by selective laser melting. Exceptional microhardness 600-700 HV0.3 of the composite was obtained. In further investigation, the microstructure and mechanical properties of Inconel 625/TiB2 composite can be significantly influenced by addition of TiB2 particles during SLM. It was found that the long directional columnar grains observed from SLM-processed Inconel 625 were totally changed to fine dendritic matrix due to the addition of TiB2 particles. Moreover, with laser energy density (LED) of 1200 J/m, a Ti, Mo rich interface around TiB2 particles with fine thickness can be observed by FESEM and EDS. The microstructure evolution can be determined by different laser energy density (LED): under 1200 J/m, γ phase in dendrite grains; under 600 J/m, γ phase in combination of dendritic and acicular grains; under 400 J/m, γ phase acicular grains. Under optimized LED 1200 J/m, the dynamic nanohardness (8.62 GPa) and elastic modulus (167 GPa) of SLM-processed Inconel 625/TiB2 composite are higher compared with those of SLM-processed Inconel 625 (3.97 GPa and 135 GPa, respectively).

  11. Property/composition relationships for Hanford high-level waste glasses melting at 115 degrees C volume 1: Chapters 1-11

    International Nuclear Information System (INIS)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , ZrO 2 , Na 2 O, Li 2 O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity (η), electrical conductivity (ε), glass transition temperature (T g ), thermal expansion of solid glass (α s ) and molten glass (α m ), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T L ), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r mi ) and the 7-day Product Consistency Test (PCT, r pi ), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T L ) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria

  12. Property/composition relationships for Hanford high-level waste glasses melting at 1150 degrees C volume 2: Chapters 12-16 and appendices A-K

    International Nuclear Information System (INIS)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation Study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO 2 , B 2 O 3 , ZrO 2 , Na 2 O, Li 2 O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity (η), electrical conductivity (ε), glass transition temperature (T g ), thermal expansion of solid glass (α s ) and molten glass (α m ), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T L ), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r mi ) and the 7-day Product Consistency Test (PCT, r pi ), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T L ) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria

  13. Luna 24 ferrobasalt as a low-Mg primary melt

    International Nuclear Information System (INIS)

    Norman, M.; Ryder, G.

    1980-01-01

    Luna 24 very-low titanium (VLT) ferrobasalts, metabasalts, brown glasses and impact melts form a tight compositional cluster with no gradation to other groupings postulated for the Luna 24 core components. This suggests that the Luna 24 VLT ferrobasalt was extruded as a liquid of its own composition and was not derived by fractional crystallization from a more magnesian parent in a surface flow. Furthermore, the characteristics of the core lithologies are not easily visualized as components of such a differential flow, e.g. brown glasses. Gravitative settling models purporting to demonstrate the validity of the flow differentiation model are merely permissive. Subsurface fractionation requires that plagioclase, not olivine, be the liquidus phase. The high-Mg component in the Luna 24 core can be constrained, though not identified, chemically, and it has neither the major element, trace element, isotopic, nor mineralogical characteristics required of a possible parent to the Luna 24 VLT ferrobasalt. Thus models of fractionation lack a physical expression of the less differentiated compositions, contrary to the belief that the high-Mg component in the core is the parent material. The Luna 24 VLT ferrobasalt is probably a primary low-Mg melt from a plagioclase-bearing source region, and may have undergone little or no fractionation prior to eruption. Such a model is compatible with, and suggested by, chemical and experimental data. Caution against posulating that all Mg-poor melts are fractionated products, based on terrestrial models, is advised. The terrestrial oceanic situation of 'primary melts' with similar Mg/Fe is probably not valid for the Moon. (Auth.)

  14. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    Science.gov (United States)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  15. Influence of the composition to the physical properties of NaF-LiF-LaF3 melt liquid systems

    Directory of Open Access Journals (Sweden)

    L. A. Bulavin

    2013-06-01

    Full Text Available Influence of the chemical composition of NaF-LiF-LaF3 system on temperature dependence of electrical con-ductivity, viscosity and thermoelectric power has been studied in a wide temperature range between 600 and 1500 К. The obtained results could help in design of the molten salt reactor blanket.

  16. Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO_2-C Powder Mixtures

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Lee, Jung-Moo; Cho, Young-Hee; Kim, Jong-Jin; Kim, Su-Hyeon; Lee, Jae-Chul

    2012-01-01

    A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of Al-TiO_2-C pellet was directly added into an Al melt at 800-920°C to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in 1-2 um at the melt temperature above 850°C. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, Al_3Ti. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

  17. Towards intensive parenting? Changes in the composition and determinants of mothers' and fathers' time with children 1992-2006.

    Science.gov (United States)

    Craig, Lyn; Powell, Abigail; Smyth, Ciara

    2014-09-01

    Contemporary expectations of good parenting hold that focused, intensive parental attention is essential to children's development. Parental input is viewed as a key determinant in children's social, psychological and educational outcomes, with the early years particularly crucial. However, increased rates of maternal employment mean that more parents are juggling work and family commitments and have less non-work time available to devote to children. Yet studies find that parental childcare time has increased over recent decades. In this paper, we explore the detail of this trend using data from the Australian Bureau of Statistics (ABS) Time Use Survey (TUS), 1992 and 2006. To investigate whether discourses on intensive parenting are reflected in behaviour, we examine a greater range of parent-child activities than has been undertaken to date, looking at trends in active childcare time (disaggregated into talk-based, physical and accompanying care activities); time in childcare as a secondary activity; time spent in the company of children in leisure activities; and time spent in the company of children in total. We also investigate whether the influence of factors known to predict parental time with children (gender, education, employment status and the age of children) have changed over time. We contextualize our analyses within social and economic trends in Australia and find a compositional change in parental time, with more active childcare occurring within less overall time, which suggests more intensive, child-centred parenting. Fathers' parent-child time, particularly in physical care, increased more than mothers' (from a much lower base), and tertiary education no longer predicts significantly higher childcare time. © London School of Economics and Political Science 2014.

  18. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  19. Tuning the nano/micro-structure and properties of melt-processed ternary composites of polypropylene/ethylene vinyl acetate blend and nanoclay: The influence of kinetic and thermodynamic parameters

    CSIR Research Space (South Africa)

    Mofokeng, Tladi G

    2017-09-01

    Full Text Available The present study reports the dependence of the nano/micro-structure and properties of polypropylene (PP)/ethylene vinyl acetate (EVA)/nanoclay ternary composites on the kinetics and thermodynamics of the melt-mixing process. The size of dispersed...

  20. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Science.gov (United States)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  1. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites

    Science.gov (United States)

    Gu, Dongdong; Ma, Chenglong

    2018-05-01

    Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.

  2. Design of Low-Melting Point Compositions Suitable for Transient Liquid Phase Sintering of PM Steels Based on a Thermodynamic and Kinetic Study

    Science.gov (United States)

    Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel

    2014-04-01

    The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.

  3. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  4. Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting

    International Nuclear Information System (INIS)

    Pacquentin, W.; Caron, N.; Oltra, R.

    2015-01-01

    Highlights: • Laser surface melting treatments require neither additional feedstock nor contact. • By affecting 1 μm, the pitting potential of laser treated 304L increases by 500 mV. • Surface modification of laser treated sample observed by TEM. • The physico-chemical properties of the surface are correlated to overlap rate. • AISI 304L pitting corrosion resistance strongly depends of overlap rate. - Abstract: Changes induced in the surface properties of AISI 304L stainless steel when it is treated with a nanopulsed ytterbium-doped fiber laser were investigated to determine the microscale distribution of its physico-chemical properties. A Gaussian energy distribution was created with a radius of 71 μm (1/e 2 ) at the focal point. Local investigations were carried out using transmission electron microscopy to consider the effect of overlapping individual laser impacts. The results obtained reveal that laser surface melting leads to changes in the crystallographic structure of the steel through the formation of a δ-ferritic phase. It also results in the creation of an oxide layer that increases the corrosion resistance of the steel, with the chemical composition, structure and thickness of this layer being dependent on the overlap percentage and the position along the beam radius. Measurement of the localized corrosion resistance in a 30 g L −1 NaCl solution using polarization curves found that optimal laser treatment conditions can led to an increase in the breakdown potential of more than 500 mV, which corresponds to a significant improvement in corrosion resistance.

  5. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms

    Science.gov (United States)

    Morscher, Greg; Gowayed, yasser; Miller, Robert; Ojard, Greg; Ahmad, Jalees; Santhosh, Unni; John, Reji

    2008-01-01

    An understanding of the elevated temperature tensile creep, fatigue, rupture, and retained properties of ceramic matrix composites (CMC) envisioned for use in gas turbine engine applications are essential for component design and life-prediction. In order to quantify the effect of stress, time, temperature, and oxidation for a state-of-the-art composite system, a wide variety of tensile creep, dwell fatigue, and cyclic fatigue experiments were performed in air at 1204 C for the SiC/SiC CMC system consisting of Sylramic-iBN SiC fibers, BN fiber interphase coating, and slurry-cast melt-infiltrated (MI) SiC-based matrix. Tests were either taken to failure or interrupted. Interrupted tests were then mechanically tested at room temperature to determine the residual properties. The retained properties of most of the composites subjected to tensile creep or fatigue were usually within 20% of the as-produced strength and 10% of the as-produced elastic modulus. It was observed that during creep, residual stresses in the composite are altered to some extent which results in an increased compressive stress in the matrix upon cooling and a subsequent increased stress required to form matrix cracks. Microscopy of polished sections and the fracture surfaces of specimens which failed during stressed-oxidation or after the room-temperature retained property test was performed on some of the specimens in order to quantify the nature and extent of damage accumulation that occurred during the test. It was discovered that the distribution of stress-dependent matrix cracking at 1204 C was similar to the as-produced composites at room temperature; however, matrix crack growth occurred over time and typically did not appear to propagate through thickness except at final failure crack. Failure of the composites was due to either oxidation-induced unbridged crack growth, which dominated the higher stress regime (> 179 MPa) or controlled by degradation of the fibers, probably caused by

  6. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    International Nuclear Information System (INIS)

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-01-01

    The thickness of InGaAsP (lambda/sub g/=1.15 μm) and InGaAs (lambda/sub g/=1.68 μm) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l 2 /D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size

  7. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  8. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  9. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility

    Science.gov (United States)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey

    2018-03-01

    The Dovyren Intrusive Complex (DIC, Northern Baikal region, 728 Ma) includes the layered dunite-troctolite-gabbronorite Yoko-Dovyren massif (YDM), associated mafic-ultramafic sills, and dykes of olivine-rich to olivine-free gabbronorite. Major rock types of the DIC are presented, including a diversity of olivine orthocumulates to olivine-plagioclase and gabbroic adcumulates, carbonate-contaminated ultramafics and Cu-Ni-PGE mineralisation. Detailed comparisons of complete cross-sections of the YDM in its centre and at the NE and SW margins demonstrate differences in the cumulate succession, mineral chemistry, and geochemical structure that likely reflect variations in parental magma compositions. Combining petrochemical reconstructions for most primitive rocks and calculations using the COMAGMAT-5 model, it is shown that the central and peripheral parts of the intrusion formed by olivine-laden parental magmas ranged in their temperatures by 100 °C, approximately from 1290 °C ( 11 wt% MgO, olivine Fo88) to 1190 °C ( 8 wt% MgO, olivine Fo86). Thermodynamic modelling suggests that the most primitive high-Mg magma was S-undersaturated, whereas its derivatives became S-saturated at T piles to generate poorly-mineralised plagiodunite. In the troctolite and gabbroic parts of the Dovyren chamber, sulphide immiscibility likely occurred at lower temperatures, producing Cu-rich sulphide precursors, which gave rise to the 'platinum group mineral' (PGM-containing) troctolite and low-mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This

  10. Pushing and trapping phenomena in YBa2Cu3O7 melt-textured composites with BaZrO3 and Ag additions

    International Nuclear Information System (INIS)

    Carrillo, A E; Puig, T; Obradors, X

    2005-01-01

    A new Ag trapped particle morphology has been discovered in melt-textured YBa 2 Cu 3 O 7 /Ag composites where the interface energy between particle inclusions and a solid matrix has been enhanced with BaZrO 3 additives. The enhanced pushing effect generates square-like macrosegregation bands where the secondary additives Y 2 BaCuO 5 , BaZrO 3 , and Ag are accumulated. It is shown that elongated Ag particles with a long axis ∼ 60-120 μm and aspect ratios as high as a ∼ 12 can be trapped in the YBa 2 Cu 3 O 7 matrix free of any other additive with a very anisotropic orientation. It is demonstrated that the elongated Ag particles lie with the long axis parallel to the growth direction in all the growth sectors generated by the top seeding growth. The pushing-trapping theory is used to explain qualitatively the unusual phenomenon of a growth-induced morphological shaping of inclusion particles

  11. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    Science.gov (United States)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  12. Family Structure and Child Health: Does the Sex Composition of Parents Matter?

    Science.gov (United States)

    Reczek, Corinne; Spiker, Russell; Liu, Hui; Crosnoe, Robert

    2016-10-01

    The children of different-sex married couples appear to be advantaged on a range of outcomes relative to the children of different-sex cohabiting couples. Despite the legalization of same-sex marriage in the United States, whether and how this general pattern extends to the children of same-sex married and cohabiting couples is unknown. This study examines this question with nationally representative data from the 2004-2013 pooled National Health Interview Survey (NHIS). Results reveal that children in cohabiting households have poorer health outcomes than children in married households regardless of the sex composition of their parents. Children in same-sex and different-sex married households are relatively similar to each other on health outcomes, as are children in same-sex and different-sex cohabiting households. These patterns are not fully explained by socioeconomic differences among the four different types of families. This evidence can inform general debates about family structure and child health as well as policy interventions aiming to reduce child health disparities.

  13. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  14. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    Science.gov (United States)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  15. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    Science.gov (United States)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  16. Child Feeding and Parenting Style Outcomes and Composite Score Measurement in the ‘Feeding Healthy Food to Kids Randomised Controlled Trial’

    Science.gov (United States)

    Duncanson, Kerith; Burrows, Tracy L.; Collins, Clare E.

