WorldWideScience

Sample records for parent-metabolite pharmacokinetic model

  1. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    Science.gov (United States)

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  2. Model-based meta-analysis for comparing Vitamin D2 and D3 parent-metabolite pharmacokinetics.

    Science.gov (United States)

    Ocampo-Pelland, Alanna S; Gastonguay, Marc R; Riggs, Matthew M

    2017-08-01

    Association of Vitamin D (D3 & D2) and its 25OHD metabolite (25OHD3 & 25OHD2) exposures with various diseases is an active research area. D3 and D2 dose-equivalency and each form's ability to raise 25OHD concentrations are not well-defined. The current work describes a population pharmacokinetic (PK) model for D2 and 25OHD2 and the use of a previously developed D3-25OHD3 PK model [1] for comparing D3 and D2-related exposures. Public-source D2 and 25OHD2 PK data in healthy or osteoporotic populations, including 17 studies representing 278 individuals (15 individual-level and 18 arm-level units), were selected using search criteria in PUBMED. Data included oral, single and multiple D2 doses (400-100,000 IU/d). Nonlinear mixed effects models were developed simultaneously for D2 and 25OHD2 PK (NONMEM v7.2) by considering 1- and 2-compartment models with linear or nonlinear clearance. Unit-level random effects and residual errors were weighted by arm sample size. Model simulations compared 25OHD exposures, following repeated D2 and D3 oral administration across typical dosing and baseline ranges. D2 parent and metabolite were each described by 2-compartment models with numerous parameter estimates shared with the D3-25OHD3 model [1]. Notably, parent D2 was eliminated (converted to 25OHD) through a first-order clearance whereas the previously published D3 model [1] included a saturable non-linear clearance. Similar to 25OHD3 PK model results [1], 25OHD2 was eliminated by a first-order clearance, which was almost twice as fast as the former. Simulations at lower baselines, following lower equivalent doses, indicated that D3 was more effective than D2 at raising 25OHD concentrations. Due to saturation of D3 clearance, however, at higher doses or baselines, the probability of D2 surpassing D3's ability to raise 25OHD concentrations increased substantially. Since 25OHD concentrations generally surpassed 75 nmol/L at these higher baselines by 3 months, there would be no

  3. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  4. Modelling delays in pharmacokinetics

    International Nuclear Information System (INIS)

    Farooqi, Z.H.; Lambrecht, R.M.

    1990-01-01

    Linear system analysis has come to form the backbone of pharmacokinetics. Natural systems usually involve time delays, thus models incorporating them would be an order closer approximation to the real world compared to those that do not. Delays may be modelled in several ways. The approach considered in this study is to have a discrete-time delay dependent rate with the delay respresenting the duration between the entry of a drug into a compartment and its release in some form (may be as a metabolite) from the compartment. Such a delay may be because of one or more of several physiological reasons, like, formation of a reservoir, slow metabolism, or receptor binding. The mathematical structure this gives rise to is a system of delay-differential equations. Examples are given of simple one and two compartment systems with drugs like bumetanide, carbamazepine, and quinolone-caffeine interaction. In these examples generally a good fit is obtained and the suggested models form a good approximation. 21 refs., 6 figs

  5. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    Science.gov (United States)

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  6. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, Huixin; van Erp, Nielka; Bins, Sander; Mathijssen, Ron H J; Schellens, Jan H M; Beijnen, Jos H.; Steeghs, Neeltje; Huitema, Alwin D R

    Background and Objective: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. Methods: Pharmacokinetic data were available from 96

  7. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, H.; Erp, N. van; Bins, S.; Mathijssen, R.H.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.

    2017-01-01

    BACKGROUND AND OBJECTIVE: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. METHODS: Pharmacokinetic data were available from 96

  8. An interactive program for pharmacokinetic modeling.

    Science.gov (United States)

    Lu, D R; Mao, F

    1993-05-01

    A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.

  9. Population pharmacokinetics of telapristone (CDB-4124) and its active monodemethylated metabolite CDB-4453, with a mixture model for total clearance.

    Science.gov (United States)

    Morris, Denise; Podolski, Joseph; Kirsch, Alan; Wiehle, Ronald; Fleckenstein, Lawrence

    2011-12-01

    Telapristone is a selective progesterone antagonist that is being developed for the long-term treatment of symptoms associated with endometriosis and uterine fibroids. The population pharmacokinetics of telapristone (CDB-4124) and CDB-4453 was investigated using nonlinear mixed-effects modeling. Data from two clinical studies (n = 32) were included in the analysis. A two-compartment (parent) one compartment (metabolite) mixture model (with two populations for apparent clearance) with first-order absorption and elimination adequately described the pharmacokinetics of telapristone and CDB-4453. Telapristone was rapidly absorbed with an absorption rate constant (Ka) of 1.26 h(-1). Moderate renal impairment resulted in a 74% decrease in Ka. The population estimates for oral clearance (CL/F) for the two populations were 11.6 and 3.34 L/h, respectively, with 25% of the subjects being allocated to the high-clearance group. Apparent volume of distribution for the central compartment (V2/F) was 37.4 L, apparent inter-compartmental clearance (Q/F) was 21.9 L/h, and apparent peripheral volume of distribution for the parent (V4/F) was 120 L. The ratio of the fraction of telapristone converted to CDB-4453 to the distribution volume of CDB-4453 (Fmet(est)) was 0.20/L. Apparent volume of distribution of the metabolite compartment (V3/F) was fixed to 1 L and apparent clearance of the metabolite (CLM/F) was 2.43 L/h. A two-compartment parent-metabolite model adequately described the pharmacokinetics of telapristone and CDB-4453. The clearance of telapristone was separated into two populations and could be the result of metabolism via polymorphic CYP3A5.

  10. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  11. An Allometric Model of Remifentanil Pharmacokinetics and Pharmacodynamics

    NARCIS (Netherlands)

    Eleveld, Douglas J.; Proost, Johannes H.; Vereecke, Hugo; Absalom, Anthony R.; Olofsen, Erik; Vuyk, Jaap; Struys, Michel M. R. F.

    Background: Pharmacokinetic and pharmacodynamic models are used to predict and explore drug infusion schemes and their resulting concentration profiles for clinical application. Our aim was to develop a pharmacokinetic-pharmacodynamic model for remifentanil that is accurate in patients with a wide

  12. Physiologically Based Pharmacokinetic Modeling of Therapeutic Proteins.

    Science.gov (United States)

    Wong, Harvey; Chow, Timothy W

    2017-09-01

    Biologics or therapeutic proteins are becoming increasingly important as treatments for disease. The most common class of biologics are monoclonal antibodies (mAbs). Recently, there has been an increase in the use of physiologically based pharmacokinetic (PBPK) modeling in the pharmaceutical industry in drug development. We review PBPK models for therapeutic proteins with an emphasis on mAbs. Due to their size and similarity to endogenous antibodies, there are distinct differences between PBPK models for small molecules and mAbs. The high-level organization of a typical mAb PBPK model consists of a whole-body PBPK model with organ compartments interconnected by both blood and lymph flows. The whole-body PBPK model is coupled with tissue-level submodels used to describe key mechanisms governing mAb disposition including tissue efflux via the lymphatic system, elimination by catabolism, protection from catabolism binding to the neonatal Fc (FcRn) receptor, and nonlinear binding to specific pharmacological targets of interest. The use of PBPK modeling in the development of therapeutic proteins is still in its infancy. Further application of PBPK modeling for therapeutic proteins will help to define its developing role in drug discovery and development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Virtual pharmacokinetic model of human eye.

    Science.gov (United States)

    Kotha, Sreevani; Murtomäki, Lasse

    2014-07-01

    A virtual pharmacokinetic 3D model of the human eye is built using Comsol Multiphysics® software, which is based on the Finite Element Method (FEM). The model considers drug release from a polymer patch placed on sclera. The model concentrates on the posterior part of the eye, retina being the target tissue, and comprises the choroidal blood flow, partitioning of the drug between different tissues and active transport at the retina pigment epithelium (RPE)-choroid boundary. Although most straightforward, in order to check the mass balance, no protein binding or metabolism is yet included. It appeared that the most important issue in obtaining reliable simulation results is the finite element mesh, while time stepping has hardly any significance. Simulations were extended to 100,000 s. The concentration of a drug is shown as a function of time at various points of retina, as well as its average value, varying several parameters in the model. This work demonstrates how anybody with basic knowledge of calculus is able to build physically meaningful models of quite complex biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Use of Physiologically Based Pharmacokinetic (PBPK) Models ...

    Science.gov (United States)

    EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. This report describes and demonstrates techniques necessary to extrapolate and incorporate in vitro derived metabolic rate constants in PBPK models. It also includes two case study examples designed to demonstrate the applicability of such data for health risk assessment and addresses the quantification, extrapolation and interpretation of advanced biochemical information on human interindividual variability of chemical metabolism for risk assessment application. It comprises five chapters; topics and results covered in the first four chapters have been published in the peer reviewed scientific literature. Topics covered include: Data Quality ObjectivesExperimental FrameworkRequired DataTwo example case studies that develop and incorporate in vitro metabolic rate constants in PBPK models designed to quantify human interindividual variability to better direct the choice of uncertainty factors for health risk assessment. This report is intended to serve as a reference document for risk assors to use when quantifying, extrapolating, and interpretating advanced biochemical information about human interindividual variability of chemical metabolism.

  15. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  16. Grey-Box Modelling of Pharmacokinetic /Pharmacodynamic Systems

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Jacobsen, Judith L.; Pedersen, Oluf

    2004-01-01

    Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising way of modelling PK/PD systems. The concept behind grey-box modelling is based on combining physiological knowledge along with information from data in the estimation of model parameters. Grey-box modelling...

  17. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants, a population pharmacokinetic modelling approach.

    Science.gov (United States)

    Marsot, Amélie; Brevaut-Malaty, Véronique; Vialet, Renaud; Boulamery, Audrey; Bruguerolle, Bernard; Simon, Nicolas

    2014-08-01

    Phenobarbital is widely used for treatment of neonatal seizures. Its optimal use in neonates and young infants requires information regarding pharmacokinetics. The objective of this study is to characterize the absolute bioavailability of phenobarbital in neonates and young infants, a pharmacokinetic parameter which has not yet been investigated. Routine clinical pharmacokinetic data were retrospectively collected from 48 neonates and infants (weight: 0.7-10 kg; patient's postnatal age: 0-206 days; GA: 27-42 weeks) treated with phenobarbital, who were administered as intravenous or suspension by oral routes and hospitalized in a paediatric intensive care unit. Total mean dose of 4.6 mg/kg (3.1-10.6 mg/kg) per day was administered by 30-min infusion or by oral route. Pharmacokinetic analysis was performed using a nonlinear mixed-effect population model software). Data were modelled with an allometric pharmacokinetic model, using three-fourths scaling exponent for clearance (CL). The population typical mean [per cent relative standard error (%RSE)] values for CL, apparent volume of distribution (Vd ) and bioavailability (F) were 0.0054 L/H/kg (7%), 0.64 L/kg (15%) and 48.9% (22%), respectively. The interindividual variability of CL, Vd , F (%RSE) and residual variability (%RSE) was 17% (31%), 50% (27%), 39% (27%) and 7.2 mg/L (29%), respectively. The absolute bioavailability of phenobarbital in neonates and infants was estimated. The dose should be increased when switching from intravenous to oral administration. © 2013 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.

  18. Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics homogeneous and heterogeneous approaches

    CERN Document Server

    Macheras, Panos

    2016-01-01

    The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this new second edition book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with epirical, compartmental, and stochastic pharmacokinetic models, with two new chapters, one on fractional pharmacokinetics and one on bioequivalence; and the fourth mainly with classical and nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. This second edition has new information on reaction limited models of dissolution, non binary biopharmaceutic classification system, time varying models, and interf...

  19. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  20. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis : Model development and validation of existing models

    NARCIS (Netherlands)

    Gomes, Anna; van der Wijk, Lars; Proost, Johannes H; Sinha, Bhanu; Touw, Daan J

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for

  1. Modeling of corneal and retinal pharmacokinetics after periocular drug administration.

    Science.gov (United States)

    Amrite, Aniruddha C; Edelhauser, Henry F; Kompella, Uday B

    2008-01-01

    To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation-based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0.99) with the observed values in

  2. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  3. Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics homogeneous and heterogeneous approaches

    CERN Document Server

    Macheras, Panos

    2006-01-01

    The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with empirical, compartmental, and stochastic pharmacokinetic models, and the fourth mainly with nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. Many examples are used to illustrate the intrinsic complexity of drug administration related phenomena in the human, justifying the use of advanced modeling methods. This timely and useful book will appeal to graduate students and researchers in pharmacology, pharmaceutical scienc...

  4. Pharmacokinetic modeling of therapies for systemic lupus erythematosus

    OpenAIRE

    Yang, Xiaoyan; Sherwin, Catherine MT; Yu, Tian; Yellepeddi, Venkata K; Brunner, Hermine I; Vinks, Alexander A

    2015-01-01

    With the increasing use of different types of therapies in treating autoimmune diseases such as systemic lupus erythematosus (SLE), there is a need to utilize pharmacokinetic (PK) strategies to optimize the clinical outcome of these treatments. Various PK analysis approaches, including population PK modeling and physiologically based PK modeling, have been used to evaluate drug PK characteristics and population variability or to predict drug PK profiles in a mechanistic manner. This review ou...

  5. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of

  6. The Influence of Normalization Weight in Population Pharmacokinetic Covariate Models.

    Science.gov (United States)

    Goulooze, Sebastiaan C; Völler, Swantje; Välitalo, Pyry A J; Calvier, Elisa A M; Aarons, Leon; Krekels, Elke H J; Knibbe, Catherijne A J

    2018-03-23

    In covariate (sub)models of population pharmacokinetic models, most covariates are normalized to the median value; however, for body weight, normalization to 70 kg or 1 kg is often applied. In this article, we illustrate the impact of normalization weight on the precision of population clearance (CL pop ) parameter estimates. The influence of normalization weight (70, 1 kg or median weight) on the precision of the CL pop estimate, expressed as relative standard error (RSE), was illustrated using data from a pharmacokinetic study in neonates with a median weight of 2.7 kg. In addition, a simulation study was performed to show the impact of normalization to 70 kg in pharmacokinetic studies with paediatric or obese patients. The RSE of the CL pop parameter estimate in the neonatal dataset was lowest with normalization to median weight (8.1%), compared with normalization to 1 kg (10.5%) or 70 kg (48.8%). Typical clearance (CL) predictions were independent of the normalization weight used. Simulations showed that the increase in RSE of the CL pop estimate with 70 kg normalization was highest in studies with a narrow weight range and a geometric mean weight away from 70 kg. When, instead of normalizing with median weight, a weight outside the observed range is used, the RSE of the CL pop estimate will be inflated, and should therefore not be used for model selection. Instead, established mathematical principles can be used to calculate the RSE of the typical CL (CL TV ) at a relevant weight to evaluate the precision of CL predictions.

  7. A Review on Pharmacokinetic Modeling and the Effects of Environmental Stressors on Pharmacokinetics for Operational Medicine: Operational Pharmacokinetics

    Science.gov (United States)

    2009-09-01

    Manning et al. 1986), which may cause physiological changes. For example, emotional distress may lead to elevated heart rate, blood pressure and...related changes in renal functions were reported during a Stroop word color conflict test (Fauvel, Hadj-Aissa et al. 1991). Emotional stressors could...M. Skee, et al. (2001). "Pharmacokinetics of norelgestromin and ethinyl estradiol delivered by a contraceptive patch (Ortho Evra (TM)/Evra (TM

  8. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Science.gov (United States)

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  9. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    Science.gov (United States)

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  10. Evaluation of pharmacokinetic model designs for subcutaneous infusion of insulin aspart

    DEFF Research Database (Denmark)

    Mansell, Erin J.; Schmidt, Signe; Docherty, Paul D.

    2017-01-01

    Effective mathematical modelling of continuous subcutaneous infusion pharmacokinetics should aid understanding and control in insulin therapy. Thorough analysis of candidate model performance is important for selecting the appropriate models. Eight candidate models for insulin pharmacokinetics...... included a range of modelled behaviours, parameters and complexity. The models were compared using clinical data from subjects with type 1 diabetes with continuous subcutaneous insulin infusion. Performance of the models was compared through several analyses: R2 for goodness of fit; the Akaike Information...

  11. WORKSHOP ON APPLICATION OF STATISTICAL METHODS TO BIOLOGICALLY-BASED PHARMACOKINETIC MODELING FOR RISK ASSESSMENT

    Science.gov (United States)

    Biologically-based pharmacokinetic models are being increasingly used in the risk assessment of environmental chemicals. These models are based on biological, mathematical, statistical and engineering principles. Their potential uses in risk assessment include extrapolation betwe...

  12. Prediction of the Pharmacokinetics, Pharmacodynamics, and Efficacy of a Monoclonal Antibody, Using a Physiologically Based Pharmacokinetic FcRn Model

    Science.gov (United States)

    Chetty, Manoranjenni; Li, Linzhong; Rose, Rachel; Machavaram, Krishna; Jamei, Masoud; Rostami-Hodjegan, Amin; Gardner, Iain

    2015-01-01

    Although advantages of physiologically based pharmacokinetic models (PBPK) are now well established, PBPK models that are linked to pharmacodynamic (PD) models to predict pharmacokinetics (PK), PD, and efficacy of monoclonal antibodies (mAbs) in humans are uncommon. The aim of this study was to develop a PD model that could be linked to a physiologically based mechanistic FcRn model to predict PK, PD, and efficacy of efalizumab. The mechanistic FcRn model for mAbs with target-mediated drug disposition within the Simcyp population-based simulator was used to simulate the pharmacokinetic profiles for three different single doses and two multiple doses of efalizumab administered to virtual Caucasian healthy volunteers. The elimination of efalizumab was modeled with both a target-mediated component (specific) and catabolism in the endosome (non-specific). This model accounted for the binding between neonatal Fc receptor (FcRn) and efalizumab (protective against elimination) and for changes in CD11a target concentration. An integrated response model was then developed to predict the changes in mean Psoriasis Area and Severity Index (PASI) scores that were measured in a clinical study as an efficacy marker for efalizumab treatment. PASI scores were approximated as continuous and following a first-order asymptotic progression model. The reported steady state asymptote (Y ss) and baseline score [Y (0)] was applied and parameter estimation was used to determine the half-life of progression (Tp) of psoriasis. Results suggested that simulations using this model were able to recover the changes in PASI scores (indicating efficacy) observed during clinical studies. Simulations of both single dose and multiple doses of efalizumab concentration-time profiles as well as suppression of CD11a concentrations recovered clinical data reasonably well. It can be concluded that the developed PBPK FcRn model linked to a PD model adequately predicted PK, PD, and efficacy of efalizumab. PMID

  13. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    Directory of Open Access Journals (Sweden)

    Moiz Mumtaz

    2012-01-01

    Full Text Available Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures.

  14. Development of good modelling practice for phsiologically based pharmacokinetic models for use in risk assessment: The first steps

    Science.gov (United States)

    The increasing use of tissue dosimetry estimated using pharmacokinetic models in chemical risk assessments in multiple countries necessitates the need to develop internationally recognized good modelling practices. These practices would facilitate sharing of models and model eva...

  15. Rational Design of Glucose-Responsive Insulin Using Pharmacokinetic Modeling.

    Science.gov (United States)

    Bakh, Naveed A; Bisker, Gili; Lee, Michael A; Gong, Xun; Strano, Michael S

    2017-11-01

    A glucose responsive insulin (GRI) is a therapeutic that modulates its potency, concentration, or dosing of insulin in relation to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. Current GRI design lacks a theoretical basis on which to base fundamental design parameters such as glucose reactivity, dissociation constant or potency, and in vivo efficacy. In this work, an approach to mathematically model the relevant parameter space for effective GRIs is induced, and design rules for linking GRI performance to therapeutic benefit are developed. Well-developed pharmacokinetic models of human glucose and insulin metabolism coupled to a kinetic model representation of a freely circulating GRI are used to determine the desired kinetic parameters and dosing for optimal glycemic control. The model examines a subcutaneous dose of GRI with kinetic parameters in an optimal range that results in successful glycemic control within prescribed constraints over a 24 h period. Additionally, it is demonstrated that the modeling approach can find GRI parameters that enable stable glucose levels that persist through a skipped meal. The results provide a framework for exploring the parameter space of GRIs, potentially without extensive, iterative in vivo animal testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    Science.gov (United States)

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. © The Author(s) 2013.

  17. A Mathematical Model of the Effect of Immunogenicity on Therapeutic Protein Pharmacokinetics

    OpenAIRE

    Chen, Xiaoying; Hickling, Timothy; Kraynov, Eugenia; Kuang, Bing; Parng, Chuenlei; Vicini, Paolo

    2013-01-01

    A mathematical pharmacokinetic/anti-drug-antibody (PK/ADA) model was constructed for quantitatively assessing immunogenicity for therapeutic proteins. The model is inspired by traditional pharmacokinetic/pharmacodynamic (PK/PD) models, and is based on the observed impact of ADA on protein drug clearance. The hypothesis for this work is that altered drug PK contains information about the extent and timing of ADA generation. By fitting drug PK profiles while accounting for ADA-mediated drug cle...

  18. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  19. A Pharmacokinetic Model of a Tissue Implantable Cortisol Sensor.

    Science.gov (United States)

    Lee, Michael A; Bakh, Naveed; Bisker, Gili; Brown, Emery N; Strano, Michael S

    2016-12-01

    Cortisol is an important glucocorticoid hormone whose biochemistry influences numerous physiological and pathological processes. Moreover, it is a biomarker of interest for a number of conditions, including posttraumatic stress disorder, Cushing's syndrome, Addison's disease, and others. An implantable biosensor capable of real time monitoring of cortisol concentrations in adipose tissue may revolutionize the diagnosis and treatment of these disorders, as well as provide an invaluable research tool. Toward this end, a mathematical model, informed by the physiological literature, is developed to predict dynamic cortisol concentrations in adipose, muscle, and brain tissues, where a significant number of important processes with cortisol occur. The pharmacokinetic model is applied to both a prototypical, healthy male patient and a previously studied Cushing's disease patient. The model can also be used to inform the design of an implantable sensor by optimizing the sensor dissociation constant, apparent delay time, and magnitude of the sensor output versus system dynamics. Measurements from such a sensor would help to determine systemic cortisol levels, providing much needed insight for proper medical treatment for various cortisol-related conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics.

    Science.gov (United States)

    Heuberger, Jules A A C; Guan, Zheng; Oyetayo, Olubukayo-Opeyemi; Klumpers, Linda; Morrison, Paul D; Beumer, Tim L; van Gerven, Joop M A; Cohen, Adam F; Freijer, Jan

    2015-02-01

    Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

  1. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    Science.gov (United States)

    Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei

    2016-01-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  2. Pharmacokinetic model of myocardial 99mTc-sestamibi washout

    International Nuclear Information System (INIS)

    Watanabe, Tsubasa; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Hara, Masatake

    2013-01-01

    Technetium-99m sestamibi ( 99m Tc-MIBI) scintigraphy has been reported to be a functional imaging tool for in vivo detection of mitochondrial dysfunction in myocardium and multidrug resistance-associated protein expression in tumors. The purpose of this study was to propose a clinically applicable pharmacokinetic model with metabolic equilibrium of 99m Tc-MIBI and to evaluate the accuracy of the model. For this study, eight healthy men received 99m Tc-MIBI scintigraphy. The planar images were obtained at 0.25, 0.5, 1, 2, 3, 4, 5, and 6 h after 99m Tc-MIBI injection. The measured time series 99m Tc-MIBI counts were fitted to our model by nonlinear regression analysis. The predictive performance of the model was determined by comparing the residuals between measured and predicted values. We obtained a good regression by fitting data from 0.25 to 6 h after 99m Tc-MIBI injection, with excellent correlation between measured and predicted 99m Tc-MIBI counts (R 2 =0.9792) and a slope near unity. The 95% confidence interval of the mean prediction error included 0, which means that the prediction was not significantly biased. The precision of the prediction was also excellent. Our model shows good predictive capacity, with favorable bias and accuracy. By comparing the predictive values of this model with measured values, mitochondrial 99m Tc-MIBI washout can be quantified. 99m Tc-MIBI washout rates are reported to be a promising method for evaluating cardiac function in patients with cardiac diseases and P-glycoprotein expression in tumor cells. Therefore, this quantification could be useful for mitochondrial functional imaging, especially in patients with cardiac diseases or tumors. (author)

  3. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models.

    Science.gov (United States)

    Moda, Tiago L; Torres, Leonardo G; Carrara, Alexandre E; Andricopulo, Adriano D

    2008-10-01

    The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, blood-brain barrier and water solubility). http://www.pkdb.ifsc.usp.br

  4. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  5. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP)

    DEFF Research Database (Denmark)

    Viby-Mogensen, J.; Østergaard, D.; Donati, F.

    2000-01-01

    Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design......Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design...

  6. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. In Silico Ocular Pharmacokinetic Modeling: Delivery of Topical FK962 to Retina.

    Science.gov (United States)

    Mori, Ayumi; Yabuta, Chiho; Kishimoto, Yayoi; Kozai, Seiko; Ohtori, Akira; Shearer, Thomas R; Azuma, Mitsuyoshi

    2017-09-01

    To establish the in silico ocular pharmacokinetic modeling for eye drops, and to simulate the dose regimen for FK962 in human choroid/retinal diseases. Pharmacokinetics for FK962 in vivo was performed by a single instillation of drops containing 0.1% 14 C-FK962 in rabbit eyes. Permeation of FK962 across the cornea, sclera, and choroid/retina was measured in vitro. Neurite elongation by FK962 was measured in cultured rat retinal ganglion cells. Parameters from the experimental data were used in an improved in silico model of ocular pharmacokinetics of FK962 in man. The mean concentration of FK962 in ocular tissues predicted by in silico modeling was consistent with in vivo results, validating the in silico model. FK962 rapidly penetrated into the anterior and posterior segments of the eye and then diffused into the vitreous body. The in silico pharmacokinetic modeling also predicted that a dose regimen of 0.0054% FK962 twice per day would produce biologically effective concentrations of FK962 in the choroid/retina, where FK962 facilitates rat neurite elongation. Our in silico model for ocular pharmacokinetics is useful (1) for predicting drug concentrations in specific ocular tissues after topical instillation, and (2) for suggesting the optimal dose regimens for eye drops. The pharmacodynamics for FK962 produced by this model may be useful for clinical trials against retinal neuropathy.

  8. A computer-aided framework for development, identification andmanagement of physiologically-based pharmacokinetic models

    DEFF Research Database (Denmark)

    Heitzig, Martina; Linninger, Andreas; Sin, Gürkan

    2014-01-01

    The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling...

  9. Population pharmacokinetics of artesunate and dihydroartemisinin following single- and multiple-dosing of oral artesunate in healthy subjects

    Directory of Open Access Journals (Sweden)

    Kirsch Lee E

    2009-12-01

    Full Text Available Abstract Background The population pharmacokinetics of artesunate (AS and its active metabolite dihydroartemisinin (DHA were studied in healthy subjects receiving single- or multiple-dosing of AS orally either in combination with pyronaridine (PYR or as a monotherapy with or without food. Methods Data from 118 concentration-time profiles arising from 91 healthy Korean subjects were pooled from four Phase I clinical studies. Subjects received 2-5 mg/kg of single- and multiple-dosing of oral AS either in combination with PYR or as a monotherapy with or without food. Plasma AS and DHA were measured simultaneously using a validated liquid chromatography- mass spectrometric method with a lower limit of quantification of 1 ng/mL for both AS and DHA. Nonlinear mixed-effect modelling was used to obtain the pharmacokinetic and variability (inter-individual and residual variability parameter estimates. Results A novel parent-metabolite pharmacokinetic model consisting of a dosing compartment, a central compartment for AS, a central compartment and a peripheral compartment for DHA was developed. AS and DHA data were modelled simultaneously assuming stoichiometric conversion to DHA. AS was rapidly absorbed with a population estimate of absorption rate constant (Ka of 3.85 h-1. The population estimates of apparent clearance (CL/F and volume of distribution (V2/F for AS were 1190 L/h with 36.2% inter-individual variability (IIV and 1210 L with 57.4% IIV, respectively. For DHA, the population estimates of apparent clearance (CLM/F and central volume of distribution (V3/F were 93.7 L/h with 28% IIV and 97.1 L with 30% IIV, respectively. The population estimates of apparent inter-compartmental clearance (Q/F and peripheral volume of distribution (V4/F for DHA were 5.74 L/h and 18.5 L, respectively. Intake of high-fat and high-caloric meal prior to the drug administration resulted in 84% reduction in Ka. Body weight impacted CLM/F, such that a unit change in

  10. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models

    Science.gov (United States)

    van der Wijk, Lars; Proost, Johannes H.; Sinha, Bhanu; Touw, Daan J.

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  11. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    Directory of Open Access Journals (Sweden)

    Anna Gomes

    Full Text Available Gentamicin shows large variations in half-life and volume of distribution (Vd within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1 creating an optimal model for endocarditis patients; and 2 assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE and Median Absolute Prediction Error (MDAPE were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358 renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076 L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68% as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37% and standard (MDPE -0.90%, MDAPE 4.82% models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to

  12. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    International Nuclear Information System (INIS)

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-01-01

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses

  13. Metoprolol Dose Equivalence in Adult Men and Women Based on Gender Differences: Pharmacokinetic Modeling and Simulations

    Directory of Open Access Journals (Sweden)

    Andy R. Eugene

    2016-11-01

    Full Text Available Recent meta-analyses and publications over the past 15 years have provided evidence showing there are considerable gender differences in the pharmacokinetics of metoprolol. Throughout this time, there have not been any research articles proposing a gender stratified dose-adjustment resulting in an equivalent total drug exposure. Metoprolol pharmacokinetic data was obtained from a previous publication. Data was modeled using nonlinear mixed effect modeling using the MONOLIX software package to quantify metoprolol concentration–time data. Gender-stratified dosing simulations were conducted to identify equivalent total drug exposure based on a 100 mg dose in adults. Based on the pharmacokinetic modeling and simulations, a 50 mg dose in adult women provides an approximately similar metoprolol drug exposure to a 100 mg dose in adult men.

  14. The pharmacokinetic profile of synthetic cathinones in a pregnancy model.

    Science.gov (United States)

    Strange, Lauren G; Kochelek, Kerri; Keasling, Robert; Brown, Stacy D; Pond, Brooks B

    2017-09-01

    In recent years, the abuse of synthetic cathinones or 'bath salts' has become a major public health concern. Although these compounds were initially sold legally and labeled "not for human consumption", the 'bath salts' are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the 'bath salts' in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive

  15. Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2016-10-01

    Full Text Available This work aimed to characterize the mammary gland pharmacokinetics of cefquinome after an intramammary administration and integrate pharmacokinetic/pharmacodynamic model. The pharmacokinetic profiles of cefquinome in gland tissue were measured using high performance liquid chromatograph. Therapeutic regimens covered various dosages ranging from 25 to 800 μg/gland and multiple dosing intervals of 8, 12, and 24 h. The in vivo bacterial killing activity elevated when dosage increased or when dosing intervals were shortened. The best antibacterial effect was demonstrated by a mean 1.5 log10CFU/gland visible count reduction. On the other hand, the results showed that the percentage of time duration of drug concentration exceeding the MIC during a dose interval (%T > MIC was generally 100% because of the influence of drug distribution caused by the blood-milk barrier. Therefore, pharmacokinetic/pharmacodynamic parameter of the ratio of area under the concentration-time curve over 24 h to the MIC (AUC0-24/MIC was used to describe the efficacy of cefquinome instead of %T > MIC. When the magnitude of AUC0-24/MIC exceeding 16571.55 h•mL/g, considerable activity of about 1.5 log10CFU/g gland bacterial count reduction was observed in vivo. Based on the Monte Carlo simulation, the clinical recommended regimen of three infusions of 75 mg per quarter every 12 h can achieve a 76.67% cure rate in clinical treatment of bovine mastitis caused by Staphylococcus aureus infection.

  16. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  17. Influence of covariate distribution on the predictive performance of pharmacokinetic models in paediatric research

    Science.gov (United States)

    Piana, Chiara; Danhof, Meindert; Della Pasqua, Oscar

    2014-01-01

    Aims The accuracy of model-based predictions often reported in paediatric research has not been thoroughly characterized. The aim of this exercise is therefore to evaluate the role of covariate distributions when a pharmacokinetic model is used for simulation purposes. Methods Plasma concentrations of a hypothetical drug were simulated in a paediatric population using a pharmacokinetic model in which body weight was correlated with clearance and volume of distribution. Two subgroups of children were then selected from the overall population according to a typical study design, in which pre-specified body weight ranges (10–15 kg and 30–40 kg) were used as inclusion criteria. The simulated data sets were then analyzed using non-linear mixed effects modelling. Model performance was assessed by comparing the accuracy of AUC predictions obtained for each subgroup, based on the model derived from the overall population and by extrapolation of the model parameters across subgroups. Results Our findings show that systemic exposure as well as pharmacokinetic parameters cannot be accurately predicted from the pharmacokinetic model obtained from a population with a different covariate range from the one explored during model building. Predictions were accurate only when a model was used for prediction in a subgroup of the initial population. Conclusions In contrast to current practice, the use of pharmacokinetic modelling in children should be limited to interpolations within the range of values observed during model building. Furthermore, the covariate point estimate must be kept in the model even when predictions refer to a subset different from the original population. PMID:24433411

  18. Influence of Erroneous Patient Records on Population Pharmacokinetic Modeling and Individual Bayesian Estimation

    NARCIS (Netherlands)

    van der Meer, Aize Franciscus; Touw, Daniel J.; Marcus, Marco A. E.; Neef, Cornelis; Proost, Johannes H.

    2012-01-01

    Background: Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual

  19. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion

    NARCIS (Netherlands)

    J.W. Mouton (Johan); A.A. Vinks; N.C. Punt

    1997-01-01

    textabstractWe developed and applied pharmacokinetic-pharmacodynamic (PK-PD) models to characterize in vitro bacterial rate of killing as a function of ceftazidime concentrations over time. For PK-PD modeling, data obtained during continuous and intermittent infusion of

  20. A physiologically-based pharmacokinetic(PB-PK) model for ethylene dibromide : relevance of extrahepatic metabolism

    NARCIS (Netherlands)

    Hissink, A M; Wormhoudt, L.W.; Sherratt, P.J.; Hayes, D.J.; Commandeur, J N; Vermeulen, N P; van Bladeren, P.J.

    A physiologically-based pharmacokinetic (PB-PK) model was developed for ethylene dibromide (1,2-dibromoethane, EDB) for rats and humans, partly based on previously published in vitro data (Ploemen et al., 1997). In the present study, this PB-PK model has been validated for the rat. In addition, new

  1. A physiologically-based pharmacokinetic (PB-PK) model for ethylene dibromide : relevance of extrahepatic metabolism

    NARCIS (Netherlands)

    Hissink, A.M.; Wormhoudt, L.W.; Sherratt, P.J.; Hayes, J.D.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Bladeren, P.J. van

    2000-01-01

    A physiologically-based pharmacokinetic (PB-PK) model was developed for ethylene dibromide (1,2-dibromoethane, EDB) for rats and humans, partly based on previously published in vitro data (Ploemen et al., 1997). In the present study, this PB-PK model has been validated for the rat. In addition, new

  2. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making

    Science.gov (United States)

    The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has t...

  3. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin.

    Science.gov (United States)

    Jolling, Koen; Perez Ruixo, Juan Jose; Hemeryck, Alex; Vermeulen, An; Greway, Tony

    2005-04-01

    The aim of this study was to develop a population pharmacokinetic model for interspecies allometric scaling of pegylated r-HuEPO (PEG-EPO) pharmacokinetics to man. A total of 927 serum concentrations from 193 rats, 6 rabbits, 34 monkeys, and 9 dogs obtained after a single dose of PEG-EPO, administered by the i.v. (dose range: 12.5-550 microg/kg) and s.c. (dose range: 12.5-500 microg/kg) routes, were pooled in this analysis. An open two-compartment model with first-order absorption and lag time (Tlag) and linear elimination from the central compartment was fitted to the data using the NONMEM V software. Body weight (WT) was used as a scaling factor and the effect of brain weight (BW), sex, and pregnancy status on the pharmacokinetic parameters was investigated. The final model was evaluated by means of a non-parametric bootstrap analysis and used to predict the PEG-EPO pharmacokinetic parameters in healthy male subjects. The systemic clearance (CL) in males was estimated to be 4.08WT1.030xBW-0.345 ml/h. In females, the CL was 90.7% of the CL in males. The volumes of the central (Vc) and the peripheral (Vp) compartment were characterized as 57.8WT0.959 ml, and 48.1WT1.150 ml, respectively. Intercompartmental flow was estimated at 2.32WT0.930 ml/h. Absorption rate constant (Ka) was estimated at 0.0538WT-0.149. The absolute s.c. bioavailability F was calculated at 52.5, 80.2, and 49.4% in rat, monkey, and dog, respectively. The interindividual variability in the population pharmacokinetic parameters was fairly low (parametric bootstrap confirmed the accuracy of the NONMEM estimates. The mean model predicted pharmacokinetic parameters in healthy male subjects of 70 kg were estimated at: CL: 26.2 ml/h; Vc: 3.6l; Q: 286 l/h; Vp: 6.9l, and Ka: 0.031 h-1. The population pharmacokinetic model developed was appropriate to describe the time course of PEG-EPO serum concentrations and their variability in different species. The model predicted pharmacokinetics of PEG-EPO in

  4. Application of in Vitro Biotransformation Data and Pharmacokinetic Modeling to Risk Assessment

    Science.gov (United States)

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  5. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  6. Quantification of metoprolol beta 2-adrenoceptor antagonism in asthmatic patients by pharmacokinetic-pharmacodynamic modelling

    NARCIS (Netherlands)

    Braat, M. C.; Jonkers, R. E.; van Boxtel, C. J.

    1992-01-01

    An integrated pharmacokinetic-pharmacodynamic model was used to quantify the beta 2-blocking activity of metoprolol in seven asthmatic patients. The patients received a subcutaneous dose of terbutaline on two consecutive days. On day 1 they were pretreated with placebo and on day 2 with metoprolol

  7. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    Science.gov (United States)

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  8. A pharmacokinetic-pharmacodynamic model of morphine exposure and subsequent morphine consumption in postoperative pain

    DEFF Research Database (Denmark)

    Juul, Rasmus Vestergaard; Nyberg, Joakim; Lund, Trine Meldgaard

    2016-01-01

    Purpose To characterize the pharmacokinetic-pharmacodynamic (PK-PD) relationship between exposure of morphine and subsequent morphine consumption and to develop simulation tools for model validation. Methods Dose, formulation and time of morphine administration was available from a published study...

  9. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.

    Science.gov (United States)

    Li, Jian; Chen, Rong; Yao, Qing-Yu; Liu, Sheng-Jun; Tian, Xiu-Yun; Hao, Chun-Yi; Lu, Wei; Zhou, Tian-Yan

    2018-03-01

    Dexamethasone (DEX) is the substrate of CYP3A. However, the activity of CYP3A could be induced by DEX when DEX was persistently administered, resulting in auto-induction and time-dependent pharmacokinetics (pharmacokinetics with time-dependent clearance) of DEX. In this study we investigated the pharmacokinetic profiles of DEX after single or multiple doses in human breast cancer xenograft nude mice and established a semi-mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for characterizing the time-dependent PK of DEX as well as its anti-cancer effect. The mice were orally given a single or multiple doses (8 mg/kg) of DEX, and the plasma concentrations of DEX were assessed using LC-MS/MS. Tumor volumes were recorded daily. Based on the experimental data, a two-compartment model with first order absorption and time-dependent clearance was established, and the time-dependence of clearance was modeled by a sigmoid E max equation. Moreover, a semi-mechanism-based PK/PD model was developed, in which the auto-induction effect of DEX on its metabolizing enzyme CYP3A was integrated and drug potency was described using an E max equation. The PK/PD model was further used to predict the drug efficacy when the auto-induction effect was or was not considered, which further revealed the necessity of adding the auto-induction effect into the final PK/PD model. This study established a semi-mechanism-based PK/PD model for characterizing the time-dependent pharmacokinetics of DEX and its anti-cancer effect in breast cancer xenograft mice. The model may serve as a reference for DEX dose adjustments or optimization in future preclinical or clinical studies.