    2016-01-01

    Child feeding practices and parenting style each have an impact on child dietary intake, but it is unclear whether they influence each other or are amenable to change. The aims of this study were to measure child feeding and parenting styles in the Feeding Healthy Food to Kids (FHFK) Randomized Controlled Trial (RCT) and test a composite child feeding score and a composite parenting style score. Child feeding and parenting style data from 146 parent-child dyads (76 boys, aged 2.0–5.9 years) in the FHFK study were collected over a 12-month intervention. Parenting style was measured using parenting questions from the Longitudinal Study of Australian Children and the Child Feeding Questionnaire (CFQ) was used to measure child feeding practices. Data for both measures were collected at baseline, 3 and 12 months and then modelled to develop a composite child feeding score and a parenting score. Multivariate mixed effects linear regression was used to measure associations between variables over time. All child feeding domains from the CFQ were consistent between baseline and 12 months (p parenting style domain scores were consistent over 12 months (p parenting style score within the FHFK RCT. In conclusion, composite scores have potential applications in the analysis of relationships between child feeding and dietary or anthropometric data in intervention studies aimed at improving child feeding or parenting style. These applications have the potential to make a substantial contribution to the understanding of child feeding practices and parenting style, in relation to each other and to dietary intake and health outcomes amongst pre-school aged children. PMID:27834906

  17. Child Feeding and Parenting Style Outcomes and Composite Score Measurement in the ‘Feeding Healthy Food to Kids Randomised Controlled Trial’

    Directory of Open Access Journals (Sweden)

    Kerith Duncanson

    2016-11-01

    Full Text Available Child feeding practices and parenting style each have an impact on child dietary intake, but it is unclear whether they influence each other or are amenable to change. The aims of this study were to measure child feeding and parenting styles in the Feeding Healthy Food to Kids (FHFK Randomized Controlled Trial (RCT and test a composite child feeding score and a composite parenting style score. Child feeding and parenting style data from 146 parent-child dyads (76 boys, aged 2.0–5.9 years in the FHFK study were collected over a 12-month intervention. Parenting style was measured using parenting questions from the Longitudinal Study of Australian Children and the Child Feeding Questionnaire (CFQ was used to measure child feeding practices. Data for both measures were collected at baseline, 3 and 12 months and then modelled to develop a composite child feeding score and a parenting score. Multivariate mixed effects linear regression was used to measure associations between variables over time. All child feeding domains from the CFQ were consistent between baseline and 12 months (p < 0.001, except for monitoring (0.12, p = 0.44. All parenting style domain scores were consistent over 12 months (p < 0.001, except for overprotection (0.22, p = 0.16. A significant correlation (r = 0.42, p < 0.0001 existed between child feeding score and parenting style score within the FHFK RCT. In conclusion, composite scores have potential applications in the analysis of relationships between child feeding and dietary or anthropometric data in intervention studies aimed at improving child feeding or parenting style. These applications have the potential to make a substantial contribution to the understanding of child feeding practices and parenting style, in relation to each other and to dietary intake and health outcomes amongst pre-school aged children.

  18. Melting Behavior and Thermolysis of NaBH4−Mg(BH4)2 and NaBH4−Ca(BH4)2 Composites

    OpenAIRE

    Ley, Morten; Roedern, Elsa; Thygesen, Peter; Jensen, Torben

    2015-01-01

    The physical properties and the hydrogen release of NaBH 4 –Mg(BH 4 ) 2 and NaBH 4 −Ca(BH 4 ) 2 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, x NaBH 4 –(1 − x )Mg(BH 4 ) 2 , x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydr...

  19. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  20. Evaluation of relationships between growth rate, tree size, lignocellulose composition and enzymatic saccharification in interspecific Corymbia hybrids and parental taxa.

    Directory of Open Access Journals (Sweden)

    Adam L Healey

    2016-11-01

    Full Text Available In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF and parental species C. torelliana (CT and C. citriodora subspecies variegata (CCV and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3% among parental and hybrid populations, whereas glucan content was clearly distinguished within CCV (52% and HF148 (60% as compared to other populations (28-38%. Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH (+0.12% per cm DBH increase, and glucan and xylan typically decreasing per DBH cm increase (-0.7% and -0.3%, respectively. Polysaccharide content within CCV and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental CT and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively, with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%. Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  1. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa.

    Science.gov (United States)

    Healey, Adam L; Lee, David J; Lupoi, Jason S; Papa, Gabriella; Guenther, Joel M; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  2. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    Science.gov (United States)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  3. Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules

    International Nuclear Information System (INIS)

    Ebel, D.S.; Fogel, R.A.; Rivers, M.L.

    2005-01-01

    Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography ( 200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently driven by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO 2 ) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single ∼450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest ∼30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass

  4. Associations of Parental Self-Efficacy with Diet, Physical Activity, Body Composition, and Cardiorespiratory Fitness in Swedish Preschoolers: Results from the MINISTOP Trial

    Science.gov (United States)

    Parekh, Niyati; Henriksson, Pontus; Delisle Nyström, Christine; Silfvernagel, Kristin; Ruiz, Jonatan R.; Ortega, Francisco B.; Pomeroy, Jeremy; Löf, Marie

    2018-01-01

    Background: High parental self-efficacy (PSE) has been associated with healthy diets and higher levels of physical activity (PA) in children; however, data on PSE in relation to body weight and body composition are scarce. The objective of this study was to investigate associations of PSE with measures of diet, PA, body composition, and physical…

  5. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  6. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    Science.gov (United States)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  7. Slab and Sediment Melting during Subduction Initiation: Mantle Plagiogranites from the Oman Ophiolite

    Science.gov (United States)

    Rollinson, H. R.

    2014-12-01

    Granitoid dykes up to several hundred metres wide and 2 km long are found in depleted harzburgites in the mantle section of the Oman ophiolite. They vary in composition from tonalite to potassic granite and are generally more potassic than the crustal plagiogranites found within the sheeted dyke complex higher up within the ophiolite stratigraphy. Some granites are strongly peraluminous and contain garnet and andalusite. They are geochemically variable, some with REE that are relatively unfractionated ((La/Yb)n= 3.5-6.0, flat middle to heavy REE, steep light REE) to those which are highly fractionated ((La/Yb)n= 28-220). On primitive-mantle normalised plots some have very high concentrations of fluid-mobile elements - Cs, Rb, Th, U and Pb. Few have significant Ta-Nb anomalies. On the Ca-Fe-Mg-Ti discrimination diagram of Patino Douce (J. Petrol., 1999) whole-rock compositions define a spectrum between felsic-pelite derived melts and amphibolite-derived melts. There is a chemical similarity between the least REE fractionated plagiogranites (generally tonalites and granodiorites) and melts of an amphibolitic parent. This is supported by the occurrence of mafic xenoliths in some dykes, the presence of hornblende and highly calcic cores (up to An85) in some plagioclase grains. Trace element modelling using Oman Geotimes lavas as the starting composition indicates that melting took place in the garnet stability field, although enrichment in the melt in Cs, Rb, Ba and Pb suggests that there was another component present in addition to the mafic parent. Other plagiogranites (trondhjemites and granites) have a strongly peraluminous chemistry and mineralogy and geochemical similarities with the Himalayan leucogranites implying that they were derived from a sedimentary protolith. These mantle plagiogranites are more prevalent in the northern outcrops of the ophiolite. The volume of granitoid melt and the depth of melting preclude their derivation from the sole of the

  8. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    DEFF Research Database (Denmark)

    Andersen, U B; Dige-Petersen, H; Ibsen, H

    1999-01-01

    -ray absorptiometry; (4) an exercise test with gas exchange analysis; and (5) investigation of composition of usual diet by diet registration for 5 days. RESULTS: The 24-h diastolic blood pressure was higher in subjects predisposed to hypertension compared with the controls: 78.1 versus 74.0 mmHg (confidence interval...... for the difference between the means; -0.5; -7.9), but the insulin sensitivity index was similar: 312 versus 362 I(2) min(-1) pmol(-1) kg(-1) (28; -129). The two groups were similar in terms of body composition, exercise capacity and composition of usual diet. Resting and 24-h diastolic blood pressures were...

  9. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  10. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    CERN Document Server

    Verbitskaya, E; Ivanov, A; Strokan, N; Vasilev, V; Markov, A; Polyakov, A; Gavrin, V; Kozlova, Y; Veretenkin, E; Bowles, T J

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p sup + -i-n sup + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E sub v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E sub v +0....

  11. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ivanov, A.; Strokan, N.; Vasilev, V.; Markov, A.; Polyakov, A.; Gavrin, V.; Kozlova, Yu.; Veretenkin, E.; Bowles, T.J.

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p + -i-n + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E v +0.075 eV, presumably assigned to Ga antisite and its influence on the concentration of the ionized deep donor level EL2 +

  12. Liquid phase surface melting of AA8011 aluminum alloy by addition of Al/Al{sub 2}O{sub 3} nano-composite powders synthesized by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Sohi, M. Heydarzadeh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Hojjatzadeh, S.M.H., E-mail: Hojatzadeh@yahoo.com [Department of Welding, Science and Research Branch, Azad University, Tehran (Iran, Islamic Republic of); Moosavifar, Sh. S.; Heshmati-Manesh, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Aluminum matrix composite layers reinforced with alumina particles were fabricated. • Non milled powders caused porosity in the microstructures because of poor wettability. • The ball milling of powders was significantly improved the wettability of nano ceramic particles. • The micro hardness of the layers was approximately 3 times greater than that of the base metal. - Abstract: Poor wettability of particles is an obstacle in formation of sound composite layer via surface melting. Pre-coating of particles with metallic material by different techniques, such as ball milling may enhance the wettability of the particles with molten metal. In this study, composite surface layers containing Al{sub 2}O{sub 3} particles were fabricated on the surface of AA8011 aluminum substrates by tungsten inert gas (TIG) surface melting using preplaced layers of Al/Al{sub 2}O{sub 3} powder mixtures in two different forms: (1) a mixture of 40 wt% Al and 60 wt% of 50 nm Al{sub 2}O{sub 3} powders and (2) a mixture obtained by mechanical alloying of 40 wt% Al and 60 wt% of 60 μm Al{sub 2}O{sub 3} powders. Morphology evolution of powders during ball milling and the microstructure of the fabricated composite layers were studied through conventional characterization techniques, such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Microhardness measurements were also performed across the alloyed zone. The results indicated that the layer fabricated by the second route showed a defect free structure with a more uniform distribution of Al{sub 2}O{sub 3} particles in comparison with the layer obtained by the first route. It was also noticed that the uniform dispersion of Al{sub 2}O{sub 3} particles in the fabricated layer increased the hardness to 133 HV which was over 3 times of that of the base metal.

  13. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the

  14. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  15. Martensitic transformation behavior and shape memory properties of Ti-Ni-Pt melt-spun ribbons

    International Nuclear Information System (INIS)

    Inamura, Tomonari; Takahashi, Yohei; Hosoda, Hideki; Wakashima, Kenji; Nagase, Takeshi; Nakano, Takayoshi; Umakoshi, Yukichi; Miyazaki, Shuichi

    2006-01-01

    Martensitic transformation behavior and shape memory properties of a Ti 50 Ni 40 Pt 10 (TiNiPt) melt-spun ribbon fabricated by a single roll melt-spinning technique were characterized. The constituent phases of the as-spun ribbon were B2 (parent phase) and B19 (martensite phase) at room temperature. The B2-B19 martensitic transformation temperatures of the as-spun ribbon were 100K higher than those of the bulk-material with the same chemical composition. The martensitic transformation temperatures of the as-spun ribbon were decreased with increasing the temperature of the heat-treatment made after the melt-spinning. The as-spun ribbon and the heat-treated ribbons exhibited shape recovery by heating and/or pseudoelasticity. The martensitic transformation temperatures determined from the temperature dependence of the 0.2% flow stress of the pseudoelastic deformation were in good agreement with those of B2-B19 martensitic transformation determined by DSC. It was confirmed that the observed shape recovery and pseudoelasticity are shape memory effect and superelasticity due to the B2-B19 martensitic transformation. Shape memory effect and superelasticity of melt-spun TiNiPt alloy were found to appear at higher temperatures compared to those of Bulk-material with the same composition. (author)

  16. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    Science.gov (United States)

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  17. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  18. A principal components approach to parent-to-newborn body composition associations in South India

    Directory of Open Access Journals (Sweden)

    Hill Jacqueline C

    2009-02-01

    Full Text Available Abstract Background Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI and height as predictors of newborn body composition. Methods Weight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements. Results Rotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle and neonatal measurements to 3 components (trunk+head, fat, and leg length. An SD increase in maternal fat was associated with a 0.16 SD increase (β in neonatal fat (p Conclusion Principal components analysis is a useful method to describe neonatal body composition and its determinants. Newborn adiposity is related to maternal nutritional status and parity, while newborn length is genetically determined. Further research is needed to understand mechanisms linking maternal pelvic size to fetal growth and the determinants and implications of the components (trunk v leg length of fetal skeletal growth.

  19. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  20. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  1. Interannual variability of dust-mass loading and composition of dust deposited on snow cover in the San Juan Mountains, CO, USA: Insights into effects on snow melt

    Science.gov (United States)

    Goldstein, H. L.; Reynolds, R. L.; Derry, J.; Kokaly, R. F.; Moskowitz, B. M.

    2017-12-01

    Dust deposited on snow cover (DOS) in the American West can enhance snow-melt rates and advance the timing of melting, which together can result in earlier-than-normal runoff and overall smaller late-season water supplies. Understanding DOS properties and how they affect the absorption of solar radiation can lead to improved snow-melt models by accounting for important dust components. Here, we report on the interannual variability of DOS-mass loading, particle size, organic matter, and iron mineralogy, and their correspondences to laboratory-measured reflectance of samples from the Swamp Angel Study Plot in the San Juan Mountains, Colorado, USA. Samples were collected near the end of spring in water year 2009 (WY09) and from WY11-WY16, when dust layers deposited throughout the year had merged into one layer at the snow surface. Dust-mass loading on snow ranged 2-64 g/m2, mostly as particles with median sizes of 13-33 micrometers. Average reflectance values of DOS varied little across total (0.4 to 2.50 µm) and visible (0.4 to 0.7 µm) wavelengths at 0.30-0.45 and 0.19-0.27, respectively. Reflectance values lacked correspondence to particle-size. Total reflectance values inversely corresponded to concentrations of (1) organic matter content (4-20 weight %; r2 = 0.71) that included forms of black carbon and locally derived material such as pollen, and (2) magnetite (0.05 to 0.13 weight %; r2 = 0.44). Magnetite may be a surrogate for related dark, light-absorbing minerals. Concentrations of crystalline ferric oxide minerals (hematite+goethite) based on magnetic properties at room-temperature did not show inverse association to visible reflectance values. These ferric oxide measures, however, did not account for the amounts of nano-sized ferric oxides known to exist in these samples. Quantification of such nano-sized particles is required to evaluate their possible effects on visible reflectance. Nonetheless, our results emphasize that reflectance values of year

  2. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Sercombe, T.B.