  10. Application of Pharmacokinetics Modelling to Predict Human Exposure of a Cationic Liposomal Subunit Antigen Vaccine System

    Directory of Open Access Journals (Sweden)

    Raj K. S. Badhan

    2017-12-01

    Full Text Available The pharmacokinetics of a liposomal subunit antigen vaccine system composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA and the immunostimulatory agent trehalose 6,6-dibehenate (TDB (8:1 molar ratio combined with the Ag85B-ESAT-6 (H1 antigen were modelled using mouse in-vivo data. Compartment modelling and physiologically based pharmacokinetics (PBPK were used to predict the administration site (muscle and target site (lymph temporal concentration profiles and factors governing these. Initial estimates using compartmental modelling established that quadriceps pharmacokinetics for the liposome demonstrated a long half-life (22.6 days compared to the associated antigen (2.62 days. A mouse minimal-PBPK model was developed and successfully predicted quadriceps liposome and antigen pharmacokinetics. Predictions for the popliteal lymph node (PLN aligned well at earlier time-points. A local sensitivity analysis highlighted that the predicted AUCmuscle was sensitive to the antigen degradation constant kdeg (resulting in a 3-log change more so than the fraction escaping the quadriceps (fe (resulting in a 10-fold change, and the predicted AUCPLN was highly sensitive to fe. A global sensitivity analysis of the antigen in the muscle demonstrated that model predictions were within the 50th percentile for predictions and showed acceptable fits. To further translate in-vitro data previously generated by our group, the mouse minimal-PBPK model was extrapolated to humans and predictions made for antigen pharmacokinetics in muscle and PLN. Global analysis demonstrated that both kdeg and fe had a minimal impact on the resulting simulations in the muscle but a greater impact in the PLN. In summary, this study has predicted the in-vivo fate of DDA:TDB:H1 in humans and demonstrated the roles that formulation degradation and fraction escaping the depot site can play upon the overall depot effect within the site of administration.

  11. A distributed delay approach for modeling delayed outcomes in pharmacokinetics and pharmacodynamics studies.

    Science.gov (United States)

    Hu, Shuhua; Dunlavey, Michael; Guzy, Serge; Teuscher, Nathan

    2018-04-01

    A distributed delay approach was proposed in this paper to model delayed outcomes in pharmacokinetics and pharmacodynamics studies. This approach was shown to be general enough to incorporate a wide array of pharmacokinetic and pharmacodynamic models as special cases including transit compartment models, effect compartment models, typical absorption models (either zero-order or first-order absorption), and a number of atypical (or irregular) absorption models (e.g., parallel first-order, mixed first-order and zero-order, inverse Gaussian, and Weibull absorption models). Real-life examples were given to demonstrate how to implement distributed delays in Phoenix ® NLME™ 8.0, and to numerically show the advantages of the distributed delay approach over the traditional methods.

  12. Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs.

    Science.gov (United States)

    Munir, Anum; Azam, Shumaila; Fazal, Sahar; Bhatti, A I

    2018-08-14

    The Physiologically based pharmacokinetic (PBPK) modeling is a supporting tool in drug discovery and improvement. Simulations produced by these models help to save time and aids in examining the effects of different variables on the pharmacokinetics of drugs. For this purpose, Sheila and Peters suggested a PBPK model capable of performing simulations to study a given drug absorption. There is a need to extend this model to the whole body entailing all another process like distribution, metabolism, and elimination, besides absorption. The aim of this scientific study is to hypothesize a WB-PBPK model through integrating absorption, distribution, metabolism, and elimination processes with the existing PBPK model.Absorption, distribution, metabolism, and elimination models are designed, integrated with PBPK model and validated. For validation purposes, clinical records of few drugs are collected from the literature. The developed WB-PBPK model is affirmed by comparing the simulations produced by the model against the searched clinical data. . It is proposed that the WB-PBPK model may be used in pharmaceutical industries to create of the pharmacokinetic profiles of drug candidates for better outcomes, as it is advance PBPK model and creates comprehensive PK profiles for drug ADME in concentration-time plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Pharmacokinetic-pharmacodynamic modeling of diclofenac in normal and Freund's complete adjuvant-induced arthritic rats

    Science.gov (United States)

    Zhang, Jing; Li, Pei; Guo, Hai-fang; Liu, Li; Liu, Xiao-dong

    2012-01-01

    Aim: To characterize pharmacokinetic-pharmacodynamic modeling of diclofenac in Freund's complete adjuvant (FCA)-induced arthritic rats using prostaglandin E2 (PGE2) as a biomarker. Methods: The pharmacokinetics of diclofenac was investigated using 20-day-old arthritic rats. PGE2 level in the rats was measured using an enzyme immunoassay. A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to illustrate the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production. The inhibition of diclofenac on lipopolysaccharide (LPS)-induced PGE2 production in blood cells was investigated in vitro. Results: Similar pharmacokinetic behavior of diclofenac was found both in normal and FCA-induced arthritic rats. Diclofenac significantly decreased the plasma levels of PGE2 in both normal and arthritic rats. The inhibitory effect on PGE2 levels in the plasma was in proportion to the plasma concentration of diclofenac. No delay in the onset of inhibition was observed, suggesting that the effect compartment was located in the central compartment. An inhibitory effect sigmoid Imax model was selected to characterize the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production in vivo. The Imax model was also used to illustrate the inhibition of diclofenac on LPS-induced PGE2 production in blood cells in vitro. Conclusion: Arthritis induced by FCA does not alter the pharmacokinetic behaviors of diclofenac in rats, but the pharmacodynamics of diclofenac is slightly affected. A PK-PD model characterizing an inhibitory effect sigmoid Imax can be used to fit the relationship between the plasma PGE2 and diclofenac levels in both normal rats and FCA-induced arthritic rats. PMID:22842736

  14. Pharmacokinetic study of medicinal polymers: models based on dextrans

    International Nuclear Information System (INIS)

    Kulakov, V.N.; Pimenova, G.N.; Matveev, V.A.; Sedov, V.V.; Vasil'ev, A.E.

    1986-01-01

    The authors study the pharmacokinetics of dextrans with various molecular masses modified by fluorescein isothiocyanate (FITC) using a radioisotope method. The radionuclide 125 I was selectively bound to a FITC residue attached to the polysaccharide by electrochemical iodination under potentiostatic conditions. In the experiments, dextrans modified by FITC were labeled with 125 I (DF- 125 I) by electrochemical iodination. The separation of DF- 125 I and FITC from ionic forms of the radionuclide not bound to the polymer was carried out. The properties of the samples obtained are presented. The radioactivity accumulated in the rate organs and urine studied are shown. The features of DF- 125 I behavior in the blood and liver are examined

  15. A comprehensive physiologically based pharmacokinetic knowledgebase and web-based interface for rapid model ranking and querying

    Science.gov (United States)

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific pa...

  16. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer

    International Nuclear Information System (INIS)

    Franiel, Tobias; Hamm, Bernd; Hricak, Hedvig

    2011-01-01

    Dynamic contrast-enhanced MRI enables noninvasive analysis of prostate vascularization as well as tumour angiogenesis and capillary permeability characteristics in prostate cancers. Pharmacokinetic models summarizing the complex information provided by signal intensity-time curves for a few quantitative pharmacokinetic parameters are increasingly being used in the routine clinical setting. This review consists of two parts. The first part discusses the advantages and disadvantages of the MR pulse sequences that can be used for performing DCE-MRI and also of the most widely used pharmacokinetic parameters and models and the parameters they describe. The second part outlines the range of current and potential future clinical applications of DCE-MRI and pharmacokinetic parametric maps in patients with prostate cancer, with reference to the current scientific literature on the topic. The potential clinical applications of DCE-MRI for prostate cancer include detection, localization, and staging, differentiation of recurrent cancer and estimation of the patient's prognosis, as well as monitoring of treatment response. (orig.)

  17. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  18. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  19. Pharmacokinetic models relevant to toxicity and metabolism for uranium in humans and animals

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1989-01-01

    Models to predict short and long term accumulation of uranium in the human kidney are reviewed and summarised. These are generally first order linear compartmental models or pseudo-pharmacokinetic models such as the retention model of the ICRP. Pharmacokinetic models account not only for transfer from blood to organs, but also recirculation from the organ to blood. The most recent information on mammalian and human metabolism of uranium is used to establish a revised model. The model is applied to the short term accumulation of uranium in the human kidney after a single rapid dosage to the blood, such as that obtained by inhaling UF6 or its hydrolysis products. It is shown that the maximum accumulation in the kidney under these conditions is less than the fraction of the material distributed from the blood to kidney if a true pharmacokinetic model is used. The best coefficients applicable to man in the authors' view are summarised in model V. For a half-time of two days in the mammalian kidney, the maximum concentration in kidney is 75% of that predicted by a retention model such as that used by the ICRP following a single acute intake. We conclude that one must use true pharmacokinetic models, which incorporate recirculation from the organs to the blood, in order to realistically predict time dependent uptake in the kidneys and other organs. Information is presented showing that the half-time for urinary excretion of soluble uranium in man after inhalation of UF6 is about one quarter of a day. (author)

  20. Sequential updating of a new dynamic pharmacokinetic model for caffeine in premature neonates.

    Science.gov (United States)

    Micallef, Sandrine; Amzal, Billy; Bach, Véronique; Chardon, Karen; Tourneux, Pierre; Bois, Frédéric Y

    2007-01-01

    Caffeine treatment is widely used in nursing care to reduce the risk of apnoea in premature neonates. To check the therapeutic efficacy of the treatment against apnoea, caffeine concentration in blood is an important indicator. The present study was aimed at building a pharmacokinetic model as a basis for a medical decision support tool. In the proposed model, time dependence of physiological parameters is introduced to describe rapid growth of neonates. To take into account the large variability in the population, the pharmacokinetic model is embedded in a population structure. The whole model is inferred within a Bayesian framework. To update caffeine concentration predictions as data of an incoming patient are collected, we propose a fast method that can be used in a medical context. This involves the sequential updating of model parameters (at individual and population levels) via a stochastic particle algorithm. Our model provides better predictions than the ones obtained with models previously published. We show, through an example, that sequential updating improves predictions of caffeine concentration in blood (reduce bias and length of credibility intervals). The update of the pharmacokinetic model using body mass and caffeine concentration data is studied. It shows how informative caffeine concentration data are in contrast to body mass data. This study provides the methodological basis to predict caffeine concentration in blood, after a given treatment if data are collected on the treated neonate.

  1. Pharmacokinetic-Pharmacodynamic Modeling to Study the Antipyretic Effect of Qingkailing Injection on Pyrexia Model Rats

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2016-03-01

    Full Text Available Qingkailing injection (QKLI is a modern Chinese medicine preparation derived from a well-known classical formulation, An-Gong-Niu-Huang Wan. Although the clinical efficacy of QKLI has been well defined, its severe adverse drug reactions (ADRs were extensively increased. Through thorough attempts to reduce ADR rates, it was realized that the effect-based rational use plays the key role in clinical practices. Hence, the pharmacokinetic-pharmacodynamic (PK-PD model was introduced in the present study, aiming to link the pharmacokinetic profiles with the therapeutic outcomes of QKLI, and subsequently to provide valuable guidelines for the rational use of QKLI in clinical settings. The PK properties of the six dominant ingredients in QKLI were compared between the normal treated group (NTG and the pyrexia model group (MTG. Rectal temperatures were measured in parallel with blood sampling for NTG, MTG, model control group (MCG, and normal control group (NCG. Baicalin and geniposide exhibited appropriate PK parameters, and were selected as the PK markers to map the antipyretic effect of QKLI. Then, a PK-PD model was constructed upon the bacalin and geniposide plasma concentrations vs. the rectal temperature variation values, by a two-compartment PK model with a Sigmoid Emax PD model to explain the time delay between the drug plasma concentration of PK markers and the antipyretic effect after a single dose administration of QKLI. The findings obtained would provide fundamental information to propose a more reasonable dosage regimen and improve the level of individualized drug therapy in clinical settings.

  2. Phenobarbital in intensive care unit pediatric population: predictive performances of population pharmacokinetic model.

    Science.gov (United States)

    Marsot, Amélie; Michel, Fabrice; Chasseloup, Estelle; Paut, Olivier; Guilhaumou, Romain; Blin, Olivier

    2017-10-01

    An external evaluation of phenobarbital population pharmacokinetic model described by Marsot et al. was performed in pediatric intensive care unit. Model evaluation is an important issue for dose adjustment. This external evaluation should allow confirming the proposed dosage adaptation and extending these recommendations to the entire intensive care pediatric population. External evaluation of phenobarbital published population pharmacokinetic model of Marsot et al. was realized in a new retrospective dataset of 35 patients hospitalized in a pediatric intensive care unit. The published population pharmacokinetic model was implemented in nonmem 7.3. Predictive performance was assessed by quantifying bias and inaccuracy of model prediction. Normalized prediction distribution errors (NPDE) and visual predictive check (VPC) were also evaluated. A total of 35 infants were studied with a mean age of 33.5 weeks (range: 12 days-16 years) and a mean weight of 12.6 kg (range: 2.7-70.0 kg). The model predicted the observed phenobarbital concentrations with a reasonable bias and inaccuracy. The median prediction error was 3.03% (95% CI: -8.52 to 58.12%), and the median absolute prediction error was 26.20% (95% CI: 13.07-75.59%). No trends in NPDE and VPC were observed. The model previously proposed by Marsot et al. in neonates hospitalized in intensive care unit was externally validated for IV infusion administration. The model-based dosing regimen was extended in all pediatric intensive care unit to optimize treatment. Due to inter- and intravariability in pharmacokinetic model, this dosing regimen should be combined with therapeutic drug monitoring. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  3. Application of Physiologically-Based Pharmacokinetic Modeling for the Prediction of Tofacitinib Exposure in Japanese.

    Science.gov (United States)

    Suzuki, Misaki; Tse, Susanna; Hirai, Midori; Kurebayashi, Yoichi

    2017-05-09

    Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population.

  4. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    International Nuclear Information System (INIS)

    Shankaran, Harish; Adeshina, Femi; Teeguarden, Justin G.

    2013-01-01

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the model using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 50 human datasets. • Model predictions are in good agreement with the available pharmacokinetic data. • The model can be used for extrapolating across routes, doses and exposure durations. • We illustrate how the model can be used for developing Provisional Advisory Levels

  5. A Physiologically Based Pharmacokinetic Model for the Oxime TMB-4: Simulation of Rodent and Human Data

    Science.gov (United States)

    2013-01-13

    later, Garrigue and other colleagues (Maurizis et al. 1992) pub- lished an in vitro binding study of TMB-4 with rabbit cartilaginous tissue cultures...as well as fat, kidney, liver, rapidly perfused tissues and slowly perfused tissues . All tissue compartments are diffusion limited. Model...pharmacokinetic data from the literature. The model was parameterized using rat plasma, tissue and urine time course data from intramuscular administration, as

  6. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    Science.gov (United States)

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  7. The sheep as a model of preclinical safety and pharmacokinetic evaluations of candidate microbicides.

    Science.gov (United States)

    Holt, Jonathon D S; Cameron, David; Dias, Nicola; Holding, Jeremy; Muntendam, Alex; Oostebring, Freddy; Dreier, Peter; Rohan, Lisa; Nuttall, Jeremy

    2015-07-01

    When developing novel microbicide products for the prevention of HIV infection, the preclinical safety program must evaluate not only the active pharmaceutical ingredient but also the product itself. To that end, we applied several relatively standard toxicology study methodologies to female sheep, incorporating an assessment of the pharmacokinetics, safety, tolerability, and local toxicity of a dapivirine-containing human vaginal ring formulation (Dapivirine Vaginal Ring-004). We performed a 3-month general toxicology study, a preliminary pharmacokinetic study using drug-loaded vaginal gel, and a detailed assessment of the kinetics of dapivirine delivery to plasma, vaginal, and rectal fluid and rectal, vaginal, and cervical tissue over 28 days of exposure and 3 and 7 days after removal of the ring. The findings of the general toxicology study supported the existing data from both preclinical and clinical studies in that there were no signs of toxicity related to dapivirine. In addition, the presence of the physical dapivirine ring did not alter local or systemic toxicity or the pharmacokinetics of dapivirine. Pharmacokinetic studies indicated that the dapivirine ring produced significant vaginal tissue levels of dapivirine. However, no dapivirine was detected in cervical tissue samples using the methods described here. Plasma and vaginal fluid levels were lower than those in previous clinical studies, while there were detectable dapivirine levels in the rectal tissue and fluid. All tissue and fluid levels tailed off rapidly to undetectable levels following removal of the ring. The sheep represents a very useful model for the assessment of the safety and pharmacokinetics of microbicide drug delivery devices, such as the vaginal ring. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Population pharmacokinetics model of THC used by pulmonary route in occasional cannabis smokers.

    Science.gov (United States)

    Marsot, A; Audebert, C; Attolini, L; Lacarelle, B; Micallef, J; Blin, O

    Cannabis is the most widely used illegal drug in the world. Delta-9-tetrahydrocannabinol (THC) is the main source of the pharmacological effect. Some studies have been carried out and showed significant variability in the described models as the values of the estimated pharmacokinetic parameters. The objective of this study was to develop a population pharmacokinetic model for THC in occasional cannabis smokers. Twelve male volunteers (age: 20-28years, body weight: 62.5-91.0kg), tobacco (3-8 cigarette per day) and cannabis occasional smokers were recruited from the local community. After ad libitum smoking cannabis cigarette according a standardized procedure, 16 blood samples up to 72h were collected. Population pharmacokinetic analysis was performed using a non-linear mixed effects model, with NONMEM software. Demographic and biological data were investigated as covariates. A three-compartment model with first-order elimination fitted the data. The model was parameterized in terms of micro constants and central volume of distribution (V 1 ). Normal ALT concentration (6.0 to 45.0IU/l) demonstrated a statistically significant correlation with k 10 . The mean values (%Relative Standard Error (RSE)) for k 10 , k 12 , k 21 , k 23 , k 32 and V 1 were 0.408h -1 (48.8%), 4.070h -1 (21.4%), 0.022h -1 (27.0%), 1.070h -1 (14.3%), 1.060h -1 (16.7%) and 19.10L (39.7%), respectively. We have developed a population pharmacokinetic model able to describe the quantitative relationship between administration of inhaled doses of THC and the observed plasma concentrations after smoking cannabis. In addition, a linear relationship between ALT concentration and value of k 10 has been described and request further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies. This report summarizes some of the recent progress in characterizing uncertainty and variability in physi...

  10. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  11. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Science.gov (United States)

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  12. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban.

    Science.gov (United States)

    Willmann, Stefan; Becker, Corina; Burghaus, Rolf; Coboeken, Katrin; Edginton, Andrea; Lippert, Jörg; Siegmund, Hans-Ulrich; Thelen, Kirstin; Mück, Wolfgang

    2014-01-01

    Venous thromboembolism has been increasingly recognised as a clinical problem in the paediatric population. Guideline recommendations for antithrombotic therapy in paediatric patients are based mainly on extrapolation from adult clinical trial data, owing to the limited number of clinical trials in paediatric populations. The oral, direct Factor Xa inhibitor rivaroxaban has been approved in adult patients for several thromboembolic disorders, and its well-defined pharmacokinetic and pharmacodynamic characteristics and efficacy and safety profiles in adults warrant further investigation of this agent in the paediatric population. The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for rivaroxaban doses of 10 and 20 mg in adults and to scale this model to the paediatric population (0-18 years) to inform the dosing regimen for a clinical study of rivaroxaban in paediatric patients. Experimental data sets from phase I studies supported the development and qualification of an adult PBPK model. This adult PBPK model was then scaled to the paediatric population by including anthropometric and physiological information, age-dependent clearance and age-dependent protein binding. The pharmacokinetic properties of rivaroxaban in virtual populations of children were simulated for two body weight-related dosing regimens equivalent to 10 and 20 mg once daily in adults. The quality of the model was judged by means of a visual predictive check. Subsequently, paediatric simulations of the area under the plasma concentration-time curve (AUC), maximum (peak) plasma drug concentration (C max) and concentration in plasma after 24 h (C 24h) were compared with the adult reference simulations. Simulations for AUC, C max and C 24h throughout the investigated age range largely overlapped with values obtained for the corresponding dose in the adult reference simulation for both body weight-related dosing regimens. However

  13. Accelerated pharmacokinetic map determination for dynamic contrast enhanced MRI using frequency-domain based Tofts model.

    Science.gov (United States)

    Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam

    2014-01-01

    Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.

  14. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    Science.gov (United States)

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. © 2015 John Wiley & Sons Ltd.

  15. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon

    2016-01-01

    PURPOSE: Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA......-induced inflammatory hyperalgesia. METHODS: A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration...

  16. Population pharmacokinetic modelling of the enterohepatic recirculation of diclofenac and rofecoxib in rats

    Science.gov (United States)

    Huntjens, D R H; Strougo, A; Chain, A; Metcalf, A; Summerfield, S; Spalding, D J M; Danhof, M; Della Pasqua, O

    2008-01-01

    Background and purpose: Enterohepatic recirculation (EHC) is a common pharmacokinetic phenomenon that has been poorly modelled in animals. The presence of EHC leads to the appearance of multiple peaks in the concentration-time profile and increased exposure, which may have implications for drug effect and extrapolation across species. The aim of this investigation was to develop a population pharmacokinetic model for diclofenac and rofecoxib that describes EHC and to assess its consequence for the pharmacodynamics of both drugs. Experimental approach: The pharmacokinetics of diclofenac and rofecoxib was characterized in male rats following intravenous, intraperitoneal and oral administration. Blood samples were collected at pre-defined time points after dosing to determine plasma concentrations over time. A parametric approach using nonlinear mixed effects modelling was applied to describe EHC, whilst simulations were used to evaluate its impact on PGE2 inhibition. Key results: For diclofenac, EHC was described by a compartmental model with periodic transfer rate and metabolite formation rate. For rofecoxib, EHC modelling required a conversion compartment with first-order recycling rate and lag time. Based on model predictions, EHC causes an increase of 95% in the systemic exposure to diclofenac and of 15% in the exposure to rofecoxib. In addition, EHC prolongs the inhibition of PGE2 and increases the duration of the anti-inflammatory effect (24 h for rofecoxib 10 mg kg−1) without affecting maximum inhibition. Conclusions and implications: Our findings show the relevance of exploring EHC in a quantitative manner to accurately interpret pharmacodynamic findings in vivo, in particular when scaling across species. PMID:18193075

  17. Population Pharmacokinetic Model for Vancomycin Used in Open Heart Surgery: Model-Based Evaluation of Standard Dosing Regimens.

    Science.gov (United States)

    Alqahtani, Saeed A; Alsultan, Abdullah S; Alqattan, Hussain M; Eldemerdash, Ahmed; Albacker, Turki B

    2018-04-23

    The purpose of this study was to investigate the population pharmacokinetics of vancomycin in patients undergoing open heart surgery. In this observational pharmacokinetic study, multiple blood samples were drawn over a 48-h period of intravenous vancomycin in patients who were undergoing open heart surgery. Blood samples were analysed using the Architect i4000SR Immunoassay Analyzer. Population pharmacokinetic models were developed using Monolix 4.4 software. Pharmacokinetic-pharmacodynamic (PK-PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. One-hundred and sixty-eight blood samples were analysed from 28 patients. The pharmacokinetics of vancomycin was best described by a two-compartment model with between-subject variability in CL, V of the central compartment, and V of the peripheral compartment. CL and central compartment V of vancomycin were related to CL CR , body weight, and albumin concentration. Dosing simulations showed that standard dosing regimens of 1 and 1.5 g failed to achieve the PK-PD target of AUC 0--24 /MIC > 400 for an MIC of 1 mg/L, while high weight-based dosing regimens were able to achieve the PK-PD target. In summary, administration of standard doses of 1 and 1.5 g of vancomycin two times daily provided inadequate antibiotic prophylaxis in patients undergoing open heart surgery. The same findings were obtained when 15 mg/kg and 20 mg/kg doses of vancomycin were administered. Achieving the PK-PD target required higher doses (25 mg/kg and 30 mg/kg) of vancomycin. Copyright © 2018 American Society for Microbiology.

  18. A physiologically based pharmacokinetic model of vitamin D ...

    Science.gov (United States)

    See attached 1. Please explain the nature of the study that resulted in this paper or presentation. This study presents an application of PBPK modeling to describe the formation of Vitamin D3. Recently, there has been a surge of interest in the health benefits of Vitamin D3, from heart health to cancer. Despite its importance, a PBPK model for Vitamin D3 does not exist in the literature. Due to its anti-inflammatory properties, Vitamin D3 is being prescribed to patients suffering diverse chronic illnesses. Because of its importance in several conditions, we thought it was important to understand its metabolic formation from precursors and distribution in the body. Time course data from the literature following the effect of oral supplementation in healthy adults was used to develop the first PBPK model for Vitamin D formation. 2. Why was this study done? The goal of this paper was to develop a PBPK model describing the metabolic formation of Vitamin D (as Vitamin D3) when receiving oral supplementation. In the process of developing the PBPK model, several novel concepts were used. For example, due to the extreme lipophilic nature of this vitamin (derived from cholesterol), partition coefficients were varied as a function of dose and time. Also, the regulation of enzymatic metabolism by its product (Vitamin D) was also examined. The result was a very different approach used, and a PBPK model that describes an essential vitamin in the body. 3. What is t

  19. First principles pharmacokinetic modeling: A quantitative study on Cyclosporin

    DEFF Research Database (Denmark)

    Mošat', Andrej; Lueshen, Eric; Heitzig, Martina

    2013-01-01

    renal and hepatic clearances, elimination half-life, and mass transfer coefficients, to establish drug biodistribution dynamics in all organs and tissues. This multi-scale model satisfies first principles and conservation of mass, species and momentum.Prediction of organ drug bioaccumulation...... as a function of cardiac output, physiology, pathology or administration route may be possible with the proposed PBPK framework. Successful application of our model-based drug development method may lead to more efficient preclinical trials, accelerated knowledge gain from animal experiments, and shortened time-to-market...

  20. Application of pharmacokinetic modeling to the radiation dosimetry of hepatobiliary agents

    International Nuclear Information System (INIS)

    Loberg, M.D.; Buddemeyer, E.U.

    1981-01-01

    Dosimetry calculations based on biodistribution data from lower animal species often inadequately approximate the true dosimetry in humans and seldom apply in the presence of human pathology. An alternative approach is to use animal data for the limited purpose of developing a pharmacokinetic model describing the various compartments and their interconnecting pathways. To the extent that components are similarly connected in man, the model can be used to compute cumulative concentrations (μCi-h/gm) in humans by using the compartment masses and rate constants appropriate for man. In this manner dose estimates can be obtained which are less dependent upon the species from which the model was derived. The altered radiation dose in certain disease states having a known relationship to the model can also be predicted with confidence. This work reports the development in dogs of a four-compartment model which accurately describes the in-vivo distribution of Tc/sup 99m/-HIDA. The pharmacokinetic model was used to predict the kinetics of the HIDA analog which would yield clinically useful information, while minimizing patient radiation exposure

  1. Pharmacokinetic models relevant to toxicity and metabolism for uranium in humans and animals

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Lipsztein, J.; Bertelli, L.

    1988-01-01

    The aim of this paper is to summarize pharmacokinetic models of uranium metabolism. Fortunately, others have recently reviewed metabolic models of all types, not just pharmacokinetic models. Their papers should be consulted for greater biological detail than is possible here. Improvements in the models since these other papers are noted. Models for assessing the biological consequences of exposure should account for the kinetics of intake by ingestion, inhalation, and injection, and the chemical form of uranium; predict the time dependent concentration in red blood cells, plasma, urine, kidney, bone and other organs (or compartments); and be adaptable to calculating these concentrations for varying regimens of intake. The biological parameters in the models come from metabolic data in humans and animals. Some of these parameters are reasonably well defined. For example, the cumulative urinary excretion at 24 hours post injection of soluble uranium in man is about 70%, the absorbed fraction for soluble uranium ingested by man in drinking water during normal dietary conditions is about 1%, and the half time in the mammalian kidney is several days. 17 refs., 8 figs

  2. A physiologically based pharmacokinetic model of vitamin D

    Science.gov (United States)

    Despite the plethora of studies discussing the benefits of vitamin D on physiological functioning, few mathematical models of vitamin D predict the response of the body on low-concentration supplementation of vitamin D under sunlight-restricted conditions. This study developed a ...

  3. Modeling Pharmacokinetics and Pharmacodynamics of Glucagon for Simulation of the Glucoregulatory System in Patients with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye

    The goal of this thesis was to develop a pharmacokinetics/pharmacodynamics (PK/PD) model for glucagon. The proposed PD model included multiplication of the stimulating glucagon effect and inhibiting insulin effect on the endogenous glucose production (EGP). Moreover, the concentration-response re......The goal of this thesis was to develop a pharmacokinetics/pharmacodynamics (PK/PD) model for glucagon. The proposed PD model included multiplication of the stimulating glucagon effect and inhibiting insulin effect on the endogenous glucose production (EGP). Moreover, the concentration...

  4. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    Science.gov (United States)

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  6. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A general method to determine sampling windows for nonlinear mixed effects models with an application to population pharmacokinetic studies.

    Science.gov (United States)

    Foo, Lee Kien; McGree, James; Duffull, Stephen

    2012-01-01

    Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Supporting Cumulative Risk Assessment

    Science.gov (United States)

    Tan, Yu-Mei; Clewell, Harvey; Campbell, Jerry; Andersen, Melvin

    2011-01-01

    Simultaneous or sequential exposure to multiple chemicals may cause interactions in the pharmacokinetics (PK) and/or pharmacodynamics (PD) of the individual chemicals. Such interactions can cause modification of the internal or target dose/response of one chemical in the mixture by other chemical(s), resulting in a change in the toxicity from that predicted from the summation of the effects of the single chemicals using dose additivity. In such cases, conducting quantitative cumulative risk assessment for chemicals present as a mixture is difficult. The uncertainties that arise from PK interactions can be addressed by developing physiologically based pharmacokinetic (PBPK) models to describe the disposition of chemical mixtures. Further, PK models can be developed to describe mechanisms of action and tissue responses. In this article, PBPK/PD modeling efforts conducted to investigate chemical interactions at the PK and PD levels are reviewed to demonstrate the use of this predictive modeling framework in assessing health risks associated with exposures to complex chemical mixtures. PMID:21655141

  9. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure

    NARCIS (Netherlands)

    Boerleider, R. Z.; Olie, J. D N; van Eijkeren, J. C H; Bos, P. M J; Hof, B. G H; de Vries, I.; Bessems, J. G M; Meulenbelt, J.; Hunault, C. C.

    2015-01-01

    Introduction: Physiologically based pharmacokinetic (PBPK) models may be useful in emergency risk assessment, after acute exposure to chemicals, such as dichloromethane (DCM). We evaluated the applicability of three PBPK models for human risk assessment following a single exposure to DCM: one model

  10. Limitations of Single Slice Dynamic Contrast Enhanced MR in Pharmacokinetic Modeling of Bone Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni P. (Dept. of Radiology, The Norfolk and Norwich Univ. Hospital, Norwich, Norfolk (United Kingdom)); White, Lawrence M.; Bleakney, Robert R. (Dept. of Medical Imaging, Mount Sinai Hospital, Toronto, ON (Canada)); Kandel, Rita (Dept. of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON (Canada)); Noseworthy, Michael (Health Sciences Centre, Faculty of Health Sciences, McMaster Univ., Hamilton, ON (Canada)); Lee, Shepstone (Institute of Health, Univ. of East Anglia, Norwich, Norfolk (United Kingdom)); Blackstein, Martin E. (Dept. of Oncology, Mount Sinai Hospital, Toronto, ON (Canada)); Wunder, Jay (Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON (Canada))

    2009-06-15

    Background: Single slice dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) appears to provide perfusion data about sarcomas in vivo that correlate with tumor necrosis on equivalent pathological sections. However, sarcomas are heterogeneous and therefore single slice DCE-MRI may not correlate with total tumor necrosis. Purpose: To determine whether changes in pharmacokinetic modeling of DCE-MRI, during chemotherapy for primary bone sarcomas correlated with histological measures of total tumor necrosis. Material and Methods: Twelve patients with appendicular primary bone sarcomas were included in the study. Each patient had DCE-MRI before, and after completion, of pre-operative chemotherapy. The mean arterial slope (A), endothelial permeability coefficient (Ktrans), and extravascular extracellular volume (Ve) were derived from each data set using a modified two compartment pharmacokinetic model. Total tumor necrosis rates were compared with changes in A, Ktrans, and Ve. Results: Six patients had total tumor necrosis of =90% and six had a measure of <90%. The median percentage changes in A, Ktrans, and Ve for the =90% necrosis group were -52.5% (-83 to 6), -66% (-82 to 26), and 23.5% (-26 to 40), respectively. For the <90% necrosis group, A = - 35% (-75 to 132), Ktrans= - 53 (-66 to 149) and Ve= - 14.5% (-42 to 40). One patient with >90% necrosis had increases in all three measures. Comparison of the two groups generated P-values of 0.699 for A, 0.18 for Ktrans, and 0.31 for Ve. Conclusion: There was no statistically significant correlation between changes in pharmacokinetic perfusion parameters and total tumor necrosis. When using single slice DCE-MRI heterogeneous histology of primary bone sarcomas and repair mediated angiogenesis might both be confounding factors

  11. Myotoxicity of Gemfibrozil in Cynomolgus Monkey Model and Its Relationship to Pharmacokinetic Properties

    Science.gov (United States)

    Liu, Aiming; Xie, Shuilin; Sun, He; Gonzalez, Frank J.; Wei, Xiaoxiong; Dai, Renke

    2008-01-01

    Fibrate drugs are PPARα agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reported associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPARα agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity and pharmacokinetics. Six Cynomolgus monkeys were dosed with gemfibrozil twice daily at 600 mg/kg/day for the first two periods (P1 and P2, 8 days and 9 days respectively) and 300 mg/kg/day for the third period (P3, 14 days). Creatine kinase and myoglobin were measured, together with hepatotoxicity and nephrotoxicity markers. Behavioral responses were recorded for indication of toxicity. Pharmacokinetics was carried out following the 16th dosage of P1 and 17th dosage of P2 when myotoxicity was identified. Multivariable data analysis was employed to explore the relationship between pharmacokinetic parameters and myotoxicity markers. Consequently, myotoxicity occurred in monkey #2 (M2) and M6 in P1, M3 and M4 in P2, M3 and M6 in P3. Data analysis showed T80-150 (sustained time above the given concentration) contributed for myotoxicity discriminance and correlated with myotoxicity risk. This study revealed Cynomolgus monkey may be a good animal model for myotoxicity evaluation with sensitivity, reproducibility and similarities to humans. More interestingly they exhibited a much higher incidence of myotoxicity than that of human. Sustained high drug concentration plays an important role for the occurrence of myotoxicity. This may suggest an influence of drug transport and metabolism on myotoxicity. PMID:19150455

  12. Myotoxicity of gemfibrozil in Cynomolgus monkey model and its relationship to pharmacokinetic properties

    International Nuclear Information System (INIS)

    Liu Aiming; Xie Shuilin; Sun He; Gonzalez, Frank J.; Wei Xiaoxiong; Dai Renke

    2009-01-01

    Fibrate drugs are PPARα agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reportedly associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPARα agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity and pharmacokinetics. Six Cynomolgus monkeys were dosed with gemfibrozil twice daily at 600 mg/kg/day for the first two periods (P1 and P2, 8 days and 9 days respectively) and 300 mg/kg/day for the third period (P3, 14 days). Creatine kinase and myoglobin were measured, together with hepatotoxicity and nephrotoxicity markers. Behavioral responses were recorded for indication of toxicity. Pharmacokinetics was carried out following the 16th dosage of P1 and 17th dosage of P2 when myotoxicity was identified. Multivariable data analysis was employed to explore the relationship between pharmacokinetic parameters and myotoxicity markers. Consequently, myotoxicity occurred in monkey no. 2 (M2) and M6 in P1, M3 and M4 in P2, M3 and M6 in P3. Data analysis showed T80-150 (sustained time above the given concentration) contributed for myotoxicity discriminance and correlated with myotoxicity risk. This study revealed Cynomolgus monkey may be a good animal model for myotoxicity evaluation with sensitivity, reproducibility and similarities to humans. More interestingly, they exhibited a much higher incidence of myotoxicity than that of humans. Sustained high drug concentration plays an important role for the occurrence of myotoxicity. This may suggest an influence of drug transport and metabolism on myotoxicity

  13. Myotoxicity of gemfibrozil in Cynomolgus monkey model and its relationship to pharmacokinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aiming, Liu; Shuilin, Xie [Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663 (China); He, Sun [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Gonzalez, Frank J [National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Xiaoxiong, Wei [Medpace, Inc., Cincinnati, OH 45212 (United States); Dai Renke [Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663 (China)], E-mail: dai_renke@gibh.ac.cn

    2009-03-15

    Fibrate drugs are PPAR{alpha} agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reportedly associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPAR{alpha} agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity and pharmacokinetics. Six Cynomolgus monkeys were dosed with gemfibrozil twice daily at 600 mg/kg/day for the first two periods (P1 and P2, 8 days and 9 days respectively) and 300 mg/kg/day for the third period (P3, 14 days). Creatine kinase and myoglobin were measured, together with hepatotoxicity and nephrotoxicity markers. Behavioral responses were recorded for indication of toxicity. Pharmacokinetics was carried out following the 16th dosage of P1 and 17th dosage of P2 when myotoxicity was identified. Multivariable data analysis was employed to explore the relationship between pharmacokinetic parameters and myotoxicity markers. Consequently, myotoxicity occurred in monkey no. 2 (M2) and M6 in P1, M3 and M4 in P2, M3 and M6 in P3. Data analysis showed T80-150 (sustained time above the given concentration) contributed for myotoxicity discriminance and correlated with myotoxicity risk. This study revealed Cynomolgus monkey may be a good animal model for myotoxicity evaluation with sensitivity, reproducibility and similarities to humans. More interestingly, they exhibited a much higher incidence of myotoxicity than that of humans. Sustained high drug concentration plays an important role for the occurrence of myotoxicity. This may suggest an influence of drug transport and metabolism on myotoxicity.

  14. Statistical identifiability and convergence evaluation for nonlinear pharmacokinetic models with particle swarm optimization.

    Science.gov (United States)

    Kim, Seongho; Li, Lang

    2014-02-01

    The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish, E-mail: harish.shankaran@pnnl.gov [Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Adeshina, Femi [National Homeland Security Research Center, United States Environmental Protection Agency, Washington, DC 20460 (United States); Teeguarden, Justin G. [Systems Toxicology Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-12-15

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the model using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 < 1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (t90 ∼ 300 min); the absorption of intranasal Fentanyl was relatively rapid (t90 ∼ 20–40 min); and the various oral transmucosal routes had intermediate absorption rates (t90 ∼ 160–300 min). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs. - Highlights: • We develop a Fentanyl PBPK model for relating external dose to internal levels. • We calibrate the model to oral and inhalation exposures using > 50 human datasets. • Model predictions are in good agreement with the available

  16. Prediction of a Therapeutic Dose for Buagafuran, a Potent Anxiolytic Agent by Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Starting from Pharmacokinetics in Rats and Human

    Directory of Open Access Journals (Sweden)

    Fen Yang

    2017-10-01

    Full Text Available Physiologically based pharmacokinetic (PBPK/pharmacodynamic (PD models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlusTM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.

  17. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    Science.gov (United States)

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  18. Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans.

    Science.gov (United States)

    Lin, Zhoumeng; Li, Mengjie; Gehring, Ronette; Riviere, Jim E

    2015-01-01

    Oxytetracycline (OTC) is a commonly used tetracycline antibiotic in veterinary and human medicine. To establish a quantitative model for predicting OTC plasma and tissue exposure, a permeability-limited multiroute physiologically based pharmacokinetic model was developed in dogs. The model was calibrated with plasma pharmacokinetic data in beagle dogs following single intravenous (5 mg/kg), oral (100 mg/kg), and intramuscular (20 mg/kg) administrations. The model predicted other available dog data well, including drug concentrations in the liver, kidney, and muscle after repeated exposure, and data in the mixed-breed dog. The model was extrapolated to humans and the human model adequately simulated measured plasma OTC concentrations after intravenous (7.14 mg/kg) and oral exposures (6.67 mg/kg). The dog model was applied to predict 24-h OTC area-under-the-curve after three therapeutic treatments. Results were 27.75, 51.76, and 64.17 μg/mL*h in the plasma, and 120.93, 225.64, and 279.67 μg/mL*h in the kidney for oral (100 mg/kg), intravenous (10 mg/kg), and intramuscular (20 mg/kg) administrations, respectively. This model can be used to predict plasma and tissue concentrations to aid in designing optimal therapeutic regimens with OTC in veterinary, and potentially, human medicine; and as a foundation for scaling to other tetracycline antibiotics and to other animal species. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:233-243, 2015. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Population Pharmacokinetic-Pharmacodynamic Modeling of Haloperidol in Patients With Schizophrenia Using Positive and Negative Syndrome Rating Scale

    NARCIS (Netherlands)

    Reddy, Venkatesh Pilla; Kozielska, Magdalena; Johnson, Martin; Mafirakureva, Nyashadzaishe; Vermeulen, An; Liu, Jing; de Greef, Rik; Rujescu, Dan; Groothuis, Geny M. M.; Danhof, Meindert; Proost, Johannes H.

    2013-01-01

    The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model that quantifies the efficacy of haloperidol, accounting for the placebo effect, the variability in exposure-response, and the dropouts. Subsequently, the developed model was utilized to characterize an effective

  20. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model.

    Science.gov (United States)

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads

    2016-05-01

    Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m  = 44.1 mg/kg, V max  = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma  = 16.7 μg/mL, EC 50, brain  = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.