    2014-01-01

    Highlights: • We proposed a re-scan strategy to prevent crack propagation in SLM. • The re-scan should be carried out at a low laser energy density. • The underlying mechanism is through reduction and relief of residual stresses. • Lowered temperature gradient and superplasticity account for reduction of stress. • For the first time, a crack-free BMGCs gear with a large size was produced. - Abstract: In this paper, we have investigated the use of a re-scanning strategy to prevent propagation of macro-cracks during the selective laser melting of an Al 85 Ni 5 Y 6 Co 2 Fe 2 bulk metallic glass composites (BMGCs). These cracks form as a result of the high residual stress caused by the rapid heating and cooling of the material by the laser beam. Unlike crystalline materials, the BMGCs possess a supercooled liquid region in which the residual stress can be relieved by plastic flow. We show that by using a high power initial scan (designed to melt the material) followed by a lower power re-scan (for stress relief) cracking can be prevented. Using this approach, crack-free Al 85 Ni 5 Y 6 Co 2 Fe 2 BMGCs components have been fabricated, including a gear with a diameter ∼25 mm and height ∼10 mm

  3. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    history. The abyssal peridotites used in this study are from Central Indian Ridge [1] and Vema Fracture Zone along the Mid-Atlantic Ridge [2]. As one of the end-member cases, we chose DMM as our starting mantle composition and assumed melting initiates in the spinel lherzolite field. To invert for F and R from a given set of trace element data, we considered a range of Fd values (0-5%). Overall, the degree of melting inferred from these two sets of data is not sensitive to the value of Fd used in our inversion and ranges from 9% to 25%. The relative rate of melt suction, R, however, depends slightly on the choice of Fd and ranges from 0.67 to 0.99 for Fd = 5% and 0.55 to 0.97 for Fd = 0. Hence there is a strong component of fractional melting beneath the mid-ocean ridge with an average of 80% melt being extracted through dunite channels. Further, our estimated R is inversely correlated with F, a robust feature independent of the choice of Fd. The upward decrease of R in the upwelling mantle column can be understood in terms of an upward increase in the volume fraction of high permeability dunite channels in the double-lithology region. And finally, given F and R, we found that the relative mass flux of the melt percolating in the lherzolite/harzburgite matrix also increases as a function of F (or height) in the melting column. This is a natural consequence of concurrent melting and melt migration in an upwelling steady-state mantle column. [1] Hellebrand et al. (2002) J. Petrol. 43, 2305-2338; [2] Brunelli et al. (2006) J. Petrol. 47, 745-771.

  4. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    Science.gov (United States)

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  5. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    akin to rapakivi granites observed globally in Proterozoic systems. In essence, the melt zone is an embryonic rapakivi granite; not yet fully developed and displaying clear ties to its parental rock.

  6. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  7. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

    Science.gov (United States)

    Guzmics, Tibor; Zajacz, Zoltán; Mitchell, Roger H.; Szabó, Csaba; Wälle, Markus

    2015-02-01

    We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene-nepheline-perovskite-magnetite-melilite rock) and calciocarbonatite (calcite-apatite-magnetite-perovskite-monticellite-phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite-nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32-41 wt%) nature and alkali-"poor" (at least 7-10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12-17 wt%) of its silicate parent (e.g., melilite-nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite-nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate-carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate

  8. Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity

    Science.gov (United States)

    Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus

    2018-05-01

    Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.

  9. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.

    1984-01-01

    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  10. Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.; Zhao, L.Z.; Zhang, C.; Jiao, D.L.; Zhong, X.C.; Liu, Z.W.

    2016-02-15

    Aiming at high-performance low-cost NdFeB magnets, the magnetic properties and microstructure for melt spun nanocrystalline (Nd{sub 1−x}M{sub x}){sub 10}Fe{sub 84}B{sub 6} (M=La, Ce, or La{sub 0.5}Ce{sub 0.5}; x=0–0.7) alloys were investigated. Relatively, LaCe-substituted alloys show high values of the remanent magnetization M{sub r}, the maximum energy product (BH){sub max} and the coercivity H{sub c}, up to 114 emu/g (1.07 T), 147 kJ/m{sup 3} and 471 kA/m, respectively, at x=0.1. The unusual increase in coercivity for the alloys with 10% La or 10% La{sub 0.5}Ce{sub 0.5} substitution is possibly attributed to the phase segregation in alloys with certain La or LaCe contents. The reduced Curie temperature and spin-reorientation temperature were obtained for La, Ce or LaCe substituted alloys. Transmission electron microscope analysis has revealed that a fine and uniform distributed grain structure leads to remanence enhancement for La{sub 0.5}Ce{sub 0.5} substituted alloys. The present results indicate that partially substituting Nd by La or/and Ce cannot only effectively reduce the cost of nanocrystalline NdFeB based magnetic powders but also can maintain a relatively good combination of magnetic properties.

  11. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  12. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  13. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    Science.gov (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  14. Ethnic differences in neonatal body composition in a multi-ethnic population and the impact of parental factors: a population-based cohort study.

    Directory of Open Access Journals (Sweden)

    Line Sletner

    Full Text Available BACKGROUND: Neonates from low and middle income countries (LAMIC tend to have lower birth weight compared with Western European (WE neonates. Parental height, BMI and maternal parity, age and educational level often differ according to ethnic background, and are associated with offspring birth weight. Less is known about how these factors affect ethnic differences in neonatal body composition. OBJECTIVES: To explore differences in neonatal body composition in a multi-ethnic population, and the impact of key parental factors on these differences. METHODS: A population-based cohort study of pregnant mothers, fathers and their offspring, living in Oslo, Norway. Gender- and gestational-specific z-scores were calculated for several anthropometric measurements, with the neonates of WE ethnic origin as reference. Mean z-scores for neonates with LAMIC origin, and their parents, are presented as outcome variables. RESULTS: 537 singleton, term neonates and their parents were included. All anthropometric measurements were smaller in neonates with LAMIC origin. Abdominal circumference and ponderal index differed the most from WE (mean z-score: -0.57 (95% CI:-0.69 to -0.44 and -0.54 (-0.66 to -0.44, and remained so after adjusting for parental size. Head circumference and skin folds differed less, and length the least (-0.21 (-0.35 to -0.07. These measures became comparable to WEs when adjusted for parental factors. CONCLUSIONS: LAMIC origin neonates were relatively "thin-fat", as indicated by reduced AC and ponderal index and relatively preserved length and skin folds, compared with neonates with WE origin. This phenotype may predispose to type 2 diabetes.

  15. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    Science.gov (United States)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  16. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  17. Melt rheological properties of natural fiber-reinforced polypropylene

    Science.gov (United States)

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  18. Low-melting point heat transfer fluid

    Science.gov (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  19. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  20. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  1. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  2. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  3. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    Science.gov (United States)

    Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel

    2017-07-01

    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.

  4. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  5. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  6. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Likozar, Blaz, E-mail: blaz.likozar@fkkt.uni-lj.si [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria); Major, Zoltan, E-mail: zoltan.major@jku.at [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria)

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10{sup 28} m{sup -3}), density (maximally 1.16 g cm{sup -3}), and tear strength (11.2 kN m{sup -1}), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  7. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Science.gov (United States)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  8. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    International Nuclear Information System (INIS)

    Likozar, Blaz; Major, Zoltan

    2010-01-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10 28 m -3 ), density (maximally 1.16 g cm -3 ), and tear strength (11.2 kN m -1 ), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  9. Differentiation history of small bodies in the solar system: the howardite and mesosiderite meteorite parent bodies

    International Nuclear Information System (INIS)

    Mittlefehldt, D.W.

    1978-01-01

    Mesosiderites and howardites are regolith samples of differentiated asteroids. Instrumental neutron activation analysis (INAA) data on whole rock howardites and mesosiderite silicates show that the composition of howardites and mesosiderites are similar, and intermediate between those of eucrites and diogenites. The mesosiderites Mincy, Lowicz and Veramin show an enrichment in light REE and have an REE pattern that is qualitatively similar to that in terrestrial basalts thought to have been formed by small degrees of partial melting. Attempts to model the REE abundances in these mesosiderites indicates that they most likely formed by approx. 2 to 4% partial melting of a source containing low abundances of the rare earths. Since numerous properties separate mesosiderite silicates from howardites, it is clear that they are not samples of a well-mixed regolith from a single parent body. If regolith stirring is efficient on small parent bodies, then mesosiderites and howardites originated on separate parent bodies. Rare earth element patterns give evidence for remelting and fractional crystallization of preexisting cumulates and sequential melting episodes. The mesosiderites appear to contain a slightly greater abundance of diogenite-like material and certainly contain a greater abundance of large olivine clasts. These observations suggest that the mesosiderite parent body crust was more complexly fractionated than the howardite parent body crust. The latter appears to have been dominated by quenched basalt flows

  10. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    Science.gov (United States)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and

  11. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  12. Multiscale Organization and Isotopic Composition of Carbons in Acapulco and Lodran as Fingerprints of Their Parent Body Story

    Science.gov (United States)

    Charon, E.; Aléon, J.; Rouzaud, J. N.

    2012-09-01

    New structural and isotopic data recorded on carbon components of Acapulco and Lodran meteorites allow to propose a scenario of their parent body thermal story, with an impact induced introduction of CI-CM like IOM.

  13. Association of parental body mass index before pregnancy on infant growth and body composition: Evidence from a pregnancy cohort study in Malaysia.

    Science.gov (United States)

    Zalbahar, Nurzalinda; Jan Mohamed, Hamid Jan B; Loy, See Ling; Najman, Jake; McIntyre, Harold David; Mamun, Abdullah

    2016-09-01

    Parental body mass index (BMI) is strongly linked with the development of offspring overweight and obesity. However, there are a limited number of studies focusing on the association of parental body mass index before pregnancy on offspring growth and body composition in early life, particularly in developing countries. Data from the University Sains Malaysia (USM) Pregnancy Cohort which consists of 153 mother-offspring pairs were used. Data were collected using interview-administered questionnaires and anthropometric measurements were also obtained. Multiple linear regression and generalised equation estimation (GEE) were used to examine the direction and impact of the association between parental BMI and child growth and body composition (weight for age, height for age, body mass index for age, weight for height and fat mass at age 2m, 6m, and 12m). Potential confounders, including validated measures of maternal diets and physical activity during pregnancy, were considered. Of 153 parents, one-quarter of the mothers and 42.2% of the fathers, respectively, were overweight or obese before pregnancy. A significant association was found between maternal BMI and child's weight for height z-score (WHZ) and body mass index for age z-score (BAZ). Having high pre-pregnancy BMI may increase BMI and WAZ of offspring in early life. Findings from this study emphasise the importance of monitoring maternal weight status, particularly before and during pregnancy and early life of offspring among Malaysians. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  15. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  16. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  17. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  18. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B.; Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y.

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO 2+x -16% ZrO 2 -15% Fe 2 O 3 -6% Cr 2 O 3 -3% Ni 2 O 3 . The melt surface temperature ranged within 1920-1970 K. (orig.)

  19. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  20. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  1. Critical current density in (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x melt-textured composites  

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto

    2018-01-01

    Melt textured (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7−δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses...... indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed...... in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, respectively. The YBa2Cu3O7−δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4...

  2. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  3. Markov Chain Monte Carlo Inversion of Mantle Temperature and Composition, with Application to Iceland

    Science.gov (United States)

    Brown, Eric; Petersen, Kenni; Lesher, Charles

    2017-04-01

    Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models

  4. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  5. Life Course Influences on African American Men's Depression: Adolescent Parental Composition, Self-Concept, and Adult Earnings.

    Science.gov (United States)

    Mizell, C. Andre

    1999-01-01

    Examines factors over the life course that affect levels of depression in Black men using samples of 892 African-American and 1,454 White men from the National Longitudinal Survey of Youth. Parental educational attainment is a significant negative predictor of depression. Its role and that of other identified predictors of depression are…

  6. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  7. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  8. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  9. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  10. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  11. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper

  12. Fining of glass melts: what we know about fining processes today

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2009-01-01

    The paper addresses the mechanisms of fining (removal of gases from melt) and the effect of batch composition, oxidation state of the melt and furnace atmosphere on bubble removal processes for commercial glass types, such as float glass and container glass compositions. The mechanisms of the

  13. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    Science.gov (United States)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  14. Evolution of the Campanian Ignimbrite Magmatic System I: Constraints on Compositional Zonation and Eruption Probability Imposed By Phase Equilibria

    Science.gov (United States)

    Fowler, S.; Spera, F.; Bohrson, W.; Belkin, H.; Devivo, B.

    2005-12-01

    The eruption and deposition of the ~39.3 ka Campanian Ignimbrite (CI), a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite, is the dominant event in the history of the Campi Flegrei volcanic field near Naples, Italy. In an effort to comprehend its petrological evolution, we have conducted ~~110 MELTS (Ghiorso, 1997) phase equilibria simulations of the major element evolution of parental CI magma. The goals of this work are to approximate oxygen fugacity (fO2), initial dissolved water content and pressure at which isobaric closed system fractional crystallization of parental melt most accurately captures the observed liquid line of descent and to study the implications of heat extraction from parental CI magma with respect to the origin of compositional zonation and the probability of explosive eruption. Although the CI magma body did not evolve as a perfectly closed system, this assumption allows quantitative insight into magma-host rock mass exchange using trace element and isotopic data (see companion contribution by Bohrson et al.). The parental melt composition was reconstructed using data for melt inclusions trapped within CI clinopyroxene phenocrysts reported by Webster et al. (2003), while allowing for reaction between parental melt and clinopyroxene host. The inferred parental melt is a basaltic trachyandesite. The search space for pressure, (fO2) and initial dissolved H2O was 0.1-0.5 in 0.05 GPa increments, QFM-1 to QFM+3 and 1, 2 and 3 wt. % H2O, respectively. The criteria used to judge the quality of a simulation include correspondence of the MELTS prediction with CI liquid and phenocryst compositions. Results indicate that a good first-order model involves evolution from a basaltic trachyandesite parent by isobaric (~0.15 GPa) crystal fractionation initially containing ~3 wt% dissolved H2O along the QFM+1 buffer. H2O first saturates at 1127°C at 0.15 GPa when the dissolved water content is ~4 wt %. A striking result is the

  15. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  16. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts

    Science.gov (United States)

    Dickenson, M. P.; Hess, P. C.

    1986-02-01

    The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2OAl2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt. The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials μFe3+ Al-1 and μCa0.5K-1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous

  17. The extreme melt across the Greenland ice sheet in 2012

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  18. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  19. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  20. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  1. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT ...

    African Journals Online (AJOL)

    Meziane O, Bensedira A, Guessoum M and Haddaoui N

    2016-05-01

    May 1, 2016 ... prepared by the melt intercalation method. ... several beneficial variations on stiffness, hardness, toughness and heat ..... Polypropylene/ untreated and treated kaolinite composites have been prepared via direct melt.

  2. An empirical model for the melt viscosity of polymer blends

    International Nuclear Information System (INIS)

    Dobrescu, V.

    1981-01-01

    On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)

  3. Tracking the Depleted Mantle Signature in Melt Inclusions and Residual Glass of Basaltic Martian Shergottites using Secondary Ionization Mass Spectrometry

    Science.gov (United States)

    Peters, Timothy J.; Simon, Justin I.; Jones, John H.; Usui, Tomohiro; Economos, Rita C.; Schmitt, Axel K.; McKeegan, Kevin D.

    2013-01-01

    Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the Cameca ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-­phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-­normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-­system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for both Y98 bulk and MI analyses display a flattening of the LREE that suggests a crustal contribution to the Y98 parent melt. This observation has important implications for the origins of depleted and enriched shergottites.

  4. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  5. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  6. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  7. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  8. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  9. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  10. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  11. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  12. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  13. The interaction of a core melt with concrete

    International Nuclear Information System (INIS)

    Reimann, M.; Holleck, H.; Skokan, A.; Perinic, D.

    1977-01-01

    In its fourth phase, a hypothetic core melt interacts with the concrete of the reactor foundation. This phase may last several days. Experimental laboratory investigations and theoretical models on the basis of model experiments aim at determining the time curve of the temperature of the core melt in order to quantify the processes up to the solidification of the melt and the end of concrete destroyal. Material interactions: 1) The two phases of the core melt, oxidic and metallic, remain separate for a long period of time. In dependence of the degree of oxidation of the system, the elemental distribution and, in particular, the fission products in the melt may be assessed. 2) The changes in the material values of the core melt in dependence of the temperature curve may be qualitatively assessed. 3) The solidification temperature of the oxidic phase of the core melt may be given in dependence of (UO 2 + ZrO 2 ) content. Thermal interactions: 1) The ratio vertical/radial erosion, which determines the cavity shape, is described in the correct order of magnitude by the extended film model. 2) The correct order of magnitude of the erosion rates is described by the concrete destruction model coupled with the film model. 3) The effects of the different concrete destruction enthalpies and concrete compositions (amount of gaseous decomposition products) may be estimated by the model calculations. (orig./HP) [de

  14. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  15. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps

    DEFF Research Database (Denmark)

    Rubatto, Daniela; Hermann, Jörg; Berger, Alfons

    2009-01-01

    that repeated melting events occurred within a single Barrovian metamorphic cycle at roughly constant temperature; that in the country rocks zircon formation was limited to the initial stages of melting, whereas further melting concentrated in the segregated leucosomes; that melting occurred at different times......The timing and dynamics of fluid-induced melting in the typical Barrovian sequence of the Central Alps has been investigated using zircon chronology and trace element composition. Multiple zircon domains in leucosomes and country rocks yield U-Pb ages spanning from ~32 to 22 Ma. The zircon formed...... in samples a few meters apart because of the local rock composition and localized influx of the fluids; and that leucosomes were repeatedly melted when fluids became available. The geochronological data force a revision of the temperature-time path of the migmatite belt in the Central Alps. Protracted...

  16. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  17. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  18. Processing and microstructure of melt spun NiAl alloys

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Moser, J. A.; Lee, D. S.; Nathal, M.

    1989-01-01

    The influence of various melt spinning parameters and the effect of consolidation on the microstructure of melt spun NiAl and NiAl + W alloys have been examined by optical and electron microscopy techniques. It was found that the addition of 0.5 at. pct W to NiAl results in a fine dispersion of W particles after melt spinning which effectively controls grain growth during annealing treatments or consolidation at temperatures between 1523 and 1723 K. Increased wheel speeds are effective at reducing both the ribbon thickness and grain size, such that proper choice of both composition and casting parameters can produce structures with grain sizes as small as 2 microns. Finally, fabrication of continuous fiber-reinforced composites which used pulverized ribbon as the matrix material was demonstrated.

  19. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.T.; Yang, Y.M.; Yan, Q.S.; Shi, Z.F.; Zhu, Z.W.; Su, W.C.; Qin, C.J.; Ye, J.

    2016-07-01

    The composition of melt inclusions in basalts erupted at mid-ocean ridges may be modified by post-entrapment processes, so the present composition of melt inclusions may not represent their original composition at the time of entrapment. By combining the melt inclusion composition in samples from the South Mid-Atlantic Ridge at 19°S analyzed in this study, and from the Petrological Database, we found that post-entrapment crystallization processes resulted in higher Ca/Al, Mg#[100×atomic Mg2+/(Mg2++Fe2+)], MgO and FeO contents, and lower CaO and Al2O3 contents of plagioclase-hosted melt inclusions relative to those hosted in olivine. In addition, melt inclusions hosted in plagioclase with anorthite content larger than 80mol.% had been modified more readily than others. By discussing the relationships between Ca/Al and fractional crystallization, post-entrapment crystallization, and the original melt composition, we propose that Ca/Al can be regarded as an indicator of the effect of post-entrapment processes on melt inclusion composition. Specifically, i) when Ca/Al<0.78, melt inclusion compositions corrected for fractional crystallization to Mg#=72 can represent the primary magma at mid-ocean ridges; ii) when 0.78melt inclusions are mainly modified by post-entrapment crystallization effects, and can reveal the original melt composition after correcting for these effects; iii) when Ca/Al>1.0, the compositions of melt inclusions do not reflect the original melt composition nor preserve information about the mantle source. According to these criteria, plagioclase-hosted melt inclusions with Ca/Al>1.0 in basalts from the South Mid-Atlantic Ridge at19°S cannot represent the composition of the melt at the moment of their entrapment. (Author)

  20. Evolved Rocks in Ocean Islands Formed by Melting of Metasomatized Mantle

    Science.gov (United States)

    Ashwal, L. D.; Torsvik, T. H.; Horvath, P.; Harris, C.; Webb, S. J.; Werner, S. C.; Corfu, F.

    2015-12-01

    Evolved rocks like trachyte occur as minor components of many plume-related basaltic ocean islands (e.g. Hawaii, Gran Canaria, Azores, Réunion), and are typically interpreted as products of extreme fractional crystallization from broadly basaltic magmas. Trachytes from Mauritius (Indian Ocean) suggest otherwise. Here, 6.8 Ma nepheline-bearing trachytes (SiO2 ~63%, Na2O + K2O ~12%) are enriched in all incompatible elements except Ba, Sr and Eu, which show prominent negative anomalies. Initial eNd values cluster at 4.03 ± 0.15 (n = 13), near the lower end of the range for Mauritian basalts (eNd = 3.70 - 5.75), but initial Sr is highly variable (ISr = 0.70408 - 0.71034) suggesting secondary deuteric alteration. Fractional crystallization models starting with a basaltic parent fail, because when plagioclase joins olivine in the crystallizing assemblage, residual liquids become depleted in Al2O3, produce no nepheline, and do not approach trachytic compositions. Mauritian basalts and trachytes do not fall near the ends of known miscibility gaps, eliminating liquid immiscibility processes. Partial melting of extant gabbroic bodies, either from the oceanic crust or from Réunion plume-related magmas should yield quartz-saturated melts different from the critically undersaturated Mauritian trachytes. A remaining possibility is that the trachytes represent direct, small-degree partial melts of fertile, perhaps metasomatized mantle. This is supported by the presence of trachytic glasses in many mantle xenoliths, and experimental results show that low-degree trachytic melts can be produced from mantle peridotites even under anhydrous conditions. If some feldspar is left behind as a residual phase, this would account for the negative Ba, Sr and Eu anomalies observed in Mauritian trachytes. Two trachyte samples that are less depleted in these elements contain xenocrysts of anorthoclase, Al-rich cpx and Cl-rich kaersutite that are out of equilibrium with host trachyte magmas

  1. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Science.gov (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  2. Long-lived melting of ancient lower crust of the North China Craton in response to paleo-Pacific plate subduction, recorded by adakitic rhyolite

    Science.gov (United States)

    Wang, Chao; Song, Shuguang; Niu, Yaoling; Allen, Mark B.; Su, Li; Wei, Chunjing; Zhang, Guibin; Fu, Bin

    2017-11-01

    Magmatism in eastern China in response to paleo-Pacific plate subduction during the Mesozoic was complex, and it is unclear how and when exactly the magmas formed via thinning and partial destruction of the continental lithosphere. To better understand this magmatism, we report the results of a geochronological and geochemical study of Early Cretaceous adakitic rhyolite (erupted at 125.4 ± 2.2 Ma) in the Xintaimen area within the eastern North China Craton (NCC). In situ zircon U-Pb dating shows that this adakitic rhyolite records a long ( 70 Myrs) and complicated period of magmatism with concordant 206Pb/238U ages from 193 Ma to 117 Ma. The enriched bulk rock Sr-Nd isotopic compositions of the Xintaimen adakitic rhyolite, as well as the enriched zircon Hf and O isotopic compositions, indicate that the magmas parental to the adakitic rhyolite were derived from partial melting of the Paleoproterozoic mafic lower crust, heated by mafic melts derived from the mantle during the paleo-Pacific plate subduction. A minor older basement component is indicated by the presence of captured Neoarchean to Early Paleoproterozoic zircons. The Mesozoic zircons have restricted Hf and O isotopic compositions irrespective of their ages, suggesting that they formed from similar sources at similar melting conditions. The Xintaimen adakitic rhyolite offers an independent line of evidence that the ancient lower crust of eastern China underwent a long period ( 70 Myrs) of destruction, melting or remelting, from 193 to 120 Ma, related to the subduction of the paleo-Pacific plate beneath eastern China.

  3. Health Disparities Score Composite of Youth and Parent Dyads from an Obesity Prevention Intervention: iCook 4-H

    Directory of Open Access Journals (Sweden)

    Melissa D. Olfert

    2018-05-01

    Full Text Available iCook 4-H is a lifestyle intervention to improve diet, physical activity and mealtime behavior. Control and treatment dyads (adult primary meal preparer and a 9–10-year-old youth completed surveys at baseline and 4, 12, and 24 months. A Health Disparity (HD score composite was developed utilizing a series of 12 questions (maximum score = 12 with a higher score indicating a more severe health disparity. Questions came from the USDA short form U.S. Household Food Security Survey (5, participation in food assistance programs (1, food behavior (2, level of adult education completed (1, marital status (1, and race (1 adult and 1 child. There were 228 dyads (control n = 77; treatment n = 151 enrolled in the iCook 4-H study. Baseline HD scores were 3.00 ± 2.56 among control dyads and 2.97 ± 2.91 among treatment dyads, p = 0.6632. There was a significant decline in the HD score of the treatment group from baseline to 12 months (p = 0.0047 and baseline to 24 months (p = 0.0354. A treatment by 12-month time interaction was found (baseline mean 2.97 ± 2.91 vs. 12-month mean 1.78 ± 2.31; p = 0.0406. This study shows that behavioral change interventions for youth and adults can help improve factors that impact health equity; although, further research is needed to validate this HD score as a measure of health disparities across time.

  4. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  5. Melt-peridotite reactions in upwelling EM1-type eclogite bodies

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    2013-01-01

    or simple variations in degrees of mantle melting. The difference is also clear in major elements where the low Nb/U basalts have markedly higher alkali contents but lower FeO and Ni than the high Nb/U basalts. Four melt components have been identified based on olivine fractionation corrected compositions...

  6. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  7. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  8. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  9. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions

    Science.gov (United States)

    Ueki, K.; Iwamori, H.

    2015-12-01

    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  10. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  11. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  12. Theoretical melting curve of caesium

    International Nuclear Information System (INIS)

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  13. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  14. Pressure melting and ice skating

    Science.gov (United States)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  15. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  16. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  17. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  18. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  19. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  20. Parenting Perfectionism and Parental Adjustment

    OpenAIRE

    Lee, Meghan A.; Schoppe-Sullivan, Sarah J.; Kamp Dush, Claire M.

    2012-01-01

    The parental role is expected to be one of the most gratifying and rewarding roles in life. As expectations of parenting become ever higher, the implications of parenting perfectionism for parental adjustment warrant investigation. Using longitudinal data from 182 couples, this study examined the associations between societal- and self-oriented parenting perfectionism and new mothers’ and fathers’ parenting self-efficacy, stress, and satisfaction. For mothers, societal-oriented parenting perf...

  1. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  2. On barium oxide solubility in barium-containing chloride melts

    International Nuclear Information System (INIS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-01-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl 2 -NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl 2 -MCl systems.

  3. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites

    DEFF Research Database (Denmark)

    Baker, J.; Bizzarro, Martin; Wittig, N.

    2005-01-01

    for these meteorites, however, are typically younger than age constraints for planetesimal differentiation. Such young ages indicate that the energy required to melt their parent bodies could not have come from the most likely heat source-radioactive decay of short-lived nuclides (Al and Fe) injected from a nearby...... decay could have triggered planetesimal melting. Small Mg excesses in bulk angrite samples confirm that Al decay contributed to the melting of their parent body. These results indicate that the accretion of differentiated planetesimals pre-dated that of undifferentiated planetesimals, and reveals......Long- and short-lived radioactive isotopes and their daughter products in meteorites are chronometers that can test models for Solar System formation. Differentiated meteorites come from parent bodies that were once molten and separated into metal cores and silicate mantles. Mineral ages...

  4. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    Science.gov (United States)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re

  5. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B. [Sci. Res. Technol. Inst., Leningrad (Russian Federation); Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y. [St. Petersburg Electrotechnical University (SPbEU), Prof. Popov st 5/3, St. Petersburg (Russian Federation)

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO{sub 2+x}-16% ZrO{sub 2}-15% Fe{sub 2}O{sub 3}-6% Cr{sub 2}O{sub 3}-3% Ni{sub 2}O{sub 3}. The melt surface temperature ranged within 1920-1970 K. (orig.)

  6. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V. [Research Institute of Technology, Sosnovy Bor (NITI) (RU)] [and others

    1999-07-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO{sub 2}- 16%ZrO{sub 2}- 15%Fe{sub 2}O{sub 3} - 6%Cr{sub 2}O{sub 3}-3%Ni{sub 2}O{sub 3}. The melt surface temperature was 1650-1700degC. (author)

  7. Mechanism of interaction of Co-B and Fe-B melts with ceramic materials

    International Nuclear Information System (INIS)

    Filonov, M.R.; Anikin, D.Yu.; Pecherkin, K.A.

    2003-01-01

    Stability of ceramic materials has been studied in the medium of melts being rendered amorphous. Measurements of limiting wetting angle for these materials were carried out on the ceramic surface. Two conclusions were made from the results of the experiments: melt-ceramics interaction takes place mainly through the slag phase; boron nitride is the most stable ceramics for melting and pouring of melts being rendered amorphous in the air. Materials on the basis of BN were synthesized by the self-propagating high-temperature synthesis. Other refractory compounds were introduced in the ceramics composition for the purpose of improving such service properties as fire resistance, thermal resistance, mechanical strength, stability of compounds to the effect of reaction-active melts. The most promising refractory compositions were determined from the results of the studies [ru

  8. Partitioning ratio of depleted uranium during a melt decontamination by arc melting

    International Nuclear Information System (INIS)

    Min, Byeong Yeon; Choi, Wang Kyu; Oh, Won Zin; Jung, Chong Hun

    2008-01-01

    In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica (SiO 2 ), calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ). Furthermore, calcium fluoride (CaF 2 ), magnesium oxide (MgO), and ferric oxide (Fe 2 O 3 ) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding 5.5x10 3 . The slag formers containing calcium fluoride (CaF 2 ) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium

  9. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  10. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  11. Automatic Control of Silicon Melt Level

    Science.gov (United States)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  12. Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc Zone (Southern Urals)

    Science.gov (United States)

    Pushkarev, E. V.; Ryazancev, A. V.; Gottman, I. A.; Degtyarev, K. E.; Kamenetsky, V. S.

    2018-04-01

    This work describes the geological position, mineral and chemical composition of high-Mg effusive ankaramites occurring as dykes and lava flows. They were found in the mélange zone of the western margin of the Magnitogorsk island arc zone in the Southern Urals. Data on the liquidus association of phenocrysts and on the composition of the matrix of effusives are given. According to the data obtained, the conclusion was drawn that the ankaramites studied can be attributed to the primary island arc melts, which were not subject to essential differentiation. This type of effusives has not been distinguished previously among island arc volcanogenic formations of the Urals. It is shown that ankaramites can be considered to be primary melts parental for dunite-clinopyroxenites-gabbro complexes of Ural-Alaskan type. The occurrence of ankaramites in the Paleozoic island arc formations of the Urals indicates the wehrlite composition of the mantle as the reason for the extremely wide development of wehrlites and clinopyroxenites in different mafic-ultramafic complexes of the Urals.