  1. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  2. Pharmacokinetic models of morphine and its metabolites in neonates: Systematic comparisons of models from the literature, and development of a new meta-model

    NARCIS (Netherlands)

    K.R. Knøsgaard (Katrine Rørbæk); D.J.R. Foster (David John Richard); M. Kreilgaard (Mads); E. Sverrisdóttir (Eva); R.N. Upton (Richard Neil); J.N. van den Anker (John)

    2016-01-01

    textabstractMorphine is commonly used for pain management in preterm neonates. The aims of this study were to compare published models of neonatal pharmacokinetics of morphine and its metabolites with a new dataset, and to combine the characteristics of the best predictive models to design a

  3. Semiphysiological versus Empirical Modelling of the Population Pharmacokinetics of Free and Total Cefazolin during Pregnancy

    Directory of Open Access Journals (Sweden)

    J. G. Coen van Hasselt

    2014-01-01

    Full Text Available This work describes a first population pharmacokinetic (PK model for free and total cefazolin during pregnancy, which can be used for dose regimen optimization. Secondly, analysis of PK studies in pregnant patients is challenging due to study design limitations. We therefore developed a semiphysiological modeling approach, which leveraged gestation-induced changes in creatinine clearance (CrCL into a population PK model. This model was then compared to the conventional empirical covariate model. First, a base two-compartmental PK model with a linear protein binding was developed. The empirical covariate model for gestational changes consisted of a linear relationship between CL and gestational age. The semiphysiological model was based on the base population PK model and a separately developed mixed-effect model for gestation-induced change in CrCL. Estimates for baseline clearance (CL were 0.119 L/min (RSE 58% and 0.142 L/min (RSE 44% for the empirical and semiphysiological models, respectively. Both models described the available PK data comparably well. However, as the semiphysiological model was based on prior knowledge of gestation-induced changes in renal function, this model may have improved predictive performance. This work demonstrates how a hybrid semiphysiological population PK approach may be of relevance in order to derive more informative inferences.

  4. Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with malaria

    Directory of Open Access Journals (Sweden)

    Bose Carl

    2011-05-01

    Full Text Available Abstract Background The World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy. However, the effects of pregnancy on the pharmacokinetics of artemisinin derivatives, such as artesunate (AS, are poorly understood. In this analysis, the population pharmacokinetics of oral AS, and its active metabolite dihydroartemisinin (DHA, were studied in pregnant and non-pregnant women at the Kingasani Maternity Clinic in the DRC. Methods Data were obtained from 26 pregnant women in the second (22 - 26 weeks or the third (32 - 36 weeks trimester of pregnancy and from 25 non-pregnant female controls. All subjects received 200 mg AS. Plasma AS and DHA were measured using a validated LC-MS method. Estimates for pharmacokinetic and variability parameters were obtained through nonlinear mixed effects modelling. Results A simultaneous parent-metabolite model was developed consisting of mixed zero-order, lagged first-order absorption of AS, a one-compartment model for AS, and a one-compartment model for DHA. Complete conversion of AS to DHA was assumed. The model displayed satisfactory goodness-of-fit, stability, and predictive ability. Apparent clearance (CL/F and volume of distribution (V/F estimates, with 95% bootstrap confidence intervals, were as follows: 195 L (139-285 L for AS V/F, 895 L/h (788-1045 L/h for AS CL/F, 91.4 L (78.5-109 L for DHA V/F, and 64.0 L/h (55.1-75.2 L/h for DHA CL/F. The effect of pregnancy on DHA CL/F was determined to be significant, with a pregnancy-associated increase in DHA CL/F of 42.3% (19.7 - 72.3%. Conclusions In this analysis, pharmacokinetic modelling suggests that pregnant women have accelerated DHA clearance compared to non-pregnant women receiving orally administered AS. These findings, in conjunction with a previous non-compartmental analysis of the modelled data, provide further evidence that

  5. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    Science.gov (United States)

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  6. Population Pharmacokinetics of Intravenous Paracetamol (Acetaminophen) in Preterm and Term Neonates: Model Development and External Evaluation.

    Science.gov (United States)

    Cook, Sarah F; Roberts, Jessica K; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D; Deutsch, Nina; Williams, Elaine F; Allegaert, Karel; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-01-01

    The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Nonlinear mixed-effects models were constructed from paracetamol concentration-time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1-14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1-28.1). Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations.

  7. Pharmacokinetic Modeling of Voriconazole To Develop an Alternative Dosing Regimen in Children.

    Science.gov (United States)

    Gastine, Silke; Lehrnbecher, Thomas; Müller, Carsten; Farowski, Fedja; Bader, Peter; Ullmann-Moskovits, Judith; Cornely, Oliver A; Groll, Andreas H; Hempel, Georg

    2018-01-01

    The pharmacokinetic variability of voriconazole (VCZ) in immunocompromised children is high, and adequate exposure, particularly in the first days of therapy, is uncertain. A population pharmacokinetic model was developed to explore VCZ exposure in plasma after alternative dosing regimens. Concentration data were obtained from a pediatric phase II study. Nonlinear mixed effects modeling was used to develop the model. Monte Carlo simulations were performed to test an array of three-times-daily (TID) intravenous dosing regimens in children 2 to 12 years of age. A two-compartment model with first-order absorption, nonlinear Michaelis-Menten elimination, and allometric scaling best described the data (maximal kinetic velocity for nonlinear Michaelis-Menten clearance [ V max ] = 51.5 mg/h/70 kg, central volume of distribution [ V 1 ] = 228 liters/70 kg, intercompartmental clearance [ Q ] = 21.9 liters/h/70 kg, peripheral volume of distribution [ V 2 ] = 1,430 liters/70 kg, bioavailability [ F ] = 59.4%, K m = fixed value of 1.15 mg/liter, absorption rate constant = fixed value of 1.19 h -1 ). Interindividual variabilities for V max , V 1 , Q , and F were 63.6%, 45.4%, 67%, and 1.34% on a logit scale, respectively, and residual variability was 37.8% (proportional error) and 0.0049 mg/liter (additive error). Monte Carlo simulations of a regimen of 9 mg/kg of body weight TID simulated for 24, 48, and 72 h followed by 8 mg/kg two times daily (BID) resulted in improved early target attainment relative to that with the currently recommended BID dosing regimen but no increased rate of accumulation thereafter. Pharmacokinetic modeling suggests that intravenous TID dosing at 9 mg/kg per dose for up to 3 days may result in a substantially higher percentage of children 2 to 12 years of age with adequate exposure to VCZ early during treatment. Before implementation of this regimen in patients, however, validation of exposure, safety, and tolerability in a carefully designed

  8. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA.

    Science.gov (United States)

    Lorber, Matthew; Egeghy, Peter P

    2011-10-01

    Models for assessing intakes of perfluorooctanoic acid, PFOA, are described and applied. One model is based on exposure media concentrations and contact rates. This model is applied to general population exposures for adults and 2-year old children. The other model is a simple one-compartment, first-order pharmacokinetic (PK) model. Parameters for this model include a rate of elimination of PFOA and a blood volume of distribution. The model was applied to data from the National Health and Nutritional Examination Survey, NHANES, to backcalculate intakes. The central tendency intake estimate for adults and children based on exposure media concentrations and contact rates were 70 and 26 ng/day, respectively. The central tendency adult intake derived from NHANES data was 56 and 37 ng/day for males and females, respectively. Variability and uncertainty discussions regarding the intake modeling focus on lack of data on direct exposure to PFOA used in consumer products, precursor compounds, and food. Discussions regarding PK modeling focus on the range of blood measurements in NHANES, the appropriateness of the simple PK model, and the uncertainties associated with model parameters. Using the PK model, the 10th and 95th percentile long-term average adult intakes of PFOA are 15 and 130 ng/day.

  9. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment

    Directory of Open Access Journals (Sweden)

    Michael D. Taylor

    2012-01-01

    Full Text Available Recently, a variety of physiologically based pharmacokinetic (PBPK models have been developed for the essential element manganese. This paper reviews the development of PBPK models (e.g., adult, pregnant, lactating, and neonatal rats, nonhuman primates, and adult, pregnant, lactating, and neonatal humans and relevant risk assessment applications. Each PBPK model incorporates critical features including dose-dependent saturable tissue capacities and asymmetrical diffusional flux of manganese into brain and other tissues. Varied influx and efflux diffusion rate and binding constants for different brain regions account for the differential increases in regional brain manganese concentrations observed experimentally. We also present novel PBPK simulations to predict manganese tissue concentrations in fetal, neonatal, pregnant, or aged individuals, as well as individuals with liver disease or chronic manganese inhalation. The results of these simulations could help guide risk assessors in the application of uncertainty factors as they establish exposure guidelines for the general public or workers.

  10. Reconstructing Organophosphorus Pesticide Doses Using the Reversed Dosimetry Approach in a Simple Physiologically-Based Pharmacokinetic Model

    Directory of Open Access Journals (Sweden)

    Chensheng Lu

    2012-01-01

    Full Text Available We illustrated the development of a simple pharmacokinetic (SPK model aiming to estimate the absorbed chlorpyrifos doses using urinary biomarker data, 3,5,6-trichlorpyridinol as the model input. The effectiveness of the SPK model in the pesticide risk assessment was evaluated by comparing dose estimates using different urinary composite data. The dose estimates resulting from the first morning voids appeared to be lower than but not significantly different to those using before bedtime, lunch or dinner voids. We found similar trend for dose estimates using three different urinary composite data. However, the dose estimates using the SPK model for individual children were significantly higher than those from the conventional physiologically based pharmacokinetic (PBPK modeling using aggregate environmental measurements of chlorpyrifos as the model inputs. The use of urinary data in the SPK model intuitively provided a plausible alternative to the conventional PBPK model in reconstructing the absorbed chlorpyrifos dose.

  11. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Hissink, E.M.; Briggs, M.; Weaver, R.; Jochemsen, R.; Jackson, P.; Bertrand, M.; Bladeren, P. van

    2000-01-01

    A strategy is presented to predict interindividual variation in drug plasma levels in vivo by the use of physiologically based pharmacokinetic modeling and human in vitro metabolic parameters, obtained through the combined use of microsomes containing single cytochrome P450 enzymes and a human liver

  12. Development of a Physiologically-Based Pharmacokinetic Model of Trichloroethylene and Its Metabolities for Use in Risk Assessment

    Science.gov (United States)

    2004-09-01

    Stenner , R.D., Merdink, J.L., Fisher, J.W., and Bull, R., Physiologically-based pharmacokinetic model for trichloroethylene considering enterohepatic...B6C3F1 mice. Toxicol. Appl. Pharmacol., 123, 1- 8, 1993. 21. Templin, M.V., Stevens, D.K., Stenner , R.D., Bonate, P.L., Tuman, D., and Bull, R.J

  13. The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene

    NARCIS (Netherlands)

    Hissink, E.M.; Bogaards, J.J.P.; Freidig, A.P.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Bladeren, P.J. van

    2002-01-01

    A physiologically based pharmacokinetic (PBPK) model has been developed for trichloroethylene (1,1,2-trichloroethene, TRI) for rat and humans, based on in vitro metabolic parameters. These were obtained using individual cytochrome P450 and glutathione S-transferase enzymes. The main enzymes involved

  14. Levodopa pharmacokinetic-pharmacodynamic modeling and 6-[F-18]levodopa positron emission tomography in patients with Parkinson's disease

    NARCIS (Netherlands)

    Dietz, M; Harder, S; Graff, J; Kunig, G; Vontobel, P; Leenders, KL; Baas, H

    Objective: Parameters of a pharmacokinetic-pharmacodynamic (PK-PD) model of levodopa have been claimed to reflect the magnitude of the dopaminergic deficit in patients with Parkinson's disease. The aim of this study was to correlate such parameters with positron emission tomography (PET) with

  15. A NOVEL PNYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT

    Science.gov (United States)

    A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711DMA is the major methylated metabolite of inorganic arsenic, a kno...

  16. Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Smith, D. G.; Brennum, L. T.

    2008-01-01

    Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK...

  17. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes for soman in multiple species

    NARCIS (Netherlands)

    Sweeney, R.E.; Langenberg, J.P.; Maxwell, D.M.

    2006-01-01

    A physiologically based pharmacokinetic (PB/PK) model has been developed in advanced computer simulation language (ACSL) to describe blood and tissue concentration-time profiles of the C(±)P(-) stereoisomers of soman after inhalation, subcutaneous and intravenous exposures at low (0.8-1.0 × LD50),

  18. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    Science.gov (United States)

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  19. Physiologically Based Pharmacokinetic Modeling: Methodology, Applications, and Limitations with a Focus on Its Role in Pediatric Drug Development

    Directory of Open Access Journals (Sweden)

    Feras Khalil

    2011-01-01

    Full Text Available The concept of physiologically based pharmacokinetic (PBPK modeling was introduced years ago, but it has not been practiced significantly. However, interest in and implementation of this modeling technique have grown, as evidenced by the increased number of publications in this field. This paper demonstrates briefly the methodology, applications, and limitations of PBPK modeling with special attention given to discuss the use of PBPK models in pediatric drug development and some examples described in detail. Although PBPK models do have some limitations, the potential benefit from PBPK modeling technique is huge. PBPK models can be applied to investigate drug pharmacokinetics under different physiological and pathological conditions or in different age groups, to support decision-making during drug discovery, to provide, perhaps most important, data that can save time and resources, especially in early drug development phases and in pediatric clinical trials, and potentially to help clinical trials become more “confirmatory” rather than “exploratory”.

  20. Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Science.gov (United States)

    Germovsek, Eva; Barker, Charlotte I S; Sharland, Mike; Standing, Joseph F

    2018-04-19

    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.

  1. Physiologically based pharmacokinetics model for estimating urinary excretion of short half-life nuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Konishi, E.; Kusama, T.; Aoki, Y.

    1995-01-01

    The biokinetic model in ICRP 53 is used for calculating absorbed dose to each organ of a patient in nuclear medicine. The ICRP model is a simple compartment model based on human data; however, the model cannot produce the biokinetics of radiopharmaceuticals under various physiological conditions. On the other hand, a physiologically based pharmacokinetics model (PBPK model) can describe the flow of radiopharmaceuticals as a compartment model for any physiological conditions theoretically. The PBPK model was applied especially for the kidney-bladder dynamics, and similar results obtained compared with the ICRP model. This suggests the possibility of the PBPK model for predicting the biokinetics of radiopharmaceuticals under various physiological conditions. (Author)

  2. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim.

    Science.gov (United States)

    Niederalt, Christoph; Kuepfer, Lars; Solodenko, Juri; Eissing, Thomas; Siegmund, Hans-Ulrich; Block, Michael; Willmann, Stefan; Lippert, Jörg

    2018-04-01

    Proteins are an increasingly important class of drugs used as therapeutic as well as diagnostic agents. A generic physiologically based pharmacokinetic (PBPK) model was developed in order to represent at whole body level the fundamental mechanisms driving the distribution and clearance of large molecules like therapeutic proteins. The model was built as an extension of the PK-Sim model for small molecules incorporating (i) the two-pore formalism for drug extravasation from blood plasma to interstitial space, (ii) lymph flow, (iii) endosomal clearance and (iv) protection from endosomal clearance by neonatal Fc receptor (FcRn) mediated recycling as especially relevant for antibodies. For model development and evaluation, PK data was used for compounds with a wide range of solute radii. The model supports the integration of knowledge gained during all development phases of therapeutic proteins, enables translation from pre-clinical species to human and allows predictions of tissue concentration profiles which are of relevance for the analysis of on-target pharmacodynamic effects as well as off-target toxicity. The current implementation of the model replaces the generic protein PBPK model available in PK-Sim since version 4.2 and becomes part of the Open Systems Pharmacology Suite.

  3. Nonlinear mixed effects modelling approach in investigating phenobarbital pharmacokinetic interactions in epileptic patients.

    Science.gov (United States)

    Vučićević, Katarina; Jovanović, Marija; Golubović, Bojana; Kovačević, Sandra Vezmar; Miljković, Branislava; Martinović, Žarko; Prostran, Milica

    2015-02-01

    The present study aimed to establish population pharmacokinetic model for phenobarbital (PB), examining and quantifying the magnitude of PB interactions with other antiepileptic drugs concomitantly used and to demonstrate its use for individualization of PB dosing regimen in adult epileptic patients. In total 205 PB concentrations were obtained during routine clinical monitoring of 136 adult epilepsy patients. PB steady state concentrations were measured by homogeneous enzyme immunoassay. Nonlinear mixed effects modelling (NONMEM) was applied for data analyses and evaluation of the final model. According to the final population model, significant determinant of apparent PB clearance (CL/F) was daily dose of concomitantly given valproic acid (VPA). Typical value of PB CL/F for final model was estimated at 0.314 l/h. Based on the final model, co-therapy with usual VPA dose of 1000 mg/day, resulted in PB CL/F average decrease of about 25 %, while 2000 mg/day leads to an average 50 % decrease in PB CL/F. Developed population PB model may be used in estimating individual CL/F for adult epileptic patients and could be applied for individualizing dosing regimen taking into account dose-dependent effect of concomitantly given VPA.

  4. Population pharmacokinetic modeling of glibenclamide in poorly controlled South African type 2 diabetic subjects

    Directory of Open Access Journals (Sweden)

    Rambiritch V

    2016-07-01

    Full Text Available Virendra Rambiritch,1 Poobalan Naidoo,2 Breminand Maharaj,1 Goonaseelan Pillai3 1University of KwaZulu-Natal, Durban, 2Department of Internal Medicine, RK Khan Regional Hospital, Chatsworth, South Africa; 3Novartis Pharma AG, Basel, Switzerland Aim: The aim of this study was to describe the pharmacokinetics (PK of glibenclamide in poorly controlled South African type 2 diabetic subjects using noncompartmental and model-based methods. Methods: A total of 24 subjects with type 2 diabetes were administered increasing doses (0 mg/d, 2.5 mg/d, 5 mg/d, 10 mg/d, and 20 mg/d of glibenclamide daily at 2-week intervals. Plasma glibenclamide, glucose, and insulin determinations were performed. Blood sampling times were 0 minute, 30 minutes, 60 minutes, 90 minutes, and 120 minutes (post breakfast sampling and 240 minutes, 270 minutes, 300 minutes, 330 minutes, 360 minutes, and 420 minutes (post lunch sampling on days 14, 28, 42, 56, and 70 for doses of 0 mg, 2.5 mg, 5.0 mg, 10 mg, and 20 mg, respectively. Blood sampling was performed after the steady state was reached.  A total of 24 individuals in the data set contributed to a total of 841 observation records. The PK was analyzed using noncompartmental analysis methods, which were implemented in WinNonLin®, and population PK analysis using NONMEM®. Glibenclamide concentration data were log transformed prior to fitting. Results: A two-compartmental disposition model was selected after evaluating one-, two-, and three-compartmental models to describe the time course of glibenclamide plasma concentration data. The one-compartment model adequately described the data; however, the two-compartment model provided a better fit. The three-compartment model failed to achieve successful convergence. A more complex model, to account for enterohepatic recirculation that was observed in the data, was unsuccessful. Conclusion: In South African diabetic subjects, glibenclamide demonstrates linear PK and was best

  5. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya

    2011-11-01

    A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. A pharmacokinetic approach to model-guided design of infliximab schedules in ulcerative colitis patients

    Directory of Open Access Journals (Sweden)

    Alejandro Pérez-Pitarch

    2015-03-01

    Full Text Available Background: Infliximab, an anti-tumour necrosis factor approved for treatment of Crohn's disease and ulcerative colitis, is administered at predefined interdose-intervals. On insufficient response or loss of response, treatment can be intensified. The lack or loss of response is likely related to complex pharmacokinetics of infliximab. Aims: To explore optimal dosing strategies of infliximab in treatment-naïve patients with ulcerative colitis through predictive Monte Carlo simulations based on a validated population PK model. Methods: A population of 2,000 treatment-naïve patients was generated by Montecarlo simulation. Six dosing strategies for maintenance therapy were simulated on this population. Strategies 1 and 2 consisted on 5 mg/kg and 6 mg/kg doses, respectively, and 8 weeks inter-dose interval. Strategies 3 and 4 used Individualized doses, adjusted to albumin level, sex and body weight, and a fix inter-dose interval of 8 weeks to achieve a target trough concentration of 5 mg/L or 6 mg/L, respectively. Strategies 5 and 6 used a fix dose of 5 mg/kg and individualized inter-dose intervals, adjusted to the same covariates, to achieve a target concentration, of 5 mg/L or 6 mg/L, respectively. Results: Strategies 2-6 reached trough levels statistically higher than strategy 1 (p < 0.05. Strategy 5 proved to be the best dosing strategy. It was associated with a higher proportion of responder patients than strategy 1 (62 % vs. 40 % without reaching higher peak concentrations. Conclusions: Optimization of maintenance treatment of colitis with infliximab by a pharmacokinetic approach could benefit infliximab-naive patients with ulcerative colitis.

  7. Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia

    Science.gov (United States)

    Popović, Jovan K.; Spasić, Dragan T.; Tošić, Jela; Kolarović, Jovanka L.; Malti, Rachid; Mitić, Igor M.; Pilipović, Stevan; Atanacković, Teodor M.

    2015-05-01

    The aim of this study is to promote a model based on the fractional differential calculus related to the pharmacokinetic individualization of high dose methotrexate treatment in children with acute lymphoblastic leukaemia, especially in high risk patients. We applied two-compartment fractional model on 8 selected cases with the largest number (4-19) of measured concentrations, among 43 pediatric patients received 24-h methotrexate 2-5 g/m2 infusions. The plasma concentrations were determined by fluorescence polarization immunoassay. Our mathematical procedure, designed by combining Post's and Newton's method, was coded in Mathematica 8.0 and performed on Fujicu Celsius M470-2 PC. Experimental data show that most of the measured values of methotrexate were in decreasing order. However, in certain treatments local maximums were detected. On the other hand, integer order compartmental models do not give values which fit well with the observed data. By the use of our model, we obtained better results, since it gives more accurate behavior of the transmission, as well as the local maximums which were recognized in methotrexate monitoring. It follows from our method that an additional test with a small methotrexate dose can be suggested for the fractional system parameter identification and the prediction of a possible pattern with a full dose in the case of high risk patients. A special feature of the fractional model is that it can also recognize and better fit an observed non-monotonic behavior. A new parameter determination procedure can be successfully used.

  8. Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats

    International Nuclear Information System (INIS)

    Matthews, Jessica L.; Schultz, Irvin R.; Easterling, Michael R.; Melnick, Ronald L.

    2010-01-01

    A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite α-halocarboxymethylglutathione (αH1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical-and species-specific parameters.

  9. Pharmacokinetic modeling of 4,4'-methylenedianiline released from reused polyurethane dialyzer potting materials.

    Science.gov (United States)

    Do Luu, H M; Hutter, J C

    2000-01-01

    4, 4'-Methylenedianiline (MDA) is a hydrolysis degradation product that can be released from polyurethanes commonly used in medical device applications. MDA is mutagenic and carcinogenic in animals. In humans, it is hepatotoxic, a known contact and respiratory allergen, and a suspected carcinogen. A physiologically based pharmacokinetic (PBPK) model was developed to estimate the absorption, distribution, metabolism, and excretion of MDA in patients exposed to MDA leached from the potting materials of hemodialyzers. A worst-case reuse situation and a single use case were investigated. The PBPK model included five tissue compartments: liver, kidney, gastrointestinal tract, slowly perfused tissues, and richly perfused tissues. Physiological and chemical parameters of a healthy individual used in the model were obtained from the literature. The model was calibrated using previously published kinetic studies of IV administered doses of (14) C-MDA to rats. The model was validated using independent data published for MDA-exposed workers. The PBPK results indicated that dialysis patients who are exposed to MDA released from dialyzers (new or reused) could accumulate low levels of MDA and metabolites (total MDA) over time. Copyright 2000 John Wiley & Sons, Inc.

  10. Pharmacokinetic-Pharmacodynamic modeling of enrofloxacin against Escherichia coli in broilers

    Directory of Open Access Journals (Sweden)

    Sang eKana

    2016-01-01

    Full Text Available The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC of 929 E. coli isolates from broilers to enrofloxacin and ciprofloxacin were determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05µg/mL were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilitzed for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The pharmacokinetics (PKs of enrofloxacin after oral administration at the dose of 10mg/kg body weights (BW in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC method. For intestinal contents after oral administration, the peak concentration (Cmax, the time when the maximum concentration reached (Tmax, and the area under the concentration-time curve (AUC were 21.69~31.69μg/mL, 1.13~1.23h, and 228.97~444.86μg.hr/mL, respectively. The MIC and minimal bactericidal concentration (MBC of enrofloxacin against E. coli (Anhui 112 in Mueller-Hinton (MH broth and intestinal contents were determined to be similar, 0.25μg/mL and 0.5μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid Emax (Hill equation to provide values for intestinal contents of 24h area under concentration–time curve/MIC ratios (AUC0~24h/MIC producing, bacteriostasis (624.94h, bactericidal activity (1065.93h and bacterial eradication (1343.81h. PK/PD modeling was established to

  11. Population Pharmacokinetics of Telapristone (CDB-4124) and its Active Monodemethylated Metabolite CDB-4453, with a Mixture Model for Total Clearance

    OpenAIRE

    Morris, Denise; Podolski, Joseph; Kirsch, Alan; Wiehle, Ronald; Fleckenstein, Lawrence

    2011-01-01

    Telapristone is a selective progesterone antagonist that is being developed for the long-term treatment of symptoms associated with endometriosis and uterine fibroids. The population pharmacokinetics of telapristone (CDB-4124) and CDB-4453 was investigated using nonlinear mixed-effects modeling. Data from two clinical studies (n?=?32) were included in the analysis. A two-compartment (parent) one compartment (metabolite) mixture model (with two populations for apparent clearance) with first-or...

  12. [Application of Fourier amplitude sensitivity test in Chinese healthy volunteer population pharmacokinetic model of tacrolimus].

    Science.gov (United States)

    Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei

    2010-07-01

    In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.

  13. Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy.

    Science.gov (United States)

    Meille, Christophe; Barbolosi, Dominique; Ciccolini, Joseph; Freyer, Gilles; Iliadis, Athanassios

    2016-08-01

    Controlling effects of drugs administered in combination is particularly challenging with a densified regimen because of life-threatening hematological toxicities. We have developed a mathematical model to optimize drug dosing regimens and to redesign the dose intensification-dose escalation process, using densified cycles of combined anticancer drugs. A generic mathematical model was developed to describe the main components of the real process, including pharmacokinetics, safety and efficacy pharmacodynamics, and non-hematological toxicity risk. This model allowed for computing the distribution of the total drug amount of each drug in combination, for each escalation dose level, in order to minimize the average tumor mass for each cycle. This was achieved while complying with absolute neutrophil count clinical constraints and without exceeding a fixed risk of non-hematological dose-limiting toxicity. The innovative part of this work was the development of densifying and intensifying designs in a unified procedure. This model enabled us to determine the appropriate regimen in a pilot phase I/II study in metastatic breast patients for a 2-week-cycle treatment of docetaxel plus epirubicin doublet, and to propose a new dose-ranging process. In addition to the present application, this method can be further used to achieve optimization of any combination therapy, thus improving the efficacy versus toxicity balance of such a regimen.

  14. Population pharmacokinetic/ pharmacodynamic modelling of eltrombopag in healthy volunteers and subjects with chronic liver disease

    Science.gov (United States)

    Farrell, Colm; Hayes, Siobhan C; Wire, Mary; Zhang, Jianping

    2014-01-01

    Aims To characterize the pharmacokinetics (PK)/pharmacodynamics (PD) of eltrombopag in chronic liver disease (CLD). Methods The PK/PD model was developed using data from 79 CLD patients using nonlinear mixed-effects modelling. Results The PK of eltrombopag were described by a two-compartment model with dual sequential first-order absorption. Gender, race and severity of CLD were predictors of the apparent clearance of eltrombopag. The PD of eltrombopag in CLD were adequately described by a four-compartment lifespan model, in which eltrombopag stimulated platelet precursor production rate. East Asian CLD patients were less sensitive to the stimulatory effect of eltrombopag. Following a daily dose regimen of 50 mg eltrombopag, the time to achieve peak platelet counts was longer for the CLD population compared with patients who had immune thrombocytopenic purpura, but was comparable to patients with hepatitis C. Likewise, it took a longer time for platelet counts to rebound back to baseline once eltrombopag treatment was discontinued. Conclusions The time course of the platelet response in CLD was different from that in immune thrombocytopenic purpura but comparable to that in hepatitis C. PMID:24117976

  15. Pharmacokinetic/pharmacodynamic modeling for the determination of a cimicoxib dosing regimen in the dog.

    Science.gov (United States)

    Jeunesse, Elisabeth C; Schneider, Marc; Woehrle, Frederique; Faucher, Mathieu; Lefebvre, Herve P; Toutain, Pierre-Louis

    2013-12-11

    Cimicoxib is a new coxib anti-inflammatory drug for use in the dog. To determine a preclinical dosage regimen for cimicoxib in dog, a reversible model of kaolin-induced paw inflammation was used. Dosage regimens were established using pharmacokinetic/pharmacodynamic (PK/PD) modeling approach (indirect response model). Analgesic, anti-inflammatory and antipyretic endpoints investigated with the inflammation model established the efficacy of cimicoxib at a dose of 2 mg/kg administered orally (single dose) in 12 beagle dogs.For both the oral and IV route of administration two groups of dogs to be identified namely Poor Metabolizers (PM) and Extensive Metabolizers (EM).The terminal half-life after oral administration was 8.0 ± 0.6 h for the PM and 4.6 ± 2.6 h for the EM groups, with the corresponding values after the IV route being 5.6 ± 1.7 h and 2.7 ± 0.9 h (mean ± SD).The main pharmacodynamic parameters (potency, efficacy, and sensitivity) were estimated for four endpoints (body temperature, creeping speed, ground vertical reaction force and clinical lameness score). The plasma concentration corresponding to half the maximum of the indirect effect were 239 μg/L for creeping speed, 284 μg/L for the lameness score, 161 μg/L for the ground reaction vertical force and 193 μg/L for the body temperature.To document possible polymorphism of the cimicoxib disposition in the target dog population, cimicoxib was administered by the intravenous route to 40 dogs (four different sized breeds). The cimicoxib half-lives in these 40 dogs were of same order of the magnitude as those of the EM beagle dogs. Thus pharmacokinetic and pharmacodynamic parameters obtained from the EM beagle dogs were selected to simulate the dose-effect relationship of cimicoxib after an oral administration allowing a dosage regimen to be selected for confirmation by a clinical trial. Cimicoxib was an efficacious anti-inflammatory, antipyretic and analgesic drug and a dosage regimen of 2 mg

  16. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation.

    Science.gov (United States)

    Yoon, Miyoung; Clewell, Harvey J

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

  17. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling--A case study with carbaryl.

    Science.gov (United States)

    Brown, Kathleen; Phillips, Martin; Grulke, Christopher; Yoon, Miyoung; Young, Bruce; McDougall, Robin; Leonard, Jeremy; Lu, Jingtao; Lefew, William; Tan, Yu-Mei

    2015-12-01

    Sources of uncertainty involved in exposure reconstruction for short half-life chemicals were characterized using computational models that link external exposures to biomarkers. Using carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES), was used to generate time-concentration profiles for 500 virtual individuals exposed to carbaryl. These exposure profiles were used as inputs into a physiologically based pharmacokinetic (PBPK) model to predict urinary biomarker concentrations. These matching dietary intake levels and biomarker concentrations were used to (1) compare three reverse dosimetry approaches based on their ability to predict the central tendency of the intake dose distribution; and (2) identify parameters necessary for a more accurate exposure reconstruction. This study illustrates the trade-offs between using non-iterative reverse dosimetry methods that are fast, less precise and iterative methods that are slow, more precise. This study also intimates the necessity of including urine flow rate and elapsed time between last dose and urine sampling as part of the biomarker sampling collection for better interpretation of urinary biomarker data of short biological half-life chemicals. Resolution of these critical data gaps can allow exposure reconstruction methods to better predict population-level intake doses from large biomonitoring studies. Published by Elsevier Inc.

  18. Pharmacokinetic/pharmacodynamic modeling of cardiac toxicity in human acute overdoses: utility and limitations.

    Science.gov (United States)

    Mégarbane, Bruno; Aslani, Arsia Amir; Deye, Nicolas; Baud, Frédéric J

    2008-05-01

    Hypotension, cardiac failure, QT interval prolongation, dysrhythmias, and conduction disturbances are common complications of overdoses with cardiotoxicants. Pharmacokinetic/pharmacodynamic (PK/PD) relationships are useful to assess diagnosis, prognosis, and treatment efficacy in acute poisonings. To review the utility and limits of PK/PD studies of cardiac toxicity. Discussion of various models, mainly those obtained in digitalis, cyanide, venlafaxine and citalopram poisonings. A sigmoidal E(max) model appears adequate to represent the PK/PD relationships in cardiotoxic poisonings. PK/PD correlations investigate the discrepancies between the time course of the effect magnitude and its evolving concentrations. They may help in understanding the mechanisms of occurrence as well as disappearance of a cardiotoxic effect. When data are sparse, population-based PK/PD modeling using computer-intensive algorithms is helpful to estimate population mean values of PK parameters as well as their individual variability. Further PK/PD studies are needed in medical toxicology to allow understanding of the meaning of blood toxicant concentration in acute poisonings and thus improve management.

  19. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  20. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards

    Science.gov (United States)

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...

  1. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    Science.gov (United States)

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  2. Isoniazid Pharmacokinetics-Pharmacodynamics in an Aerosol Infection Model of Tuberculosis

    Science.gov (United States)

    Jayaram, Ramesh; Shandil, Radha. K.; Gaonkar, Sheshagiri; Kaur, Parvinder; Suresh, B. L.; Mahesh, B. N.; Jayashree, R.; Nandi, Vrinda; Bharath, Sowmya; Kantharaj, E.; Balasubramanian, V.

    2004-01-01

    Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r2 = 0.73). PMID:15273105

  3. Pharmacokinetic/Pharmacodynamic Modelling of Receptor Internalization with CRTH2 Antagonists to Optimize Dose Selection.

    Science.gov (United States)

    Krause, Andreas; Zisowsky, Jochen; Strasser, Daniel S; Gehin, Martine; Sidharta, Patricia N; Groenen, Peter M A; Dingemanse, Jasper

    2016-07-01

    The chemoattractant receptor-homologous molecule expressed on T helper-2 cells (CRTH2) is a G-protein-coupled receptor for prostaglandin D2 (PGD2), a key mediator in inflammatory disorders. Two selective and potent CRTH2 antagonists currently in clinical development, ACT-453859 and setipiprant, were compared with respect to their (predicted) clinical efficacy. Population pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to characterize how plasma concentrations (PK) of ACT-453859, its active metabolite ACT-463036 and setipiprant related to their effect on blocking PGD2-induced internalization of CRTH2 on eosinophils (PD). Simulations were used to identify doses and dosing regimens leading to 90 % of maximum blockade of CRTH2 internalization at trough. A combined concentration of ACT-453859 and its metabolite ACT-463036, with weights proportional to potency (based on an eosinophil shape change assay), enabled good characterization of the PD effect. The modelling and simulation results facilitated decision making by suggesting an ACT-453859 dose of 400 mg once daily (or 100 mg twice daily) for clinically relevant CRTH2 antagonism. Pharmacometric quantification demonstrated that CRTH2 internalization is a useful new biomarker to study CRTH2 antagonism. Ninety percent of maximum blockade of CRTH2 internalization at trough is suggested as a quantitative PD target in clinical studies.

  4. Preclinical Pharmacokinetic/Pharmacodynamic Modeling and Simulation in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape

    OpenAIRE

    Schuck, Edgar; Bohnert, Tonika; Chakravarty, Arijit; Damian-Iordache, Valeriu; Gibson, Christopher; Hsu, Cheng-Pang; Heimbach, Tycho; Krishnatry, Anu Shilpa; Liederer, Bianca M; Lin, Jing; Maurer, Tristan; Mettetal, Jerome T; Mudra, Daniel R; Nijsen, Marjoleen JMA; Raybon, Joseph

    2015-01-01

    The application of modeling and simulation techniques is increasingly common in preclinical stages of the drug discovery and development process. A survey focusing on preclinical pharmacokinetic/pharmacodynamics (PK/PD) analysis was conducted across pharmaceutical companies that are members of the International Consortium for Quality and Innovation in Pharmaceutical Development. Based on survey responses, ~68% of companies use preclinical PK/PD analysis in all therapeutic areas indicating its...

  5. Efficacy of Cefquinome against Escherichia coli Environmental Mastitis Assessed by Pharmacokinetic and Pharmacodynamic Integration in Lactating Mouse Model

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-08-01

    Full Text Available This work investigates the pharmacodynamic effectiveness of cefquinome against environmental Escherichia coli mastitis infection, following an intramammary administration. We established the pharmacokinetic and pharmacodynamic (PK/PD model in lactating mice. The PK/PD parameters were identified to achieve an antibacterial efficacy as indicated by PD activity, cytokine expression and PK/PD simulation. From our findings, given an 200 μg/gland dose once daily can achieve a considerable therapeutic effectiveness in experimental circumstance.

  6. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  7. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling

    Directory of Open Access Journals (Sweden)

    Annika Bettina Foehrenbacher

    2013-12-01

    Full Text Available Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP. HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000, are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A or TH-302 are maximally activated only under extreme hypoxia, but their active metabolites (effectors diffuse to cells at intermediate O2 and thus also eliminate moderately hypoxic cells. Here, we use a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD model to compare these two strategies and to identify the features required in an optimal Class II HAP. The model uses a Green’s function approach to calculate spatial and longitudinal gradients of O2, prodrug and effector concentrations, and resulting killing in a digitized 3D tumor microregion to estimate activity as monotherapy and in combination with radiotherapy. An analogous model for a normal tissue with mild hypoxia and short intervesssel distances (based on a cremaster muscle microvessel network was used to estimate tumor selectivity of cell killing. This showed that Class II HAP offer advantages over Class I including higher tumor selectivity and greater freedom to vary prodrug diffusibility and rate of metabolic activation. The model suggests that the largest gains in class II HAP antitumor activity could be realized by optimizing effector stability and prodrug activation rates. We also use the model to show that diffusion of effector into blood vessels is unlikely to materially increase systemic exposure for realistic tumor burdens and effector clearances. However, we show that the tumor selectivity achievable by hypoxia-dependent prodrug activation alone is limited if dose-limiting normal tissues are even mildly hypoxic

  8. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad

    2018-02-15

    One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug

  9. Using pharmacokinetic modelling to improve prescribing practices of intravenous aminophylline in childhood asthma exacerbations.

    Science.gov (United States)

    Cooney, Lewis; McBride, Antonia; Lilley, Andrew; Sinha, Ian; Johnson, Trevor N; Hawcutt, Daniel B

    2017-04-01

    To evaluate physiologically based pharmacokinetic modelling (PBPK) software in paediatric asthma patients using intravenous aminophylline. Prospective clinical audit of children receiving iv aminophylline (July 2014 to June 2016), and in-silico modelling using Simcyp software. Thirty-eight admissions (25 children) were included. Children with aminophylline levels ≥10 mg/l had equivalent clinical outcomes compared to those model. PBPK modelling of a 5 mg/kg iv loading dose (≤18yr) shows a mean C max of 8.99 mg/L (5th-95th centiles 5.5-13.7 mg/L), with 70.3% of subjects  20 mg/L. For an aminophylline infusion (0-12 y) of 1.0  mg/kg/h, the mean steady state infusion concentration was 16.4 mg/L, (5th-95th centiles 5.3-32 mg/L), with 26.8% having a serum concentration >20 mg/L. For 12-18yr receiving 0.5  mg/kg/h infusion, the mean steady state infusion concentration was 9.37 mg/L (5th-95th centiles 3.4-18 mg/L), with 59.8% having a serum concentration modelling correlates well with clinical data. Current aminophylline iv loading dosage recommendations achieve levels risk of toxicity (>20 mg/l). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents

    International Nuclear Information System (INIS)

    Crowell, Susan Ritger; Amin, Shantu G.; Anderson, Kim A.; Krishnegowda, Gowdahalli; Sharma, Arun K.; Soelberg, Jolen J.; Williams, David E.; Corley, Richard A.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude. Supported by Award Number P42 ES016465 from the National Institute of Environmental Health Sciences. -- Highlights: ► We present PBPK models for benzo[a]pyrene (B[a]P) and dibenzo[def,p]chrysene (DBC). ► B[a]P model accurately predicts data from multiple sources over a wide dose range. ► DBC model was based on the B[a]P model as less chemical specific data is available. ► DBC model accurately predicted preliminary

  11. Comparison of propofol pharmacokinetic and pharmacodynamic models for awake craniotomy: A prospective observational study.