  13. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  14. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined......Simple sodium borosilicate and silicate glasses were melted on a very large scale (35 l Pt crucible) to prepare model glasses of optical quality in order to investigate various properties depending on their structure. The composition of the glass samples varied in a wide range: 3 to 33·3 mol% Na2O...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  15. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  16. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  17. Composição, proteólise, capacidade de derretimento e formação de "blisters" do queijo mussarela obtido pelos métodos tradicional e de ultrafiltração: composition, proteolysis, melting capacity and blisters formation Mozzarella by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Patrícia D. Pizaia

    2003-12-01

    Full Text Available O objetivo deste trabalho foi comparar a composição, a proteólise, a capacidade de derretimento e a formação de "blisters" (bolhas em queijos tipo Mussarela fabricados com retentado de leite (MR de fator de concentração volumétrica (FCV de 2,34:1, com um queijo Mussarela padrão (MP fabricado com leite não ultrafiltrado. Foi realizado um ensaio de produção com 3 lotes de MR e um lote de MP. Determinou-se a composição do leite, retentado, soro, água de filagem e queijos e a proteólise, a capacidade de derretimento e a formação de "blisters" nos queijos com 7, 15, 30 e 60 dias de armazenamento refrigerado. MRs apresentaram maiores valores de pH e de porcentagem de cinzas e de proteína total e menores porcentagens de acidez titulável, gordura, gordura no extrato seco e sal quando comparadas a MP. Durante o tempo de estocagem, as MRs apresentaram menor proteólise e capacidade de derretimento, em todas as datas analisadas. A porcentagem de área coberta por 'blisters" na pizza e o diâmetro médio dos mesmos foram maiores na MP durante o primeiro mês de estocagem e depois ambos os tipos de queijos apresentaram comportamentos similares para estes 2 parâmetros.The objective of this research was to compare the composition, proteolysis, melting capacity and blisters formation in Mozzarella cheese manufactured with milk retentate (MR of a volumetric concentration factor (FCV of 2.34:1, with a standard Mozzarella cheese (MP manufactured with non ultrafiltrated milk. It was realized one production assay with 3 batches of MRs and one of MP. It was evaluated the milk, retentate, whey, stretching water and cheeses composition and the proteolysis, melting capacity and the blisters formation on cheeses with 7, 15, 30 and 60 days of refrigerates storage. MRs presented larger pH, ash and total protein contents and lower titratable acidity and fat, fat on dry matter and salt contents when compared to MP. Along the storage time the MRs

  18. Dehydration and melting experiments constrain the fate of subducted sediments

    Science.gov (United States)

    Johnson, Marie C.; Plank, Terry

    2000-12-01

    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  19. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle

    Science.gov (United States)

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina

    2016-04-01

    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  20. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  1. Evidence for the presence of carbonate melt during the formation of cumulates in the Colli Albani Volcanic District, Italy

    Science.gov (United States)

    Shaw, Cliff S. J.

    2018-06-01

    Fergusite and syenite xenoliths and mafic lapilli from two locations in the Villa Senni ignimbrite of the Colli Albani Volcanic District show evidence for fractionation of a silicate magma that led to exsolution of an immiscible carbonate melt. The fergusite xenoliths are divided into two groups on the basis of their clinopyroxene compositions. Group 1 clinopyroxene records the crystallisation of a silicate melt and enrichment of the melt in Al, Ti and Mn and depletion in Si as well as enrichment in incompatible trace elements. The second group of clinopyroxene compositions (group 2) comes mainly from Ba-F-phlogopite- and Ti-andradite-bearing fergusites. They have significantly higher Si and lower Al and Ti and, like the coexisting phlogopite and garnet are strongly enriched in Mn. The minerals in the fergusites containing group 2 clinopyroxene are enriched in Ba, Sr, Cs, V and Li all of which are expected to partition strongly into a carbonate melt phase relative to the coexisting silicate melt. The compositional data suggest that the group 1 fergusites record sidewall crystallisation of CO2-rich silicate melt and that once the melt reached a critical degree of fractionation, carbonate melt exsolved. The group 2 fergusites record continued crystallisation in this heterogeneous silicate - carbonate melt system. Composite xenoliths of fergusite and thermometamorphic skarn record contact times of hundreds to a few thousand years indicating that fractionation and assimilation was relatively rapid.

  2. Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites

    International Nuclear Information System (INIS)

    Dadbin, Susan; Kheirkhah, Yahya

    2014-01-01

    Poly(D-L lactide) PDLLA/hydroxyapatite (HAP) nanocomposites at various compositions were prepared by melt-compounding process and then subjected to gamma irradiation at a dose of 30 kGy. The morphology of the nanocomposites, characterized by transmission electron microscopy (TEM), displayed HAP nanoparticles at various sizes ranging from 10 to 100 nm distributed almost evenly within the polymer matrix. Differential scanning calorimetric (DSC) analysis of the irradiated nanocomposites showed an increase in the degree of crystallinity along with a melting peak split. The double melting peak suggested formation of different crystalline structures in the radiation exposed nanocomposites. Also the cold crystallization peak shifted to lower temperatures and became much sharper upon irradiation, indicating higher crystallization rate. The irradiated nanocomposites showed lower tensile strength and elongation at break, suggesting occurrence of some chain scission reactions in the PLA. - Highlights: • Biomedical polylactic acid/hydroxyapatite nanocomposites prepared by melt-compounding were gamma irradiated. • Transmission electron microscopy showed hydroxyapatite nanoparticles evenly distributed within polylactic acid ranging from 10 to 100 nm. • A halo appeared around hydroxyapatite particles showing interfacial interactions between polylactic acid and the particles. • Double melting peak appeared for polylactic acid in DSC thermograms upon gamma irradiation of the nanocomposites

  3. A melt refining method for uranium-contaminated aluminum

    International Nuclear Information System (INIS)

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  4. Developing a Hygrometer for Water-Undersaturated Lherzolite Melts

    Science.gov (United States)

    Guild, M. R.; Till, C. B.

    2017-12-01

    The effect of water on the composition of primitive mantle melts at arc volcanoes is a topic of wide interest and has been addressed in a number of previous experimental studies including Hirose & Kawamoto (1995), Gaetani & Grove (1998), Till et al. (2012) and Mitchell & Grove (2015). The current study builds upon the work by previous authors in an effort to develop a more robust hygrometer for primitive lherzolite melts at water-undersaturated conditions. The starting composition for this experimental study is a mixture of 75% primitive upper mantle and 25% primitive basalt (Baker et al., 1991) with a bulk H2O content of 2 wt. %. Experiments were performed at Arizona State University in the Experimental Petrology and Igneous processes Center (EPIC) from 1.2-1.6 GPa at 1150-1300 ºC for 2 days in a piston cylinder apparatus to reflect conditions relevant for arc melt equilibration (Till 2017). A double capsule design was used to prevent Fe and H2O loss with an inner Fe-presaturated Au80Pd20 capsule and an outer Au80Pd20 capsule. Run products were analyzed by electron microprobe and determined to be successful when they demonstrated 0-5% Fe-loss, olivine-melt KDs of 0.27-0.30, and minimal H2O loss. The water-undersaturated melt composition are in equilibrium with ol+opx+sp±cpx. Run products at 1.6 GPa do not contain cpx in the mineral assemblage over the studied temperature range. Observed melt compositions have SiO2 contents of 48-49 wt. % at 1.2 GPa and 46-49 wt.% at 1.6 GPa. Our experimental results suggest an enhanced effect of water on increasing the SiO2 content of the melt compared to previous studies on systems with similar water contents and anhydrous systems. Baker, et al., JGR 96, 21819-21842 (1991). Gaetani & Grove, CMP 131, 323-346 (1998). Hirose & Kawamoto, EPSL 133, 463-473 (1995). Mitchell & Grove, CMP 170, 13 (2015). Till, Am. Mineral, 102, 931-947 (2017). Till, et al., JGR 117 (2012).

  5. The Cr Redox Record of fO2 Variation in Angrites. Evidence for Redox Conditions of Angrite Petrogenesis and Parent Body

    Science.gov (United States)

    Shearer, Charles K.; Bell, Aaron S.; Burger, Paul V.; Papike, James J.; Jones, John; Le, Loan

    2016-01-01

    Angrites represent some of the earliest stages of planetesimal differentiation. Not surprisingly, there is no simple petrogenetic model for their origin. Petrogenesis has been linked to both magmatic and impact processes. Studies demonstrated that melting of chondritic material (e.g. CM, CV) at redox conditions where pure iron metal is unstable (e.g., IW+1 to IW+2) produced angrite-like melts. Alternatively, angrites were produced at more reducing conditions (redox conditions during crystallization (e.g., Fe metal and a Fe-Ti oxide with potential Fe3+. There have been several estimates of fO2 for angrites. Most notably, experiments examined the variation of DEu/DGd with fO2, between plagioclase and fassaitic pyroxene in equilibrium with an angrite melt composition. They used their observations to estimate the fO2 of crystallization to be approximately IW+0.6 for angrite LEW 86010. This estimate is only a "snapshot" of fO2 conditions during co-crystallization of plagioclase and pyroxene. Preliminary XANES analyses of V redox state in pyroxenes from D'Orbigny reported changes in fO2 from IW-0.7 during early pyroxene crystallization to IW+0.5 during latter episodes of pyroxene crystallization [15]. As this was a preliminary report, it presented limited information concerning the effects of pyroxene orientation and composition on the V valence measurements, and the effect of melt composition on valence and partitioning behavior of V. A closer examination of fO2 as recorded by Cr valence state in olivine will allow us to test models for primordial melting of chondritic material to produce the angrite parent melts. Here, we report the our initial stages of examining the origin and conditions of primordial melting on the angrite parent body and test some of the above models by integrating an experimental study of Cr and V valence partitioning between olivine [OL] and an angrite melt, with micro-scale determinations of Cr and V oxidation state in OL in selected "volcanic

  6. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  7. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    Science.gov (United States)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  8. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Science.gov (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  9. Melting and crystallization of Gesub(1-x)Tesub(x)

    International Nuclear Information System (INIS)

    Korzhuev, M.A.; Petrov, L.A.; Teplov, O.A.; Demenskij, G.K.

    1983-01-01

    The purpose of the paper is to investigate melting and crystallization processes of Gesub(1-x)Tesub(x) alloys of different composition. The alloys for investigation have been prepared from pure components using synthesis in quartz ampules during 3 hours at 1150 K with the subsequent homogenizing at 600 K during 3000 hours. Investigations have been conducted in the 750-1090 temperature range. Ranges of transformations, maximum temperature of sample heat release Tsub(max), thermal effect theta, entropy δS=theta/Tsub(max) are computed. The obtained theta and δS values agree with the data of works of other authors. Part of Ge-Te diagrams near the melting temperature, melting curves and curves of thermal degree of Atheta(T)/theta transformation during melting, crystallization and Ge separation from solid solution in alloys of different composition are presented. The results agree with phase diagram and prove mechanism of non-stoichiometric defect formation in GeTe

  10. Extending remote sensing estimates of Greenland ice sheet melting

    Science.gov (United States)

    Heavner, M.; Loveland, R.

    2010-12-01

    The Melt Area Detection Index (MADI), a remote sensing algorithm to discriminate between dry and wet snow, has been previously developed and applied to the western portion of the Greenland ice sheet for the years 2000-2006, using Moderate Resolution Imaging Radiospectrometer (MODIS) data (Chylek et al, 2007). We extend that work both spatially and temporally by taking advantage of newly available data, and developing algorithms that facilitate the sensing of cloud cover and the automated inference of wet snow regions. The automated methods allow the development of a composite melt area data product with 0.25 km^2 spatial resolution and approximately two week temporal resolution. We discuss melt area dynamics that are inferred from this high resolution composite melt area. Chylek, P., M. McCabe, M. K. Dubey, and J. Dozier (2007), Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances, J. Geophys. Res., 112, D24S20, doi:10.1029/2007JD008742.

  11. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  12. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  13. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  14. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  15. Modeling the impact of melt on seismic properties during mountain building

    Science.gov (United States)

    Lee, Amicia L.; Walker, Andrew M.; Lloyd, Geoffrey E.; Torvela, Taija

    2017-03-01

    Initiation of partial melting in the mid/lower crust causes a decrease in P wave and S wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modeling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modeling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show nonlinear behavior of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, preexisting rock fabrics, and pressure-temperature conditions. This nonlinear behavior is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modeling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation.

  16. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  17. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  18. Electrical resistivities of glass melts containing simulated SRP waste sludges

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1978-08-01

    One option for the long-term management of radioactive waste at the Savannah River Plant is to solidify the waste in borosilicate glass by using a continuous, joule-heated, ceramic melter. Electrical resistivities that are needed for melter design were measured for melts of two borosilicate, glass-forming mixtures, each of which was combined with various amounts of several simulated-waste sludges. The simulated sludge spanned the composition range of actual sludges sampled from SRP waste tanks. Resistivities ranged from 6 to 10 ohm-cm at 500 0 C. Melt composition and temperature were correlated with resistivity. Resistivity was not a simple function of viscosity. 15 figures, 4 tables

  19. Viscosity of melts in the sodium borosilicate system

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.

    1984-01-01

    The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)

  20. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  1. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  2. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  3. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses

    Science.gov (United States)

    Shaw, Alison M.; Behn, Mark D.; Humphris, Susan E.; Sohn, Robert A.; Gregg, Patricia M.

    2010-01-01

    We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO 2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO 2 contents in the melt inclusions extend to higher values (167-1596 ppm) than in the co-existing glasses (187-227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO 2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (˜ 4 km) and ˜ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25-40 km) and cold (1240°-1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9-20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model

  4. On melting of boron phosphide under pressure

    OpenAIRE

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  5. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  6. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  7. Trapped Melt in IIIAB Irons: Solid/Liquid Elemental Partitioning During the Fractionation of the IIIAB Magma

    Science.gov (United States)

    Wasson, John T.