    Science.gov (United States)

    Soehle, Martin; Wolf, Christina F; Priston, Melanie J; Neuloh, Georg; Bien, Christian G; Hoeft, Andreas; Ellerkmann, Richard K

    2015-08-01

    Anaesthesia for awake craniotomy aims for an unconscious patient at the beginning and end of surgery but a rapidly awakening and responsive patient during the awake period. Therefore, an accurate pharmacokinetic/pharmacodynamic (PK/PD) model for propofol is required to tailor depth of anaesthesia. To compare the predictive performances of the Marsh and the Schnider PK/PD models during awake craniotomy. A prospective observational study. Single university hospital from February 2009 to May 2010. Twelve patients undergoing elective awake craniotomy for resection of brain tumour or epileptogenic areas. Arterial blood samples were drawn at intervals and the propofol plasma concentration was determined. The prediction error, bias [median prediction error (MDPE)] and inaccuracy [median absolute prediction error (MDAPE)] of the Marsh and the Schnider models were calculated. The secondary endpoint was the prediction probability PK, by which changes in the propofol effect-site concentration (as derived from simultaneous PK/PD modelling) predicted changes in anaesthetic depth (measured by the bispectral index). The Marsh model was associated with a significantly (P = 0.05) higher inaccuracy (MDAPE 28.9 ± 12.0%) than the Schnider model (MDAPE 21.5 ± 7.7%) and tended to reach a higher bias (MDPE Marsh -11.7 ± 14.3%, MDPE Schnider -5.4 ± 20.7%, P = 0.09). MDAPE was outside of accepted limits in six (Marsh model) and two (Schnider model) of 12 patients. The prediction probability was comparable between the Marsh (PK 0.798 ± 0.056) and the Schnider model (PK 0.787 ± 0.055), but after adjusting the models to each individual patient, the Schnider model achieved significantly higher prediction probabilities (PK 0.807 ± 0.056, P = 0.05). When using the 'asleep-awake-asleep' anaesthetic technique during awake craniotomy, we advocate using the PK/PD model proposed by Schnider. Due to considerable interindividual variation, additional monitoring of anaesthetic depth is

  12. Influence of Overt Diabetes Mellitus on Cyclosporine Pharmacokinetics in a Canine Model

    Directory of Open Access Journals (Sweden)

    Khalid M. Alkharfy

    2009-01-01

    Full Text Available Background/Aims. Diabetic patients usually require more medications than their nondiabetic counterparts. This work examined the effect of hyperglycemia on the pharmacokinetic properties of cyclosporine in a diabetic dog model. Main Methods. Diabetes was induced using a streptozotocin/alloxan combination and verified by measuring the serum glucose level. Cyclosporine was administered as a bolus intravenous dose of 5 mg/kg, and blood samples were collected at different time points for determining drug concentrations and biochemical analyses. Results. Diabetic dogs showed a significant increase in total body clearance of cyclosporine compared to healthy controls (0.457 L hr−1Kg−1 versus 0.201 L hr−1Kg−1, =.0019 and a decrease in its biological half-life (9.32 hours versus 22.56 hours, =.0125. In addition, diabetic animals exhibited a higher total cholesterol (7.20±0.62 mmol/L and 5.28±0.36 mmol/L; <.05 as well as more serum low density lipoproteins (4.45±0.72 mmol/L versus 1.06±0.10 mmol/L; <.05. Conclusion. Overt diabetes alters cyclosporine disposition by modulating its clearance. Abnormalities in the lipid profile, among other factors, may contribute to the accelerated metabolic degradation of cyclosporine under hyperglycemic conditions.

  13. Utility of immunodeficient mouse models for characterizing the preclinical pharmacokinetics of immunogenic antibody therapeutics.

    Science.gov (United States)

    Myzithras, Maria; Bigwarfe, Tammy; Li, Hua; Waltz, Erica; Ahlberg, Jennifer; Giragossian, Craig; Roberts, Simon

    Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4-7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.

  14. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, Luis [Dr Peset University Hospital, Radiology Department, Valencia (Spain); Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Sanz-Requena, Roberto; Alberich-Bayarri, Angel [Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Rodrigo, Jose Luis [Dr Peset University Hospital, Traumatology and Orthopedics Surgery Department, Valencia (Spain); Carot, Jose Miguel [Universidad Politecnica de Valencia, EIO Department, Valencia (Spain)

    2009-06-15

    Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K{sup trans}) and interstitial interchangeable volume (v{sub e}). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 {+-} 1.1 to 3.6 {+-} 1.3, p < 0.001; AKS: 18.6 {+-} 6.9 to 42.9 {+-} 2.7, p < 0.01). Glucosamine significantly increased K{sup trans} at 6 months (-54.4 {+-} 21.2% vs 126.7 {+-} 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K{sup trans}, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. (orig.)

  15. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations.

    Science.gov (United States)

    Kay, Katherine; Shah, Dhaval K; Rohan, Lisa; Bies, Robert

    2018-05-01

    A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l -1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l -1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  16. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  17. Reporting, Visualization, and Modeling of Immunogenicity Data to Assess Its Impact on Pharmacokinetics, Efficacy, and Safety of Monoclonal Antibodies.

    Science.gov (United States)

    Passey, Chaitali; Suryawanshi, Satyendra; Sanghavi, Kinjal; Gupta, Manish

    2018-02-26

    The rapidly increasing number of therapeutic biologics in development has led to a growing recognition of the need for improvements in immunogenicity assessment. Published data are often inadequate to assess the impact of an antidrug antibody (ADA) on pharmacokinetics, safety, and efficacy, and enable a fully informed decision about patient management in the event of ADA development. The recent introduction of detailed regulatory guidance for industry should help address many past inadequacies in immunogenicity assessment. Nonetheless, careful analysis of gathered data and clear reporting of results are critical to a full understanding of the clinical relevance of ADAs, but have not been widely considered in published literature to date. Here, we review visualization and modeling of immunogenicity data. We present several relatively simple visualization techniques that can provide preliminary information about the kinetics and magnitude of ADA responses, and their impact on pharmacokinetics and clinical endpoints for a given therapeutic protein. We focus on individual sample- and patient-level data, which can be used to build a picture of any trends, thereby guiding analysis of the overall study population. We also discuss methods for modeling ADA data to investigate the impact of immunogenicity on pharmacokinetics, efficacy, and safety.

  18. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid.

    Science.gov (United States)

    van Hasselt, J G Coen; Rizk, Matthew L; Lala, Mallika; Chavez-Eng, Cynthia; Visser, Sandra A G; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H

    2016-06-01

    Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter-individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter-compartmental clearance were 11.5 l h(-1) , 9.37 l, 6.41 l, 13.7 l h(-1) , respectively (relative standard error (RSE) imipenem into ELF was described using a time-independent penetration coefficient of 0.44 (RSE 14%). The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. © 2016 The British Pharmacological Society.

  19. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab

    Science.gov (United States)

    Hayashi, Naoto; Tsukamoto, Yuko; Sallas, William M; Lowe, Philip J

    2007-01-01

    Aim Omalizumab, a humanized IgG monoclonal antibody that binds to human immunoglobulin E (IgE), interrupts the allergic cascade in asthmatic patients. The aim was to compare simultaneously drug exposure and IgE biomarker responses in Japanese and White patient populations. Methods An instantaneous equilibrium drug–ligand binding and turnover population model was built from 202 Japanese patients. A posterior predictive evaluation for the steady-state distributions of omalizumab and IgE was then carried out against 531 White patients. Results The mean parameters estimated from the Japanese patients were as follows: omalizumab clearance 7.32 ± 0.153 ml h−1, IgE clearance 71.0 ± 4.68 ml h−1 and the difference between that for omalizumab and the complex 5.86 ± 0.920 ml h−1, the volume of distribution for omalizumab and IgE 5900 ± 107 ml, and that for the complex 3630 ± 223 ml, the rate of IgE production 30.3 ± 2.04 µg h−1. Half-lives of IgG (23 days) and IgE (2.4 days) were close to previous reports. The dissociation constant for binding, 1.07 nM, was similar to in vitro values. Clearance and volume of distribution for omalizumab varied with bodyweight, whereas the clearance and rate of production of IgE were predicted accurately by baseline IgE. Overall, these covariates explained much of the interindividual variability. Conclusions The predictiveness of the Japanese model was confirmed by Monte-Carlo simulations for a White population, also providing evidence that the pharmacokinetics of omalizumab and IgE were similar in these two populations. Furthermore, the model enabled the estimation of not only omalizumab disposition parameters, but also the binding with and the rate of production, distribution and elimination of its target, IgE. PMID:17096680

  20. Pharmacokinetic modeling of a gel-delivered dapivirine microbicide in humans.

    Science.gov (United States)

    Halwes, Michael E; Steinbach-Rankins, Jill M; Frieboes, Hermann B

    2016-10-10

    Although a number of drugs have been developed for the treatment and prevention of human immunodeficiency virus (HIV) infection, it has proven difficult to optimize the drug and dosage parameters. The vaginal tissue, comprised of epithelial, stromal and blood compartments presents a complex system which challenges evaluation of drug kinetics solely through empirical effort. To provide insight into the underlying processes, mathematical modeling and computational simulation have been applied to the study of retroviral microbicide pharmacokinetics. Building upon previous pioneering work that modeled the delivery of Tenofovir (TFV) via topical delivery to the vaginal environment, here we computationally evaluate the performance of the retroviral inhibitor dapivirine released from a microbicide gel. We adapt the TFV model to simulate the multicompartmental diffusion and uptake of dapivirine into the blood plasma and vaginal compartments. The results show that dapivirine is expected to accumulate at the interface between the gel and epithelium compartments due to its hydrophobic characteristics. Hydrophobicity also results in decreased diffusivity, which may impact distribution by up to 2 orders of magnitude compared to TFV. Maximum concentrations of dapivirine in the epithelium, stroma, and blood were 9.9e7, 2.45e6, and 119pg/mL, respectively. This suggests that greater initial doses or longer time frames are required to obtain higher drug concentrations in the epithelium. These observations may have important ramifications if a specific time frame is required for efficacy, or if a minimum/maximum concentration is needed in the mucus, epithelium, or stroma based on combined efficacy and safety data. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain.

    Science.gov (United States)

    Dahan, Albert; Olofsen, Erik; Sigtermans, Marnix; Noppers, Ingeborg; Niesters, Marieke; Aarts, Leon; Bauer, Martin; Sarton, Elise

    2011-03-01

    Pharmacological treatment of chronic (neuropathic) pain is often disappointing. In order to enhance our insight in the complex interaction between analgesic drug and chronic pain relief, we performed a pharmacokinetic-pharmacodynamic (PK-PD) modeling study on the effect of S(+)-ketamine on pain scores in Complex Regional Pain Syndrome type 1 (CRPS-1) patients. Sixty CRPS-1 patients were randomly allocated to received a 100-h infusion of S(+)-ketamine or placebo. The drug infusion rate was slowly increased from 5 mg/h (per 70 kg) to 20 mg/h based upon the effect/side effect profile. Pain scores and drug blood samples were obtained during the treatment phase and pain scores were further obtained weekly for another 11 weeks. A population PK-PD model was developed to analyze the S(+)-ketamine-pain data. Plasma concentrations of S(+)-ketamine and its metabolite decreased rapidly upon the termination of S(+)-ketamine infusion. The chance for an analgesic effect from ketamine and placebo treatment was 67±10% and 23±9% (population value±SE), respectively. The pain data were well described by the PK-PD model with parameters C(50)=10.5±4.8 ng/ml (95% ci 4.37-21.2 ng/ml) and t½ for onset/offset=10.9±4.0 days (5.3-20.5 days). Long-term S(+)-ketamine treatment is effective in causing pain relief in CRPS-1 patients with analgesia outlasting the treatment period by 50 days. These data suggest that ketamine initiated a cascade of events, including desensitization of excitatory receptor systems in the central nervous system, which persisted but slowly abated when ketamine molecules were no longer present. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  2. Mechanistic Physiologically Based Pharmacokinetic (PBPK) Model of the Heart Accounting for Inter-Individual Variability: Development and Performance Verification.

    Science.gov (United States)

    Tylutki, Zofia; Mendyk, Aleksander; Polak, Sebastian

    2018-04-01

    Modern model-based approaches to cardiac safety and efficacy assessment require accurate drug concentration-effect relationship establishment. Thus, knowledge of the active concentration of drugs in heart tissue is desirable along with inter-subject variability influence estimation. To that end, we developed a mechanistic physiologically based pharmacokinetic model of the heart. The models were described with literature-derived parameters and written in R, v.3.4.0. Five parameters were estimated. The model was fitted to amitriptyline and nortriptyline concentrations after an intravenous infusion of amitriptyline. The cardiac model consisted of 5 compartments representing the pericardial fluid, heart extracellular water, and epicardial intracellular, midmyocardial intracellular, and endocardial intracellular fluids. Drug cardiac metabolism, passive diffusion, active efflux, and uptake were included in the model as mechanisms involved in the drug disposition within the heart. The model accounted for inter-individual variability. The estimates of optimized parameters were within physiological ranges. The model performance was verified by simulating 5 clinical studies of amitriptyline intravenous infusion, and the simulated pharmacokinetic profiles agreed with clinical data. The results support the model feasibility. The proposed structure can be tested with the goal of improving the patient-specific model-based cardiac safety assessment and offers a framework for predicting cardiac concentrations of various xenobiotics. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions.

    Science.gov (United States)

    Cherkaoui-Rbati, Mohammed H; Paine, Stuart W; Littlewood, Peter; Rauch, Cyril

    2017-01-01

    All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies.

  4. A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions.

    Directory of Open Access Journals (Sweden)

    Mohammed H Cherkaoui-Rbati

    Full Text Available All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs of new chemical entities (NCEs and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit, located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level. A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies.

  5. Pharmacokinetics of Active Components From Guhong Injection in Normal and Pathological Rat Models of Cerebral Ischemia: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Li Yu

    2018-05-01

    Full Text Available Background and Objectives: Guhong Injection (GHI is usually administered for the treatment of stroke in clinics. Aceglutamide and hydroxyl safflower yellow A (HSYA are its key ingredients for brain protective effect. To investigate the pharmacokinetics of aceglutamide and HSYA under pathological and normal conditions, the pharmacokinetic parameters and characteristics of middle cerebral artery occlusion (MCAO and normal rats given the same dosage of GHI were studied compared.Methods: 12 SD rats were divided into two groups, namely, MCAO and normal groups. Both groups were treated with GHI in the same dosage. Plasma samples were collected from the jaw vein at different time points and subsequently tested by high-performance liquid chromatography (HPLC.Results: After administration of GHI, both aceglutamide and HSYA were immediately detected in the plasma. Ninety percent of aceglutamide and HSYA was eliminated within 3 h. For aceglutamide, statistically significant differences in the parameters including AUC(0−t, AUC(0−∞, AUMC(0−t, AUMC(0−∞, Cmax (P < 0.01, and Vz (P < 0.05. Meanwhile, compared with the MCAO group, in the normal group, the values of AUC(0−t, AUMC(0−t, VRT(0−t, and Cmax (P < 0.01 for HSYA were significantly higher, whereas the value of MRT(0−t was significantly lower in the normal group.Conclusions: The in vivo trials based on the different models showed that, the pharmacokinetic behaviors and parameters of aceglutamide and HSYA in GHI were completely different. These results suggest that the pathological damage of ischemia-reperfusion has a significant impact on the pharmacokinetic traits of aceglutamide and HSYA.

  6. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Yang

    Full Text Available A previously presented physiologically-based pharmacokinetic model for immediate release (IR methylphenidate (MPH was extended to characterize the pharmacokinetic behaviors of oral extended release (ER MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations.

  7. A Whole-Body Physiologically Based Pharmacokinetic Model for Colistin and Colistin methanesulfonate (CMS) in Rat.

    Science.gov (United States)

    Bouchene, Salim; Marchand, Sandrine; Couet, William; Friberg, Lena E; Gobin, Patrice; Lamarche, Isabelle; Grégoire, Nicolas; Björkman, Sven; Karlsson, Mats O

    2018-04-17

    Colistin is a polymyxin antibiotic used to treat patients infected with multidrug-resistant Gram negative bacteria (MDR-GNB). The objective of this work was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model to predict tissue distribution of colistin in rat. The distribution of a drug in a tissue is commonly characterized by its tissue-to-plasma partition coefficient, K p . Colistin and its prodrug, colistin methanesulfonate (CMS) K p priors were measured experimentally from rat tissue homogenates or predicted in silico. The PK parameters of both compounds were estimated fitting in vivo their plasma concentration-time profiles from six rats receiving an i.v. bolus of CMS. The variability in the data was quantified by applying a non-linear mixed effect (NLME) modelling approach. A WB-PBPK model was developed assuming a well-stirred and perfusion-limited distribution in tissue compartments. Prior information on tissue distribution of colistin and CMS was investigated following three scenarios: K p were estimated using in silico K p priors (I) or K p were estimated using experimental K p priors (II) or K p were fixed to the experimental values (III). The WB-PBPK model best described colistun and CMS plasma concentration-time profiles in scenario II. Colistin predicted concentrations in kidneys in scenario II were higher than in other tissues, which was consistent with its large experimental K p prior. This might be explained by a high affinity of colistin for renal parenchyma and active reabsorption into the proximal tubular cells. In contrast, renal accumulation of colistin was not predicted in scenario I. Colistin and CMS clearance estimates were in agreement with published values. The developed model suggests using experimental priors over in silico K p priors for kidneys to provide a better prediction of colistin renal distribution. Such models might serve in drug development for interspecies scaling and investigating the impact of

  8. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    Energy Technology Data Exchange (ETDEWEB)

    Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa

    2014-06-15

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.

  9. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    International Nuclear Information System (INIS)

    Takaku, Tomoyuki; Nagahori, Hirohisa; Sogame, Yoshihisa

    2014-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U- 14 C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up 14 C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K m (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments

  10. Pharmacokinetic-Pharmacodynamic Modelling of the Analgesic and Antihyperalgesic Effects of Morphine after Intravenous Infusion in Human Volunteers

    DEFF Research Database (Denmark)

    Ravn, Pernille; Foster, David J. R.; Kreilgaard, Mads

    2014-01-01

    Using a modelling approach, this study aimed to (i) examine whether the pharmacodynamics of the analgesic and antihyperalgesic effects of morphine differ; (ii) investigate the influence of demographic, pain sensitivity and genetic (OPRM1) variables on between-subject variability of morphine...... pharmacokinetics and pharmacodynamics in human experimental pain models. The study was a randomized, double-blind, 5-arm, cross-over, placebo-controlled study. The psychophysical cutaneous pain tests, electrical pain tolerance (EPTo) and secondary hyperalgesia areas (2HA) were studied in 28 healthy individuals (15...

  11. Modeling of pharmacokinetics, efficacy, and hemodynamic effects of macitentan in patients with pulmonary arterial hypertension.

    Science.gov (United States)

    Krause, Andreas; Zisowsky, Jochen; Dingemanse, Jasper

    2018-04-01

    Macitentan is the first endothelin receptor antagonist with demonstrated efficacy on morbidity and mortality in pulmonary arterial hypertension (PAH) in the pivotal study SERAPHIN. The pharmacokinetics (PK) of macitentan and its active metabolite, ACT-132577, were characterized in a population model. Efficacy and hemodynamics (pharmacodynamics, PD) were related to PK based on PK/PD modeling. Sex, age, and body weight influenced the PK to a statistically significant extent. Model-based simulations showed that these variables are clinically not relevant. Concomitant use of PAH medication (PDE-5 inhibitors) did not influence macitentan trough concentration to a relevant extent. Efficacy and hemodynamics showed clear differences from placebo for macitentan concentrations on 3 and 10 mg with consistent superior effects for 10 mg. After 6 months, PAH patients showed model-predicted 6-min walk distance (6-MWD) improvements of 1.0 m on placebo compared to 29.8 and 34.1 m on 3 and 10 mg of macitentan, respectively. Higher macitentan concentrations were associated with reductions in pulmonary vascular resistance (PVR), mean right atrial and pulmonary arterial pressure, and total pulmonary resistance (TPR) and increases in cardiac index (CI) and mixed venous oxygen saturation. Statistical significance was determined for PVR, TPR, and CI but not for 6-MWD. In addition, PVR showed more pronounced differences between active treatment and placebo than 6-MWD. Modeling identified statistically significant inter-patient differences; simulations to assess the magnitude of the effects permitted clinical judgment. The same approach will allow for extrapolation to children. Hemodynamic markers might be better markers of treatment effects than 6-MWD. The SERAPHIN study and its open-label extension are registered with ClinicalTrials.gov with identifiers NCT00660179 (https://www.clinicaltrials.gov/ct2/show/NCT00660179) and NCT00667823 (https://clinicaltrials.gov/ct2/show

  12. Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum.

    Science.gov (United States)

    Xiao, Xia; Sun, Jian; Yang, Tao; Fang, Xi; Cheng, Jie; Xiong, Yan Q; Liu, Ya-Hong

    2016-01-01

    Mycoplasma gallisepticum is the most important pathogen in poultry among four pathogenic Mycoplasma species. Tiamulin is a pleuromutilin antibiotic that shows a great activity against M. gallisepticum and has been approved for use in veterinary medicine particularly for poultry. However, the pharmacokinetic/pharmacodynamics (PK/PD) profiles of tiamulin against M. gallisepticum are not well understood. Therefore, in the current studies, we investigated the in vivo PK/PD profiles of tiamulin using a well-established experimental intratracheal infection model of M. gallisepticum. The efficacy of tiamulin against M. gallisepticum was studied in 8-day-old chickens after intramuscular (i.m.) administration at 10 doses between 0-80 mg/kg. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to evaluate the PK parameters of tiamulin following i.m. administration at doses of 5, 40, and 80 mg/kg in Mycoplasma gallisepticum-infected neutropenic chickens. Real-time PCR (RT-PCR) was used for quantitative detection of M. gallisepticum. The MIC of tiamulin against M. gallisepticum strain S6 was 0.03 μg/mL. The PK/PD index, AUC24h/MIC, correlated well with the in vivo antibacterial efficacy. The in vivo data suggest that animal dosage regimens should supply AUC24h/MIC of tiamulin of 382.68 h for 2 log10 ccu equivalents M. gallisepticum reduction. To attain that goal, the administered dose is expected to be 45 mg/kg b.w. for treatment of M. gallisepticum infection with an MIC90 of 0.03 μg/mL.

  13. Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    Xia Xiao

    2016-09-01

    Full Text Available Mycoplasma gallisepticum is the most important pathogen in poultry among four pathogenic Mycoplasma species. Tiamulin is a pleuromutilin antibiotic that shows a great activity against M. gallisepticum and has been approved for use in veterinary medicine particularly for poultry. However, the Pharmacokinetic/Pharmacodynamics (PK/PD profiles of tiamulin against M. gallisepticum are not well understood. Therefore, in the current studies, we investigated the in vivo PK/PD profiles of tiamulin using a well-established experimental intratracheal infection model of M. gallisepticum. The efficacy of tiamulin against M. gallisepticum was studied in 8-day-old chickens after intramuscular (i.m. administration at 10 doses between 0-80 mg/kg. Liquid chromatography-tandem mass spectrometry (LC-MS/MS was used to evaluate the PK parameters of tiamulin following i.m. administration at doses of 5, 40 and 80 mg/kg in Mycoplasma gallisepticum infected neutropenic chickens. Real time PCR (RT-PCR was used for quantitative detection of M. gallisepticum. The MIC of tiamulin against M. gallisepticum strain S6 was 0.03 μg/mL. The PK/PD index, AUC24h/MIC, correlated well with the in vivo antibacterial efficacy. The in vivo data suggest that animal dosage regimens should supply AUC24h/MIC of tiamulin of 382.68 h for 2 log10 ccu equivalents M. gallisepticum reduction. To attain that goal, the administered dose is expected to be 45 mg/kg b.w. for treatment of M. gallisepticum infection with an MIC90 of 0.03 μg/mL.

  14. Predicting Cortisol Exposure from Paediatric Hydrocortisone Formulation Using a Semi-Mechanistic Pharmacokinetic Model Established in Healthy Adults.

    Science.gov (United States)

    Melin, Johanna; Parra-Guillen, Zinnia P; Hartung, Niklas; Huisinga, Wilhelm; Ross, Richard J; Whitaker, Martin J; Kloft, Charlotte

    2018-04-01

    Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort ® oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort ® or 20 mg of Infacort ® /hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline cort ,15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing <20 kg. EudraCT number: 2013-000260-28, 2013-000259-42.

  15. Estimated cancer risk of dioxins to humans using a bioassay and physiologically based pharmacokinetic model

    International Nuclear Information System (INIS)

    Maruyama, Wakae; Aoki, Yasunobu

    2006-01-01

    The health risk of dioxins and dioxin-like compounds to humans was analyzed quantitatively using experimental data and mathematical models. To quantify the toxicity of a mixture of three dioxin congeners, we calculated the new relative potencies (REPs) for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), and 2,3,4,7,8- pentachlorodibenzofuran (PeCDF), focusing on their tumor promotion activity. We applied a liver foci formation assay to female SD rats after repeated oral administration of dioxins. The REP of dioxin for a rat was determined using dioxin concentration and the number of the foci in rat liver. A physiologically based pharmacokinetic model (PBPK model) was used for interspecies extrapolation targeting on dioxin concentration in liver. Toxic dose for human was determined by back-estimation with a human PBPK model, assuming that the same concentration in the target tissue may cause the same level of effect in rats and humans, and the REP for human was determined by the toxic dose obtained. The calculated REPs for TCDD, PeCDD, and PeCDF were 1.0, 0.34, and 0.05 for rats, respectively, and the REPs for humans were almost the same as those for rats. These values were different from the toxic equivalency factors (TEFs) presented previously (Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., Rolaf van Leeuwen, F.X., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger. L., Safe, S., Schrenk, D., Tillitt, D, Tysklind, M., Younes, M., Waern, F., Zacharewski, T., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775-792). The relative risk of excess liver cancer for Japanese people in general was 1.7-6.5 x 10 -7 by TCDD only, and 2.9-11 x 10 -7 by the three dioxins at the present level of contamination

  16. Pharmacokinetic-pharmacodynamic modeling of the antihypertensive interaction between azilsartan medoxomil and chlorthalidone in spontaneously hypertensive rats.

    Science.gov (United States)

    Kumar Puttrevu, Santosh; Ramakrishna, Rachumallu; Bhateria, Manisha; Jain, Moon; Hanif, Kashif; Bhatta, Rabi Sankar

    2017-05-01

    A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of blood pressure following oral administration of azilsartan medoxomil (AZM) and/or chlorthalidone (CLT) in spontaneously hypertensive (SH) rats. The drug concentration and pharmacological effects, including systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tail-cuff manometry, respectively. Sequential PK-PD analysis was performed, wherein the plasma concentration-time data was modeled by one compartmental analysis. Subsequently PD parameters were calculated to describe the time-concentration-response relationship using indirect response (IDR) PK-PD model. The combination of AZ and CLT had greater BP lowering effect compared to AZ or CLT alone, despite of no pharmacokinetic interaction between two drugs. These findings suggest synergistic antihypertensive pharmacodynamic interaction between AZ and CLT noncompetitively, which was simulated by inhibitory function of AZ and stimulatory function of CLT after concomitant administration of the two drugs. The present model was able to capture the turnover of blood pressure adequately at different time points at two different dose levels. The current PK-PD model was successfully utilized in the simulation of PD effect at a dose combination of 0.5 and 2.5 mg/kg for AZ and CLT, respectively. The developed preclinical PK-PD model may provide guidance in the optimization of dose ratio of individual drugs in the combined pharmacotherapy of AZ and CLT at clinical situations.

  17. Explaining Ethnic Variability of Transporter Substrate Pharmacokinetics in Healthy Asian and Caucasian Subjects with Allele Frequencies of OATP1B1 and BCRP: A Mechanistic Modeling Analysis.

    Science.gov (United States)

    Li, Rui; Barton, Hugh A

    2018-04-01

    Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis contradicts the data collected from compounds that are OATP1B1 substrates but not breast cancer resistance protein (BCRP) substrates. The objective of this study is to evaluate a hypothesis that is physiologically reasonable and more consistent with clinical observations. We evaluated if allele frequencies of two transporters (OATP1B1 and BCRP) are key contributors to ethnic variability. In this hypothesis, the same genotype leads to the same activity independent of ethnicity, in contrast to the previous hypothesis of intrinsic ethnic variability in OATP1B1 activity. As a validation, we perform mechanistic pharmacokinetic modeling for SLCO1B1 (encoding OATP1B1) and ABCG2 (encoding BCRP) genotyped pharmacokinetic data from 18 clinical studies with healthy Caucasian and/or Asian subjects. Simulations based on the current hypothesis reasonably describe SLCO1B1 and ABCG2 genotyped pharmacokinetic time course data for five transporter substrates (atorvastatin, pitavastatin, pravastatin, repaglinide, and rosuvastatin) in Caucasian and Asian populations. This hypothesis covers the observations that can (e.g., ethnic differences in rosuvastatin pharmacokinetics) or cannot (e.g., lack of differences for pitavastatin pharmacokinetics) be explained by the previous hypothesis. It helps to characterize sources of ethnic variability and provides a foundation for predicting ethnic variability in transporter substrate pharmacokinetics.

  18. Polymeric films loaded with cisplatin for malignant pleural mesothelioma: a pharmacokinetic study in an ovine model

    Science.gov (United States)

    Barocelli, Elisabetta; Cavazzoni, Andrea; Petronini, Piergiorgio; Mucchino, Claudio; Cantoni, Anna Maria; Leonardi, Fabio; Ventura, Luigi; Barbieri, Stefano; Colombo, Paolo; Fusari, Antonella; Carbognani, Paolo; Rusca, Michele; Sonvico, Fabio

    2018-01-01

    Background Malignant pleural mesothelioma (MPM) continues to be a distressing tumor due to its aggressive biologic behavior and scanty prognosis. Several therapeutic approaches have been tested both in clinical and preclinical settings, being intrapleural chemotherapy one of the most promising. Some years ago, our interest focused on polymeric films loaded with cisplatin for the adjuvant intrapleural treatment of surgical patients. After in vitro and in vivo studies in a rat recurrence model of MPM, the aim of this study was to evaluate the pharmacokinetics of the polymeric films in a sheep model in view of further studies in a clinical setting. Methods An ovine model was used. Animals were divided into four groups according to pharmacologic treatment: control group (three animals undergoing left pneumonectomy and saline-NaCl solution); intrapleural hyaluronate cisplatin films (HYALCIS) group (six animals undergoing left pneumonectomy and intrapleural application of polymeric films loaded with cisplatin); intrapleural cisplatin solution (six animals undergoing left pneumonectomy and intrapleural application of cisplatin solution); intravenous cisplatin (five animals undergoing left pneumonectomy and intravenous administration of cisplatin solution). The primary objective was the plasmatic and pleural concentration of cisplatin in the treatment groups. The secondary objective was the treatment-related toxicity evaluated by plasmatic analysis performed at prearranged time intervals and histological examinations of tissue samples collected during animal autopsy. Analysis of variance (ANOVA) was used for statistical analysis. Bonferroni correction was applied for comparison between all groups. Results Twenty female Sardinian sheep with a mean weight of 45.1 kg were studied. All animals survived the surgical procedures. The whole surgical procedure had a mean duration of 113 minutes. Cisplatin blood levels obtained from polymeric films application were low during the

  19. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in human influenza vaccine adjuvant.

    Science.gov (United States)

    Tegenge, Million A; Mitkus, Robert J

    2015-04-01

    Alpha (α)-tocopherol is a component of a new generation of squalene-containing oil-in-water (SQ/W) emulsion adjuvants that have been licensed for use in certain influenza vaccines. Since regulatory pharmacokinetic studies are not routinely required for influenza vaccines, the in vivo fate of this vaccine constituent is largely unknown. In this study, we constructed a physiologically based pharmacokinetic (PBPK) model for emulsified α-tocopherol in human adults and infants. An independent sheep PBPK model was also developed to inform the local preferential lymphatic transfer and for the purpose of model evaluation. The PBPK model predicts that α-tocopherol will be removed from the injection site within 24h and rapidly transfer predominantly into draining lymph nodes. A much lower concentration of α-tocopherol was estimated to peak in plasma within 8h. Any systemically absorbed α-tocopherol was predicted to accumulate slowly in adipose tissue, but not in other tissues. Model evaluation and uncertainty analyses indicated acceptable fit, with the fraction of dose taken up into the lymphatics as most influential on plasma concentration. In summary, this study estimates the in vivo fate of α-tocopherol in adjuvanted influenza vaccine, may be relevant in explaining its immunodynamics in humans, and informs current regulatory risk-benefit analyses. Published by Elsevier Inc.

  20. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  1. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Carey K Anders

    Full Text Available Breast cancer brain metastases (BCBM are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK and efficacy of PEGylated liposomal doxorubicin (PLD with non-liposomal doxorubicin (NonL-doxo in an intracranial model of BC.Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing mice were administered PLD or NonL-doxo at 6 mg/kg IV × 1 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were administered IV weekly as single agents (6 mg/kg or in combination (4.5 mg/kg with the PARP inhibitor, ABT-888, PO 25 mg/kg/day. Efficacy was assessed by survival and bioluminescence.Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31-38, which was significantly longer than controls (26d [CI 25-28]; p = 0.0012 or NonL-doxo treatment (23.5d [CI 18-28], p = 0.0002. Combination treatment with PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31-38] versus 29.5d [CI 25-34]; p = 0.006.PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM. The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for patients with BCBM.

  2. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling

    Science.gov (United States)

    Leonard, Jeremy A.; Tan, Yu-Mei; Gilbert, Mary; Isaacs, Kristin; El-Masri, Hisham

    2016-01-01

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses. PMID:26865668

  3. Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum

    OpenAIRE

    Xiao, Xia; Sun, Jian; Yang, Tao; Fang, Xi; Cheng, Jie; Xiong, Yan Q.; Liu, Ya-Hong

    2016-01-01

    Mycoplasma gallisepticum is the most important pathogen in poultry among four pathogenic Mycoplasma species. Tiamulin is a pleuromutilin antibiotic that shows a great activity against M. gallisepticum and has been approved for use in veterinary medicine particularly for poultry. However, the pharmacokinetic/pharmacodynamics (PK/PD) profiles of tiamulin against M. gallisepticum are not well understood. Therefore, in the current studies, we investigated the in vivo PK/PD profiles of tiamulin us...

  4. Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum

    OpenAIRE

    Xia Xiao; Xia Xiao; Jian Sun; Tao Yang; Xi Fang; Jie Cheng; Yan Q. Xiong; Yan Q. Xiong; Ya-Hong Liu; Ya-Hong Liu

    2016-01-01

    Mycoplasma gallisepticum is the most important pathogen in poultry among four pathogenic Mycoplasma species. Tiamulin is a pleuromutilin antibiotic that shows a great activity against M. gallisepticum and has been approved for use in veterinary medicine particularly for poultry. However, the Pharmacokinetic/Pharmacodynamics (PK/PD) profiles of tiamulin against M. gallisepticum are not well understood. Therefore, in the current studies, we investigated the in vivo PK/PD profiles of tiamulin us...

  5. The Sheep as a Model of Preclinical Safety and Pharmacokinetic Evaluations of Candidate Microbicides

    OpenAIRE

    Holt, Jonathon D. S.; Cameron, David; Dias, Nicola; Holding, Jeremy; Muntendam, Alex; Oostebring, Freddy; Dreier, Peter; Rohan, Lisa; Nuttall, Jeremy

    2015-01-01

    When developing novel microbicide products for the prevention of HIV infection, the preclinical safety program must evaluate not only the active pharmaceutical ingredient but also the product itself. To that end, we applied several relatively standard toxicology study methodologies to female sheep, incorporating an assessment of the pharmacokinetics, safety, tolerability, and local toxicity of a dapivirine-containing human vaginal ring formulation (Dapivirine Vaginal Ring-004). We performed a...

  6. Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

    Science.gov (United States)

    Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng

    2014-05-15

    Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Pharmacokinetic-Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers.

    Science.gov (United States)

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2015-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (C max), the time when the maximum concentration reached (T max), and the area under the concentration-time curve (AUC) were 21.69-31.69 μg/mL, 1.13-1.23 h, and 228.97-444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller-Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid E max (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0-24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was

  8. Anti-colchicine Fab fragments prevent lethal colchicine toxicity in a porcine model: a pharmacokinetic and clinical study.

    Science.gov (United States)

    Eddleston, Michael; Fabresse, Nicolas; Thompson, Adrian; Al Abdulla, Ibrahim; Gregson, Rachael; King, Tim; Astier, Alain; Baud, Frederic J; Clutton, R Eddie; Alvarez, Jean-Claude

    2018-08-01

    Colchicine poisoning is commonly lethal. Colchicine-specific Fab fragments increase rat urinary colchicine clearance and have been associated with a good outcome in one patient. We aimed to develop a porcine model of colchicine toxicity to study the pharmacokinetics and efficacy of ovine Fab. A Göttingen minipig critical care model was established and serial blood samples taken for colchicine and Fab pharmacokinetics, clinical chemistry, and haematology. Animals were euthanised when the mean arterial pressure fell below 45 mmHg without response to vasopressor, or at study completion. Initial studies indicated that oral dosing produced variable pharmacokinetics and time-to-euthanasia. By contrast, intravenous infusion of 0.25 mg/kg colchicine over 1 h produced reproducible pharmacokinetics (AUC 0-20 343 [SD = 21] µg/L/h), acute multi-organ injury, and cardiotoxicity requiring euthanasia a mean of 22.5 (SD = 3.2) h after dosing. A full-neutralising equimolar Fab dose given 6 h after the infusion (50% first hour, 50% next 6 h [to reduce renal-loss of unbound Fab]) produced a 7.35-fold increase in plasma colchicine (AUC 0-20 2,522 [SD = 14] µg/L/h), and removed all free plasma colchicine, but did not prevent toxicity (euthanasia at 29.1 [SD = 3.4] h). Earlier administration over 1 h of the full-neutralising dose, 1 or 3 h after the colchicine, produced a 12.9-fold (AUC 0-20 4,433 [SD = 607] µg/L/h) and 6.0-fold (AUC 0-20 2,047 [SD = 51] µg/L/h) increase in plasma colchicine, respectively, absence of free plasma colchicine until 20 h, and survival to study end without marked cardiotoxicity. Colchicine-specific Fab given early, in equimolar dose, bound colchicine, eliciting its movement into the blood, and preventing severe toxicity. Clinical studies are now needed to determine how soon this antidote must be given to work in human poisoning.

  9. Pharmacokinetic modeling: Prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans

    International Nuclear Information System (INIS)

    Fisher, Jeffrey W.; Twaddle, Nathan C.; Vanlandingham, Michelle; Doerge, Daniel R.

    2011-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed for bisphenol A (BPA) in adult rhesus monkeys using intravenous (iv) and oral bolus doses of 100 μg d6-BPA/kg (). This calibrated PBPK adult monkey model for BPA was then evaluated against published monkey kinetic studies with BPA. Using two versions of the adult monkey model based on monkey BPA kinetic data from and , the aglycone BPA pharmacokinetics were simulated for human oral ingestion of 5 mg d16-BPA per person (Völkel et al., 2002). Völkel et al. were unable to detect the aglycone BPA in plasma, but were able to detect BPA metabolites. These human model predictions of the aglycone BPA in plasma were then compared to previously published PBPK model predictions obtained by simulating the Völkel et al. kinetic study. Our BPA human model, using two parameter sets reflecting two adult monkey studies, both predicted lower aglycone levels in human serum than the previous human BPA PBPK model predictions. BPA was metabolized at all ages of monkey (PND 5 to adult) by the gut wall and liver. However, the hepatic metabolism of BPA and systemic clearance of its phase II metabolites appear to be slower in younger monkeys than adults. The use of the current non-human primate BPA model parameters provides more confidence in predicting the aglycone BPA in serum levels in humans after oral ingestion of BPA. -- Highlights: ► A bisphenol A (BPA) PBPK model for the infant and adult monkey was constructed. ► The hepatic metabolic rate of BPA increased with age of the monkey. ► The systemic clearance rate of metabolites increased with age of the monkey. ► Gut wall metabolism of orally administered BPA was substantial across all ages of monkeys. ► Aglycone BPA plasma concentrations were predicted in humans orally given oral doses of deuterated BPA.

  10. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    International Nuclear Information System (INIS)

    Tan Qunyou; Wu Jianyong; Li Yi; Zhang Jingqing; Mei Hu; Zhao Chunjing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca 2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM. (paper)

  11. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    Science.gov (United States)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  12. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    Science.gov (United States)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  13. Multiscale Modeling of Antibody Drug Conjugates: Connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy

    Science.gov (United States)

    Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M.

    2016-01-01

    Antibody drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from non-specific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody drug conjugate Kadcyla in HER2 positive mouse xenografts. This model is able to capture the impact of the drug antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs. PMID:27287046

  14. A 6-month mixed-effect pharmacokinetic model for post-transplant intravenous anti-hepatitis B immunoglobulin prophylaxis

    Directory of Open Access Journals (Sweden)

    Han S

    2017-07-01

    Full Text Available Seunghoon Han,1,2 Gun Hyung Na,3 Dong-Goo Kim3 1Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea; 2Pharmacometrics Institute for Practical Education and Training, The Catholic University of Korea, Seocho-gu, Seoul, South Korea; 3Department of Surgery, Seoul St Mary’s Hospital, The Catholic University of Korea, Seocho-gu, Seoul, South Korea Background: Although individualized dosage regimens for anti-hepatitis B immunoglobulin (HBIG therapy have been suggested, the pharmacokinetic profile and factors influencing the basis for individualization have not been sufficiently assessed. We sought to evaluate the pharmacokinetic characteristics of anti-HBIG quantitatively during the first 6 months after liver transplantation. Methods: Identical doses of 10,000 IU HBIG were administered to adult liver transplant recipients daily during the first week, weekly thereafter until 28 postoperative days, and monthly thereafter. Blood samples were obtained at days 1, 7, 28, 84, and 168 after transplantation. Plasma HBIG titer was quantified using 4 different immunoassay methods. The titer determined by each analytical method was used for mixed-effect modeling, and the most precise results were chosen. Simulations were performed to predict the plausible immunoglobulin maintenance dose. Results: HBIG was eliminated from the body most rapidly in the immediate post-transplant period, and the elimination rate gradually decreased thereafter. In the early post-transplant period, patients with higher DNA titer tend to have lower plasma HBIG concentrations. The maintenance doses required to attain targets in 90%, 95%, and 99% of patients were ~15.3, 18.2, and 25.1 IU, respectively, multiplied by the target trough level (in IU/L. Conclusion: The variability (explained and unexplained in HBIG pharmacokinetics was relatively larger in the early post-transplant period. Dose individualization based upon

  15. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    Directory of Open Access Journals (Sweden)

    Min JS

    2016-09-01

    Full Text Available Jee Sun Min,1 Doyun Kim,1 Jung Bae Park,1 Hyunjin Heo,1 Soo Hyeon Bae,2 Jae Hong Seo,1 Euichaul Oh,1 Soo Kyung Bae1 1Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 2Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea Background: Evaluating the potential risk of metabolic drug–drug interactions (DDIs is clinically important. Objective: To develop a physiologically based pharmacokinetic (PBPK model for sarpogrelate hydrochloride and its active metabolite, (R,S-1-{2-[2-(3-methoxyphenylethyl]-phenoxy}-3-(dimethylamino-2-propanol (M-1, in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods: The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results: The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol

  16. Mechanism-based population pharmacokinetic modelling in diabetes: vildagliptin as a tight binding inhibitor and substrate of dipeptidyl peptidase IV

    Science.gov (United States)

    Landersdorfer, Cornelia B; He, Yan-Ling; Jusko, William J

    2012-01-01

    AIMS To assess the pharmacokinetics of vildagliptin at different doses and build a mechanism-based population model that simultaneously describes vildagliptin pharmacokinetics and its effects on DPP-4 activity based on underlying physiology and biology. METHODS Vildagliptin concentrations and DPP-4 activity vs. time from 13 type 2 diabetic patients after oral vildagliptin 10, 25 or 100 mg and placebo twice daily for 28 days were co-modelled. NONMEM VI and S-ADAPT were utilized for population modelling. RESULTS A target-mediated drug disposition (TMDD) model accounting for capacity-limited high affinity binding of vildagliptin to DPP-4 in plasma and tissues had good predictive performance. Modelling the full time course of the vildagliptin-DPP-4 interaction suggested parallel vildagliptin dissociation from DPP-4 by a slow first-order process and hydrolysis by DPP-4 to an inactive metabolite as a disposition mechanism. Due to limited amounts of DPP-4, vildagliptin concentrations increased slightly more than dose proportionally. This newly proposed model and the parameter estimates are supported by published in vitro studies. Mean parameter estimates (inter-individual coefficient of variation) were: non-saturable clearance 36 l h−1 (25%), central volume of distribution 22 l (37%), half-life of dissociation from DPP-4 1.1 h (94%) and half-life of hydrolysis 6.3 h (81%). CONCLUSIONS Vildagliptin is both an inhibitor and substrate for DPP-4. By utilizing the TMDD approach, slow dissociation of vildagliptin from DPP-4 was found in patients and the half-life of hydrolysis by DPP-4 estimated. This model can be used to predict DPP-4 inhibition effects of other dosage regimens and be modified for other DPP-4 inhibitors to differentiate their properties. PMID:22442826

  17. The hamster cheek pouch (HCP) as an experimental model of oral cancer for BNCT: biodistribution and pharmacokinetics of BPA

    International Nuclear Information System (INIS)

    Kreimann, E.; Itoiz, M.E.; Dagrosa, A.; Garavaglia, R.; Farias, S.; Batistoni, D.; Schwint, A.E.

    2000-01-01

    We propose and validate the HCP model of oral cancer for BNCT studies. This model serves to explore new applications of the technique, study the biology of BNCT and assess Boron uptake in clinically relevant oral tissues. Tumors are induced by a process that mimics spontaneous malignant transformation instead of by the growth of implanted tumor cells. Syrian hamsters were submitted to tumor induction with a chemical carcinogenesis protocol and then used for biodistribution and pharmacokinetic studies of BPA. The data reveal selective uptake by tumor and, to a lesser degree, by precancerous tissue. Boron concentration in oral tissues and skin was higher than in blood, an issue of clinical relevance given that these tissues may be dose-limiting. Absolute and relative values of Boron concentration would be potentially therapeutic. Boron concentration exhibited a linear relationship with percentage of viable tissue in HCP tumors. The HCP model would provide a novel, contributory approach to BNCT research. (author)

  18. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    Science.gov (United States)

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  19. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm.

    Science.gov (United States)

    Touw, D J; Vinks, A A; Neef, C

    1997-06-01

    The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.

  20. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometrically scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.

  1. Ibrutinib Dosing Strategies Based on Interaction Potential of CYP3A4 Perpetrators Using Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    de Zwart, L; Snoeys, J; De Jong, J; Sukbuntherng, J; Mannaert, E; Monshouwer, M

    2016-11-01

    Based on ibrutinib pharmacokinetics and potential sensitivity towards CYP3A4-mediated drug-drug interactions (DDIs), a physiologically based pharmacokinetic approach was developed to mechanistically describe DDI with various CYP3A4 perpetrators in healthy men under fasting conditions. These models were verified using clinical data for ketoconazole (strong CYP3A4 inhibitor) and used to prospectively predict and confirm the inducing effect of rifampin (strong CYP3A4 inducer); DDIs with mild (fluvoxamine, azithromycin) and moderate inhibitors (diltiazem, voriconazole, clarithromycin, itraconazole, erythromycin), and moderate (efavirenz) and strong CYP3A4 inducers (carbamazepine), were also predicted. Ketoconazole increased ibrutinib area under the curve (AUC) by 24-fold, while rifampin decreased ibrutinib AUC by 10-fold; coadministration of ibrutinib with strong inhibitors or inducers should be avoided. The ibrutinib dose should be reduced to 140 mg (quarter of maximal prescribed dose) when coadministered with moderate CYP3A4 inhibitors so that exposures remain within observed ranges at therapeutic doses. Thus, dose recommendations for CYP3A4 perpetrator use during ibrutinib treatment were developed and approved for labeling. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  2. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    Science.gov (United States)

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology. © 2016 John Wiley & Sons Ltd.

  3. Modelling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species– pharmacokinetic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Felicitas S Boretti

    2014-10-01

    Full Text Available Preclinical studies suggest that haptoglobin (Hp supplementation could be an effective therapeutic modality during acute or chronic hemolytic diseases. Hp prevents Hb extravasation and neutralizes Hb’s oxidative and NO scavenging activity in the vasculature. Small animal models such as mouse, rat and guinea pig appear to be valuable to provide proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from human in the clearance of Hb:Hp complexes, which leads to long persistence of circulating Hb:Hp complexes after administration of human plasma derived Hp. Alternative animal models must therefore be explored to guide pre-clinical development of these potential therapeutics. In contrast to rodents, dogs have high Hp plasma concentrations comparable to human. In this study we show that like human macrophages, dog peripheral blood monocyte derived macrophages express a glucocorticoid inducible endocytic clearance pathways with a high specificity for the Hb:Hp complex. Evaluating the Beagle dog as a non-rodent model species we provide the first pharmacokinetic parameter estimates of free Hb and Hb:Hp phenotype complexes. The data reflect a drastically reduced volume of distribution (Vc of the complex compared to free Hb, increased exposures (Cmax and AUC and significantly reduced total body clearance (CL with a terminal half-life (t1/2 of approximately 12 hours. Distribution and clearance was identical for dog and human Hb (± glucocorticoid stimulation and for dimeric and multimeric Hp preparations bound to Hb. Collectively, our study supports the dog as a non-rodent animal model to study pharmacological and pharmacokinetic aspects of Hb clearance systems and apply the model to studying Hp therapeutics.

  4. Dietary lead intakes for mother/child pairs and relevance to pharmacokinetic models.

    Science.gov (United States)

    Gulson, B L; Mahaffey, K R; Vidal, M; Jameson, C W; Law, A J; Mizon, K J; Smith, A J; Korsch, M J

    1997-12-01

    the absorption or uptake of lead from dietary sources is similar in adult females and children of the age in this study. In spite of lower bone lead and faster bone remodeling and recycling in children compared with adult females, we see no differences between the mothers and their children in overall contribution of tissue lead to blood lead. Results from this study suggest that fractional absorption of ingested lead by children 6-11 years of age is comparable with absorption patterns observed among adult females in the 29-37-year-old age range. Because pharmacokinetic models apply a 40-50% absorption even for 7-year-old children, further investigations on fractional absorption of ingested lead by young children are warranted. Further investigations are especially needed in younger children than those who were subjects in the current study, particularly children in the 1-3-year-old age range. In addition, the effect of nutritional status and patterns of food intake on children's lead absorption require investigation, particularly given the increased prevalence of marginal nutritional status among low-income populations that are at increased risk of elevated blood lead levels.

  5. Biodistribution and pharmacokinetics of monoclonal antibody T1h and variant anti-CD6 murine 10D12 in healthy animals and in experimental arthritis model

    International Nuclear Information System (INIS)

    León, M; Hernández, I; Aldana, L; Ayra, F; Castro, Y; Leyva, R; García, L; Pérez, S.; Casaco, A.

    2016-01-01

    Biodistribution and pharmacokinetic of two radio labeled monoclonal antibodies was performed with the help of imaging techniques. Isotopic labeling was carried out by means of standardized methods. Pharmacokinetic evaluation was performed using the population approach and sparse data design. Introduction: Targeted therapy with monoclonal antibodies (MAb) is an efficient option for the treatment of rheumatoid arthritis. Th1 is a MAb anti human CD6 developed for the treatment of autoimmune disease and 10D12 is its counterpart anti murine CD6 developed as a pharmacological tool to get deep into the response mechanisms in animals models of rheumatoid arthritis.To investigate the behavior of both antibodies in the assay system, molecules were labeled with 125I to evaluate pharmacokinetic in healthy animals and with 99mTc to evaluate the antibody uptake in inflamed area of induced arthritis. Materials and methods: Antibodies were supplied by the Center of Molecular immunology. Iodination was performed by the iodogen method and technetium labeling was carried out directly by Schwarz method. Female C57BL6 from CENPALAB were used for experiments. Biodistribution and pharmacokinetic was performed by a sparse data design using the population approach. Uptake in region of inflammation was quantified by gammagraphy at the same time points of blood sampling. A compartmental model was build to quantify uptake kinetic. Pharmacokinetic profiles were analyzed using MONOLIX software version 4.2. Results: Minor pharmacokinetic differences were found between monoclonal antibodies labeled with 125I and 99mTc. As a humanized antibody, T1h shows a faster clearance than 10D12 and a biodistribution pattern reflecting preference for excretion mechanisms. The arthritis accumulation was not consistent with a targeted mediated uptake. On the other hand, radio labeled 10D12 shows an accumulation profile in arthritis with two peaks of maximum concentration representing an initial transit to

  6. A pharmacokinetic/pharmacodynamic model capturing the time course of torasemide-induced diuresis in the dog.

    Science.gov (United States)

    Paulin, A; Schneider, M; Dron, F; Woehrlé, F

    2016-12-01

    A pharmacokinetic/pharmacodynamic modelling approach was used to determine a dosage regimen which maximizes diuretic efficiency of torasemide in dogs. Kinetic profiles of plasma concentration, torasemide excretion rate in urine (TERU) and diuresis were investigated in 10 dogs after single oral administrations at 3 dose levels, 0.2, 0.8 and 1.6 mg/kg, and an intravenous injection of 0.2 mg/kg. Endogenous regulation was evidenced by a proteresis loop between TERU and diuresis. To describe the diuresis-time profile, TERU served as input into a turnover model with inhibition of loss of response, extended by a moderator acting on both loss and production of response. Estimated maximum inhibition of loss of response, I max , was 0.984 showing that torasemide is an efficacious diuretic able to suppress almost total water reabsorption. A TERU 50, value producing half of I max , of 1.45 μg/kg/h was estimated from the model. Pharmacokinetic and pharmacodynamic parameters were used to simulate the torasemide dose-effect relationship after oral administration. Model predictions were in good agreement with diuresis measured in a validation study conducted in 10 dogs, which were administered oral doses of 0.15, 0.4, 0.75, 1.5 and 4.5 mg/kg for 5 days. Finally, oral dose associated with the highest daily diuretic efficiency was predicted to be 0.1 mg/kg. © 2016 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  7. Utility of a Bayesian Mathematical Model to Predict the Impact of Immunogenicity on Pharmacokinetics of Therapeutic Proteins.

    Science.gov (United States)

    Kathman, Steven; Thway, Theingi M; Zhou, Lei; Lee, Stephanie; Yu, Steven; Ma, Mark; Chirmule, Naren; Jawa, Vibha

    2016-03-01

    The impact of an anti-drug antibody (ADA) response on pharmacokinetic (PK) of a therapeutic protein (TP) requires an in-depth understanding of both PK parameters and ADA characteristics. The ADA and PK bioanalytical assays have technical limitations due to high circulating levels of TP and ADA, respectively, hence, significantly hindering the interpretation of this assessment. The goal of this study was to develop a population-based modeling and simulation approach that can identify a more relevant PK parameter associated with ADA-mediated clearance. The concentration-time data from a single dose PK study using five monoclonal antibodies were modeled using a non-compartmental analysis (NCA), one-compartmental, and two-compartmental Michaelis-Menten kinetic model (MMK). A novel PK parameter termed change in clearance time of the TP (α) derived from the MMK model could predict variations in α much earlier than the time points when ADA could be bioanalytically detectable. The model could also identify subjects that might have been potentially identified as false negative due to interference of TP with ADA detection. While NCA and one-compartment models can estimate loss of exposures, and changes in clearance, the two-compartment model provides this additional ability to predict that loss of exposure by means of α. Modeling data from this study showed that the two-compartment model along with the conventional modeling approaches can help predict the impact of ADA response in the absence of relevant ADA data.

  8. Pharmacokinetic-pharmacodynamic modeling of antipsychotic drugs in patients with schizophrenia Part I : The use of PANSS total score and clinical utility

    NARCIS (Netherlands)

    Reddy, Venkatesh Pilla; Kozielska, Magdalena; Suleiman, Ahmed Abbas; Johnson, Martin; Vermeulen, An; Liu, Jing; de Greef, Rik; Groothuis, Geny M. M.; Danhof, Meindert; Proost, Johannes H.

    Background: To develop a pharmacokinetic-pharmacodynamic (PK-PD) model using individual-level data of Positive and Negative Syndrome Scale (PANSS) total score to characterize the antipsychotic drug effect taking into account the placebo effect and dropout rate. In addition, a clinical utility (CU)

  9. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    Science.gov (United States)

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  10. USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY

    Science.gov (United States)

    USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY.CR Eklund, MV Evans, and JE Simmons. US EPA, ORD, NHEERL, ETD,PKB, Research Triangle Park, NC. Chloroform (CHCl3) is a disinfec...

  11. Pharmacokinetic/pharmaco-dynamic modelling and simulation of the effects of different cannabinoid receptor type 1 antagonists on (9)-tetrahydrocannabinol challenge tests

    NARCIS (Netherlands)

    Guan, Zheng; Klumpers, Linda E.; Oyetayo, Olubukayo-Opeyemi; Heuberger, Jules; van Gerven, Joop M. A.; Stevens, Jasper

    Aim: The severe psychiatric side effects of cannabinoid receptor type 1 (CB1) antagonists hampered their wide development but this might be overcome by careful management of drug development with pharmacokinetic/pharmacodynamic (PK/PD) analyses. PK/PD models suitable for direct comparison of

  12. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than is DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.

  13. Semi-physiological pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulation of 5-fluorouracil for thrombocytopenia in rats.

    Science.gov (United States)

    Kobuchi, Shinji; Ito, Yukako; Hayakawa, Taro; Nishimura, Asako; Shibata, Nobuhito; Takada, Kanji; Sakaeda, Toshiyuki

    2015-01-01

    1. The aim of this study was to develop a simple pharmacokinetic-pharmacodynamic (PK-PD) model that could characterize the complete time-course of alterations in platelet counts to predict the onset and degree of thrombocytopenia, which severely limits the use of the anticancer agent 5-fluorouracil (5-FU), in rats. 2. Platelet counts were measured in rats following the intravenous administration of various doses of 5-FU for 4 days to obtain data for an analysis of the PK-PD model. Our PK-PD model consisted of a two-compartment PK model, with three compartments for the PD model and 10 structural PK-PD model parameters. 3. After the 5-FU treatment, platelet counts transiently decreased to a nadir level, showed a rebound to above the baseline level before recovering to baseline levels. Nadir platelet counts and rebounds varied with the AUC0-∞ level. The final PK-PD model effectively characterized platelet count data and final PD parameters were estimated with high certainty. 4. This PK-PD model and simulation may represent a valuable tool for quantifying and predicting the complete time-course of alterations in blood cell counts, and could contribute to the development of therapeutic strategies with 5-FU and assessments of various novel anticancer agents that are difficult to examine in humans.

  14. Improved automatic filtering methodology for an optimal pharmacokinetic modelling of DCE-MR images of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Martinez, V.; Bosch Roig, I.; Sanz Requena, R.

    2016-07-01

    In Dynamic Contrast-Enhanced Magnetic Resonance (DCEMR) studies with high temporal resolution, images are quite noisy due to the complicate balance between temporal and spatial resolution. For this reason, the temporal curves extracted from the images present remarkable noise levels and, because of that, the pharmacokinetic parameters calculated by least squares fitting from the curves and the arterial phase (a useful marker in tumour diagnosis which appears in curves with high arterial contribution) are affected. In order to solve these limitations, an automatic filtering method was developed by our group. In this work, an advanced automatic filtering methodology is presented to further improve noise reduction of the temporal curves in order to obtain more accurate kinetic parameters and a proper modelling of the arterial phase. (Author)

  15. Physiologically based pharmacokinetic toolkit to evaluate environmental exposures: Applications of the dioxin model to study real life exposures

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@biosmc.com [BioSimulation Consulting Inc, Newark, DE (United States); Ruiz, Patricia; Mumtaz, Moiz [Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)

    2017-01-15

    Chlorinated dibenzo-p-dioxins (CDDs) are a series of mono- to octa-chlorinated homologous chemicals commonly referred to as polychlorinated dioxins. One of the most potent, well-known, and persistent member of this family is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of translational research to make computerized models accessible to health risk assessors, we present a Berkeley Madonna recoded version of the human physiologically based pharmacokinetic (PBPK) model used by the U.S. Environmental Protection Agency (EPA) in the recent dioxin assessment. This model incorporates CYP1A2 induction, which is an important metabolic vector that drives dioxin distribution in the human body, and it uses a variable elimination half-life that is body burden dependent. To evaluate the model accuracy, the recoded model predictions were compared with those of the original published model. The simulations performed with the recoded model matched well with those of the original model. The recoded model was then applied to available data sets of real life exposure studies. The recoded model can describe acute and chronic exposures and can be useful for interpreting human biomonitoring data as part of an overall dioxin and/or dioxin-like compounds risk assessment. - Highlights: • The best available dioxin PBPK model for interpreting human biomonitoring data is presented. • The original PBPK model was recoded from acslX to the Berkeley Madonna (BM) platform. • Comparisons were made of the accuracy of the recoded model with the original model. • The model is a useful addition to the ATSDR's BM based PBPK toolkit that supports risk assessors. • The application of the model to real-life exposure data sets is illustrated.

  16. Physiologically based pharmacokinetic and pharmacodynamic modeling of an antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in a mouse xenograft model of human breast cancer.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zou, Peng; Yu, Jing-yu; McEachern, Donna; Wang, Shaomeng; Sun, Duxin

    2013-09-01

    The inhibitors of apoptosis proteins (IAPs) are a class of key apoptosis regulators overexpressed or dysregulated in cancer. SM-406/AT-406 is a potent and selective small molecule mimetic of Smac that antagonizes the inhibitor of apoptosis proteins (IAPs). A physiologically based pharmacokinetic and pharmacodynamic (PBPK-PD) model was developed to predict the tissue concentration-time profiles of SM-406, the related onco-protein levels in tumor, and the tumor growth inhibition in a mouse model bearing human breast cancer xenograft. In the whole body physiologically based pharmacokinetic (PBPK) model for pharmacokinetics characterization, a well stirred (perfusion rate-limited) model was used to describe SM-406 pharmacokinetics in the lung, heart, kidney, intestine, liver and spleen, and a diffusion rate-limited (permeability limited) model was used for tumor. Pharmacodynamic (PD) models were developed to correlate the SM-406 concentration in tumor to the cIAP1 degradation, pro-caspase 8 decrease, CL-PARP accumulation and tumor growth inhibition. The PBPK-PD model well described the experimental pharmacokinetic data, the pharmacodynamic biomarker responses and tumor growth. This model may be helpful to predict tumor and plasma SM-406 concentrations in the clinic. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Safety, pharmacokinetic, and efficacy studies of oral DB868 in a first stage vervet monkey model of human African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    John K Thuita

    Full Text Available There are no oral drugs for human African trypanosomiasis (HAT, sleeping sickness. A successful oral drug would have the potential to reduce or eliminate the need for patient hospitalization, thus reducing healthcare costs of HAT. The development of oral medications is a key objective of the Consortium for Parasitic Drug Development (CPDD. In this study, we investigated the safety, pharmacokinetics, and efficacy of a new orally administered CPDD diamidine prodrug, 2,5-bis[5-(N-methoxyamidino-2-pyridyl]furan (DB868; CPD-007-10, in the vervet monkey model of first stage HAT. DB868 was well tolerated at a dose up to 30 mg/kg/day for 10 days, a cumulative dose of 300 mg/kg. Mean plasma levels of biomarkers indicative of liver injury (alanine aminotransferase, aspartate aminotransferase were not significantly altered by drug administration. In addition, no kidney-mediated alterations in creatinine and urea concentrations were detected. Pharmacokinetic analysis of plasma confirmed that DB868 was orally available and was converted to the active compound DB829 in both uninfected and infected monkeys. Treatment of infected monkeys with DB868 began 7 days post-infection. In the infected monkeys, DB829 attained a median C(max (dosing regimen that was 12-fold (3 mg/kg/day for 7 days, 15-fold (10 mg/kg/day for 7 days, and 31-fold (20 mg/kg/day for 5 days greater than the IC50 (14 nmol/L against T. b. rhodesiense STIB900. DB868 cured all infected monkeys, even at the lowest dose tested. In conclusion, oral DB868 cured monkeys with first stage HAT at a cumulative dose 14-fold lower than the maximum tolerated dose and should be considered a lead preclinical candidate in efforts to develop a safe, short course (5-7 days, oral regimen for first stage HAT.

  18. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    Full Text Available A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC value in brain (denoted by AUC2(∞ required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞. The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.

  19. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse.

    Science.gov (United States)

    Zheng, Fang; Zhan, Chang-Guo

    2012-01-01

    A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC) value in brain (denoted by AUC2(∞)) required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE) can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞). The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.

  20. Dose Rationalization of Pembrolizumab and Nivolumab Using Pharmacokinetic Modeling and Simulation and Cost Analysis.

    Science.gov (United States)

    Ogungbenro, Kayode; Patel, Alkesh; Duncombe, Robert; Nuttall, Richard; Clark, James; Lorigan, Paul

    2018-04-01

    Pembrolizumab and nivolumab are highly selective anti-programmed cell death 1 (PD-1) antibodies approved for the treatment of advanced malignancies. Variable exposure and significant wastage have been associated with body size dosing of monoclonal antibodies (mAbs). The following dosing strategies were evaluated using simulations: body weight, dose banding, fixed dose, and pharmacokinetic (PK)-based methods. The relative cost to body weight dosing for band, fixed 150 mg and 200 mg, and PK-derived strategies were -15%, -25%, + 7%, and -16% for pembrolizumab and -8%, -6%, and -10% for band, fixed, and PK-derived strategies for nivolumab, respectively. Relative to mg/kg doses, the median exposures were -1.0%, -4.6%, + 27.1%, and +3.0% for band, fixed 150 mg, fixed 200 mg, and PK-derived strategies, respectively, for pembrolizumab and -3.1%, + 1.9%, and +1.4% for band, fixed 240 mg, and PK-derived strategies, respectively, for nivolumab. Significant wastage can be reduced by alternative dosing strategies without compromising exposure and efficacy. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  1. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: a model of smallpox disease.

    Science.gov (United States)

    Trost, Lawrence C; Rose, Michelle L; Khouri, Jody; Keilholz, Laurie; Long, James; Godin, Stephen J; Foster, Scott A

    2015-05-01

    Brincidofovir (BCV) has broad-spectrum in vitro activity against dsDNA viruses, including smallpox, and is being developed as a treatment for smallpox as well as infections caused by other dsDNA viruses. BCV has previously been shown to be active in multiple animal models of smallpox. Here we present the results of a randomized, blinded, placebo-controlled study of the efficacy and pharmacokinetics of a novel, "humanized" regimen of BCV for treatment of New Zealand White rabbits infected with a highly lethal inoculum of rabbitpox virus, a well characterized model of smallpox. Compared with placebo, a dose-dependent increase in survival was observed in all BCV-treatment groups. Concentrations of cidofovir diphosphate (CDV-PP), the active antiviral, in rabbit peripheral blood mononuclear cells (PBMCs) were determined for comparison to those produced in humans at the dose proposed for treatment of smallpox. CDV-PP exposure in PBMCs from rabbits given BCV scaled to human exposures at the dose proposed for treatment of smallpox, which is also currently under evaluation for other indications. The results of this study demonstrate the activity of BCV in the rabbitpox model of smallpox and the feasibility of scaling doses efficacious in the model to a proposed human dose and regimen for treatment of smallpox. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Pharmacokinetics, Biodistribution, and Toxicity Evaluation of Anti-SEMA3A (F11) in In Vivo Models.

    Science.gov (United States)

    Lee, Jaehyun; Kim, Donggeon; Son, Eunju; Yoo, Su-Ji; Sa, Jason K; Shin, Yong Jae; Yoon, Yeup; Nam, DO-Hyun

    2018-05-01

    The aim of our study was to investigate the pharmacokinetics (PK), tissue distribution and toxicity of F11 antibody to semaphorin 3A in mouse models and explore its anti-angiogenic and tumor-inhibitory effect. Patient-derived xenograft (PDX) models were established via subcutaneous implantation of glioblastoma multiforme (GBM) cells and treated with F11. F11 significantly attenuated tumor growth and angiogenesis in the GBM PDX model. Within the range of administered doses, the PK of F11 in serum demonstrated a linear fashion, consistent with general PK profiles of soluble antigen-targeting antibodies. Additionally, the clearance level was detected at between 4.63 and 7.12 ml/d/kg, while the biological half-life was measured at 6.9 and 9.4 days. Tissue distribution of F11 in kidney, liver and heart was consistent with previously reported antibody patterns. However, the presence of F11 in the brain was an interesting finding. Collectively, our results revealed angiogenic and tumor-inhibitory effect of F11 antibody and its potential therapeutic use within a clinical framework based on PK, biodistribution and toxicity evaluation in mouse models. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Performance of target-controlled infusion of propofol using two different pharmacokinetic models in open heart surgery - a randomised controlled study.

    Science.gov (United States)

    Mathew, P J; Sailam, S; Sivasailam, R; Thingnum, S K S; Puri, G D

    2016-01-01

    We compared the performance of a propofol target-controlled infusion (TCI) using Marsh versus PGIMER models in patients undergoing open heart surgery, in terms of measured plasma levels of propofol and objective pharmacodynamic effect. Twenty-three, ASA II/III adult patients aged 18-65 years and scheduled for elective open heart surgery received Marsh or PGIMER (Postgraduate Institute of Medical Education and Research) pharmacokinetic models of TCI for the induction and maintenance of anaesthesia with propofol in a randomized, active-controlled, non-inferiority trial. The plasma levels of propofol were measured at specified time points before, during and after bypass. The performances of both the models were similar, as determined by the error (%) in maintaining the target plasma concentrations: MDPE of -5.0 (-12.0, 5.0) in the PGIMER group vs -6.4 (-7.7 to 0.5) in the Marsh group and MDAPE of 9.1 (5, 15) in the PGIMER group vs 8 (6.7, 10.1) in the Marsh group. These values indicate that both models over-predicted the plasma propofol concentration. The new pharmacokinetic model based on data from Indian patients is comparable in performance to the commercially available Marsh pharmacokinetic model. © The Author(s) 2015.

  4. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model.

    Science.gov (United States)

    Nakada, Tomohisa; Kudo, Toshiyuki; Kume, Toshiyuki; Kusuhara, Hiroyuki; Ito, Kiyomi

    2018-02-01

    Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CL cre ), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468.

    Science.gov (United States)

    Treiber, Alexander; de Kanter, Ruben; Roch, Catherine; Gatfield, John; Boss, Christoph; von Raumer, Markus; Schindelholz, Benno; Muehlan, Clemens; van Gerven, Joop; Jenck, Francois

    2017-09-01

    The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX 1 and OX 2 ) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX 2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX 2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Evaluation of a Pharmacokinetic-Pharmacodynamic Model for Hypouricemic Effects of Febuxostat Using Datasets Obtained from Real-world Patients.

    Science.gov (United States)

    Hirai, Toshinori; Itoh, Toshimasa; Kimura, Toshimi; Echizen, Hirotoshi

    2018-06-06

    Febuxostat is an active xanthine oxidase (XO) inhibitor that is widely used in the hyperuricemia treatment. We aimed to evaluate the predictive performance of a pharmacokinetic-pharmacodynamic (PK-PD) model for hypouricemic effects of febuxostat. Previously, we have formulated a PK--PD model for predicting hypouricemic effects of febuxostat as a function of baseline serum urate levels, body weight, renal function, and drug dose using datasets reported in preapproval studies (Hirai T et al., Biol Pharm Bull 2016; 39: 1013-21). Using an updated model with sensitivity analysis, we examined the predictive performance of the PK-PD model using datasets obtained from the medical records of patients who received febuxostat from March 2011 to December 2015 at Tokyo Women's Medical University Hospital. Multivariate regression analysis was performed to explore clinical variables to improve the predictive performance of the model. A total of 1,199 serum urate data were retrieved from 168 patients (age: 60.5 ±17.7 years, 71.4% males) who received febuxostat as hyperuricemia treatment. There was a significant correlation (r=0.68, p<0.01) between serum urate levels observed and those predicted by the modified PK-PD model. A multivariate regression analysis revealed that the predictive performance of the model may be improved further by considering comorbidities, such as diabetes mellitus, estimated glomerular filtration rate (eGFR), and co-administration of loop diuretics (r = 0.77, p<0.01). The PK-PD model may be useful for predicting individualized maintenance doses of febuxostat in real-world patients. This article is protected by copyright. All rights reserved.

  7. Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    Directory of Open Access Journals (Sweden)

    Lucy Dorey

    Full Text Available Pharmacokinetic-pharmacodynamic (PK/PD integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1 bacteriostatic and bactericidal levels of kill; (2 for 50 and 90% target attainment rates (TAR; and (3 for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida and 44.7 and 86.6 mg/kg (A. pleuropneumoniae. For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida and 18.2 and 35.2 mg/kg (A. pleuropneumoniae were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points.

  8. An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers.

    Directory of Open Access Journals (Sweden)

    Moran Elishmereni

    2011-09-01

    Full Text Available Interleukin (IL-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK and pharmacodynamic (PD data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected "training" data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent "validation" data in melanoma and renal cell carcinoma-challenged mice (R(2>0.90. Simulations of the verified model surfaced important therapeutic insights: (1 Fractionating the standard daily regimen (50 µg/dose into a twice daily schedule (25 µg/dose is advantageous, yielding a significantly lower tumor mass (45% decrease; (2 A low-dose (12 µg/day regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R(2>0.89, thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic.

  9. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles.

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbuhler, Konrad

    2015-05-01

    Nano-sized titanium dioxide particles (nano-TiO2) can be found in a large number of foods and consumer products, such as cosmetics and toothpaste, thus, consumer exposure occurs via multiple sources, possibly involving different exposure routes. In order to determine the disposition of nano-TiO2 particles that are taken up, a physiologically based pharmacokinetic (PBPK) model was developed. High priority was placed on limiting the number of parameters to match the number of underlying data points (hence to avoid overparameterization), but still reflecting available mechanistic information on the toxicokinetics of nano-TiO2. To this end, the biodistribution of nano-TiO2 was modeled based on their ability to cross the capillary wall of the organs and to be phagocytosed in the mononuclear phagocyte system (MPS). The model's predictive power was evaluated by comparing simulated organ levels to experimentally assessed organ levels of independent in vivo studies. The results of our PBPK model indicate that: (1) within the application domain of the PBPK model from 15 to 150 nm, the size and crystalline structure of the particles had a minor influence on the biodistribution; and (2) at high internal exposure the particles agglomerate in vivo and are subsequently taken up by macrophages in the MPS. Furthermore, we also give an example on how the PBPK model may be used for risk assessment. For this purpose, the daily dietary intake of nano-TiO2 was calculated for the German population. The PBPK model was then used to convert this chronic external exposure into internal titanium levels for each organ.

  10. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhoumeng [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wang, Ran [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Ross, Matthew K. [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Filipov, Nikolay M., E-mail: filipov@uga.edu [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States)

    2013-11-15

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data

  11. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    International Nuclear Information System (INIS)

    Lin, Zhoumeng; Fisher, Jeffrey W.; Wang, Ran; Ross, Matthew K.; Filipov, Nikolay M.

    2013-01-01

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data.

  12. Quantitative 2- and 3-dimensional analysis of pharmacokinetic model-derived variables for breast lesions in dynamic, contrast-enhanced MR mammography

    International Nuclear Information System (INIS)

    Hauth, E.A.M.; Jaeger, H.J.; Maderwald, S.; Muehler, A.; Kimmig, R.; Forsting, M.

    2008-01-01

    Purpose: 2- and 3-dimensional evaluation of quantitative pharmacokinetic parameters derived from the Tofts model modeling dynamic contrast enhancement of lesions in MR mammography. Materials and methods: In 95 patients, MR mammography revealed 127 suspicious lesions. The initial rate of enhancement was coded by color intensity, the post-initial enhancement change is coded by color hue. 2D and 3D analysis of distribution of color hue and intensity, vascular permeability and extracellular volume were performed. Results: In 2D, malignant lesions showed significant higher number of bright red, medium red, dark red, bright green, medium green, dark green and bright blue pixels than benign lesions. In 3D, statistical significant differences between malignant and benign lesions was found for all this parameters. Vascular permeability was significant higher in malignant lesions than in benign lesions. Regression model using the 3D data found that the best discriminator between malignant and benign lesions was combined number of voxels and medium green pixels, with a sensitivity of 79.4% and a specificity of 83.1%. Conclusions: Quantitative analysis of pharmacokinetic variables of contrast kinetics showed significant differences between malignant and benign lesions. 3D analysis showed superior diagnostic differentiation between malignant and benign lesions than 2D analysis. The parametric analysis using a pharmacokinetic model allows objective analysis of contrast enhancement in breast lesions

  13. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: Xiaoxia.Yang@fda.hhs.gov; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  14. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-01-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys

  15. Prediction of Deoxypodophyllotoxin Disposition in Mouse, Rat, Monkey and Dog by Physiologically-based Pharmacokinetic Model and the Extrapolation to Human

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-12-01

    Full Text Available Deoxypodophyllotoxin (DPT is a potential anti-tumor candidate prior to its clinical phase. The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK model consisting of 13 tissue compartments to predict DPT disposition in mouse, rat, monkey and dog based on in vitro and in silico inputs. Since large interspecies difference was found in unbound fraction of DPT in plasma, we assumed that Kt:pl,u (unbound tissue-to-plasma concentration ratio was identical across species. The predictions of our model were then validated by in vivo data of corresponding preclinical species, along with visual predictive checks. Reasonable matches were found between observed and predicted plasma concentrations and pharmacokinetic parameters in all four animal species. The prediction in the related seven tissues of mouse was also desirable. We also attempted to predict human pharmacokinetic profile by both the developed PBPK model and interspecies allometric scaling across mouse, rat and monkey, while dog was excluded from the scaling. The two approaches reached similar results. We hope the study will help in the efficacy and safety assessment of DPT in future clinical studies and provide a reference to the preclinical screening of similar compounds by PBPK model.

  16. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    de Lange, Elizabeth C M; van den Brink, Willem; Yamamoto, Yumi; de Witte, Wilhelmus E A; Wong, Yin Cheong

    2017-12-01

    CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.

  17. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats. An application of the capillary membrane-limited model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1987-07-01

    In order to simulate the distribution and elimination of radioiodinated human beta-endorphin (/sup 125/I-beta-EP) after iv bolus injection in rats, we proposed a physiologically based pharmacokinetic model incorporating diffusional transport of /sup 125/I-beta-EP across the capillary membrane. This model assumes that the distribution of /sup 125/I-beta-EP is restricted only within the blood and the tissue interstitial fluid, and that a diffusional barrier across the capillary membrane exists in each tissue except the liver. The tissue-to-blood partition coefficients were estimated from the ratios of the concentration in tissues to that in arterial plasma at the terminal (pseudoequilibrium) phase. The total body plasma clearance (9.0 ml/min/kg) was appropriately assigned to the liver and kidney. The transcapillary diffusion clearances of /sup 125/I-beta-EP were also estimated and shown to correlate linearly with that of inulin in several tissues. Numerically solving the mass-balance differential equations as to plasma and each tissue simultaneously, simulated concentration curves of /sup 125/I-beta-EP corresponded well with the observed data. It was suggested by the simulation that the initial rapid disappearance of /sup 125/I-beta-EP from plasma after iv injection could be attributed in part to the transcapillary diffusion of the peptide.

  18. Pharmacokinetic-Pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration.

    Science.gov (United States)

    Aljayyoussi, Ghaith; Jenkins, Victoria A; Sharma, Raman; Ardrey, Alison; Donnellan, Samantha; Ward, Stephen A; Biagini, Giancarlo A

    2017-03-29

    Tuberculosis (TB) treatment is long and complex, typically involving a combination of drugs taken for 6 months. Improved drug regimens to shorten and simplify treatment are urgently required, however a major challenge to TB drug development is the lack of predictive pre-clinical tools. To address this deficiency, we have adopted a new high-content imaging-based approach capable of defining the killing kinetics of first line anti-TB drugs against intracellular Mycobacterium tuberculosis (Mtb) residing inside macrophages. Through use of this pharmacokinetic-pharmacodynamic (PK-PD) approach we demonstrate that the killing dynamics of the intracellular Mtb sub-population is critical to predicting clinical TB treatment duration. Integrated modelling of intracellular Mtb killing alongside conventional extracellular Mtb killing data, generates the biphasic responses typical of those described clinically. Our model supports the hypothesis that the use of higher doses of rifampicin (35 mg/kg) will significantly reduce treatment duration. Our described PK-PD approach offers a much needed decision making tool for the identification and prioritisation of new therapies which have the potential to reduce TB treatment duration.

  19. A Preclinical Population Pharmacokinetic Model for Anti-CD20/CD3 T-Cell-Dependent Bispecific Antibodies.

    Science.gov (United States)

    Ferl, Gregory Z; Reyes, Arthur; Sun, Liping L; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G

    2018-05-01

    CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t ½  = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t ½  = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  20. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    International Nuclear Information System (INIS)

    Trifilieff, Alexandre; Ethell, Brian T.; Sykes, David A.; Watson, Kenny J.; Collingwood, Steve; Charlton, Steven J.; Kent, Toby C.