    1999-01-01

    Group IIIAB, the largest iron-meteorite group, shows compositional trends (including a three-order-of-magnitude It concentration range) indicating that it formed by fractional crystallization of a metallic magma. Because about 200 irons are available, and all degrees of crystallization are well represented, IIIAB offers an excellent set of samples for the study of crystallization at all depths of the asteroidal core. On log-log Ir-Au, and Ir-As diagrams IIIAB forms a broad band; the breadth represents real meteorite-to-meteorite variations, far outside experimental or sampling uncertainties. A successful model must explain the width of this band; I suggest that it mainly resulted from the trapping of parental magma within the crystallizing solid. Because S is essentially insoluble in metal, the abundance of FeS is a measure of the fraction of trapped liquid. The trapped-melt model is supported by the observation that irons having higher S contents plot closer to the inferred composition of the magmatic parental liquid. The lowest S values are found in the irons occupying the left envelope of the IIIAB Ir-Au or Ir-As compositional fields, thus it is this set of irons that should be interpreted as the solid products of a fractionating magma. This simplifies the modeling of the crystallization process and allows inferences regarding the distribution ratios for other elements in the evolved IIIAB system. The large (multiton) Cape York irons show wide variations in their trapped-melt fractions; their compositions seem best understood in terms of a low initial S content of the IIIAB magma, about 20 mg/g. The inferred initial IIIAB distribution coefficient for Ir, 4.6, is much higher than published values based on laboratory studies of low-S systems; I suggest that low-S (and low-P) partition-ratio measurements tend to err in the direction of unity. In IIIAB distribution coefficients for Au, As, and Ni were still < 1 when the most evolved IIIAB irons formed, another

  8. Effect of glass-batch makeup on the melting process

    International Nuclear Information System (INIS)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  9. Effect Of Glass-Batch Makeup On The Melting Process

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  10. Isotope effect and deuterium excess parameter revolution in ice and snow melt

    International Nuclear Information System (INIS)

    Yin Guan; Ni Shijun; Fan Xiao; Wu Hao

    2003-01-01

    The change of water isotope composition actually is a integrated reaction depending on the change of environment. The ice and snow melt of different seasons in high mountain can obviously influence the change of isotope composition and deuterium excess parameter of surface flow and shallow groundwater. To know the isotopic fractionation caused by this special natural background, explore its forming and evolvement, is unusually important for estimating, the relationship between the environment, climate and water resources in an area. Taking the example of isotope composition of surface flow and shallow groundwater in Daocheng, Sichuan, this paper mainly introduced the changing law of isotope composition and deuterium excess parameter of surface flow and hot-spring on conditions of ice and snow melt with different seasons in high mountain; emphatically discussed the isotope effect and deuterium excess parameter revolution in the process of ice and snow melting and its reason. (authors)

  11. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  12. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry

    Science.gov (United States)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2013-08-01

    The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.

  13. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    Science.gov (United States)

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  14. Kevlar reinforced neoprene composites

    Science.gov (United States)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  15. Supercoil Formation During DNA Melting

    Science.gov (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  16. Parents and the media. A study of social differentiation in parental media socialization.

    OpenAIRE

    Notten, N.; Kraaykamp, G.

    2009-01-01

    In this study we analysed the effects of parental social background and family composition on various types of parental media socialization. We employed the Family Survey Dutch Population 1998, 2000 and 2003 (N = 2608), and analysed respondents’ reports of socialization practices in their parental home. Respondents from high-status families report more extensive parental media socialization in all highbrow and guidance activities. In contrast, a parental example of popular television viewing ...

  17. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  18. The Apollo 17 'melt sheet': chemistry, age and Rb/Sr systematics

    International Nuclear Information System (INIS)

    Winzer, S.R.; Nava, D.F.; Schuhmann, S.; Philpotts, J.A.

    1977-01-01

    Major, minor and trace element compositions, age data and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor and trace element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates ( 40 Ar/ 39 Ar) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 b.y. ago. This impact excavated, shocked, brecciated and melted norites, norite cumulates and possibly anorthositic gabbros and dunites about 4.4 b.y. old. The impact was likely a major one, possibly the Serenitatis basin-forming event. (Auth.)

  19. Apollo 17 'melt sheet': chemistry, age and Rb/Sr systematics

    Energy Technology Data Exchange (ETDEWEB)

    Winzer, S R [Martin Marietta Labs., Baltimore, Md. (USA); Nava, D F; Schuhmann, S; Philpotts, J A [National Aeronautics and Space Administration, Greenbelt, Md. (USA). Goddard Space Flight Center; Schuhmann, P J; Lum, R K.L.; Lindstrom, M M; Lindstrom, D J [Maryland Univ., College Park (USA)

    1977-01-01

    Major, minor and trace element compositions, age data and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor and trace element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates (/sup 40/Ar//sup 39/Ar) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 b.y. ago. This impact excavated, shocked, brecciated and melted norites, norite cumulates and possibly anorthositic gabbros and dunites about 4.4 b.y. old. The impact was likely a major one, possibly the Serenitatis basin-forming event.

  20. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges?

    International Nuclear Information System (INIS)

    Zhang, H.T.; Yang, Y.M.; Yan, Q.S.; Shi, Z.F.; Zhu, Z.W.; Su, W.C.; Qin, C.J.; Ye, J.

    2016-01-01

    The composition of melt inclusions in basalts erupted at mid-ocean ridges may be modified by post-entrapment processes, so the present composition of melt inclusions may not represent their original composition at the time of entrapment. By combining the melt inclusion composition in samples from the South Mid-Atlantic Ridge at 19°S analyzed in this study, and from the Petrological Database, we found that post-entrapment crystallization processes resulted in higher Ca/Al, Mg#[100×atomic Mg2+/(Mg2++Fe2+)], MgO and FeO contents, and lower CaO and Al2O3 contents of plagioclase-hosted melt inclusions relative to those hosted in olivine. In addition, melt inclusions hosted in plagioclase with anorthite content larger than 80mol.% had been modified more readily than others. By discussing the relationships between Ca/Al and fractional crystallization, post-entrapment crystallization, and the original melt composition, we propose that Ca/Al can be regarded as an indicator of the effect of post-entrapment processes on melt inclusion composition. Specifically, i) when Ca/Al 1.0, the compositions of melt inclusions do not reflect the original melt composition nor preserve information about the mantle source. According to these criteria, plagioclase-hosted melt inclusions with Ca/Al>1.0 in basalts from the South Mid-Atlantic Ridge at19°S cannot represent the composition of the melt at the moment of their entrapment. (Author)

  1. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    Science.gov (United States)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the

  2. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  4. Refining of high-temperature uranium melt by filtration through foam-ceramic filters

    International Nuclear Information System (INIS)

    Antsiferov, V.N.; Porozova, S.E.; Filippov, V.B.; Shtutsa, M.G.; Il'enko, E.V.; Kolotygina, N.S.

    2004-01-01

    An opportunity of applying foam-ceramic filters of corundum-mullite composition has been studied in refining natural uranium melts. Uranium melting conditions were chosen depending on technical characteristics of the foam ceramic filters. When their using, a portion of nonmetallic inclusions decreases by 20-30% (as little as 2.0-3.5% ingot weight), their size is reduced and their distribution in the ingot volume is equalized, contamination of uranium by the filter material being failed to be noticed. The parameters of foam-ceramic filters are optimized for provision of stable characteristics of uranium melt filtration process [ru

  5. Chemical and electrochemical behaviour of halides in nitrate melts

    International Nuclear Information System (INIS)

    Tkalenko, D.A.; Kudrya, S.A.; Delimarskij, Yu.K.; Antropov, L.I.

    1978-01-01

    The possibility of improving the positive electrode characteristics of medium temperature lithium-nitrate element by means of adding alkali metal halogenides into nitrate melt is considered. The experiments have been made at the temperature of 150 deg C in (K, Na, Li) NO 3 melts of eutectic composition. It has been found that only at temperatures higher than 250 deg C in nitrate melts containing Li + and Na + cations, an interaction of nitrate ions with the added iodides is possible. The interaction does not take place in case of chloride, bromide, and fluoride additions. The waves of halogenide oxidation and reduction of the corresponding halogens have been identified. The analysis of the obtained experimental data shows that halogenide addition into nitrate melt does not result in speed increase of cathodic reduction of nitrate ions or in formation of a new cathode process at more positive potentials. A conclusion is made that halogenide addition into electrolyte of lithium-nitrate current source is inexpedient

  6. A plasma melting of noncombustible waste for vitrification

    International Nuclear Information System (INIS)

    Moon, Young Pyo; Cho, Chun Hyung; Song, Myung Jae; Han, Sang Ok

    1997-01-01

    Multi-stage experiments have been under way to develop a new technology for radioactive waste treatment to reduce volume. Korea Electric Power Research Institute(KEPRI) has been seeking various technologies in order to reduce the radioactive volume significantly and to produce very stable waste forms. Plasma melting technology which offers greater control of temperature, faster time of reaction, better control of processing, lower capital costs, greater throughput, and more efficient use of energy has caught KEPRI's attention to the noncombustible radioactive waste. For the study of plasma melting for noncombustible wastes, KEPRI leased a lab scale multi-purpose plasma furnace together with accessory facilities and performed preliminary tests. The lab scale melting experiments were carried out by using the simulated noncombustible wastes based on the field survey data from nuclear power plants. KEPRI's current study is focused to find an optimum composition ratio of various noncombustible wastes for easy melting, to investigate physical properties of molten slag, and to obtain operating parameters for continuous operations

  7. Viscosity and volume properties of the Al-Cu melts

    Directory of Open Access Journals (Sweden)

    Kurochkin A.

    2011-05-01

    Full Text Available Temperature dependences of the kinematic viscosity v and the density ρ of Al-Cu melts were investigated in the same regime taking into account that viscometric experiments with the melts enriched with cupper have not been repeated since 1960th and densimetric measurements did not perform before at all. The first measurements were fulfilled using the method of dumping oscillation of a crucible filled in by a melt investigated. Its precision was as high as 1.5%. Density was measured using the gamma-absorption method with the accuracy of 0.2 to 0.3%. Crucibles of BeO were used in both the cases. In the course of the measurements a distinct branching of the heating and cooling curves were fixed below some temperature characteristic of each composition for most of the investigated samples. The branching temperature systematically changes with growth of cupper content. The authors believe that the effect is caused by the irreversible transition of the melts from microheterogeneous state inherited from the initial rough materials into a true solution state.

  8. Experiments and analyses on melt jet impingement during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Green, J.A.; Dinh, T.N.; Dong, W.

    1997-01-01

    Relocation of melt from the core region, during a nuclear reactor severe accident, presents the potential for erosion of the reactor pressure vessel (RPV) wall as a result of melt jet impingement. The extent of vessel erosion will depend upon a variety of parameters, including jet diameter, velocity, composition, superheat, angle of inclination, and the presence of an overlying water or melt pool. Experiments have been conducted at the Royal Institute of Technology Division of Nuclear Power Safety (RIT/NPS) which employ a variety of melt and pressure vessel simulant materials, such as water, salt-ice, Cerrobend alloy and molten salt. These experiments have revealed that the erosion depth of the vessel simulant in the jet stagnation zone can be adequately predicted by the Saito correlation, which is based on turbulent heat transfer, while initial erosion rates are seen to be in line with the laminar-stagnation-zone model. A transition between the laminar and turbulent regimes was realized in most cases and is attributed to the roughness of the surface in the eroded cavity formed

  9. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  10. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  11. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  12. Parenting Seminars for Divorcing Parents.

    Science.gov (United States)

    Frieman, Barry B.

    1995-01-01

    Profiles the parenting seminars and counseling services for divorcing parents offered by the Children of Separation and Divorce Center, a community service agency in Maryland. The seminars are designed to help parents adjust to divorce and understand the needs of their children during and after the divorce process. (MDM)

  13. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  14. Feed Preparation for Source of Alkali Melt Rate Tests

    International Nuclear Information System (INIS)

    Stone, M. E.; Lambert, D. P.

    2005-01-01

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na 2 O in the frit (low washed sludge) to 16% Na 2 O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na 2 O baseline run. For the other four cases (0% Na 2 O, 4% Na 2 O, 12% Na 2 O, and 16% Na 2 O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na 2 O in frit, 4% Na 2 O in frit, 8% Na 2 O in frit or baseline, 12% Na 2 O in frit, and 16% Na 2 O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na 2 O in frit run (less washed sludge combined with

  15. A rheological model for glassforming silicate melts in the systems CAS, MAS, MCAS

    International Nuclear Information System (INIS)

    Giordano, Daniele; Russell, J K

    2007-01-01

    Viscosity is the single most important property governing the efficacy, rates, and nature of melt transport. Viscosity is intimately related to the structure and thermodynamics properties of the melts and is a reflection of the mechanisms of single atoms slipping over potential energy barriers. The ability to predict melt viscosity accurately is, therefore, of critical importance for gaining new insights into the structure of silicate melts. Simple composition melts, having a reduced number of components, offer an advantage for understanding the relationships between the chemical composition, structural organization and the rheological properties of a melt. Here we have compiled a large database of ∼970 experimental measurements of melt viscosity for the simple chemical systems MAS, CAS and MCAS. These data are used to create a single chemical model for predicting the non-Arrhenian viscosity as a function of temperature (T) and composition (X) across the entire MCAS system. The T-dependence of viscosity is accounted for by the three parameters in each of the model functions: (i) Vogel-Fulcher-Tamman (VFT); (ii) Adam-Gibbs (AG); and (iii) Avramov (AV). The literature shows that, in these systems, viscosity converges to a common value of the pre-exponential factors (A) that can be assumed to be independent of composition. The other two adjustable parameters in each equation are expanded to capture the effects of composition. The resulting models are continuous across T-X space. The values and implications of the optimal parameters returned for each model are compared and discussed. A similar approach is likely to be applicable to a variety of non-silicate multicomponent glassforming systems

  16. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    Science.gov (United States)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  17. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  18. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  19. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  20. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  1. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  2. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  3. [Parenting styles].

    Science.gov (United States)

    Torío López, Susana; Peña Calvo, José Vicente; Inda Caro, Mercedes

    2008-02-01

    Parental educational styles constitute one of the key elements of family socialization. The aim of the present essay is to present the results of a research project carried out in the Principality of Asturias (Spain) among 2,965 families with children of infant and primary-school age (5-8 years old). This research attempts to analyse, among other aspects, parental behaviour tendencies in child upbringing. The analysis of the results obtained allows us to: 1) identify the most common attitudinal and behavioural tendencies of parents in the upbringing of their children; 2) determine how many people have a well defined parental style, and delimit their socio-educational characteristics. Lastly, we consider the need to change some parental behaviour patterns and stress the importance of family education programmes, with the aim of promoting appropriate parenting models and modifying or improving current practices.

  4. Adoptive parenting.

    Science.gov (United States)

    Grotevant, Harold D; Lo, Albert Yh

    2017-06-01

    Challenges in adoptive parenting continue to emerge as adoption policies and practices evolve. We review three areas of research in adoptive parenting that reflect contemporary shifts in adoption. First, we highlight recent findings concerning openness in adoption contact arrangements, or contact between a child's families of birth and rearing. Second, we examine research regarding racial and cultural socialization in transracial and international adoptions. Finally, we review investigations of parenting experiences of lesbian and gay adoptive parents. Overall, parenting processes (e.g., supportive vs. problematic family interaction) are better predictors of child adjustment than are group differences (e.g., open vs. closed adoptions; adoption by heterosexual vs. same-sex parents). The distinctive needs of adopted children call for preparation of adoption-competent mental health, casework, education, and health care professionals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Measurements of the Activity of dissolved H2O in an Andesite Melt

    Science.gov (United States)

    Moore, G. M.; Touran, J. P.; Pu, X.; Kelley, K. A.; Cottrell, E.; Ghiorso, M. S.