    2015-01-01

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED 50 values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M 2 muscarinic receptor occupancy, which predicted significantly higher M 2 receptor blockade at ED 50 doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED 50 doses for bronchoprotection we model systemic M 2 receptor occupancy. • Glycopyrrolate demonstrates lower M 2 occupancy at

  1. Proposed mechanistic description of dose-dependent BDE-47 urinary elimination in mice using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@umontreal.ca [BioSimulation Consulting Inc., Newark, DE (United States); Departments of Environmental and Occupational Health, Medicine Faculty, University of Montreal, Montreal, Quebec (Canada); Sanders, J. Michael, E-mail: sander10@mail.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States); Wikoff, Daniele, E-mail: dwikoff@toxstrategies.com [ToxStrategies, Austin, TX (United States); Birnbaum, Linda S., E-mail: birnbaumls@niehs.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States)

    2013-12-01

    Polybrominated diphenyl ethers (PBDEs) have been used in a wide variety of consumer applications as additive flame retardants. In North America, scientists have noted continuing increases in the levels of PBDE congeners measured in human serum. Some recent studies have found that PBDEs are associated with adverse health effects in humans, in experimental animals, and wildlife. This laboratory previously demonstrated that urinary elimination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is saturable at high doses in mice; however, this dose-dependent urinary elimination has not been observed in adult rats or immature mice. Thus, the primary objective of this study was to examine the mechanism of urinary elimination of BDE-47 in adult mice using a physiologically based pharmacokinetic (PBPK) model. To support this objective, additional laboratory data were collected to evaluate the predictions of the PBPK model using novel information from adult multi-drug resistance 1a/b knockout mice. Using the PBPK model, the roles of mouse major urinary protein (a blood protein carrier) and P-glycoprotein (an apical membrane transporter in proximal tubule cells in the kidneys, brain, intestines, and liver) were investigated in BDE-47 elimination. The resulting model and new data supported the major role of m-MUP in excretion of BDE-47 in the urine of adult mice, and a lesser role of P-gp as a transporter of BDE-47 in mice. This work expands the knowledge of BDE-47 kinetics between species and provides information for determining the relevancy of these data for human risk assessment purposes. - Highlights: • We report the first study on PBPK model on flame retardant in mice for BDE-47. • We examine mechanism of urinary elimination of BDE-47 in mice using a PBPK model. • We investigated roles of m-MUP and P-gp as transporters in urinary elimination.

  2. Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice

    Directory of Open Access Journals (Sweden)

    Xi-Ling Jiang

    2016-09-01

    Full Text Available We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI, potentiates serotonin (5-HT receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.

  3. Population Pharmacokinetic Modeling and Dosing Simulations of Nitrogen-Scavenging Compounds: Disposition of Glycerol Phenylbutyrate and Sodium Phenylbutyrate in Adult and Pediatric Patients with Urea Cycle Disorders

    OpenAIRE

    Monteleone, Jon P. R.; Mokhtarani, M.; Diaz, G. A.; Rhead, W.; Lichter-Konecki, U.; Berry, S. A.; LeMons, C.; Dickinson, K.; Coakley, D.; Lee, B.; Scharschmidt, B. F.

    2013-01-01

    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data fro...

  4. Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Mizuno, Kana; Dong, Min; Fukuda, Tsuyoshi; Chandra, Sharat; Mehta, Parinda A; McConnell, Scott; Anaissie, Elias J; Vinks, Alexander A

    2018-05-01

    High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity. The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy. A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m 2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients. A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08-0.19), 0.61 (0.33-0.90), 2.0 (1.3-2.7), and 4.0 (3.6-4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2  = 0.98; p strategy promises to achieve the target area under the curve as part of precision dosing.

  5. Computational Analysis of Pharmacokinetic Behavior of Ampicillin

    Directory of Open Access Journals (Sweden)

    Mária Ďurišová

    2016-07-01

    Full Text Available orrespondence: Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic. Phone + 42-1254775928; Fax +421254775928; E-mail: maria.durisova@savba.sk 84 RESEARCH ARTICLE The objective of this study was to perform a computational analysis of the pharmacokinetic behavior of ampicillin, using data from the literature. A method based on the theory of dynamic systems was used for modeling purposes. The method used has been introduced to pharmacokinetics with the aim to contribute to the knowledge base in pharmacokinetics by including the modeling method which enables researchers to develop mathematical models of various pharmacokinetic processes in an identical way, using identical model structures. A few examples of a successful use of the modeling method considered here in pharmacokinetics can be found in full texts articles available free of charge at the website of the author, and in the example given in the this study. The modeling method employed in this study can be used to develop a mathematical model of the pharmacokinetic behavior of any drug, under the condition that the pharmacokinetic behavior of the drug under study can be at least partially approximated using linear models.

  6. Betahistine Treatment in a Cat Model of Vestibular Pathology: Pharmacokinetic and Pharmacodynamic Approaches

    Directory of Open Access Journals (Sweden)

    Brahim Tighilet

    2018-06-01

    Full Text Available This study is a pharmacokinetic (PK and pharmacodynamics (PD approach using betahistine doses levels in unilateral vestibular neurectomized cats (UVN comparable to those used in humans for treating patients with Menière's disease. The aim is to investigate for the first time oral betahistine administration (0.2 and 2 mg/kg/day with plasma concentrations of betahistine and its major metabolite 2-pyridylacetic acid (2-PAA (N = 9 cats, the time course of posture recovery (N = 13 cats, and the regulation of the enzyme synthesizing histamine (histidine decarboxylase: HDC in the tuberomammillary nuclei (TMN of UVN treated animals (N = the same 13 cats plus 4 negative control cats. In addition the effect of co-administration of the lower betahistine dose (0.2 mg/kg/day and selegiline (1 mg/kg/day, an inhibitor of the monamine oxidase B (MAOBi implicated in betahistine catabolism was investigated. The PK parameters were the peak concentration (Cmax, the time when the maximum concentration is reached (Tmax for both betahistine and 2-PAA and the area under the curve (AUC. The PD approach consisted at quantifying the surface support area, which is a good estimation of posture recovery. The plasma concentration-time-profiles of betahistine and 2-PAA in cats were characterized by early Cmax-values followed by a phase of rapid decrease of plasma concentrations and a final long lasting low level of plasma concentrations. Co administration of selegiline and betahistine increased values of Cmax and AUC up to 146- and 180-fold, respectively. The lowest dose of betahistine (0.2 mg/kg has no effects on postural function recovery but induced an acute symptomatic effect characterized by a fast balance improvement (4–6 days. The higher dose (2 mg/kg and the co-administration treatment induced both this acute effect plus a significant acceleration of the recovery process. The histaminergic activity of the neurons in the TMN was significantly increased under

  7. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    Science.gov (United States)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  8. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    Science.gov (United States)

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  9. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation.

    Science.gov (United States)

    Kambayashi, Atsushi; Dressman, Jennifer B

    2017-10-01

    The aim of the current research was to determine the precipitation kinetics of dantrolene sodium using canine biorelevant in vitro testing and to model the precipitation kinetics by appropriately coupling the data with an in silico tool adapted for dogs. The precipitation profiles of dantrolene sodium solutions were obtained with the in vitro paddle apparatus at a revolution rate of 50rpm. The in silico prediction tool was designed using STELLA software and the predicted plasma concentration profiles of dantrolene using the in vitro precipitation data were compared with the observed in vivo pharmacokinetics in beagle dogs. The plasma profiles of dantrolene, which served as a model weakly acidic drug which precipitates in the upper gastrointestinal tract, was successfully predicted using the in vitro precipitation testing coupled with the in silico modeling and simulation approach. The approach was subsequently used to forecast the effect of pharmaceutical excipients (HPMC/PG) on the ability of the drug to supersaturate in the gut and the resulting pharmacokinetics. The agreement of the simulated pharmacokinetics with the observed values confirms the ability of canine biorelevant media to predict oral performance of enhanced dosage forms in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Tofts model in frequency domain: fast and robust determination of pharmacokinetic maps for dynamic contrast enhancement MRI

    Science.gov (United States)

    Vajuvalli, Nithin N.; Chikkemenahally, Dharmendra Kumar K.; Nayak, Krupa N.; Bhosale, Manoj G.; Geethanath, Sairam

    2016-12-01

    Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) is a well-established method for non-invasive detection and therapeutic monitoring of pathologies through administration of intravenous contrast agent. Quantification of pharmacokinetic (PK) maps can be achieved through application of compartmental models relevant to the pathophysiology of the tissue under interrogation. The determination of PK parameters involves fitting of time-concentration data to these models. In this work, the Tofts model in frequency domain (TM-FD) is applied to a weakly vascularized tissue such as the breast. It is derived as a convolution-free model from the conventional Tofts model in the time domain (TM-TD). This reduces the dimensionality of the curve-fitting problem from two to one. The approaches of TM-FD and TM-TD were applied to two kinds of in silico phantoms and six in vivo breast DCE data sets with and without the addition of noise. The results showed that computational time taken to estimate PK maps using TM-FD was 16-25% less than with TM-TD. Normalized root mean square error (NRMSE) calculation and Pearson correlation analyses were performed to validate robustness and accuracy of the TM-FD and TM-TD approaches. These compared with ground truth values in the case of phantom studies for four different temporal resolutions. Results showed that NRMSE values for TM-FD were significantly lower than those of TM-TD as validated by a paired t-test along with reduced computational time. This approach therefore enables online evaluation of PK maps by radiologists in a clinical setting, aiding in the evaluation of 3D and/or increased coverage of the tissue of interest.

  11. A model-based meta-analysis of monoclonal antibody pharmacokinetics to guide optimal first-in-human study design

    Science.gov (United States)

    Davda, Jasmine P; Dodds, Michael G; Gibbs, Megan A; Wisdom, Wendy; Gibbs, John P

    2014-01-01

    The objectives of this retrospective analysis were (1) to characterize the population pharmacokinetics (popPK) of four different monoclonal antibodies (mAbs) in a combined analysis of individual data collected during first-in-human (FIH) studies and (2) to provide a scientific rationale for prospective design of FIH studies with mAbs. The data set was composed of 171 subjects contributing a total of 2716 mAb serum concentrations, following intravenous (IV) and subcutaneous (SC) doses. mAb PK was described by an open 2-compartment model with first-order elimination from the central compartment and a depot compartment with first-order absorption. Parameter values obtained from the popPK model were further used to generate optimal sampling times for a single dose study. A robust fit to the combined data from four mAbs was obtained using the 2-compartment model. Population parameter estimates for systemic clearance and central volume of distribution were 0.20 L/day and 3.6 L with intersubject variability of 31% and 34%, respectively. The random residual error was 14%. Differences (> 2-fold) in PK parameters were not apparent across mAbs. Rich designs (22 samples/subject), minimal designs for popPK (5 samples/subject), and optimal designs for non-compartmental analysis (NCA) and popPK (10 samples/subject) were examined by stochastic simulation and estimation. Single-dose PK studies for linear mAbs executed using the optimal designs are expected to yield high-quality model estimates, and accurate capture of NCA estimations. This model-based meta-analysis has determined typical popPK values for four mAbs with linear elimination and enabled prospective optimization of FIH study designs, potentially improving the efficiency of FIH studies for this class of therapeutics. PMID:24837591

  12. Pharmacokinetic Modelling to Predict FVIII:C Response to Desmopressin and Its Reproducibility in Nonsevere Haemophilia A Patients.

    Science.gov (United States)

    Schütte, Lisette M; van Hest, Reinier M; Stoof, Sara C M; Leebeek, Frank W G; Cnossen, Marjon H; Kruip, Marieke J H A; Mathôt, Ron A A

    2018-04-01

     Nonsevere haemophilia A (HA) patients can be treated with desmopressin. Response of factor VIII activity (FVIII:C) differs between patients and is difficult to predict.  Our aims were to describe FVIII:C response after desmopressin and its reproducibility by population pharmacokinetic (PK) modelling.  Retrospective data of 128 nonsevere HA patients (age 7-75 years) receiving an intravenous or intranasal dose of desmopressin were used. PK modelling of FVIII:C was performed by nonlinear mixed effect modelling. Reproducibility of FVIII:C response was defined as less than 25% difference in peak FVIII:C between administrations.  A total of 623 FVIII:C measurements from 142 desmopressin administrations were available; 14 patients had received two administrations at different occasions. The FVIII:C time profile was best described by a two-compartment model with first-order absorption and elimination. Interindividual variability of the estimated baseline FVIII:C, central volume of distribution and clearance were 37, 43 and 50%, respectively. The most recently measured FVIII:C (FVIII-recent) was significantly associated with FVIII:C response to desmopressin ( p  C increase of 0.47 IU/mL (median, interquartile range: 0.32-0.65 IU/mL, n  = 142). C response was reproducible in 6 out of 14 patients receiving two desmopressin administrations.  FVIII:C response to desmopressin in nonsevere HA patients was adequately described by a population PK model. Large variability in FVIII:C response was observed, which could only partially be explained by FVIII-recent. C response was not reproducible in a small subset of patients. Therefore, monitoring FVIII:C around surgeries or bleeding might be considered. Research is needed to study this further. Schattauer Stuttgart.

  13. Applying a Global Sensitivity Analysis Workflow to Improve the Computational Efficiencies in Physiologically-Based Pharmacokinetic Modeling

    Directory of Open Access Journals (Sweden)

    Nan-Hung Hsieh

    2018-06-01

    Full Text Available Traditionally, the solution to reduce parameter dimensionality in a physiologically-based pharmacokinetic (PBPK model is through expert judgment. However, this approach may lead to bias in parameter estimates and model predictions if important parameters are fixed at uncertain or inappropriate values. The purpose of this study was to explore the application of global sensitivity analysis (GSA to ascertain which parameters in the PBPK model are non-influential, and therefore can be assigned fixed values in Bayesian parameter estimation with minimal bias. We compared the elementary effect-based Morris method and three variance-based Sobol indices in their ability to distinguish “influential” parameters to be estimated and “non-influential” parameters to be fixed. We illustrated this approach using a published human PBPK model for acetaminophen (APAP and its two primary metabolites APAP-glucuronide and APAP-sulfate. We first applied GSA to the original published model, comparing Bayesian model calibration results using all the 21 originally calibrated model parameters (OMP, determined by “expert judgment”-based approach vs. the subset of original influential parameters (OIP, determined by GSA from the OMP. We then applied GSA to all the PBPK parameters, including those fixed in the published model, comparing the model calibration results using this full set of 58 model parameters (FMP vs. the full set influential parameters (FIP, determined by GSA from FMP. We also examined the impact of different cut-off points to distinguish the influential and non-influential parameters. We found that Sobol indices calculated by eFAST provided the best combination of reliability (consistency with other variance-based methods and efficiency (lowest computational cost to achieve convergence in identifying influential parameters. We identified several originally calibrated parameters that were not influential, and could be fixed to improve computational

  14. Using Akaike's information theoretic criterion in mixed-effects modeling of pharmacokinetic data: a simulation study [version 3; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Erik Olofsen

    2015-07-01

    Full Text Available Akaike's information theoretic criterion for model discrimination (AIC is often stated to "overfit", i.e., it selects models with a higher dimension than the dimension of the model that generated the data. However, with experimental pharmacokinetic data it may not be possible to identify the correct model, because of the complexity of the processes governing drug disposition. Instead of trying to find the correct model, a more useful objective might be to minimize the prediction error of drug concentrations in subjects with unknown disposition characteristics. In that case, the AIC might be the selection criterion of choice. We performed Monte Carlo simulations using a model of pharmacokinetic data (a power function of time with the property that fits with common multi-exponential models can never be perfect - thus resembling the situation with real data. Prespecified models were fitted to simulated data sets, and AIC and AICc (the criterion with a correction for small sample sizes values were calculated and averaged. The average predictive performances of the models, quantified using simulated validation sets, were compared to the means of the AICs. The data for fits and validation consisted of 11 concentration measurements each obtained in 5 individuals, with three degrees of interindividual variability in the pharmacokinetic volume of distribution. Mean AICc corresponded very well, and better than mean AIC, with mean predictive performance. With increasing interindividual variability, there was a trend towards larger optimal models, but with respect to both lowest AICc and best predictive performance. Furthermore, it was observed that the mean square prediction error itself became less suitable as a validation criterion, and that a predictive performance measure should incorporate interindividual variability. This simulation study showed that, at least in a relatively simple mixed-effects modelling context with a set of prespecified models

  15. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  16. Pharmacokinetic/pharmacodynamic modeling of benazepril and benazeprilat after administration of intravenous and oral doses of benazepril in healthy horses.

    Science.gov (United States)

    Serrano-Rodríguez, Juan Manuel; Gómez-Díez, Manuel; Esgueva, María; Castejón-Riber, Cristina; Mena-Bravo, Antonio; Priego-Capote, Feliciano; Ayala, Nahúm; Caballero, Juan Manuel Serrano; Muñoz, Ana

    2017-10-01

    Pharmacokinetic and pharmacodynamic (PK/PD) properties of the angiotensin-converting enzyme inhibitor (ACEI) benazeprilat have not been evaluated in horses. This study was designed to establish PK profiles for benazepril and benazeprilat after intravenous (IV) and oral (PO) administration of benazepril using a PK/PD model. This study also aims to determine the effects of benazeprilat on serum angiotensin converting enzyme (ACE), selecting the most appropriate dose that suppresses ACE activity. Six healthy horses in a crossover design received IV benazepril at 0.50mg/kg and PO at doses 0 (placebo), 0.25, 0.50 and 1.00mg/kg. Blood pressures (BP) were measured and blood samples were obtained at different times in order to measure serum drug concentrations and serum ACE activity, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and spectrophotometry, respectively. Systemic bioavailability of benazeprilat after PO benazepril was 3-4%. Maximum ACE inhibitions from baseline were 99.63% (IV benazepril), 6.77% (placebo) and 78.91%, 85.74% and 89.51% (for the three PO benazepril doses). Significant differences in BP were not found. Although oral availability was low, benazeprilat 1.00mg/kg, reached sufficient serum concentrations to induce long lasting serum ACE inhibitions (between 88 and 50%) for the first 48h. Additional research on benazepril administration in equine patients is indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G's F(ab')2 extrusion mechanism from blood to tissues.

    Science.gov (United States)

    Sevcik, C; D'Suze, G; Díaz, P; Salazar, V; Hidalgo, C; Azpúrua, H; Bracho, N

    2004-12-01

    Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G's F(ab')(2) extrusion mechanism from blood to tissues. We measured pharmacokinetic parameters for T. discrepans venom in rams. Forty, 75 or 100 microg/kg venom were injected subcutaneously in the inner side of the thigh. Plasma venom content (venenemia) was determined by enzyme-linked immunosorbent assay (ELISA) from 0 to 300 min after injecting venom. Venenemia was fit to a three-compartment model (inoculation site, plasma and extra vascular extracellular space), it was assumed that the venom may also be irreversibly removed from plasma. Calculated time course of venom content shows that at any time no more that 30% of the venom is present in plasma. Venenemia peaks at 1h and decays afterwards. Fluorescently labelled antivenom [horse anti-TityusF(ab')(2) or fraction antigen binding, immuglobulin without Fc chain covalently bound to fluorescine or fluorescamine] pharmacokinetics was determined. Although F(ab')(2) molecular weight is >/=10 times bigger that toxin's, the rate of outflow of F(ab')(2) from blood to tissues was approximately 4 times faster than the venom's outflow. Venom content in the injection site decays exponentially for >6h, this prediction was confirmed immunohistochemically. Only approximately 5% of the venom is eliminated in 10h; approximately 80% of the venom is in the tissues after 2h and remains there for >10h.

  18. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  19. The need for non- or minimally-invasive biomonitoring strategies and the development of pharmacokinetic/pharmacodynamic models for quantification

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Charles; Weber, Thomas J.; Smith, Jordan N.

    2017-06-01

    Advancements in Exposure Science involving the development and deployment of biomarkers of exposure and biological response are anticipated to significantly (and positively) influence health outcomes associated with occupational, environmental and clinical exposure to chemicals/drugs. To achieve this vision, innovative strategies are needed to develop multiplex sensor platforms capable of quantifying individual and mixed exposures (i.e. systemic dose) by measuring biomarkers of dose and biological response in readily obtainable (non-invasive) biofluids. Secondly, the use of saliva (alternative to blood) for biomonitoring coupled with the ability to rapidly analyze multiple samples in real-time offers an innovative opportunity to revolutionize biomonitoring assessments. In this regard, the timing and number of samples taken for biomonitoring will not be limited as is currently the case. In addition, real-time analysis will facilitate identification of work practices or conditions that are contributing to increased exposures and will make possible a more rapid and successful intervention strategy. The initial development and application of computational models for evaluation of saliva/blood analyte concentration at anticipated exposure levels represents an important opportunity to establish the limits of quantification and robustness of multiplex sensor systems by exploiting a unique computational modeling framework. The use of these pharmacokinetic models will also enable prediction of an exposure dose based on the saliva/blood measurement. This novel strategy will result in a more accurate prediction of exposures and, once validated, can be employed to assess dosimetry to a broad range of chemicals in support of biomonitoring and epidemiology studies.

  20. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    Directory of Open Access Journals (Sweden)

    Barbara Szymanska

    Full Text Available Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL, or for re-induction post relapse, use a combination of vincristine (VCR, a glucocorticoid, and L-asparaginase (ASP with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX and ASP (VXL against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  1. Development and validation of an in vitro pharmacokinetic/pharmacodynamic model to test the antibacterial efficacy of antibiotic polymer conjugates.

    Science.gov (United States)

    Azzopardi, Ernest A; Ferguson, Elaine L; Thomas, David W

    2015-04-01

    This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model.

    Science.gov (United States)

    Hardiansyah, Deni; Attarwala, Ali Asgar; Kletting, Peter; Mottaghy, Felix M; Glatting, Gerhard

    2017-10-01

    To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model. PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152±15)MBq of 111 In-DTPAOC (total peptide amount (5.78±0.25)nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150MBq 68 Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35min p.i. (P 1 ), 4h p.i. (P 2 ) and the combination of P 1 and P 2 (P 3 ) were simulated. Each measurement was simulated with four frames of 5min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1GBq of 90 Y-DOTATATE over 30min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v. For P 1 and P 2 the population variabilities of kidneys, liver and spleen were acceptable (v10%). Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Ofloxacin pharmacokinetics in renal failure.

    OpenAIRE

    Fillastre, J P; Leroy, A; Humbert, G

    1987-01-01

    The pharmacokinetics of ofloxacin were investigated in 12 normal subjects and 21 uremic patients after the administration of a single oral 200-mg dose. An open three-compartment body model was used to calculate ofloxacin pharmacokinetic parameters. In healthy subjects, the peak plasma level averaged 2.24 +/- 0.90 micrograms/ml and was obtained at 0.83 +/- 0.31 h. The absorption rate constant was 4.22 +/- 1.64 h-1. The terminal half-life was 7.86 +/- 1.81 h. The apparent volume of distribution...

  4. Prediction of human pharmacokinetics of activated recombinant factor VII and B-domain truncated factor VIII from animal population pharmacokinetic models of haemophilia

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Juul, Rasmus Vestergaard; Groth, Andreas Velsing

    2018-01-01

    activated factor VII (rFVIIa) and recombinant factor VIII (rFVIII) in several experimental animal models using population PK modelling, and apply a simulation-based approach to evaluate how well the developed animal population PK models predict human PK. PK models were developed for rFVIIa and r...

  5. Population pharmacokinetic/pharmacodynamic modelling of the hypothalamic-pituitary-gonadal axis

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel

    2005-01-01

    model mis-specification feasible by quantifying the model uncertainty, which subsequently provides the basis for systematic population PK/PD model development. To support the model building process, the SDE approach was applied to clinical PK/PD data and used as a tool for tracking unexplained...... was stimulated and inhibited by the plasma triptorelin and degarelix concentrations, respec-tively. Circulating LH stimulated the testosterone secretion while the delayed testosterone feedback on the non-basal LH synthesis and release was modelled through a receptor compartment where testosterone stimulates...

  6. Modeling hepatitis C virus kinetics under therapy using pharmacokinetic and pharmacodynamic information

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, Alan S [Los Alamos National Laboratory; Shudo, Emi [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Mathematical models have proven helpful in analyzing the virological response to antiviral therapy in hepatitis C virus (HCY) infected subjects. Objective: To summarize the uses and limitations of different models for analyzing HCY kinetic data under pegylated interferon therapy. Methods: We formulate mathematical models and fit them by nonlinear least square regression to patient data in order estimate model parameters. We compare the goodness of fit and parameter values estimated by different models statistically. Results/Conclusion: The best model for parameter estimation depends on the availability and the quality of data as well as the therapy used. We also discuss the mathematical models that will be needed to analyze HCV kinetic data from clinical trials with new antiviral drugs.

  7. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    Science.gov (United States)

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Doxorubicin-loaded QuadraSphere microspheres: plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer.

    Science.gov (United States)

    Lee, Kwang-Hun; Liapi, Eleni A; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A; Ventura, Veronica Prieto; Geschwind, Jean-Francois H

    2010-06-01

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  9. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    International Nuclear Information System (INIS)

    Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.

    2010-01-01

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  10. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    Science.gov (United States)

    Dorey, L; Pelligand, L; Cheng, Z; Lees, P

    2017-10-01

    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  11. Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images.

    Science.gov (United States)

    Sanz-Requena, Roberto; Prats-Montalbán, José Manuel; Martí-Bonmatí, Luis; Alberich-Bayarri, Ángel; García-Martí, Gracián; Pérez, Rosario; Ferrer, Alberto

    2015-08-01

    To introduce a segmentation method to calculate an automatic arterial input function (AIF) based on principal component analysis (PCA) of dynamic contrast enhanced MR (DCE-MR) imaging and compare it with individual manually selected and population-averaged AIFs using calculated pharmacokinetic parameters. The study included 65 individuals with prostate examinations (27 tumors and 38 controls). Manual AIFs were individually extracted and also averaged to obtain a population AIF. Automatic AIFs were individually obtained by applying PCA to volumetric DCE-MR imaging data and finding the highest correlation of the PCs with a reference AIF. Variability was assessed using coefficients of variation and repeated measures tests. The different AIFs were used as inputs to the pharmacokinetic model and correlation coefficients, Bland-Altman plots and analysis of variance tests were obtained to compare the results. Automatic PCA-based AIFs were successfully extracted in all cases. The manual and PCA-based AIFs showed good correlation (r between pharmacokinetic parameters ranging from 0.74 to 0.95), with differences below the manual individual variability (RMSCV up to 27.3%). The population-averaged AIF showed larger differences (r from 0.30 to 0.61). The automatic PCA-based approach minimizes the variability associated to obtaining individual volume-based AIFs in DCE-MR studies of the prostate. © 2014 Wiley Periodicals, Inc.

  12. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model.

    Science.gov (United States)

    Plengsuriyakarn, Tullayakorn; Karbwang, Juntra; Na-Bangchang, Kesara

    2015-03-01

    Cholangiocarcinoma (CCA) is an important public health problem in several parts of South East Asia, particularly in Thailand. The limited availability of effective diagnostic tools for early stage CCA, including chemotherapeutic options, constitutes a major problem for treatment and control of CCA. The aim of the present study was to assess the anti-CCA activity and pharmacokinetics of β-eudesmol in CCA-xenografted nude mouse model and healthy mice. Positron emission tomography-computed tomography (PET-CT) with (18)F-fluorodeoxyglucose was used for detecting and monitoring tumour development, and PET-CT with technetium-99m was used to investigate its pharmacokinetics property. Results support the role of PET-CT as a potential tool for detecting and monitoring the progress of lung metastasis. Tumour size and lung metastasis were significantly inhibited by 91.6% (of baseline) and 95% (of total lung mass), respectively, following treatment with high-dose β-eudesmol (100 mg/kg body weight for 30 days). Survival time was prolonged by 64.4% compared with untreated controls. Systemic clearance of the compound was rapid, particularly during the first 60 min. The compound was distributed to the vital organs at maximum levels 2 h after oral administration and 15 min after intravenous injection. Results from the present study suggest the potential of β-eudesmol as a promising candidate for further development as an anti-CCA drug with respect to its pharmacodynamics and pharmacokinetic properties. PET-CT, with radiotracers (18)F-fluorodeoxyglucose and technetium-99m, was shown to be a reliable tool in the investigation of anti-CCA and pharmacokinetic properties of β-eudesmol in CCA-xenografted and healthy mice. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Physiologically-Based Pharmacokinetic (PBPK) Model for the Thyroid Hormones in the Pregnant Rat and Fetus.

    Science.gov (United States)

    A developmental PBPK model is constructed to quantitatively describe the tissue economy of the thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), in the rat. The model is also used to link maternal (THs) to rat fetal tissues via placental transfer. THs are importan...

  14. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    Energy Technology Data Exchange (ETDEWEB)

    Trifilieff, Alexandre; Ethell, Brian T. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Sykes, David A. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Watson, Kenny J.; Collingwood, Steve [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Charlton, Steven J. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Kent, Toby C., E-mail: tobykent@me.com [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom)

    2015-08-15

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M

  15. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  16. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katherine Kay

    Full Text Available Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii multiple drugs within a treatment combination; (iii differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very

  17. A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients

    NARCIS (Netherlands)

    Erp, N.P. van; Herpen, C.M. van; Wit, D. de; Willemsen, A.; Burger, D.M.; Huitema, A.D.; Kapiteijn, E.; Heine, R. ter

    2016-01-01

    INTRODUCTION AND OBJECTIVE: Everolimus (a drug from the class of mammalian target of rapamycin [mTOR] inhibitors) is associated with frequent toxicity-related dose reductions. Everolimus accumulates in erythrocytes, but the extent to which hematocrit affects everolimus plasma pharmacokinetics and

  18. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    Science.gov (United States)

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  19. A Physiologically-Based Pharmacokinetic (PBPK) Model With Metabolic Interactions of Chloroform (CHCL3) and Trichloroethylene

    Science.gov (United States)

    Exposure to mixtures is frequent, but biologic pathways such as metabolic inhibition, are poorly understood. CHCl3 and TCE are model volatiles frequently co-occurring; combined exposure results in less than additive hepatotoxicity. Here, we explore the underlying metabolic inte...

  20. Mutant prevention concentration, pharmacokinetic-pharmacodynamic integration, and modeling of enrofloxacin data established in diseased buffalo calves.

    Science.gov (United States)

    Ramalingam, B; Sidhu, P K; Kaur, G; Venkatachalam, D; Rampal, S

    2015-12-01

    The pharmacokinetic-pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax ), terminal half-life (t1/2 K10) , apparent volume of distribution (Vd(area) /F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h /MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h /MIC values by modeling PK/PD data. The lipopolysaccharide-induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves. © 2015 John Wiley & Sons Ltd.

  1. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis.

    Science.gov (United States)

    Wring, Stephen A; Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-04-01

    SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC 0-∞ ) and C max SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices C max /MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC 0-24 , was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. Copyright © 2017 Wring et al.

  2. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis

    Science.gov (United States)

    Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-01-01

    ABSTRACT SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC0–∞) and Cmax. SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices Cmax/MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC0–24, was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. PMID:28137806

  3. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma...

  4. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...

  5. Pharmacokinetic-Pharmacodynamic Analysis on Inflammation Rat Model after Oral Administration of Huang Lian Jie Du Decoction.

    Directory of Open Access Journals (Sweden)

    Wei Ren

    Full Text Available Huang-Lian-Jie-Du Decoction (HLJDD is a classical Traditional Chinese Medicine (TCM formula with heat-dissipating and detoxifying effects. It is used to treat inflammation-associated diseases. However, no systematic pharmacokinetic (PK and pharmacodynamic (PD data concerning the activity of HLJDD under inflammatory conditions is available to date. In the present study, the concentration-time profiles and the hepatic clearance rates (HCR of 41 major components in rat plasma in response to the oral administration of a clinical dose of HLJDD were investigated by LC-QqQ-MS using a dynamic multiple reaction monitoring (DMRM method. Additionally, the levels of 7 cytokines (CKs in the plasma and the body temperature of rats were analyzed. Furthermore, a PK-PD model was established to describe the time course of the hemodynamic and anti-inflammatory effects of HLJDD. As one of the three major active constituents in HLJDD, iridoids were absorbed and eliminated more easily and quickly than alkaloids and flavonoids. Compared with the normal controls, the flavonoids, alkaloids and iridoids in inflamed rats exhibited consistently changing trends of PK behaviors, such as higher bioavailability, slower elimination, delays in reaching the maximum concentration (Tmax and longer substantivity. The HCR of iridoids was different from that of alkaloids and flavonoids in inflamed rats. Furthermore, excellent pharmacodynamic effects of HLJDD were observed in inflamed rats. The levels of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, IL-1β, IL-10, and macrophage inflammatory protein-2 (MIP-2 and body temperature significantly decreased after the administration of HLJDD. Based on PK-PD modeling with the three-phase synchronous characterization of time-concentration-effect, flavonoids exhibited one mechanism of action in the anti-inflammatory process, while iridoids and alkaloids showed another mechanism of action. Taken together, the results demonstrated that

  6. Predicting the oral pharmacokinetic profiles of multiple-unit (pellet) dosage forms using a modeling and simulation approach coupled with biorelevant dissolution testing: case example diclofenac sodium.

    Science.gov (United States)

    Kambayashi, Atsushi; Blume, Henning; Dressman, Jennifer B

    2014-07-01

    The objective of this research was to characterize the dissolution profile of a poorly soluble drug, diclofenac, from a commercially available multiple-unit enteric coated dosage form, Diclo-Puren® capsules, and to develop a predictive model for its oral pharmacokinetic profile. The paddle method was used to obtain the dissolution profiles of this dosage form in biorelevant media, with the exposure to simulated gastric conditions being varied in order to simulate the gastric emptying behavior of pellets. A modified Noyes-Whitney theory was subsequently fitted to the dissolution data. A physiologically-based pharmacokinetic (PBPK) model for multiple-unit dosage forms was designed using STELLA® software and coupled with the biorelevant dissolution profiles in order to simulate the plasma concentration profiles of diclofenac from Diclo-Puren® capsule in both the fasted and fed state in humans. Gastric emptying kinetics relevant to multiple-units pellets were incorporated into the PBPK model by setting up a virtual patient population to account for physiological variations in emptying kinetics. Using in vitro biorelevant dissolution coupled with in silico PBPK modeling and simulation it was possible to predict the plasma profile of this multiple-unit formulation of diclofenac after oral administration in both the fasted and fed state. This approach might be useful to predict variability in the plasma profiles for other drugs housed in multiple-unit dosage forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Evaluation of Drug-Drug Interaction Potential Between Sacubitril/Valsartan (LCZ696) and Statins Using a Physiologically Based Pharmacokinetic Model.

    Science.gov (United States)

    Lin, Wen; Ji, Tao; Einolf, Heidi; Ayalasomayajula, Surya; Lin, Tsu-Han; Hanna, Imad; Heimbach, Tycho; Breen, Christopher; Jarugula, Venkateswar; He, Handan

    2017-05-01

    Sacubitril/valsartan (LCZ696) has been approved for the treatment of heart failure. Sacubitril is an in vitro inhibitor of organic anion-transporting polypeptides (OATPs). In clinical studies, LCZ696 increased atorvastatin C max by 1.7-fold and area under the plasma concentration-time curve by 1.3-fold, but had little or no effect on simvastatin or simvastatin acid exposure. A physiologically based pharmacokinetics modeling approach was applied to explore the underlying mechanisms behind the statin-specific LCZ696 drug interaction observations. The model incorporated OATP-mediated clearance (CL int,T ) for simvastatin and simvastatin acid to successfully describe the pharmacokinetic profiles of either analyte in the absence or presence of LCZ696. Moreover, the model successfully described the clinically observed drug effect with atorvastatin. The simulations clarified the critical parameters responsible for the observation of a low, yet clinically relevant, drug-drug interaction DDI between sacubitril and atorvastatin and the lack of effect with simvastatin acid. Atorvastatin is administered in its active form and rapidly achieves C max that coincide with the low C max of sacubitril. In contrast, simvastatin requires a hydrolysis step to the acid form and therefore is not present at the site of interactions at sacubitril concentrations that are inhibitory. Similar models were used to evaluate the drug-drug interaction risk for additional OATP-transported statins which predicted to maximally result in a 1.5-fold exposure increase. Copyright © 2017. Published by Elsevier Inc.

  8. R-warfarin clearances from plasma associated with polymorphic cytochrome P450 2C19 and simulated by individual physiologically based pharmacokinetic models for 11 cynomolgus monkeys.

    Science.gov (United States)

    Utoh, Masahiro; Kusama, Takashi; Miura, Tomonori; Mitsui, Marina; Kawano, Mirai; Hirano, Takahiro; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2018-02-01

    1. Cynomolgus monkey cytochrome P450 2C19 (formerly known as P450 2C75), homologous to human P450 2C19, has been identified as R-warfarin 7-hydroxylase. In this study, simulations of R-warfarin clearance in individual cynomolgus monkeys genotyped for P450 2C19 p.[(Phe100Asn; Ala103Val; Ile112Leu)] were performed using individual simplified physiologically based pharmacokinetic (PBPK) modeling. 2. Pharmacokinetic parameters and absorption rate constants, volumes of the systemic circulation, and hepatic intrinsic clearances for individual PBPK models were estimated for eleven cynomolgus monkeys. 3. One-way ANOVA revealed significant effects of the genotype (p warfarin among the homozygous mutant, heterozygous mutant, and wild-type groups. R-Warfarin clearances in individual cynomolgus monkeys genotyped for P450 2C19 were simulated by simplified PBPK modeling. The modeled hepatic intrinsic clearances were significantly associated with the P450 2C19 genotypes. The liver microsomal elimination rates of R-warfarin for individual animals after in vivo administration showed significant reductions associated with the genotype (p warfarin and related medicines associated with polymorphic P450 2C19 in individual cynomolgus monkeys, thereby facilitating calculation of the fraction of hepatic clearance.

  9. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    Science.gov (United States)

    Grudzinski, Joseph J.; Floberg, John M.; Mudd, Sarah R.; Jeffery, Justin J.; Peterson, Eric T.; Nomura, Alice; Burnette, Ronald R.; Tomé, Wolfgang A.; Weichert, Jamey P.; Jeraj, Robert

    2012-03-01

    We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole-body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n = 10), or a ‘fast-clearing’ agent, 18F-FLT (3‧-deoxy-3‧-fluorothymidine) (n = 13) and imaged via micro-PET/CT pseudo-dynamically or dynamically, respectively. Regions of interest were drawn within the heart and tumor to create time-concentration curves for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao lower bounds theory. Accuracy was assessed using correlation coefficient, bias and standard error of the estimate normalized to the mean (SEE/mean). The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 h-1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47 ± 1.24 Gy). The PK parameter estimation of FLT

  10. Population Pharmacokinetics of Intranasal Scopolamine

    Science.gov (United States)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  11. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: a case study with the anticancer agent SNX-2112

    Directory of Open Access Journals (Sweden)

    Dong D

    2015-03-01

    Full Text Available Dong Dong,1* Xiao Wang,1* Huailing Wang,1 Xingwang Zhang,2 Yifei Wang,1 Baojian Wu2 1Guangzhou Jinan Biomedicine Research and Development Center, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Introduction: SNX-2112 is a promising anticancer agent but has poor solubility in both water and oil. In the study reported here, we aimed to develop a nanocrystal formulation for SNX-2112 and to determine the pharmacokinetic behaviors of the prepared nanocrystals. Methods: Nanocrystals of SNX-2112 were prepared using the wet-media milling technique and characterized by particle size, differential scanning calorimetry, drug release, etc. Physiologically based pharmacokinetic (PBPK modeling was undertaken to evaluate the drug’s disposition in rats following administration of drug cosolvent or nanocrystals. Results: The optimized SNX-2112 nanocrystals (with poloxamer 188 as the stabilizer were 203 nm in size with a zeta potential of -11.6 mV. In addition, the nanocrystals showed a comparable release profile to the control (drug cosolvent. Further, the rat PBPK model incorporating the parameters of particulate uptake (into the liver and spleen and of in vivo drug release was well fitted to the experimental data following administration of the drug nanocrystals. The results reveal that the nanocrystals rapidly released drug molecules in vivo, accounting for their cosolvent-like pharmacokinetic behaviors. Due to particulate uptake, drug accumulation in the liver and spleen was significant at the initial time points (within 1 hour. Conclusion: The nanocrystals should be a good choice for the systemic delivery of the poorly soluble drug SNX-2112. Also, our study contributes to an improved understanding of the in vivo fate of nanocrystals. Keywords: intravenous delivery, PBPK, tissue distribution, poloxamer 188

  12. Providing a Theoretical Basis for Nanotoxicity Risk Analysis Departing from Traditional Physiologically-Based Pharmacokinetic (PBPK) Modeling

    Science.gov (United States)

    2010-09-01

    studies has left many unanswered questions, including one posed by Riviere and Tran in their article on pharmacokinetics of nanomaterials which asks...layer of thick mucus . Particles smaller than 10 m can reach the gas exchange surfaces (alveoli), where Brownian motion leads to deposition [8]. Very...breast milk are other possible means of secreting toxicants [34], but are 10 not included in this dissertation. 2.1.2 Organs of Concern. 2.1.2.1

  13. Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lipopolysaccharide-treated mice

    Directory of Open Access Journals (Sweden)

    Banks William A

    2012-10-01

    Full Text Available Abstract Background Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions. Methods We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues. We used variance from two-way ANOVAs with 2 × 2 experimental designs to model the relative influences of lymphocytes and target tissues in trafficking. Results We found that in male CD-1 mice, about 1 in 5,000 intravenously injected lymphocytes entered each gram of brain. Uptake by brain was 2 to 3 times higher in naïve SJL females, but uptake by spleen and clearance from blood was lower, demonstrating a dichotomy in immune cell distribution. Treatment of CD-1 mice with lipopolysaccharide (LPS increased immune cell uptake into brain but decreased uptake by spleen and axillary nodes. Conclusions Differences in brain uptake and in uptake by spleen between SJL and CD-1 mice were primarily determined by lymphocytes, whereas differences in uptake with LPS were primarily determined by lymphocytes for the brain but by the tissues for the spleen and the axillary lymph node. These results show that immune cells normally enter the CNS and that tissues and immune cells interact in ways that can be quantified by pharmacokinetic models.

  14. Statistical analysis of Amenamevir (ASP2151) between pharmacokinetics and clinical efficacies with non-linear effect model for the treatment of genital herpes.

    Science.gov (United States)

    Takada, Akitsugu; Katashima, Masataka; Kaibara, Atsunori; Sawamoto, Taiji; Zhang, Wenhui; Keirns, James

    2014-09-01

    Amenamevir is the international non-proprietary name for ASP2151 synthesized by Astellas Pharma, Inc. It is a structurally novel class of helicase-primase inhibitor and demonstrated more potency in vitro anti-viral activity with low cytotoxicity against varicella-zoster virus (VZV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2) than acyclovir (ACV). Phase II randomized trial assessed the safety and efficacy of ASP2151 for episodic therapy of recurrent genital herpes was conducted. Participants self-initiated with ASP2151 (100, 200, or 400 mg daily for 3 days), ASP2151 (1,200 mg as a single dose), placebo for 3 days, or Valacyclovir (500 mg twice daily for 3 days). We present a first population pharmacokinetic (PPK) modeling analysis of Amenamevir for genital herpes patients. The final model retained the effect of Weight and Albumin on CL. Statistical analysis between pharmacokinetics and clinical efficacies was done by using the time above 200 ng/mL (T200 ). T200 derived from the final PPK model to consider the correlation with Time to lesion healing and viral shedding. This finding suggested that it could be necessary to maintain the Amenamevir concentration above the threshold level to prevent the virus replication. © 2014, The American College of Clinical Pharmacology.

  15. Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves.

    Science.gov (United States)

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2013-06-01

    The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of oxytetracycline were investigated, when administered both alone and in the presence of carprofen, in healthy calves. The study comprised a four treatment, four sequences, and four period cross-over design and used a tissue cage model, which permitted the collection of serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). There were no clinically relevant differences in the PK profile of oxytetracycline when administered alone and when administered with carprofen. PK-PD integration was undertaken for a pathogenic strain of Mannheimia haemolytic (A1 76/1), by correlating in vitro minimum inhibitory concentration (MIC) and time-kill data with in vivo PK data obtained in the cross-over study. Based on in vitro susceptibility in cation adjusted Mueller Hinton Broth (CAMHB) and in vivo determined PK variables, ratios of maximum concentration (Cmax) and area under curve (AUC) to MIC and time for which concentration exceeded MIC (T>MIC) were determined. The CAMHB MIC data satisfied integrated PK/PD relationships predicted to achieve efficacy for approximately 48 h after dosing; mean values for serum were 5.13 (Cmax/MIC), 49.3 h (T>MIC) and 126.6 h (AUC(96h)/MIC). Similar findings were obtained when oxytetracycline was administered in the presence of carprofen, with PK-PD indices based on MIC determined in CAMHB. However, PK-PD integration of data, based on oxytetracycline MICs determined in the biological fluids, serum, exudate and transudate, suggest that it possesses, at most, limited direct killing activity against the M. haemolytica strain A1 76/1; mean values for serum were 0.277 (Cmax/MIC), 0 h (T>MIC) and 6.84 h (AUC(96h)/MIC). The data suggest that the beneficial therapeutic effects of oxytetracycline may depend, at least in part, on actions other than direct inhibition of bacterial growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling.

    Science.gov (United States)

    Trifunović, Jovana; Borčić, Vladan; Vukmirović, Saša; Kon, Svetlana Goločorbin; Mikov, Momir

    2016-09-20

    Information on ADME properties of examined bile acids and their oxo derivatives are scarce, although the interest for bile acids and their use in nanochemistry and macromolecular chemistry is increasing. The purpose of this research was to evaluate the lipophilicity, a crucial physicochemical parameter for describing ADME properties of selected bile acids and their oxo derivatives, and to compare two approaches: experimentally determined hydrophobicity parameters and calculated logP values. Commercially available bile acids - deoxycholic, chenodeoxycholic, hyodeoxycholic and ursodeoxycholic acid were used to synthesize oxo derivatives. Lipophilicity was evaluated in two solvent systems: toluene/ethanol and toluene/butanol. Retention parameters were acquired by normal-phase TLC. The correlations between calculated logP values obtained using five different software and experimentally determined hydrophobicity parameters (RM(0)(tol/eth), RM(0)(tol/but), b(tol/eth) and b(tol/but)) were examined. Correlation analysis confirmed significant dependence between experimental RM(0) values and software calculated parameters. Results suggest satisfactory intestinal absorption after oral administration for all of the examined compounds as well as low volumes of distribution, and high affinity for binding with plasma proteins. Penetration through blood-brain barrier and skin is not satisfactory. All of the examined compounds show high affinity for binding with G-protein coupled receptors and consequently inhibition of ionic channels. Results also suggest possible binding with nuclear receptors. Established lipophilicity testing model of studied compounds showed excellent predictive ability and might represent significant tool in development of relations between chromatographic behavior and ADME properties. Compounds 3α-hydroxy-7,12-dioxo-5β-cholanoic and 12α-hydroxy-3,7-dioxo-5β-cholanoic acid might be the most suitable candidates for further development studies (satisfactory

  17. Pharmacokinetics of {sup 99m}Tc-MAG{sub 3} and {sup 131}I-OIH. Comparative study based on 2 compartment model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shuke, Noriyuki; Takashio, Tetsuya; Sato, Junichi [Asahikawa Medical Coll., Hokkaido (Japan). Hospital] [and others

    1996-05-01

    We studied 50 patients with mild to moderate renal dysfunction to compare pharmacokinetics of {sup 99m}Tc-MAG{sub 3} with that of {sup 131}I-OIH. After simultaneous bolus injection of both {sup 99m}Tc-MAG{sub 3} and {sup 131}I-OIH, 8-point venous blood sampling was performed from 2 to 44 min post injection. Aliquoted plasma samples were counted for radioactivity along with the injected standard to obtain % injected dose/ml plasma for each tracer. Using obtained time-concentration data, classical 2 compartment model analysis was performed for both tracers to obtain various pharmacokinetic parameters, including distribution volumes (Vds), intercompartmental rate constants, and plasma clearance. In these parameters, Vd of central compartment, Vd at steady state, central to peripheral inter-compartmental rate constant, and plasma clearance were significantly larger for {sup 131}I-OIH. In all parameters, significant correlation was found between {sup 99m}Tc-MAG{sub 3} and {sup 131}I-OIH. The best correlation was seen in plasma clearance (r=0.891, p<0.0001). Plasma clearance ratio ({sup 99m}Tc-MAG{sub 3}/{sup 131}I-OIH), however, showed weak but significant negative correlation with serum creatinine, although this correlation was not likely to affect the overall correlation of clearance between {sup 131}I-OIH and {sup 99m}Tc-MAG{sub 3}. From these results, we comfirmed that {sup 99m}Tc-MAG{sub 3} clearance could be used as an alternative to {sup 131}I-OIH clearance, although pharmacokinetic behavior of {sup 99m}Tc-MAG{sub 3} was not exactly the same as that of {sup 131}I-OIH. (author)

  18. Pharmacokinetics and PBPK Models

    International Nuclear Information System (INIS)

    Corley, Richard A.

    2010-01-01

    Since the landmark report Pesticides in the Diets of Infants and Children (NRC 1993), children at all stages of development, from fertilization through postnatal maturation, have explicitly been identified as an area of emphasis in human health risk assessments. Exposure to drugs or chemicals at any point in development has the potential for causing irreversible changes that can be unique to each stage of development (Grabowski and Daston 1983; Rodier 1978; Wilson 1973). While exposures of a developing embryo or fetus are mediated by the mother, postnatal exposures consist of maternal influences via breastfeeding as well as environmental factors (Figure 1). As a result, risk assessments for developmental toxicity must consider the sources as well as timing of potential exposures to adequately protect children when they may be the most exposed or the most sensitive to adverse consequences (NRC 1993).

  19. Pharmacokinetics and PBPK Models

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Richard A.

    2010-07-01

    Since the landmark report Pesticides in the Diets of Infants and Children (NRC 1993), children at all stages of development, from fertilization through postnatal maturation, have explicitly been identified as an area of emphasis in human health risk assessments. Exposure to drugs or chemicals at any point in development has the potential for causing irreversible changes that can be unique to each stage of development (Grabowski and Daston 1983; Rodier 1978; Wilson 1973). While exposures of a developing embryo or fetus are mediated by the mother, postnatal exposures consist of maternal influences via breastfeeding as well as environmental factors (Figure 1). As a result, risk assessments for developmental toxicity must consider the sources as well as timing of potential exposures to adequately protect children when they may be the most exposed or the most sensitive to adverse consequences (NRC 1993).

  20. Plasma exogenous creatinine excretion for the assessment of renal function in avian medicine--pharmacokinetic modeling in racing pigeons (Columba livia).

    Science.gov (United States)

    Scope, Alexandra; Schwendenwein, Ilse; Schauberger, Günther

    2013-09-01

    The diagnostic evaluation of the glomerular filtration rate by urinary clearance has significant practical limitations in birds because urine is excreted together with feces. Thus, pharmacokinetic modeling of an exogenous plasma creatinine clearance could be useful for assessing renal creatinine excretion in birds. For this study, creatinine (50 mg/kg) was administered to 2 groups of 15 pigeons (Columba livia) each; in one group by the intravenous (IV) route and in the second by the intramuscular (IM) route. The time series of the plasma creatinine concentrations were analyzed by pharmacokinetic models. Body mass-specific creatinine excretion was determined for IV and IM administration to be between 6.30 and 6.44 mL/min per kg, respectively. Body surface area-specific creatinine clearance, which is related to the metabolic rate, was calculated between 0.506 and 0.523 mL/min per dm2, respectively. The results showed that IV as well as IM administration can be used for assessing renal creatinine excretion in pigeons. For practical reasons, IM administration is recommended, with the use of the Bateman function to calculate creatinine elimination.

  1. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration : performance of three pharmacokinetic-dynamic models

    NARCIS (Netherlands)

    Coppens, M.; Van Limmen, J. G. M.; Schnider, T.; Wyler, B.; Bonte, S.; Dewaele, F.; Struys, M. M. R. F.; Vereecke, H. E. M.

    In the ideal pharmacokinetic-dynamic (PK-PD) model for calculating the predicted effect-site concentration of propofol (Ce(PROP)), for any Ce(PROP), the corresponding hypnotic effect should be constant. We compared three PK-PD models (Marsh PK with Shuttler PD, Schnider PK with fixed ke0, and

  2. Improved physiologically based pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to address temporal variation and sensitive populations.

    Science.gov (United States)

    Kirman, C R; Suh, M; Proctor, D M; Hays, S M

    2017-06-15

    A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The pharmacokinetics of the interstitial space in humans

    OpenAIRE

    Levitt, David G

    2003-01-01

    Background The pharmacokinetics of extracellular solutes is determined by the blood-tissue exchange kinetics and the volume of distribution in the interstitial space in the different organs. This information can be used to develop a general physiologically based pharmacokinetic (PBPK) model applicable to most extracellular solutes. Methods The human pharmacokinetic literature was surveyed to tabulate the steady state and equilibrium volume of distribution of the solutes mannitol, EDTA, morphi...

  4. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M

    2018-05-18

    Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often

  5. Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Xiao W

    2012-03-01

    Full Text Available Wenwu Xiao1, Juntao Luo2, Teesta Jain3, John Riggs3, Harry P Tseng1, Paul T Henderson3, Simon R Cherry4, Douglas Rowland4, Kit S Lam1,31Department of Biochemistry and Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA; 2Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY; 3Department of Internal Medicine, Division of Hematology and Oncology, 4Department of Biomedical Engineering, UC Davis Cancer Center, University of California Davis, Davis, CABackground: A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel.Methods: The telodendrimer was covalently labeled with 125I and the nanomicelles were loaded with 14C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively.Results: The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®. Liquid scintillation counting confirmed that 14C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol.Conclusion: Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications

  6. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  7. Pharmacokinetics of mitragynine in man

    Directory of Open Access Journals (Sweden)

    Trakulsrichai S

    2015-04-01

    the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour, terminal half-life (23.24±16.07 hours, and the apparent volume of distribution (38.04±24.32 L/kg. The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion: This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half-life of about 1 day. The pharmacokinetic linearity and parameters reported are necessary pharmacological information of Kratom, and there is a possibility for it to be developed medically as a pain killer or better opioid substitute in the future. Keywords: kratom, human, pharmacokinetics

  8. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 1: Translating Systemic Plasma Concentration to Liver Exposure in Healthy Subjects.

    Science.gov (United States)

    Li, Rui; Niosi, Mark; Johnson, Nathaniel; Tess, David A; Kimoto, Emi; Lin, Jian; Yang, Xin; Riccardi, Keith A; Ryu, Sangwoo; El-Kattan, Ayman F; Maurer, Tristan S; Tremaine, Larry M; Di, Li

    2018-04-01

    Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling. The prediction was verified to be both accurate and precise using sensitivity analysis. For bosentan, the predicted pseudo steady-state unbound liver-to-unbound systemic plasma concentration ratio was 34.9 (95% confidence interval: 4.2, 50). Drug-drug interaction (i.e., CYP3A and CYP2B6 induction) and inhibition of hepatic transporters (i.e., bile salt export pump, multidrug resistance-associated proteins, and sodium-taurocholate cotransporting polypeptide) were predicted based on the estimated unbound liver tissue or plasma concentrations. With further validation and refinement, we conclude that this approach may serve to predict human liver exposure and complement other methods involving tissue biopsy and imaging. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Population Pharmacokinetic Modelling of FE 999049, a Recombinant Human Follicle-Stimulating Hormone, in Healthy Women After Single Ascending Doses

    DEFF Research Database (Denmark)

    Rose, Trine Høyer; Röshammar, Daniel; Erichsen, Lars

    2016-01-01

    reproductive technologies. Methods: Serum FSH levels were measured following a single subcutaneous FE 999049 injection of 37.5, 75, 150, 225 or 450 IU in 27 pituitary-suppressed healthy female subjects participating in this first-in-human single ascending dose trial. Data was analysed by nonlinear mixed...... volume of distribution (V/F) estimates were found to increase with body weight. Body weight was included as an allometrically scaled covariate with a power exponent of 0.75 for CL/F and 1 for V/F. Conclusions: The single-dose pharmacokinetics of FE 999049 were adequately described by a population...

  10. Influence of B{sub 1}-inhomogeneity on pharmacokinetic modeling of dynamic contrast-enhanced MRI: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bun Woo [Dept. of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Byung Se [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); and others

    2017-08-01

    To simulate the B1-inhomogeneity-induced variation of pharmacokinetic parameters on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). B1-inhomogeneity-induced flip angle (FA) variation was estimated in a phantom study. Monte Carlo simulation was performed to assess the FA-deviation-induced measurement error of the pre-contrast R1, contrast-enhancement ratio, Gd-concentration, and two-compartment pharmacokinetic parameters (Ktrans, ve, and vp). B1-inhomogeneity resulted in −23–5% fluctuations (95% confidence interval [CI] of % error) of FA. The 95% CIs of FA-dependent % errors in the gray matter and blood were as follows: −16.7–61.8% and −16.7–61.8% for the pre-contrast R1, −1.0–0.3% and −5.2–1.3% for the contrast-enhancement ratio, and −14.2–58.1% and −14.1–57.8% for the Gd-concentration, respectively. These resulted in −43.1–48.4% error for Ktrans, −32.3–48.6% error for the ve, and −43.2–48.6% error for vp. The pre-contrast R1 was more vulnerable to FA error than the contrast-enhancement ratio, and was therefore a significant cause of the Gd-concentration error. For example, a −10% FA error led to a 23.6% deviation in the pre-contrast R1, −0.4% in the contrast-enhancement ratio, and 23.6% in the Gd-concentration. In a simulated condition with a 3% FA error in a target lesion and a −10% FA error in a feeding vessel, the % errors of the pharmacokinetic parameters were −23.7% for Ktrans, −23.7% for ve, and −23.7% for vp. Even a small degree of B1-inhomogeneity can cause a significant error in the measurement of pharmacokinetic parameters on DCE-MRI, while the vulnerability of the pre-contrast R1 calculations to FA deviations is a significant cause of the miscalculation.

  11. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2001-01-01

    To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data.......To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data....

  12. Pharmacokinetics of Botanical Drugs and Plant Extracts.

    Science.gov (United States)

    Dominguez More, Gina Paola; Cardenas, Paola Andrea; Costa, Geison M; Simoes, Claudia M O; Aragon, Diana Marcela

    2017-01-01

    Botanical drugs contain plant extracts, which are complex mixtures of compounds. As with conventional drugs, it is necessary to validate their efficacy and safety through preclinical and clinical studies. However, pharmacokinetic studies for active constituents or characteristic markers in botanical drugs are rare. The objective of this review was to investigate the global state of the art in pharmacokinetic studies of active ingredients present in plant extracts and botanical drugs. A review of pharmacokinetics studies of chemical constituents of plant extracts and botanical drugs was performed, with a total of 135 studies published between January 2004 and February 2015 available in recognized scientific databases. Botanical preparations were mainly found in the form of aqueous extracts of roots and rhizomes. The most widely studied species was Salvia miltiorrhiza Bunge, and the compound most frequently used as a pharmacokinetic marker was berberine. Most studies were performed using the Sprague Dawley rat model, and the preparations were mainly administered orally in a single dose. Quantification of plasma concentrations of pharmacokinetic markers was performed mainly by liquid-liquid extraction, followed by high performance liquid chromatography coupled to mass spectrometry detector. In conclusion, in recent years there has been an increasing interest among researchers worldwide in the study of pharmacokinetics of bioactive compounds in botanical drugs and plant extracts, especially those from the Traditional Chinese Medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Pharmacokinetics: curiosity or cure

    International Nuclear Information System (INIS)

    Notari, R.E.

    1979-01-01

    What is the fate of a drug from the time of its introduction into the body to the end of its duration. Pharmacokinetic studies are often designed to provide an answer to this question. But this question may be asked of any drug and research that is limited to answering it will remain empirical. Pharmacokinetic studies can provide answers to many other drug-related questions. In doing so pharmacokinetic research has the potential of improving drug therapy as well as the design and evaluation of drugs. While significant contributions can be cited, the future of pharmacokinetics depends upon its increased impact on clinical practice and drug design. How can a molecule be tailored for site specificity. Can chemical modification selectively alter absorption, distribution, metabolism, binding or excretion. In what new ways can pharmacokinetic information increase the predictability of drug therapy. Such questions, to which pharmacokinetics should provide answers, are numerous and easily identified. But the definitive studies are difficult both to create and conduct. Whether or not pharmacokinetics can achieve its full potential will depend upon the extent to which it can provide answers to these currently unanswered questions

  14. Lisdexamfetamine: A pharmacokinetic review.

    Science.gov (United States)

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Limited Sampling Strategy for Accurate Prediction of Pharmacokinetics of Saroglitazar: A 3-point Linear Regression Model Development and Successful Prediction of Human Exposure.

    Science.gov (United States)

    Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V

    2018-03-01

    Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error model predicts the exposure of

  16. Development of a physiologically based pharmacokinetic model to predict the effects of flavin-containing monooxygenase 3 (FMO3) polymorphisms on itopride exposure.

    Science.gov (United States)

    Zhou, Wangda; Humphries, Helen; Neuhoff, Sibylle; Gardner, Iain; Masson, Eric; Al-Huniti, Nidal; Zhou, Diansong

    2017-09-01

    Itopride, a substrate of FMO3, has been used for the symptomatic treatment of various gastrointestinal disorders. Physiologically based pharmacokinetic (PBPK) modeling was applied to evaluate the impact of FMO3 polymorphism on itopride pharmacokinetics (PK). The Asian populations within the Simcyp simulator were updated to incorporate information on the frequency, activity and abundance of FMO3 enzyme with different phenotypes. A meta-analysis of relative enzyme activities suggested that FMO3 activity in subjects with homozygous Glu158Lys and Glu308Gly mutations (Lys158 and Gly308) in both alleles is ~47% lower than those carrying two wild-type FMO3 alleles. Individuals with homozygous Lys158 and Gly308 mutations account for about 5% of the total population in Asian populations. A CL int of 9 μl/min/pmol was optimised for itopride via a retrograde approach as human liver microsomal results would under-predict its clearance by ~7.9-fold. The developed itopride PBPK model was first verified with three additional clinical studies in Korean and Japanese subjects resulting in a predicted clearance of 52 to 69 l/h, which was comparable to those observed (55 to 88 l/h). The model was then applied to predict plasma concentration-time profiles of itopride in Chinese subjects with wild type or homozygous Lys158 and Gly308 FMO3 genotypes. The ratios of predicted to observed AUC of itopride in subjects with each genotype were 1.23 and 0.94, respectively. In addition, the results also suggested that for FMO3 metabolised drugs with a safety margin of 2 or more, proactive genotyping FMO3 to exclude subjects with homozygous Lys158/Gly308 alleles may not be necessary. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Birkved, Morten; Letcher, Robert J; Bossi, Rossana; Vorkamp, Katrin; Born, Erik W; Petersen, Gitte

    2009-12-01

    Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health effects, including reproductive, were conducted during 1990-2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p'-DDE, dieldrin, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79-1271 ng g(-1) lw) and PCBs (range: 4128-53,923 ng g(-1) lw) reported in bears in the year 1990 were in the range to elicit possible adverse health effects on reproduction in polar bears in East Greenland (all RQs > or = 1). Similar results were found for PCBs (range: 1928-17,376 ng g(-1) lw) and PFOS (range: 104-2840 ng g(-1) ww) in the year 2000 and for dieldrin (range: 43-640 ng g(-1) lw), PCBs (range: 3491-13,243 ng g(-1) lw) and PFOS (range: 1332-6160 ng g(-1) ww) in the year 2006. The concentrations of oxychlordane, DDTs, HCB and HCHs in polar bears resulted in RQspolar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated health effects for Arctic wildlife.

  18. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and compare predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.

  19. Incorporation of FcRn-mediated disposition model to describe the population pharmacokinetics of therapeutic monoclonal IgG antibody in clinical patients.

    Science.gov (United States)

    Ng, Chee M

    2016-03-01

    The two-compartment linear model used to describe the population pharmacokinetics (PK) of many therapeutic monoclonal antibodies (TMAbs) offered little biological insight to antibody disposition in humans. The purpose of this study is to develop a semi-mechanistic FcRn-mediated IgG disposition model to describe the population PK of TMAbs in clinical patients. A standard two-compartment linear PK model from a previously published population PK model of pertuzumab was used to simulate intensive PK data of 100 subjects for model development. Two different semi-mechanistic FcRn-mediated IgG disposition models were developed and First Order Conditional Estimation (FOCE) with the interaction method in NONMEM was used to obtain the final model estimates. The performances of these models were then compared with the two-compartment linear PK model used to simulate the data for model development. A semi-mechanistic FcRn-mediated IgG disposition model consisting of a peripheral tissue compartment and FcRn-containing endosomes in the central compartment best describes the simulated pertuzumab population PK data. This developed semi-mechanistic population PK model had the same number of model parameters, produced very similar concentration-time profiles but provided additional biological insight to the FcRn-mediated IgG disposition in human subjects compared with the standard linear two-compartment linear PK model. This first reported semi-mechanistic model may serve as an important model framework for developing future population PK models of TMAbs in clinical patients. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model.

    Science.gov (United States)

    Herrera, María; Sánchez, Melvin; Machado, Anderson; Ramírez, Nils; Vargas, Mariángela; Villalta, Mauren; Sánchez, Andrés; Segura, Álvaro; Gómez, Aarón; Solano, Gabriela; Gutiérrez, José María; León, Guillermo

    2017-06-01

    Subcutaneous administration of a low dose of adrenaline is used to prevent the early adverse reactions (EARs) induced by snake antivenoms. We used a rabbit model to study the effect of premedication with adrenaline on the potential of antivenoms to exert therapeutic effects and to induce late adverse reactions. We found that premedication with adrenaline did not change the heart rate or blood pressure of normal rabbits, but reduced the rise in temperature in rabbits previously sensitized with antivenom. Pharmacokinetic studies suggest that premedication with adrenaline does not affect the ability of the antivenom to exert the initial control of envenomation nor the susceptibility of rabbits to develop recurrence of antigenemia and envenomation. Our results also indicate that it is unlikely that premedication with adrenaline decreases the incidence of late reactions induced by the antivenom administration, although it reduces the extent of early reactions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Using pharmacokinetic-pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics

    DEFF Research Database (Denmark)

    Olsen, Christina Kurre; Brennum, Lise Tøttrup; Kreilgaard, Mads

    2008-01-01

    response behaviour correlates well with the relationship between human dopamine D2 receptor occupancy and clinical effect. The aim of the present study was to evaluate how pharmacokinetic/pharmacodynamic (PK/PD) predictions of therapeutic effective steady-state plasma levels by means of conditioned...... the rat dopamine D2 receptor occupancy levels providing 50% response in the conditioned avoidance response test and the dopamine D2 receptor occupancy levels reported from responding schizophrenic patients treated with antipsychotics. Predictions of therapeutically effective steady-state levels...... for sertindole (+dehydrosertindole) and olanzapine were 3-4-fold too high whereas for haloperidol, clozapine and risperidone the predicted steady-state EC50 in conditioned avoidance responding rats correlated well with the therapeutically effective plasma levels observed in patients. Accordingly, the proposed PK...

  2. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  3. Comparison of the hemodynamic response to induction and intubation during a target-controlled infusion of propofol with 2 different pharmacokinetic models. A prospective ramdomized trial.

    Science.gov (United States)

    Ramos Luengo, A; Asensio Merino, F; Castilla, M S; Alonso Rodriguez, E

    2015-11-01

    Determine the best propofol pharmacokinetic model that meets patient requirements and is devoid of major haemodynamic side effects. Prospective, randomised, open-label, clinical trial was performed on an intention to treat basis. It included 280 patients with ASA physical status i-iii, aged 18 to 80 years and weight range between 45 to 100kg, scheduled for surgery under general anaesthesia. They were randomized into 2 groups according to the pharmacokinetic model: Modified Marsh group and Schnider group. The haemodynamic changes that occurred during the induction and intubation were analysed. A propofol target controlled infusion was started to achieve and maintain a bispectral index value between 35 and 55. At minute 6, orotracheal intubation was performed and the study finished at minute 11. Heart rate, mean arterial pressure and their product (HR×MAP) were measured and recorded every minute throughout the study. Every HR×MAP value was compared to its baseline value to determine the minimum value before intubation, the maximum value after intubation, the maximum variation after intubation, and its final value. The GRADIENTE (MIN, MAX) variable (primary endpoint of this study) analyses the difference between maximal and minimal values related to intubation. Propofol doses and calculated concentrations and any hypotensive events were also recorded. No differences were found between groups regarding haemodynamic performance. GRADIENTE (MIN, MAX) values and the percentage of hypotensive events were: Modified Marsh group median 77.41% vs. Schnider group 84.86% (p= 0.821) and 17.3% vs. 12.8% (p = 0.292), respectively. The study failed to demonstrate any haemodynamic difference between the 2 groups, even though the Modified Marsh group received a larger dose of propofol. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants.

    Science.gov (United States)

    Chung, Jou-Ku; Hallberg, Boubou; Hansen-Pupp, Ingrid; Graham, Martin A; Fetterly, Gerald; Sharma, Jyoti; Tocoian, Adina; Kreher, Nerissa C; Barton, Norman; Hellström, Ann; Ley, David

    2017-03-01

    rhIGF-1/rhIGFBP-3 is being investigated for prevention of retinopathy of prematurity in extremely preterm infants. A population pharmacokinetic model was developed using data from phase I/II (Sections A-C) trials of rhIGF-1/rhIGFBP-3 and additional studies in preterm infants to predict optimal dosing to establish/maintain serum IGF-1 within physiological intrauterine levels. In Section D of the phase II study, infants (gestational age (GA) (wk+d) 23+0 to 27+6) were randomized to rhIGF-1/rhIGFBP-3, administered at the model-predicted dose of 250 µg/kg/d continuous i.v. infusion up to postmenstrual age (PMA) 29 wk+6 d or standard of care. An interim pharmacokinetic analysis was performed for the first 10 treated infants to verify dosing. Serum IGF-1 data were reviewed for 10 treated/9 control infants. Duration of therapy in treated infants ranged 1-34.5 d. At baseline (before infusion and <24 h from birth), mean (SD) IGF-1 was 19.2 (8.0) μg/l (treated) and 15.4 (4.7) μg/l (controls). Mean (SD) IGF-1 increased to 45.9 (19.6) μg/l at 12 h in treated infants, and remained within target levels for all subsequent timepoints. For treated infants, 88.8% of the IGF-1 measurements were within target levels (controls, 11.1%). Through the reported work, we determined appropriate rhIGF-1/rhIGFBP-3 dosing to achieve physiological intrauterine serum IGF-1 levels in extremely preterm infants.

  5. Population Pharmacokinetic Modeling of a Desmopressin Oral Lyophilisate in Growing Piglets as a Model for the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Elke Gasthuys

    2018-01-01

    Full Text Available Desmopressin is used to treat primary nocturnal enuresis in children. Over the years, various formulations of desmopressin were commercialized of which the sublingual melt tablet is preferred in the pediatric population, despite the lack of full PK studies in this population. A full PK study was performed in growing conventional piglets to evaluate if this juvenile animal model can provide supplementary information to complement the information gap in the pediatric population. A desmopressin sublingual melt tablet (120 μg was administered to 32 male piglets aged 8 days, 4 weeks, 7 weeks, and 6 months (each group n = 8. Population PK (pop-PK analysis was performed to derive the PK parameters, the between- and within-subject variabilities and the effects of covariates. Desmopressin demonstrated two-compartmental PK, with a dual, sequential absorption process, and linear elimination. Body weight was the only significant covariate on clearance and on apparent volume of distribution of the central compartment. In human pediatric trials, no double peak in the absorption phase was observed in the plasma concentration-time curves, possibly due to the sparse sampling strategy applied in those pediatric studies. Therefore, it is recommended to perform additional studies, based on the sampling protocol applied in the current study.

  6. Physiologically Based Pharmacokinetic Modeling in Lead Optimization. 1. Evaluation and Adaptation of GastroPlus To Predict Bioavailability of Medchem Series.

    Science.gov (United States)

    Daga, Pankaj R; Bolger, Michael B; Haworth, Ian S; Clark, Robert D; Martin, Eric J

    2018-03-05

    When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CL loc ). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CL loc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.

  7. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples.

    Science.gov (United States)

    Lin, Zhoumeng; Jaberi-Douraki, Majid; He, Chunla; Jin, Shiqiang; Yang, Raymond S H; Fisher, Jeffrey W; Riviere, Jim E

    2017-07-01

    Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have been developed to aid risk and safety assessments using acslX. However, acslX has been rendered sunset since November 2015. Alternative modeling tools and tutorials are needed for future PBPK applications. This forum article aimed to: (1) demonstrate the performance of 4 PBPK modeling software packages (acslX, Berkeley Madonna, MATLAB, and R language) tested using 2 existing models (oxytetracycline and gold nanoparticles); (2) provide a tutorial of PBPK model code conversion from acslX to Berkeley Madonna, MATLAB, and R language; (3) discuss the advantages and disadvantages of each software package in the implementation of PBPK models in toxicology, and (4) share our perspective about future direction in this field. Simulation results of plasma/tissue concentrations/amounts of oxytetracycline and gold from different models were compared visually and statistically with linear regression analyses. Simulation results from the original models were correlated well with results from the recoded models, with time-concentration/amount curves nearly superimposable and determination coefficients of 0.86-1.00. Step-by-step explanations of the recoding of the models in different software programs are provided in the Supplementary Data. In summary, this article presents a tutorial of PBPK model code conversion for a small molecule and a nanoparticle among 4 software packages, and a performance comparison of these software packages in PBPK model implementation. This tutorial helps beginners learn PBPK modeling, provides suggestions for selecting a suitable tool for future projects, and may lead to the transition from acslX to alternative modeling tools. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Improved physiologically based pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to address temporal variation and sensitive populations

    Energy Technology Data Exchange (ETDEWEB)

    Kirman, C.R., E-mail: ckirman@summittoxicology.com [Summit Toxicology, PO Box 3209, Bozeman, MT 59715 (United States); Suh, M.; Proctor, D.M. [ToxStrategies, Mission Viejo, CA (United States); Hays, S.M. [Summit Toxicology, PO Box 3209, Bozeman, MT 59715 (United States)

    2017-06-15

    A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. - Highlights: • An improved version of the PBPK model for Cr(VI) toxicokinetics was developed. • The model incorporates data collected to fill important data gaps. • Model predictions for specific age groups and sensitive subpopulations are provided. • Implications to human health risk assessment are discussed.

  9. Semi-Mechanistic Population Pharmacokinetic Modeling of L-Histidine Disposition and Brain Uptake in Wildtype and Pht1 Null Mice.

    Science.gov (United States)

    Wang, Xiao-Xing; Li, Yang-Bing; Feng, Meihua R; Smith, David E

    2018-01-05

    To develop a semi-mechanistic population pharmacokinetic (PK) model to quantitate the disposition kinetics of L-histidine, a peptide-histidine transporter 1 (PHT1) substrate, in the plasma, cerebrospinal fluid and brain parenchyma of wildtype (WT) and Pht1 knockout (KO) mice. L-[ 14 C]Hisidine (L-His) was administrated to WT and KO mice via tail vein injection, after which plasma, cerebrospinal fluid (CSF) and brain parenchyma samples were collected. A PK model was developed using non-linear mixed effects modeling (NONMEM). The disposition of L-His between the plasma, brain, and CSF was described by a combination of PHT1-mediated uptake, CSF bulk flow and first-order micro-rate constants. The PK profile of L-His was best described by a four-compartment model. A more rapid uptake of L-His in brain parenchyma was observed in WT mice due to PHT1-mediated uptake, a process characterized by a Michaelis-Menten component (V max  = 0.051 nmoL/min and K m  = 34.94 μM). A semi-mechanistic population PK model was successfully developed, for the first time, to quantitatively characterize the disposition kinetics of L-His in brain under in vivo conditions. This model may prove a useful tool in predicting the uptake of L-His, and possibly other PHT1 peptide/mimetic substrates, for drug delivery to the brain.

  10. Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics

    Directory of Open Access Journals (Sweden)

    Yingyu Zhou

    2018-01-01

    Full Text Available The active compounds in Acanthopanax senticosus (AS have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC of mouse brain included tubulin protein family (α-, β-tubulin subunits, dihydropyrimidinase-related protein 2 (CRMP2, γ-actin, 14-3-3 protein family (14-3-3ζ, ε, heat shock protein 90β (HSP90β, and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B, Neurotrophin, Rap1 (Ras-related protein RAP-1A, gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1 signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could

  11. SU-F-R-34: Quantitative Perfusion Measurement in Rectal Cancer Using Three Different Pharmacokinetic Models: Implications for Prospective Study Design

    Energy Technology Data Exchange (ETDEWEB)

    Nie, K; Yue, N; Jabbour, S; Kim, S [Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical, New Brunswick, NJ (United States); Mao, T; Shi, L; Hu, X; Qian, L; Sun, X; Niu, T [Sir Run Run Shaw Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China)

    2016-06-15

    Purpose: To compare three different pharmacokinetic models for analysis of dynamic-contrast-enhanced (DCE)-CT data with respect to different acquisition times and location of region of interest. Methods: Eight rectal cancer patients with pre-treatment DCE-CTs were included. The dynamic sequence started 4–10seconds(s) after the injection of contrast agent. The scan included a 110s acquisition with intervals of 40×1s+15×3s+4×6s. An experienced oncologist outlined the tumor region. Hotspots with top-5%-enhancement were also identified. Pharmacokinetic analysis was performed using three different models: deconvolution method, Patlak model, and modified Toft’s model. Perfusion parameters as blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface-area-product (PS), volume transfer constant (Ktrans), and flux rate constant (Kep), were compared with respect to different acquisition times of 45s, 65s, 85s and 105s. Both hotspot and whole-volume variances were also assessed. The differences were compared using the Wilcoxon matched-pairs test and Bland-Altman plots. Results: Moderate correlation was observed for various perfusion parameters (r=0.56–0.72, p<0.0001) but the Wilcoxon test revealed a significant difference among the three models (P < .001). Significant differences in PS were noted between acquisitions of 45s versus longer time of 85s or 105s (p<0.05) using Patlak but not with the deconvolution method. In addition, measurements varied substantially between whole-volume vs. hotspot analysis. Conclusion: The radiation dose of DCE-CT was on average 1.5 times of an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique. Our study suggested that: (1) different kinetic models are not interchangeable; (2) a 45s acquisition might not be sufficient for reliable permeability measurement

  12. A comprehensive physiologically based pharmacokinetic ...

    Science.gov (United States)

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific parameters and in vivo pharmacokinetic data used to calibrate these published models can act as valuable starting points for model development of new chemicals with similar molecular structures. A knowledgebase for published PBPK-related articles was compiled to support PBPK model construction for new chemicals based on their close analogues within the knowledgebase, and a web-based interface was developed to allow users to query those close analogues. A list of 689 unique chemicals and their corresponding 1751 articles was created after analysis of 2,245 PBPK-related articles. For each model, the PMID, chemical name, major metabolites, species, gender, life stages and tissue compartments were extracted from the published articles. PaDEL-Descriptor, a Chemistry Development Kit based software, was used to calculate molecular fingerprints. Tanimoto index was implemented in the user interface as measurement of structural similarity. The utility of the PBPK knowledgebase and web-based user interface was demonstrated using two case studies with ethylbenzene and gefitinib. Our PBPK knowledgebase is a novel tool for ranking chemicals based on similarities to other chemicals associated with existi

  13. The predictive ability of six pharmacokinetic models of rocuronium developed using a single bolus: evaluation with bolus and continuous infusion regimen.

    Science.gov (United States)

    Sasakawa, Tomoki; Masui, Kenichi; Kazama, Tomiei; Iwasaki, Hiroshi

    2016-08-01

    Rocuronium concentration prediction using pharmacokinetic (PK) models would be useful for controlling rocuronium effects because neuromuscular monitoring throughout anesthesia can be difficult. This study assessed whether six different compartmental PK models developed from data obtained after bolus administration only could predict the measured plasma concentration (Cp) values of rocuronium delivered by bolus followed by continuous infusion. Rocuronium Cp values from 19 healthy subjects who received a bolus dose followed by continuous infusion in a phase III multicenter trial in Japan were used retrospectively as evaluation datasets. Six different compartmental PK models of rocuronium were used to simulate rocuronium Cp time course values, which were compared with measured Cp values. Prediction error (PE) derivatives of median absolute PE (MDAPE), median PE (MDPE), wobble, divergence absolute PE, and divergence PE were used to assess inaccuracy, bias, intra-individual variability, and time-related trends in APE and PE values. MDAPE and MDPE values were acceptable only for the Magorian and Kleijn models. The divergence PE value for the Kleijn model was lower than -10 %/h, indicating unstable prediction over time. The Szenohradszky model had the lowest divergence PE (-2.7 %/h) and wobble (5.4 %) values with negative bias (MDPE = -25.9 %). These three models were developed using the mixed-effects modeling approach. The Magorian model showed the best PE derivatives among the models assessed. A PK model developed from data obtained after single-bolus dosing can predict Cp values during bolus and continuous infusion. Thus, a mixed-effects modeling approach may be preferable in extrapolating such data.

  14. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    Science.gov (United States)

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  15. Pharmacokinetics and Histopathological Findings of Chemoembolization Using Cisplatin Powder Mixed with Degradable Starch Microspheres in a Rabbit Liver Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takeshi; Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Nishiofuku, Hideyuki; Fukuoka, Yasushi [IVR CenterNara Medical University, Department of Radiology (Japan); Sakaguchi, Hiroshi [South Nara General Medical Center, Department of Radiology (Japan); Masada, Tetsuya; Tatsumoto, Shota [IVR CenterNara Medical University, Department of Radiology (Japan); Marugami, Nagaaki [Diagnostic Imaging Center, Department of Radiology (Japan); Takano, Masato [Nara Medical University, Department of Diagnostic Pathology (Japan); Yamato, Ichiro; Sho, Masayuki [Nara Medical University, Department of Surgery (Japan); Ohbayashi, Chiho [Nara Medical University, Department of Diagnostic Pathology (Japan); Hirai, Toshiko [Diagnostic Imaging Center, Department of Radiology (Japan); Kichikawa, Kimihiko [IVR CenterNara Medical University, Department of Radiology (Japan)

    2017-03-15

    PurposeThe purpose of this study is to evaluate the pharmacokinetics and histopathological findings of transarterial chemoembolization (TACE) using cisplatin powder mixed with degradable starch microspheres (DSM) (Cis/DSM-TACE) compared with cisplatin arterial infusion (Cis-AI).Materials and MethodsEighteen rabbits with VX2 liver tumors were divided into two groups: Cis/DSM-TACE (n = 9) and Cis-AI (n = 9) groups. In the Cis/DSM-TACE group, a mixture of cisplatin powder and DSM was injected until stasis of hepatic arterial flow was achieved. In the Cis-AI group, cisplatin solution was infused.ResultsThe platinum concentrations in VX2 tumors in the Cis/DSM-TACE group at 24 and 72 h were significantly elevated compared with those in the Cis-AI group (P = .016 and .019, respectively). There were no significant differences in the platinum concentrations in plasma. Histopathological examination revealed the presence of several microspheres inside the tumors at 1 h, which completely disappeared at 24 h. Tumor cell apoptosis at 1 h in the Cis/DSM-TACE group was more frequently observed compared with that in the Cis-AI group (P = .006).ConclusionsTACE using cisplatin powder mixed with DSM provides a higher drug concentration in tumors, thereby achieving stronger antitumor effects compared with arterial infusion of cisplatin solution.