    2016-12-01

    The large effect of dissolved H2O on the physical and chemical nature of silicate melts, and its role in driving volcanism, is well known and underscores the importance of this volatile component. A complete understanding of the chemical behavior of dissolved H2O in silicate melts requires the quantification of its thermodynamic activity as a function of pressure, temperature, and melt composition, particularly at low H2O contents (i.e. at under-saturated conditions). Knowledge of the activity of H2O in silicate melts at H2O-undersaturated conditions will improve our understanding of hydrous phase equilibria, as well as our models of physical melt properties. Measurement of the activity of any silicate melt component, much less that of a volatile component such as H2O, is a difficult experimental task however. By using a modified double capsule design (Matjuschkin et al, 2015) to control oxygen fugacity in piston cylinder experiments, along with high precision X-ray absorption techniques (XANES) to measure iron oxidation state in silicate glasses (Cottrell et al, 2009), we are able to constrain the H2O activity in silicate melts at under-saturated conditions. Preliminary results on an andesite melt with low H2O content (3 wt%) have been shown (Moore et al, 2016) to match predicted H2O activity values calculated using the H2O equation of state of Duan and Zhang (1996) and the H2O solubility model of Ghiorso and Gualda (2015). More recent results on the same andesite melt containing approximately 5 wt% H2O however show a large negative deviation from the predicted values. Reversal experiments involving an oxidized starting material are ongoing, as well as further characterization of the samples to detect the presence of possible contaminants that would induce reduction of the melt beyond that related to the H2O activity (e.g. graphite contamination).

  6. Resistance–temperature relation and atom cluster estimation of In–Bi system melts

    International Nuclear Information System (INIS)

    Geng, Haoran; Wang Zhiming; Zhou Yongzhi; Li Cancan

    2012-01-01

    Highlights: ► A testing device was adopted to measure the electrical resistivity of In–Bi system melts. ► A basically linear relation exists between the resistivity and temperature of In x Bi 100−x melts in measured temperature range. ► Based on Novakovic's assumption, the content of InBi atomic cluster in In x Bi 100−x melt is estimated with ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ) equation. - Abstract: A testing device for the resistivity of high-temperature melt was adopted to measure the l resistivity of In–Bi system melts at different temperatures. It can be concluded from the analysis and calculation of the experimental results that the resistivity of In x Bi 100−x (x = 0–100) melt is in linear relationship with temperature within the experiment temperature range. The resistivity of the melt decreases with the increasing content of In. The fair consistency of resistivity of In–Bi system melt is found in the heating and cooling processes. On the basis of Novakovic's assumption, we approximately estimated the content of InBi atom clusters in In x Bi 100−x melts with the resistivity data by equation ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ). In the whole components interval, the content corresponds well with the mole fraction of InBi clusters calculated by Novakovic in the thermodynamic approach. The mole fraction of InBi type atom clusters in the melts reaches the maximum at the point of stoichiometric composition In 50 Bi 50 .

  7. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  8. Features of melting of indium monohalides

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V S; Smirniv, V A [AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela

    1980-12-01

    The character of InCl, InBr and InI melting is investigated by the methods of DTA, calorimetry, conductometry and chemical analysis. Partial decomposition of monohalogenides during melting according to the reactions of disproportionation is shown. The presence of disproportionation products (In/sup 0/ and In/sup 3 +/) is manifested in the properties of solid monohalogenides, prepared by the crystallization from melt, in their photosensitivity and electroconductivity.

  9. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  10. Parents and the media. A study of social differentiation in parental media socialization.

    NARCIS (Netherlands)

    Notten, N.; Kraaykamp, G.

    2009-01-01

    In this study we analysed the effects of parental social background and family composition on various types of parental media socialization. We employed the Family Survey Dutch Population 1998, 2000 and 2003 (N = 2608), and analysed respondents’ reports of socialization practices in their parental

  11. Parents and the media: A study of social differentiation in parental media socialization

    NARCIS (Netherlands)

    Notten, N.J.W.R.; Kraaykamp, G.L.M.

    2009-01-01

    In this study we analysed the effects of parental social background and family composition on various types of parental media socialization. We employed the Family Survey Dutch Population 1998, 2000 and 2003 (N = 2608), and analysed respondents' reports of socialization practices in their parental

  12. A Comparative Study of Continental vs. Intraoceanic Arc Mantle Melting: Experimentally Determined Phase Relations of Hydrous, Primitive Melts

    Science.gov (United States)

    Weaver, S.; Johnston, A.; Wallace, P. J.

    2009-12-01

    It is widely recognized that H2O and other volatiles play a crucial role in mantle melting in subduction zones. This work is a comparative study focused on determining the H2O-undersaturated, near-liquidus phase relations for two primitive subduction related compositions with the goal of determining the P-T-H2O conditions of mantle melting beneath arcs. These samples, JR-28, a calc-alkaline basalt from Volcan Jorullo, Mexico, and ID-16, a tholeiitic basalt from Okmok Volcano, Aleutian Islands, have major element compositions that indicate they are primary, mantle-derived melts. H2O-undersaturated piston cylinder experiments have been carried out at upper mantle pressures and temperatures (1.0-2.0 GPa and 1100-1350°C). The near-liquidus mineralogy of these two compositions has been mapped in P-T- H2O space in order to constrain the conditions under which these melts are multiply saturated with a mantle residue (lherzolite or harzburgite). Previous studies of dissolved volatiles in olivine-hosted melt inclusions have provided an estimate of pre-eruptive H2O-contents for JR-28 at ≥5 wt% H2O and experiments have been carried out accordingly. Preliminary results for JR-28 at 5 wt% H2O show olivine ± Cr-rich spinel on the liquidus at 1.0 GPa and enstatite as the liquidus phase at higher pressures (1.3 to 2.0 GPa). Ca-rich pyroxene appears in only one experiment 50°C below the liquidus at 1.5 GPa. These data show that JR-28 melts are multiply saturated with a harzburgite assemblage at ~1175°C and ~1.2 GPa at 5 wt% H2O. Experiments at 7 wt% H2O show similar results, although the olivine/Cr-spinel stability field expands at the expense of the enstatite stability field. Consequently, the olivine-enstatite cotectic is shifted to higher pressures and slightly cooler temperatures. The relatively high SiO2 content in the bulk rock (~52 wt% SiO2) supports the hypothesis that JR-28 last equilibrated with a depleted or harzburgite residue rather than a more fertile mantle

  13. Calculation of melting points of oxides

    International Nuclear Information System (INIS)

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.

    1975-01-01

    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  14. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    Science.gov (United States)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison

  15. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  16. Improved di-electric composition

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R C

    1915-03-29

    An improved di-electric composition is disclosed composed of pitch or bitumen which is melted, and to which is added, while molten, a quantity of finely ground or pulverized spent shale, the whole being mixed or stirred to make a homogeneous composition, substantially as described.

  17. Formation of nickel-tantalum compounds in tantalum fluoride halide melts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Zalkind, O.A.; Kuznetsov, B.Ya.; Orlov, V.M.; Sukhorzhevskaya, S.L.

    2001-01-01

    Interaction of nickel with NaCl-K 2 TaF 7 melt (14 mol.%) at 750 deg C was studied, the composition of intermetallic compounds formed in Ni-Ta system being analyzed, using the methods of chemical and X-ray phase analyses, IR spectroscopy. It was ascertained that composition of intermetallic compounds (Ni 3 Ta, Ni 2 Ta) depends on K 2 TaF 7 concentration in the melt, metallic tantalum additions, nickel substrate thickness and experiment duration. The mechanism of currentless deposition of tantalum on nickel was considered and the assumption was made that disproportionation reaction lies in the basis of the process [ru

  18. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    International Nuclear Information System (INIS)

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  19. Away-from-home family dinner sources and associations with weight status, body composition and related biomarkers of chronic disease among adolescents and their parents

    Science.gov (United States)

    Farbakhsh, Kian; Lytle, Leslie; Hearst, Mary O.; Dengel, Donald R.; Pasch, Keryn E.; Kubik, Martha Y.

    2011-01-01

    Information regarding associations between types of away-from-home family meal sources and obesity and other chronic diseases could help guide dietitians. The present study describes the purchase frequency of away-from-home food sources for family dinner (fast food, other restaurant purchases, home delivery, and take-out foods) and associations with weight status and percent body fat among adolescents (n=723) and parents (n=723) and related biomarkers of chronic disease among adolescents (n=367). A cross-sectional study design was used with baseline parent surveys and anthropometry/fasting blood samples from two community-based obesity studies (2006–2008) in Minnesota. Logistic regression and general linear modeling assessed associations between frequency of family dinner sources (weekly versus none in past week) and outcomes (parent and adolescent overweight/obesity and percent body fat; adolescent metabolic risk cluster z-score (MRC), cholesterol, HDL-C, LDL, triglycerides, fasting glucose, insulin and systolic blood pressure. Models accounted for clustering and adjusted for study allocation, baseline meal frequency and demographic characteristics. The odds of overweight/obesity were significantly greater when families reported at least one away-from-home dinner purchase in the past week (OR=1.2–2.6). Mean percent body fat, MRC z-scores and insulin levels were significantly greater with weekly purchases of family dinner from fast food restaurants (p’s < .05). Mean percent body fat, MRC z-scores and HDL levels were significantly higher for families who purchased weekly family dinner from take-out sources (p’s < .05). Although frequent family dinners may be beneficial for adolescents, the source of dinners is likely as important in maintaining a healthy weight. Interventions should focus on encouragement of healthful family meals. PMID:22117665

  20. Parental divorce and parental death

    DEFF Research Database (Denmark)

    Marcussen, Jette; Thuen, Frode; Poul, Bruun

    2015-01-01

    The aim of this review was to identify research on children and adolescents who experience double bereavement, i.e. the experience of loss through parental divorce followed by either parental death or critical illness with imminent death. This knowledge may identify evidence to underpin knowledge......; challenges in both custodial and non-custodial parental death; risk of mental health problems, and the need of support and interventions....

  1. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite

    International Nuclear Information System (INIS)

    Beattie, P.

    1993-01-01

    The abundances of isotopes in the 238 U decay series can be used as both tracers and chronometers of magmatic processes. In the subsolidus asthenosphere, the activity of each daughter isotope (defined as the product of its concentration and decay constant, and denoted by parentheses) is assumed to be equal to that of its parent. By contrast, ( 230 Th/ 238 U) is greater than unity in most recent mid-ocean-ridge and ocean-island basalts, implying that thorium is more incompatible (that is, it is partitioned into the melt phase more strongly) than uranium. Melting of spinel peridotite cannot produce the ( 230 Th) excesses, because measured partition coefficients for pyroxenes and olivine demonstrate that uranium is more incompatible than thorium for this rock. Here I report garnet-melt partitioning data which show that for this mineral-melt pair thorium does behave more incompatibility than uranium, thus supporting the suggestion that mid-ocean-ridge basalts (MORB) are produced by melting initiated at depths where garnet is stable. Using these data, I show that the observed ( 230 Th/ 238 U) ratios of MORB and most ocean-island basalts can be explained by slow, near-fractional melting initiated in the garnet stability field. (author)

  2. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  3. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  4. Parent Management

    DEFF Research Database (Denmark)

    Knudsen, Hanne

    2007-01-01

    and parents say given these assumptions? Which management responsibility is addressed through such training of the difficult conversation?  My conclusions are, briefly, that the difficult conversation is more correctly to be called an impossible conversation. It is an asking for the parent's consent...

  5. Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix

    Directory of Open Access Journals (Sweden)

    Aline Cobut

    2014-04-01

    Full Text Available To facilitate melt compounding of cellulose nanofibrils (CNF based composites, wood pulp fibers were subjected to a chemical treatment whereby the fibers were oxidized using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO. This treatment introduced negatively charged carboxylate groups to the fibers. TEMPO-treated fibers (TempoF were added to a mixture of amylopectin starch, glycerol, and water. Granules were prepared from this mixture and processed into CNF composites by extrusion. TempoF were easier to process into composites as compared with non-treated pulp fibers (PF. SEM revealed partial disintegration of TempoF during melt processing. Consequently, TempoF gave composites with much better mechanical properties than those of conventional composites prepared from pulp fibers and TPS. Particularly, at 20 wt% TempoF content in the composite, the modulus and strength were much improved. Such a continuous melt processing route, as an alternative to laboratory solvent casting techniques, may promote large-scale production of CNF-based composites as an environmentally friendly alternative to synthetic plastics/composites.

  6. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  7. Paleomagnetic evidence for a partially differentiated H chondrite parent planetesimal

    Science.gov (United States)

    Bryson, J. F. J.; Weiss, B. P.; Scholl, A.; Getzin, B. L.; Abrahams, J. N. H.; Nimmo, F.

    2016-12-01

    The texture, composition and ages of chondrites have all been used to argue that the parent bodies of these meteorites did not undergo planetary differentiation. Without a core, these planetesimals could not have generated planetary magnetic fields, hence chondrites are predicted to be unmagnetized. Here, we test this hypothesis by applying synchrotron x-ray microscopy to the metallic melt veins in the metamorphosed H chondrite breccia Portales Valley. We find that tetrataenite nanostructures in these veins are uniformly magnetized, suggesting that the H chondrite parent body generated a stable, 10 µT ancient field. We also performed alternating field (AF) demagnetization on bulk silicate-rich portions of Portales Valley, finding that both the large grain size of the metal in these subsamples and the presence of tetrataenite hinder the reliable interpretation of these measurements. Based on 40Ar/39Ar dating and the metallographic cooling rate, we propose that this field inferred from x-ray microscopy was generated 100 Myr after solar system formation and lasted >5 Myr. These properties are consistent with a dynamo field generated by core solidification, implying that the H chondrite parent body was partially differentiated. This conclusion is supported by our analyses of the H4 chondrite Forest Vale, which show that H chondrite magnetization is unlikely to be a relic signature of early nebular or solar wind fields (Getzin et al., this meeting; Oran et al., this meeting). We propose that partial differentiation could result form prolonged accretion over millions of years, possibly in two stages. In this scenario, the earliest accreted material melted from the radioactive decay of abundant 26Al, forming a core and rocky achondritic mantle, while the later accreted material was less metamorphosed, forming an undifferentiated crust. We demonstrate that, with the inclusion of an insulating regolith, the thermal evolution of such a body is consistent with the measured

  8. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  9. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  10. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    International Nuclear Information System (INIS)

    Ross, M.; Wolf, G.

    1986-01-01

    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  11. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    Science.gov (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  12. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  13. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  14. Evaporation regularities for the components of alloys during vacuum melting

    International Nuclear Information System (INIS)

    Anoshkin, N.F.

    1977-01-01

    The peculiarities of changes in the content of alloying components in vacuum melting (exemplified by Ti and Mo alloys) and the formation of the ingot composition in the bottom, central, and peripheral portions are considered. For the purposes of the investigation a process model was adopted, which is characterized by negligibly small evaporation of the alloy base, complete smoothing-out of the composition in the liquid bath volume, the constancy of the temperature over the entire evaporation surface, and a number of other assumptions, whose correctness was confirmed by the experiment. It is shown that the best possibilities for suppression of evaporation of components with a high vapour pressure are offered by a vacuum arc or electric slag melting, because they make it possible to conduct the process at high pressures with minimum overheating. A method of refining by overheating was developed. A method for refining alloys with volatile components was found; it consists of the first remelting ro remove volatile impurities and their deposition in the peripheral layers of the ingot, and the second remelting, which ensures the averaging of the ingot composition. Typical versions of distribution of the volatile components or the impurity across the ingot are singled out

  15. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  16. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  17. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  18. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  19. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  20. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  1. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  2. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    Science.gov (United States)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  3. Low-melting point inorganic nitrate salt heat transfer fluid

    Science.gov (United States)

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  4. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  5. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  6. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  7. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  8. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    Jahagirdar, P.B.; Wattal, P.K.

    1997-09-01

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  9. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  10. High Resolution Melting (HRM) applied to wine authenticity.

    Science.gov (United States)

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  12. Dating Howardite Melt Clasts: Evidence for an Extended Vestan Bombardment?

    Science.gov (United States)

    Cartwright, J. A.; Hodges, K. V.; Wadhwa, M.; Mittlefehldt, D. W.

    2016-01-01

    Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.

  13. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  14. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  15. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  16. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  17. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  18. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    Science.gov (United States)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  19. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  20. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  1. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  2. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J; Green, T H [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  3. Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon

    Science.gov (United States)

    Singh, M.; Behrendt, D. R.

    1992-01-01

    Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.

  4. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    International Nuclear Information System (INIS)

    Smith, M; Timothy Jones, T; Donald02 Miller, D

    2007-01-01

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418, 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  5. Characterization of frictional melting processes in subduction zone faults by trace element and isotope analyses

    Science.gov (United States)

    Ishikawa, T.; Ujiie, K.

    2017-12-01

    Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages

  6. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  7. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  8. Recycling melting process of the zirconium alloy chips

    International Nuclear Information System (INIS)

    Reis, Luis A.M. dos; Mucsi, Cristiano S.; Tavares, Luiz A.P.; Alencar, Maicon C.; Gomes, Maurilio P.; Barbosa, Luzinete P.; Rossi, Jesualdo L.

    2017-01-01

    Pressurized water reactors (PWR) commonly use 235 U enriched uranium dioxide pellets as a nuclear fuel, these are assembled and stacked in zirconium alloy tubes and end caps (M5, Zirlo, Zircaloy). During the machining of these components large amounts of chips are generated which are contaminated with cutting fluid. Its storage presents safety and environmental risks due to its pyrophoric and reactive nature. Recycling industry shown interest in its recycling due to its strategic importance. This paper presents a study on the recycling process and the results aiming the efficiency in the cleaning process; the quality control; the obtaining of the pressed electrodes and finally the melting in a Vacuum Arc Remelting furnace (VAR). The recycling process begins with magnetic separation of possible ferrous alloys chips contaminant, the washing of the cutting fluid that is soluble in water, washing with an industrial degreaser, followed by a rinse with continuous flow of water under high pressure and drying with hot air. The first evaluation of the process was done by an Energy Dispersive X-rays Fluorescence Spectrometry (EDXRFS) showed the presence of 10 wt. % to 17 wt. % of impurities due the mixing with stainless steel machining chips. The chips were then pressed in a custom-made matrix of square section (40 x 40 mm - 500 mm in length), resulting in electrodes with 20% of apparent density of the original alloy. The electrode was then melted in a laboratory scale VAR furnace at the CCTM-IPEN, producing a massive ingot with 0.8 kg. It was observed that the samples obtained from Indústrias Nucleares do Brasil (INB) are supposed to be secondary scrap and it is suggested careful separation in the generation of this material. The melting of the chips is possible and feasible in a VAR furnace which reduces the storage volume by up to 40 times of this material, however, it is necessary to correct the composition of the alloy for the melting of these ingots. (author)

  9. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  10. Parental involvement

    Directory of Open Access Journals (Sweden)

    Ezra S Simon

    2005-01-01

    Full Text Available Parent-Teacher Associations and other community groups can play a significant role in helping to establish and run refugee schools; their involvement can also help refugee adults adjust to their changed circumstances.

  11. Parenting Conflicts

    Science.gov (United States)

    ... Home Family Dynamics Adoption & Foster Care Communication & Discipline Types of Families Media Work & Play Getting Involved in Your Community Healthy Children > Family Life > Family Dynamics > Parenting Conflicts Family Life Listen Español Text Size Email Print ...

  12. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because

  13. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  14. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  15. The phase behavior of polydisperse multiblock copolymer melts : (a theoretical study)

    NARCIS (Netherlands)

    Angerman, Hindrik Jan

    1998-01-01

    Summary The main theme of this thesis is the influence of polydispersity on the phase behavior of copolymer melts. With “polydispersity” we do not only refer to polydispersity in overall chain length, but also to polydispersity in the composition and the monomer sequence of the chains. Study of the

  16. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  17. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  18. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.

    1984-01-01

    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  19. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  20. Mantle-derived trace element variability in olivines and their melt inclusions

    Science.gov (United States)

    Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura

    2018-02-01

    Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt

  1. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  2. Volcanic volatile budgets and fluxes inferred from melt inclusions from post-shield volcanoes in Hawaii and the Canary Islands

    Science.gov (United States)

    Moore, L.; Gazel, E.; Bodnar, R. J.; Carracedo, J. C.

    2017-12-01

    Pre-eruptive volatile contents of volcanic melts recorded by melt inclusions are useful for estimating rates of deep earth ingassing and outgassing on geologic timescales. Ocean island volcanoes may erupt melts derived from recycled material and thus have implications regarding the degree to which volatile-bearing phases like magnesite can survive subduction and be recycled by intraplate magmatism. However, melt inclusions affected by degassing will not reflect the original volatile content of the primary melt. Post-shield ocean island volcanoes are thought to erupt volatile-rich melts that ascend quickly, crystallizing in deep reservoirs and are more likely to reflect the composition of the primary melt. In this study, we compare melt inclusions from post-shield volcanoes, Haleakala (East Maui, Hawaii) and Tenerife (Canary Islands), to estimate the volatile budgets of two presumably plume-related ocean-island settings. Melt inclusions from Haleakala contain up to 1.5 wt% CO2, up to 1.3 wt% H2O, and about 2000 ppm of S. The CO2 concentration is similar to estimates for primary CO2 concentrations for Hawaii, suggesting that the melt inclusions in this study trapped a melt that underwent minimal degassing. Assuming a melt production rate of 2 km3/ka for postshield Hawaiian volcanism, the average fluxes of CO2 and S are about 80 t/year and 10 t/year respectively. Melt inclusions from Tenerife contain up to 1 wt% CO2, up to 2 wt% H2O, and about 4000 ppm of S. Assuming a melt production rate of 0.8 km3/ka for the northeast rift zone of Tenerife, the average fluxes of CO2 and S are about 20 t/year and 8 t/year respectively. The concentration of CO2 is lower than estimates of the primary melt CO2 content based on CO2/Nb from El Hierro. This may indicate that the inclusions trapped a melt that had degassed significantly, or that some of the CO2 in the inclusions has been sequestered in carbonate daughter crystals, which were observed in abundance.

  3. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts

    Science.gov (United States)

    Binder, Bernd; Wenzel, Thomas; Keppler, Hans

    2018-02-01

    Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750-850 °C as a function of oxygen fugacity (Ni-NiO or Re-ReO2 buffer), melt composition (Al/(Na + K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under "reducing conditions" (Ni-NiO buffer), D fluid/melt is nearly one order of magnitude larger (323 ± 14 for a metaluminous melt) than under "oxidizing conditions" (Re-ReO2 buffer; 74 ± 5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS- under reducing conditions and of SO4 2- and HSO4 - under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re-ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to x CO2 = 0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, D fluid/melt is independent of x NaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of D fluid/melt with alkali content in the melt is observed over the entire

  4. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    Science.gov (United States)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  5. Melting of iron nanoparticles embedded in silica prepared by mechanical milling

    International Nuclear Information System (INIS)

    Ding, Peng; Ma, Ji; Cao, Hui; Liu, Yi; Wang, Lianwen; Li, Jiangong

    2013-01-01

    Highlights: • Melting of metallic nanoparticles was studied for some eight elements. • This slim range of materials is successfully expanded to iron. • A mechanical-milled iron–silica composite is employed. • For iron particles of 15 nm in diameter, the melting point depression is 30 K. • The measured data is in agreement with our theoretical calculations. -- Abstract: For decades, experimental studies on the size-dependent melting of metals are regretfully limited to some eight archetypal examples. In this work, to expand this slim range of materials, the melting behavior of Fe nanoparticles embedded in SiO 2 prepared by using mechanical milling are investigated. Effects of factors in sample preparation on the size, isolation and thermal stability of Fe nanoparticles are systematically studied. On this basis, the size-dependent melting of Fe is successfully traced: for Fe nanoparticles with a diameter of about 15 nm, the melting point depression is 30 °C in comparison with bulk Fe, in accordance with our recent theoretical prediction

  6. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    catcher that addressed parametric variations in: (1) melt pour mass, (2) melt composition, (3) melt pour rate, (4) pour configuration (i.e., homogeneous vs. stratified metal-oxide phases), (5) melt temperature, (6) cavity condition (wet vs. dry), (7) spreading channel inclination angle, and finally (8) uncertainties in the melt viscosity correlation that are based on comparisons with the reactor material melt spreading database. Although differences were found in the rate of spreading and the degree to which the sacrificial concrete in the spreading room is ablated during the transients, in all cases the melt eventually (over a period of minutes) spreads to a uniform depth in the system

  7. Research and development on the melting test of low-level radioactive miscellaneous solid waste

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Hoshi, Akiko; Kameo, Yutaka; Nakashima, Mikio

    2007-02-01

    The Nuclear Science Research Institute of the Japan Atomic Energy Agency constructed the Advanced Volume Reduction Facilities (AVRF) in February 2003 for treatment of low-level radioactive miscellaneous solid waste (LLW). The waste volume reduction is carried out by a high-compaction process or melting processes in the AVRF. In advance of operating the melting process in the AVRF, melting tests of simulated LLW with RI tracers ( 60 Co, 137 Cs and 152 Eu) have been conducted by using the plasma melter in pilot scale. Viscosity of molten waste, chemical composition and physical properties of solidified products and distribution of the tracers in each product were investigated in various melting conditions. It was confirmed that the viscosity of molten waste was able to be controlled by adjusting chemical composition of molten waste. The RI tracer were almost uniformly distributed in the solidified products. The retention of 137 Cs depended on the basicity (CaO/SiO 2 ) of the solidified products. The solidified product possessed satisfactory compressive strength. In the case of basicity less than 0.8, the leachability of RI tracers from the solidified products was less than or equal to that of a high-level vitrified waste. In this review, experimental results of the melting tests were discussed in order to contribute to actual treatment of LLW in the AVRF. (author)

  8. Grain refinement of DC cast magnesium alloys with intensive melt shearing

    International Nuclear Information System (INIS)

    Zuo, Y B; Jiang, B; Zhang, Y; Fan, Z

    2012-01-01

    A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation.

  9. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  10. Parental Educational Investments and Aspirations in Japan

    Science.gov (United States)

    Lee, Kristen Schultz

    2010-01-01

    Previous models of parental educational investments focus on the composition of the sibship (number, gender, ordering, and spacing) and on the social and institutional context in which investment decisions are made. Social-institutional models predict that parents in Japan are likely to underinvest in girls because of their transient status in the…

  11. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  12. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  13. Selective Laser Ablation and Melting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  14. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  15. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  16. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  17. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  18. Shock induced melting of lead (experimental study)

    International Nuclear Information System (INIS)

    Mabire, Catherine; Hereil, Pierre L.

    2002-01-01

    To investigate melting on release of lead, two shock compression measurements have been carried out at 51 GPa. In the first one, a pyrometric measurement has been performed at the Pb/LiF interface. In the second one, the Pb/LiF interface velocity has been recorded using VISAR measurement technique. VISAR and radiance profile are in good agreement and seem to show melting on release of lead

  19. Vacancies in quantal Wigner crystals near melting

    International Nuclear Information System (INIS)

    Barraza, N.; Colletti, L.; Tosi, M.P.

    1999-04-01

    We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)

  20. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  1. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  2. Successful Therapist-Parent Coaching: How In Vivo Feedback Relates to Parent Engagement in Parent-Child Interaction Therapy.

    Science.gov (United States)

    Barnett, Miya L; Niec, Larissa N; Peer, Samuel O; Jent, Jason F; Weinstein, Allison; Gisbert, Patricia; Simpson, Gregory

    2017-01-01

    Although behavioral parent training is considered efficacious treatment for childhood conduct problems, not all families benefit equally from treatment. Some parents take longer to change their behaviors and others ultimately drop out. Understanding how therapist behaviors impact parental engagement is necessary to improve treatment utilization. This study investigated how different techniques of therapist in vivo feedback (i.e., coaching) influenced parent attrition and skill acquisition in parent-child interaction therapy (PCIT). Participants included 51 parent-child dyads who participated in PCIT. Children (age: M = 5.03, SD = 1.65) were predominately minorities (63% White Hispanic, 16% African American or Black). Eight families discontinued treatment prematurely. Therapist coaching techniques during the first session of treatment were coded using the Therapist-Parent Interaction Coding System, and parent behaviors were coded with the Dyadic Parent-Child Interaction Coding System, Third Edition. Parents who received more responsive coaching acquired child-centered parenting skills more quickly. Therapists used fewer responsive techniques and more drills with families who dropped out of treatment. A composite of therapist behaviors accurately predicted treatment completion for 86% of families. Although group membership was correctly classified for the treatment completers, only 1 dropout was accurately predicted. Findings suggest that therapist in vivo feedback techniques may impact parents' success in PCIT and that responsive coaching may be particularly relevant.

  3. Pulling Marbles from a Bag: Deducing the Regional Impact History of the SPA Basin from Impact Melt Rocks

    Science.gov (United States)

    Cohen, Barbara A.; Coker, R. F.

    2009-01-01

    The South Pole-Aitken (SPA) basin is an important target for absolute age-dating. Vertical and lateral impact mixing ensures that regolith within SPA will contain rock fragments from SPA itself, local impact craters, and faraway giant basins. About 20% of the regolith at any given site is foreign [1, 2], but much of this material will be cold ejecta, not impact melt. We calculated the fraction of contributed impact melt using scaling laws to estimate the amount and provenance of impact melt, demonstrating that SPA melt is the dominant impact melt rock (>70%) likely to be present. We also constructed a statistical model to illustrate how many randomly-selected impact-melt fragments would need to be dated, and with what accuracy, to confidently reproduce the impact history of a site. A detailed impact history becomes recognizable after a few hundred to a thousand randomly-selected marbles, however, it will be useful to have more information (e.g. compositional, mineralogical, remote sensing) to group fragments. These exercises show that SPA melt has a high probability of being present in a scoop sample and that dating of a few hundred to a thousand impact-melt fragments will yield the impact history of the SPA basin.

  4. Depth and degree of melting of komatiites

    Science.gov (United States)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  5. The melting and solidification of nanowires

    International Nuclear Information System (INIS)

    Florio, B. J.; Myers, T. G.

    2016-01-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  6. The melting and solidification of nanowires

    Science.gov (United States)

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  7. The melting and solidification of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Florio, B. J., E-mail: brendan.florio@ul.ie [University of Limerick, Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics (Ireland); Myers, T. G., E-mail: tmyers@crm.cat [Centre de Recerca Matemàtica (Spain)

    2016-06-15

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  8. On melting criteria for complex plasma

    International Nuclear Information System (INIS)

    Klumov, Boris A

    2011-01-01

    The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye-Hueckel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well. (methodological notes)

  9. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    Science.gov (United States)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + flui