  16. Pharmacokinetics and Histopathological Findings of Chemoembolization Using Cisplatin Powder Mixed with Degradable Starch Microspheres in a Rabbit Liver Tumor Model

    International Nuclear Information System (INIS)

    Sato, Takeshi; Tanaka, Toshihiro; Nishiofuku, Hideyuki; Fukuoka, Yasushi; Sakaguchi, Hiroshi; Masada, Tetsuya; Tatsumoto, Shota; Marugami, Nagaaki; Takano, Masato; Yamato, Ichiro; Sho, Masayuki; Ohbayashi, Chiho; Hirai, Toshiko; Kichikawa, Kimihiko

    2017-01-01

    PurposeThe purpose of this study is to evaluate the pharmacokinetics and histopathological findings of transarterial chemoembolization (TACE) using cisplatin powder mixed with degradable starch microspheres (DSM) (Cis/DSM-TACE) compared with cisplatin arterial infusion (Cis-AI).Materials and MethodsEighteen rabbits with VX2 liver tumors were divided into two groups: Cis/DSM-TACE (n = 9) and Cis-AI (n = 9) groups. In the Cis/DSM-TACE group, a mixture of cisplatin powder and DSM was injected until stasis of hepatic arterial flow was achieved. In the Cis-AI group, cisplatin solution was infused.ResultsThe platinum concentrations in VX2 tumors in the Cis/DSM-TACE group at 24 and 72 h were significantly elevated compared with those in the Cis-AI group (P = .016 and .019, respectively). There were no significant differences in the platinum concentrations in plasma. Histopathological examination revealed the presence of several microspheres inside the tumors at 1 h, which completely disappeared at 24 h. Tumor cell apoptosis at 1 h in the Cis/DSM-TACE group was more frequently observed compared with that in the Cis-AI group (P = .006).ConclusionsTACE using cisplatin powder mixed with DSM provides a higher drug concentration in tumors, thereby achieving stronger antitumor effects compared with arterial infusion of cisplatin solution.

  17. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 2: Prospectively Predicting Systemic and Liver Exposure in Healthy Subjects.

    Science.gov (United States)

    Li, Rui; Kimoto, Emi; Niosi, Mark; Tess, David A; Lin, Jian; Tremaine, Larry M; Di, Li

    2018-04-01

    Predicting human pharmacokinetics of novel compounds is a critical step in drug discovery and clinical study design but continues to be a challenging task for hepatic transporter substrates, particularly in predicting their liver exposures. In this study, using bosentan as an example, we prospectively predicted systemic exposure and the (pseudo) steady-state unbound liver-to-unbound plasma ratio ( K p uu ) in healthy subjects using 1) a mechanistic approach solely based on in vitro hepatocyte assays and 2) an approach based on hepatic process rates from monkey in vivo data but Michaelis-Menten constants from in vitro data. Both methods reasonably match the observed human systemic time course data, but the second method leads to better prediction accuracy. In addition, the second method can predict a human K p uu value that is close to the value deduced using clinical data. We also generated rat and monkey liver K p uu values in terminal studies. However, these directly measured animal values are different from the deduced human value. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Pharmacokinetic/Pharmacodynamic Modeling of Renin-Angiotensin Aldosterone Biomarkers Following Angiotensin-Converting Enzyme (ACE) Inhibition Therapy with Benazepril in Dogs.

    Science.gov (United States)

    Mochel, Jonathan P; Fink, Martin; Peyrou, Mathieu; Soubret, Antoine; Giraudel, Jérôme M; Danhof, Meindert

    2015-06-01

    The objective of this research was to provide a comprehensive description of the effect of benazepril on the dynamics of the renin-angiotensin aldosterone system (RAAS) in dogs. Blood specimens for renin activity (RA), angiotensin II (AII), and aldosterone (ALD) quantitation in plasma were drawn from 12 healthy adult beagle dogs randomly allocated to 2 treatment groups: (i) benazepril 5 mg PO, q24 h (n: 6) and (ii) placebo (n: 6), in a cross-over design. A mechanism-based pharmacokinetic/pharmacodynamic model, which includes the periodic nature of RA, AII, and ALD during placebo treatment and the subsequent changes in dynamics following repeated dosing with benazepril, was developed. The disposition kinetics of benazepril active metabolite, benazeprilat, was characterized using a saturable binding model to the angiotensin converting enzyme. The modulatory effect of benazeprilat on the RAAS was described using a combination of immediate response models. Our data show that benazepril noticeably influences the dynamics of the renin cascade, resulting in a substantial decrease in AII and ALD, while increasing RA throughout the observation span. The model provides a quantitative framework for better understanding the effect of ACE inhibition on the dynamics of the systemic RAAS in dogs.

  19. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.

    Science.gov (United States)

    Poulin, Patrick

    2015-07-01

    A basic assumption in pharmacokinetics-pharmacodynamics research is that the free drug concentration is similar in plasma and tissue, and, hence, in vitro plasma data can be used to estimate the in vivo condition in tissue. However, in a companion manuscript, it has been demonstrated that this assumption is violated for the ionized drugs. Nonetheless, these observations focus on in vitro static environments and do not challenge data with an in vivo dynamic system. Therefore, an extension from an in vitro to an in vivo system becomes the necessary next step. The objective of this study was to perform theoretical simulations of the free drug concentration in tissue and plasma by using a physiologically based pharmacokinetics (PBPK) model reproducing the in vivo conditions in human. Therefore, the effects of drug ionization, lipophilicity, and clearance have been taken into account in a dynamic system. This modeling exercise was performed as a proof of concept to demonstrate that free drug concentration in tissue and plasma may also differ in a dynamic system for passively permeable drugs that are ionized at the physiological pH. The PBPK model simulations indicated that free drug concentrations in tissue cells and plasma significantly differ for the ionized drugs because of the pH gradient effect between cells and interstitial space. Hence, a rule of thumb for potentially performing more accurate PBPK/PD modeling is suggested, which states that the free drug concentration in tissue and plasma will differ for the ionizable drugs in contrast to the neutral drugs. In addition to the pH gradient effect for the ionizable drugs, lipophilicity and clearance effects will increase or decrease the free drug concentration in tissue and plasma for each class of drugs; thus, higher will be the drug lipophilicity and clearance, lower would be the free drug concentration in plasma, and, hence, in tissue, in a dynamic in vivo system. Therefore, only considering the value of free

  20. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification.

    Science.gov (United States)

    Moj, Daniel; Britz, Hannah; Burhenne, Jürgen; Stewart, Clinton F; Egerer, Gerlinde; Haefeli, Walter E; Lehr, Thorsten

    2017-11-01

    This study aimed at recommending pediatric dosages of the histone deacetylase (HDAC) inhibitor vorinostat and potentially more effective adult dosing regimens than the approved standard dosing regimen of 400 mg/day, using a comprehensive physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling approach. A PBPK/PD model for vorinostat was developed for predictions in adults and children. It includes the maturation of relevant metabolizing enzymes. The PBPK model was expanded by (1) effect compartments to describe vorinostat concentration-time profiles in peripheral blood mononuclear cells (PBMCs), (2) an indirect response model to predict the HDAC inhibition, and (3) a thrombocyte model to predict the dose-limiting thrombocytopenia. Parameterization of drug and system-specific processes was based on published and unpublished in silico, in vivo, and in vitro data. The PBPK modeling software used was PK-Sim and MoBi. The PBPK/PD model suggests dosages of 80 and 230 mg/m 2 for children of 0-1 and 1-17 years of age, respectively. In comparison with the approved standard treatment, in silico trials reveal 11 dosing regimens (9 oral, and 2 intravenous infusion rates) increasing the HDAC inhibition by an average of 31%, prolonging the HDAC inhibition by 181%, while only decreasing the circulating thrombocytes to a tolerable 53%. The most promising dosing regimen prolongs the HDAC inhibition by 509%. Thoroughly developed PBPK models enable dosage recommendations in pediatric patients and integrated PBPK/PD models, considering PD biomarkers (e.g., HDAC activity and platelet count), are well suited to guide future efficacy trials by identifying dosing regimens potentially superior to standard dosing regimens.

  1. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenming, E-mail: chzhang2@vt.edu

    2016-09-15

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  2. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    International Nuclear Information System (INIS)

    Saylor, Kyle; Zhang, Chenming

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  3. Clinical pharmacokinetics of melatonin

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Holst; Gögenur, Ismail

    2015-01-01

    was performed in PubMed and Embase databases. The pharmacokinetic variables included maximal plasma/serum concentration (Cmax), time to maximal plasma/serum concentration (Tmax), elimination half-life (T1/2), area-under-the-curve plasma/serum concentrations (AUC), clearance (Cl), volume of distribution (VD......) and 1602 L (4 mg, oral). Bioavailability of oral melatonin ranged from 9 to 33%. Pharmacokinetics was affected by age, caffeine, smoking, oral contraceptives, feeding status, and fluvoxamine. Critically ill patients displayed accelerated absorption and compromised elimination. CONCLUSIONS: Despite...

  4. Benzathine penicillin G: a model for long-term pharmacokinetic comparison of parenteral long-acting formulations.

    Science.gov (United States)

    Shahbazi, M A; Azimi, K; Hamidi, M

    2013-04-01

      Long-acting intramuscular penicillin G injection is an important product for the management of some severe infections. However, testing the bioequivalence of such long-acting formulations is difficult. Our aim was to undertake such a test using a generic formulation containing 1 200 000 IU of benzathine penicillin G powder and an innovator's product (Retarpen(®) 1·2 million units; Sandoz, Switzerland).   In an open, double-blind, randomized, two-periods, two-group crossover study, 12 healthy male volunteers received both formulations of benzathine penicillin G on two different days with a 5-month washout period between the doses and a sampling period of over 500 h. A simple, sensitive and rapid high-performance liquid chromatography (HPLC)-UV method was developed and validated for determination of penicillin G plasma concentrations and other pharmacokinetic (PK) parameters.   The analytical method used produced linear responses within a wide analyte concentration range with average within-run and between-run variations of below 15% with acceptable recovery, accuracy and sensitivity. The primary PK parameters we used were maximum plasma concentration (Cmax ), time to reach the maximal concentration (Tmax ) and the area under the plasma concentration vs. time curve from time zero to the last sampling time (AUC0→t ) using a standard non-compartmental approach. Based on these parameters, the two formulations were bioequivalent.   We illustrate the bioequivalence testing of a very long-acting product. The data indicate that the generic test formulation and the branded reference formulation were bioequivalent in fasting healthy Iranian male volunteers. © 2013 Blackwell Publishing Ltd.

  5. Development of population pharmacokinetics model of icotinib with non-linear absorption characters in healthy Chinese volunteers to assess the CYP2C19 polymorphism and food-intake effect.

    Science.gov (United States)

    Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji

    2015-07-01

    Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to

  6. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Science.gov (United States)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  7. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Cheng, Yi-Hsien; Riviere, Jim E; Monteiro-Riviere, Nancy A; Lin, Zhoumeng

    2018-04-14

    This study aimed to conduct an integrated and probabilistic risk assessment of gold nanoparticles (AuNPs) based on recently published in vitro and in vivo toxicity studies coupled to a physiologically based pharmacokinetic (PBPK) model. Dose-response relationships were characterized based on cell viability assays in various human cell types. A previously well-validated human PBPK model for AuNPs was applied to quantify internal concentrations in liver, kidney, skin, and venous plasma. By applying a Bayesian-based probabilistic risk assessment approach incorporating Monte Carlo simulation, probable human cell death fractions were characterized. Additionally, we implemented in vitro to in vivo and animal-to-human extrapolation approaches to independently estimate external exposure levels of AuNPs that cause minimal toxicity. Our results suggest that under the highest dosing level employed in existing animal studies (worst-case scenario), AuNPs coated with branched polyethylenimine (BPEI) would likely induce ∼90-100% cellular death, implying high cytotoxicity compared to risk prediction, and point of departure estimation of AuNP exposure for humans and illustrate an approach that could be applied to other NPs when sufficient data are available.

  8. Population pharmacokinetic modeling and dosing simulations of nitrogen-scavenging compounds: disposition of glycerol phenylbutyrate and sodium phenylbutyrate in adult and pediatric patients with urea cycle disorders.

    Science.gov (United States)

    Monteleone, Jon P R; Mokhtarani, M; Diaz, G A; Rhead, W; Lichter-Konecki, U; Berry, S A; Lemons, C; Dickinson, K; Coakley, D; Lee, B; Scharschmidt, B F

    2013-07-01

    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. © The Author(s) 2013.

  9. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies

    Science.gov (United States)

    Avery, Lindsay B.; Wang, Mengmeng; Kavosi, Mania S.; Joyce, Alison; Kurz, Jeffrey C.; Fan, Yao-Yun; Dowty, Martin E.; Zhang, Minlei; Zhang, Yiqun; Cheng, Aili; Hua, Fei; Jones, Hannah M.; Neubert, Hendrik; Polzer, Robert J.; O'Hara, Denise M.

    2016-01-01

    ABSTRACT Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r2 = 0.83, r = 0.91, p PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic. PMID:27232760

  10. Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model.

    Science.gov (United States)

    Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J

    2014-01-01

    Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.

  11. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration.

    Science.gov (United States)

    Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping

    2015-01-01

    The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.

  12. Pharmacokinetics of Melatonin

    DEFF Research Database (Denmark)

    Andersen, Lars Peter Holst; Gögenur, Ismail; Rosenberg, Jacob

    2016-01-01

    Despite widespread clinical application of melatonin, several unanswered questions remain regarding the pharmacokinetics of this drug. This lack of knowledge may contribute to the inconsistency of results in previous clinical studies. Currently, a t max value of 30-45 min and a t ½elimination of ...

  13. Pharmacokinetic evaluation of pemetrexed

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn

    2011-01-01

    correlates with renal function and it may be safely used with vitamin supplementation in patients with creatinine clearance ≥ 45 ml/min. The pharmacokinetics of pemetrexed is also largely unchanged in third-space fluids and can be feasibly and safely administered in combination with several other cytotoxic...

  14. Pharmacokinetic evaluation of pemetrexed

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn

    2011-01-01

    correlates with renal function and it may be safely used with vitamin supplementation in patients with creatinine clearance = 45 ml/min. The pharmacokinetics of pemetrexed is also largely unchanged in third-space fluids and can be feasibly and safely administered in combination with several other cytotoxic...

  15. Prediction of Drug-Drug Interactions with Bupropion and Its Metabolites as CYP2D6 Inhibitors Using a Physiologically-Based Pharmacokinetic Model.

    Science.gov (United States)

    Xue, Caifu; Zhang, Xunjie; Cai, Weimin

    2017-12-21

    The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary metabolites-hydroxybupropion, threohydrobupropion and erythrohydrobupropion-based on a mixed "bottom-up" and "top-down" approach and to contribute to the understanding of the involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles from clinical researches of different dosages were used to verify the bupropion model. Reasonable PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be maximized. The predicted maximum concentration (C max ) area under the concentration-time curve (AUC) values and C max and AUC ratios were consistent with clinically observed data. The addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction of DDIs (AUC and C max ratio) than that which only considered parent drug (bupropion) P450 inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This study highlights the need for caution and dosage adjustment when combining bupropion with medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the DDI involving inhibitory

  16. Pharmacokinetic-pharmacodynamic modeling of QRS-prolongation by flecainide: heart rate-dependent effects during sinus rhythm in conscious telemetered dogs.

    Science.gov (United States)

    Sällström, Johan; Al-Saffar, Ahmad; Pehrson, Rikard

    2014-01-01

    The duration of the QRS interval is determined by the ion currents involved in cardiac depolarization. Class I antiarrhythmic drugs reduce cardiac excitability and conduction by inhibiting Nav1.5 channels responsible for I(Na), thus increasing the QRS interval. Previous studies in humans as well as in animal models have demonstrated a more pronounced effect on QRS-prolongation during higher heart rates. In the present study, the effects of the Nav1.5 inhibitor flecainide on cardiovascular parameters, were studied in the telemetered beagle dog under normal autonomic control. The heart rate dependency of QRS prolongation was characterized using pharmacokinetic-pharmacodynamic (PKPD) modeling. Four male telemetered beagle dogs were administered placebo or flecainide (100, 150 and 200 mg) in a Latin square design. The QRS interval and heart rate were recorded, and blood samples were taken. Plasma concentrations of flecainide were fitted to a one compartment oral model and the intrapolated plasma concentrations were fitted to QRS and heart rate data sampled during 5 h after dosing. Flecainide increased the QRS interval in all dogs, whereas there were no effects on heart rate. Using the PKPD model, a statistically significant heart rate-dependent QRS prolongation was linked to individual concentration-time profiles of flecainide. PKPD analysis of QRS interval data from unrestrained dogs with sinus rhythm can elucidate mechanisms previously only described during controlled heart rhythm. Specific questions can therefore be addressed in generically designed cardiovascular telemetry safety studies and different types of relationships between parameters can be uncovered. In addition, the present approach can be used to better characterize drug-induced QRS effects in cardiovascular dog models. © 2013.

  17. Pharmacokinetics and Preliminary Safety of Pod-Intravaginal Rings Delivering the Monoclonal Antibody VRC01-N for HIV Prophylaxis in a Macaque Model.

    Science.gov (United States)

    Zhao, Chunxia; Gunawardana, Manjula; Villinger, Francois; Baum, Marc M; Remedios-Chan, Mariana; Moench, Thomas R; Zeitlin, Larry; Whaley, Kevin J; Bohorov, Ognian; Smith, Thomas J; Anderson, Deborah J; Moss, John A

    2017-07-01

    The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro , is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana -manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 10 2 to 10 3 μg g -1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation. Copyright © 2017 American Society for Microbiology.

  18. The effective effect-site propofol concentration for induction and intubation with two pharmacokinetic models in morbidly obese patients using total body weight.

    Science.gov (United States)

    Echevarría, Ghislaine C; Elgueta, María F; Donoso, María T; Bugedo, Diego A; Cortínez, Luis I; Muñoz, Hernán R

    2012-10-01

    Most pharmacokinetic (PK) models used for propofol administration are based on studies in normal-weight patients. Extrapolation of these models for morbidly obese patients is controversial. Using 2 PK models and a target-controlled infusion system, we determined the predicted propofol effect-site concentration (Ce) needed for induction of anesthesia in morbidly obese subjects using total body weight. Sixty-six morbidly obese subjects from 18 to 50 years of age were randomized to receive propofol to reach and maintain a predetermined propofol Ce, based on the PK models of either Marsh or Schnider. All patients were monitored with a Bispectral Index electroencephalographic monitor. Fentanyl 3 μg/kg total body weight was administered before starting the propofol infusion. After loss of consciousness, vecuronium was administered to facilitate endotracheal intubation. Groups of 6 patients each received propofol at a different, predetermined target propofol Ce. An "effective Ce" (ECe) was defined as the propofol Ce that provided adequate hypnosis (Bispectral Index <60) during the complete induction period (45 seconds after reaching the predetermined target Ce until 5 minutes after tracheal intubation). Heart rate and arterial blood pressure were measured every 1 minute throughout the study period. Probit regression analysis was performed to calculate the effective propofol Ce values to induce hypnosis in 50% (ECe(50)) and 95% (ECe(95)) of patients with 95% confidence intervals (CIs). Patient characteristics were similar between models and across the propofol target concentration groups. The ECe(50) of propofol was 3.4 μg/mL (95% CI: 2.9, 3.7 μg/mL) with the Marsh model and 4.5 μg/mL (95% CI: 4.1, 4.8 μg/mL) with the Schnider model (P < 0.001). The ECe(95) values were 4.2 μg/mL (95% CI: 3.8, 6.2 μg/mL) and 5.5 μg/mL (95% CI: 5.0, 7.2 μg/mL) with Marsh and Schnider models, respectively. At the ECe(95), hemodynamic effects were similar with the 2 PK models

  19. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model.

    Science.gov (United States)

    Fransson, Martin N; Gréen, Henrik; Litton, Jan-Eric; Friberg, Lena E

    2011-02-01

    The formulation vehicle Cremophor EL has previously been shown to affect paclitaxel kinetics, but it is not known whether it also affects the kinetics of paclitaxel metabolites. This information may be important for understanding paclitaxel metabolism in vivo and in the investigation of the role of genetic polymorphisms in the metabolizing enzymes CYP2C8 and CYP3A4/CYP3A5 and the ABCB1 transporter. In this study we used the population pharmacokinetic approach to explore the influence of predicted Cremophor EL concentrations on paclitaxel (Taxol) metabolites. In addition, correlations between genetic polymorphisms and enzyme activity with clearance of paclitaxel, its two primary metabolites, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, and its secondary metabolite, 6α-p-3'-dihydroxypaclitaxel were investigated. Model building was based on 1156 samples from a study with 33 women undergoing paclitaxel treatment for gynecological cancer. Total concentrations of paclitaxel were fitted to a model described previously. One-compartment models characterized unbound metabolite concentrations. Total concentrations of 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel were strongly dependent on predicted Cremophor EL concentrations, but this association was not found for 6α-p-3'-dihydroxypaclitaxel. Clearance of 6α-hydroxypaclitaxel (fraction metabolized) was significantly correlated (p < 0.05) to the ABCB1 allele G2677T/A. Individuals carrying the polymorphisms G/A (n = 3) or G/G (n = 5) showed a 30% increase, whereas individuals with polymorphism T/T (n = 8) showed a 27% decrease relative to those with the polymorphism G/T (n = 17). The correlation of G2677T/A with 6α-hydroxypaclitaxel has not been described previously but supports other findings of the ABCB1 transporter playing a part in paclitaxel metabolism.

  20. Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK).

    Science.gov (United States)

    Verner, Marc-André; Loccisano, Anne E; Morken, Nils-Halvdan; Yoon, Miyoung; Wu, Huali; McDougall, Robin; Maisonet, Mildred; Marcus, Michele; Kishi, Reiko; Miyashita, Chihiro; Chen, Mei-Huei; Hsieh, Wu-Shiun; Andersen, Melvin E; Clewell, Harvey J; Longnecker, Matthew P

    2015-12-01

    Prenatal exposure to perfluoroalkyl substances (PFAS) has been associated with lower birth weight in epidemiologic studies. This association could be attributable to glomerular filtration rate (GFR), which is related to PFAS concentration and birth weight. We used a physiologically based pharmacokinetic (PBPK) model of pregnancy to assess how much of the PFAS-birth weight association observed in epidemiologic studies might be attributable to GFR. We modified a PBPK model to reflect the association of GFR with birth weight (estimated from three studies of GFR and birth weight) and used it to simulate PFAS concentrations in maternal and cord plasma. The model was run 250,000 times, with variation in parameters, to simulate a population. Simulated data were analyzed to evaluate the association between PFAS levels and birth weight due to GFR. We compared simulated estimates with those from a meta-analysis of epidemiologic data. The reduction in birth weight for each 1-ng/mL increase in simulated cord plasma for perfluorooctane sulfonate (PFOS) was 2.72 g (95% CI: -3.40, -2.04), and for perfluorooctanoic acid (PFOA) was 7.13 g (95% CI: -8.46, -5.80); results based on maternal plasma at term were similar. Results were sensitive to variations in PFAS level distributions and the strength of the GFR-birth weight association. In comparison, our meta-analysis of epidemiologic studies suggested that each 1-ng/mL increase in prenatal PFOS and PFOA levels was associated with 5.00 g (95% CI: -21.66, -7.78) and 14.72 g (95% CI: -8.92, -1.09) reductions in birth weight, respectively. Results of our simulations suggest that a substantial proportion of the association between prenatal PFAS and birth weight may be attributable to confounding by GFR and that confounding by GFR may be more important in studies with sample collection later in pregnancy.

  1. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise

    Energy Technology Data Exchange (ETDEWEB)

    Hardiansyah, Deni [Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany and Department of Radiation Oncology, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany); Guo, Wei; Glatting, Gerhard, E-mail: gerhard.glatting@medma.uni-heidelberg.de [Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany); Kletting, Peter [Department of Nuclear Medicine, Ulm University, Ulm 89081 (Germany); Mottaghy, Felix M. [Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen 52074, Germany and Department of Nuclear Medicine, Maastricht University Medical Center MUMC+, Maastricht 6229 (Netherlands)

    2016-09-15

    Purpose: The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). Methods: The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq {sup 68}Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of {sup 90}Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability v{sub organ} between TIACs from both MPPs. Results: Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., v{sub kidneys} = (9 ± 6)%, and v{sub tumor} = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 10)%, or three measurements, e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 9)%. Conclusions: {sup 68}Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of {sup 90}Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.

  2. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  3. The calculation of human toxicity thresholds of 2,3,7,8-TCDD; A Physiologically Based Pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Zeilmaker MJ; van Eijkeren JCH; LBO

    1998-01-01

    Dit rapport beschrijft de toepassing van een 'Physiologically Based PharmacoKinetic' model (PBPK model) bij het berekenen van de verwachte 'No Adverse Effect Level' van 2,3,7,8-TetraChloroDibenzo-p-Dioxine (TCDD) bij de mens. Het model houdt rekening met variabiliteit en

  4. A Systematic Analysis of the Sensitivity of Plasma Pharmacokinetics to Detect Differences in the Pulmonary Performance of Inhaled Fluticasone Propionate Products Using a Model-Based Simulation Approach.

    Science.gov (United States)

    Weber, Benjamin; Hochhaus, Guenther

    2015-07-01

    The role of plasma pharmacokinetics (PK) for assessing bioequivalence at the target site, the lung, for orally inhaled drugs remains unclear. A validated semi-mechanistic model, considering the presence of mucociliary clearance in central lung regions, was expanded for quantifying the sensitivity of PK studies in detecting differences in the pulmonary performance (total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics) between test (T) and reference (R) inhaled fluticasone propionate (FP) products. PK bioequivalence trials for inhaled FP were simulated based on this PK model for a varying number of subjects and T products. The statistical power to conclude bioequivalence when T and R products are identical was demonstrated to be 90% for approximately 50 subjects. Furthermore, the simulations demonstrated that PK metrics (area under the concentration time curve (AUC) and C max) are capable of detecting differences between T and R formulations of inhaled FP products when the products differ by more than 20%, 30%, and 25% for total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics, respectively. These results were derived using a rather conservative risk assessment approach with an error rate of <10%. The simulations thus indicated that PK studies might be a viable alternative to clinical studies comparing pulmonary efficacy biomarkers for slowly dissolving inhaled drugs. PK trials for pulmonary efficacy equivalence testing should be complemented by in vitro studies to avoid false positive bioequivalence assessments that are theoretically possible for some specific scenarios. Moreover, a user-friendly web application for simulating such PK equivalence trials with inhaled FP is provided.

  5. Physiologically-based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance

    Directory of Open Access Journals (Sweden)

    Kristin eDickschen

    2012-05-01

    Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.

  6. The In Vivo Quantitation of Diazinon, chlorpyrifos, and Their Major Metabolites in Rat Blood for the Refinement of a Physiologically-Based Pharmacokinetic/Pharmacodynamic Models

    Energy Technology Data Exchange (ETDEWEB)

    Busby, A.; Kousba, A.; Timchalk, C.

    2004-01-01

    Chlorpyrifos (CPF)(O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate, CAS 2921-88-2), and diazinon (DZN)(O,O-diethyl-O-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate, CAS 333-41-5) are commonly encountered organophosphorus insecticides whose oxon metabolites (CPF-oxon and DZN-oxon) have the ability to strongly inhibit acetylcholinesterase, an enzyme responsible for the breakdown of acetylcholine at nerve synapses. Chlorpyrifos-oxon and DZN-oxon are highly unstable compounds that degrade via hepatic, peripheral blood, and intestinal metabolism to the more stable metabolites, TCP (3,5,6-trichloro-2-pyridinol, CAS not assigned) and IMHP (2-isopropyl-6-methyl-4-pyrimidinol, CAS 2814-20-2), respectively. Studies have been performed to understand and model the chronic and acute toxic effects of CPF and DZN individually but little is known about their combined effects. The purpose of this study was to improve physiologically based pharmacokinetic/ pharmacodynamic (PBPK/PD) computational models by quantifying concentrations of CPF and DZN and their metabolites TCP and IMHP in whole rat blood, following exposure to the chemicals individually or as a mixture. Male Sprague-Dawley rats were orally dosed with 60 mg/kg of CPF, DZN, or a mixture of these two pesticides. When administered individually DZN and CPF were seen to reach their maximum concentration at ~3 hours post-dosing. When given as a mixture, both DZN and CPF peak blood concentrations were not achieved until ~6 hours post-dosing and the calculated blood area under the curve (AUC) for both chemicals exceeded those calculated following the single dose. Blood concentrations of IMHP and TCP correlated with these findings. It is proposed that the higher AUC obtained for both CPF and DZN as a mixture resulted from competition for the same metabolic enzyme systems.

  7. Physiologically based pharmacokinetic modeling of human exposure to perfluorooctanoic acid suggests historical non drinking-water exposures are important for predicting current serum concentrations.

    Science.gov (United States)

    Worley, Rachel Rogers; Yang, Xiaoxia; Fisher, Jeffrey

    2017-09-01

    Manufacturing of perfluorooctanoic acid (PFOA), a synthetic chemical with a long half-life in humans, peaked between 1970 and 2002, and has since diminished. In the United States, PFOA is detected in the blood of >99% of people tested, but serum concentrations have decreased since 1999. Much is known about exposure to PFOA in drinking water; however, the impact of non-drinking water PFOA exposure on serum PFOA concentrations is not well characterized. The objective of this research is to apply physiologically based pharmacokinetic (PBPK) modeling and Monte Carlo analysis to evaluate the impact of historic non-drinking water PFOA exposure on serum PFOA concentrations. In vitro to in vivo extrapolation was utilized to inform descriptions of PFOA transport in the kidney. Monte Carlo simulations were incorporated to evaluate factors that account for the large inter-individual variability of serum PFOA concentrations measured in individuals from North Alabama in 2010 and 2016, and the Mid-Ohio River Valley between 2005 and 2008. Predicted serum PFOA concentrations were within two-fold of experimental data. With incorporation of Monte Carlo simulations, the model successfully tracked the large variability of serum PFOA concentrations measured in populations from the Mid-Ohio River Valley. Simulation of exposure in a population of 45 adults from North Alabama successfully predicted 98% of individual serum PFOA concentrations measured in 2010 and 2016, respectively, when non-drinking water ingestion of PFOA exposure was included. Variation in serum PFOA concentrations may be due to inter-individual variability in the disposition of PFOA and potentially elevated historical non-drinking water exposures. Published by Elsevier Inc.

  8. Modelling the Effect of Exercise on Insulin Pharmacokinetics in "Continuous Subcutaneous Insulin Infusion" Treated Type 1 Diabetes Patients

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Juhl, Rune; Schmidt, Signe

    Introduction: The artificial pancreas is believed to ease the burden of constant management of type 1 diabetes for the patients substantially. An important aspect of the artificial pancreas development is the mathematical models used for control, prediction or simulation. A major challenge...... infusion (CSII) treated patients by modelling the absorption rate as a function of exercise. Methods: Three models are estimated from 17 data sequences. All of them are based on a linear three-compartment base model. The models are based on stochastic differential equations to allow noise to enter...... of the measurement variance. Conclusion: A model to predict the insulin appearance in plasma during exercise in CSII treated patients is identified. Further clinical studies are needed to confirm the increase in insulin plasma concentration during exercise in type 1 diabetes patients. These studies should include...

  9. Investigating pulmonary and systemic pharmacokinetics of inhaled olodaterol in healthy volunteers using a population pharmacokinetic approach.

    Science.gov (United States)

    Borghardt, Jens Markus; Weber, Benjamin; Staab, Alexander; Kunz, Christina; Formella, Stephan; Kloft, Charlotte

    2016-03-01

    Olodaterol, a novel β2-adrenergic receptor agonist, is a long-acting, once-daily inhaled bronchodilator approved for the treatment of chronic obstructive pulmonary disease. The aim of the present study was to describe the plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers by population pharmacokinetic modelling and thereby to infer its pulmonary fate. Plasma and urine data after intravenous administration (0.5-25 μg) and oral inhalation (2.5-70 μg via the Respimat® inhaler) were available from a total of 148 healthy volunteers (single and multiple dosing). A stepwise model building approach was applied, using population pharmacokinetic modelling. Systemic disposition parameters were fixed to estimates obtained from intravenous data when modelling data after inhalation. A pharmacokinetic model, including three depot compartments with associated parallel first-order absorption processes (pulmonary model) on top of a four-compartment body model (systemic disposition model), was found to describe the data the best. The dose reaching the lung (pulmonary bioavailable fraction) was estimated to be 49.4% [95% confidence interval (CI) 46.1, 52.7%] of the dose released from the device. A large proportion of the pulmonary bioavailable fraction [70.1% (95% CI 66.8, 73.3%)] was absorbed with a half-life of 21.8 h (95% CI 19.7, 24.4 h). The plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers were adequately described. The key finding was that a high proportion of the pulmonary bioavailable fraction had an extended pulmonary residence time. This finding was not expected based on the physicochemical properties of olodaterol. © 2015 The British Pharmacological Society.

  10. Evaluation and optimisation of current milrinone prescribing for the treatment and prevention of low cardiac output syndrome in paediatric patients after open heart surgery using a physiology-based pharmacokinetic drug-disease model.

    Science.gov (United States)

    Vogt, Winnie

    2014-01-01

    Milrinone is the drug of choice for the treatment and prevention of low cardiac output syndrome (LCOS) in paediatric patients after open heart surgery across Europe. Discrepancies, however, among prescribing guidance, clinical studies and practice pattern require clarification to ensure safe and effective prescribing. However, the clearance prediction equations derived from classical pharmacokinetic modelling provide limited support as they have recently failed a clinical practice evaluation. Therefore, the objective of this study was to evaluate current milrinone dosing using physiology-based pharmacokinetic (PBPK) modelling and simulation to complement the existing pharmacokinetic knowledge and propose optimised dosing regimens as a basis for improving the standard of care for paediatric patients. A PBPK drug-disease model using a population approach was developed in three steps from healthy young adults to adult patients and paediatric patients with and without LCOS after open heart surgery. Pre- and postoperative organ function values from adult and paediatric patients were collected from literature and integrated into a disease model as factorial changes from the reference values in healthy adults aged 20-40 years. The disease model was combined with the PBPK drug model and evaluated against existing pharmacokinetic data. Model robustness was assessed by parametric sensitivity analysis. In the next step, virtual patient populations were created, each with 1,000 subjects reflecting the average adult and paediatric patient characteristics with regard to age, sex, bodyweight and height. They were integrated into the PBPK drug-disease model to evaluate the effectiveness of current milrinone dosing in achieving the therapeutic target range of 100-300 ng/mL milrinone in plasma. Optimised dosing regimens were subsequently developed. The pharmacokinetics of milrinone in healthy young adults as well as adult and paediatric patients were accurately described with an

  11. Controlled iontophoretic transport of huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models.

    Science.gov (United States)

    Kalaria, Dhaval R; Patel, Pratikkumar; Merino, Virginia; Patravale, Vandana B; Kalia, Yogeshvar N

    2013-11-04

    determined in male Wistar rats in vivo (4 mM HupA; 0.5 mA · cm(-2) for 5 h with Ag/AgCl electrodes) using two-compartment models with either constant or time-variant input rates. A superior fit was obtained using the time-variant model, and the input rate in vivo was significantly greater than that in vitro. Based on these results and the known pharmacokinetics, it was estimated that therapeutic amounts of HupA could be delivered for the treatment of Alzheimer's disease using a reasonably sized patch.

  12. Physiologically based pharmacokinetic rat model for methyl tertiary-butyl ether; comparison of selected dose metrics following various MTBE exposure scenarios used for toxicity and carcinogenicity evaluation

    International Nuclear Information System (INIS)

    Borghoff, Susan J.; Parkinson, Horace; Leavens, Teresa L.

    2010-01-01

    There are a number of cancer and toxicity studies that have been carried out to assess hazard from methyl tertiary-butyl ether (MTBE) exposure via inhalation and oral administration. MTBE has been detected in surface as well as ground water supplies which emphasized the need to assess the risk from exposure via drinking water contamination. This model can now be used to evaluate route-to-route extrapolation issues concerning MTBE exposures but also as a means of comparing potential dose metrics that may provide insight to differences in biological responses observed in rats following different routes of MTBE exposure. Recently an updated rat physiologically based pharmacokinetic (PBPK) model was published that relied on a description of MTBE and its metabolite tertiary-butyl alcohol (TBA) binding to α2u-globulin, a male rat-specific protein. This model was used to predict concentrations of MTBE and TBA in the kidney, a target tissue in the male rat. The objective of this study was to use this model to evaluate the dosimetry of MTBE and TBA in rats following different exposure scenarios, used to evaluate the toxicity and carcinogenicity of MTBE, and compare various dose metrics under these different conditions. Model simulations suggested that although inhalation and drinking water exposures show a similar pattern of MTBE and TBA exposure in the blood and kidney (i.e. concentration-time profiles), the total blood and kidney levels following exposure of MTBE to 7.5 mg/ml MTBE in the drinking water for 90 days is in the same range as administration of an oral dose of 1000 mg/kg MTBE. Evaluation of the dose metrics also supports that a high oral bolus dose (i.e. 1000 mg/kg MTBE) results in a greater percentage of the dose exhaled as MTBE with a lower percent metabolized to TBA as compared to dose of MTBE that is delivered over a longer period of time as in the case of drinking water.

  13. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: A case study with toluene

    International Nuclear Information System (INIS)

    Nong, A.; McCarver, D.G.; Hines, R.N.; Krishnan, K.

    2006-01-01

    The objective of the present study was to evaluate the magnitude of interindividual variability in the internal dose of toluene in children of various age groups, on the basis of subject-specific hepatic CYP2E1 content and physiology. The methodology involved the use of a previously validated physiologically based pharmacokinetic (PBPK) model, in which the intrinsic clearance for hepatic metabolism (CL int ) was expressed in terms of the CYP2E1 content. The adult toluene PBPK model, with enzyme content-normalized CL int , facilitated the calculation of child-specific CL int based on knowledge of hepatic CYP2E1 protein levels. The child-specific physiological parameters, except liver volume, were computed with knowledge of age and body weight, whereas physicochemical parameters for toluene were kept age-invariant based on available data. The actual individual-specific liver volume (autopsy data) was also included in the model. The resulting model was used to simulate the blood concentration profiles in children exposed by inhalation, to 1 ppm toluene for 24 h. For this exposure scenario, the area under the venous blood concentration vs. time curve (AUC) ranged from 0.30 to 1.01 μg/ml x h in neonates with low CYP2E1 concentration (<3.69 pmol/mg protein). The simulations indicated that neonates with higher levels of CYP2E1 (4.33 to 55.93 pmol/mg protein) as well as older children would have lower AUC (0.16 to 0.43 μg/ml x h). The latter values were closer to those simulated for adults. Similar results were also obtained for 7 h exposure to 17 ppm toluene, a scenario previously evaluated in human volunteers. The interindividual variability factor for each subgroup of children and adults, calculated as the ratio of the 95th and 50th percentile values of AUC, was within a factor of 2. The 95th percentile value of the low metabolizing neonate group, however, was greater than the mean adult AUC by a factor of 3.9. This study demonstrates the feasibility of incorporating

  14. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    Science.gov (United States)

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO 30%). For the first time a predictive model that could describe

  15. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    Science.gov (United States)

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  16. Pharmacokinetic/Pharmacodynamic Modelling of GnRH Antagonist Degarelix: A Comparison of the Non-linear Mixed-Effects Programs NONMEM and NLME

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Nielsen, Henrik Aalborg

    2004-01-01

    proposed by Lindstrom and Bates. The two programs were tested using clinical PK/PD data of a new gonadotropin-releasing hormone (GnRH) antagonist degarelix currently being developed for prostate cancer treatment. The pharmacokinetics of intravenous administered degarelix was analysed using a three...

  17. Feasibility of SPECT-CT imaging to study the pharmacokinetics of antisense oligonucleotides in a mouse model of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Steeg, E. van de; Läppchen, T.; Aguilera, B.; Jansen, H.T.; Muilwijk, D.; Vermue, R.; Hoorn, J.W. van der; Donato, K.; Rossin, R.; Visser, P.C. de; Vlaming, M.L.H.

    2017-01-01

    Antisense oligonucleotides (AONs) are promising candidates for treatment of Duchenne muscular dystrophy (DMD), a severe and progressive disease resulting in premature death. However, more knowledge on the pharmacokinetics of new AON drug candidates is desired for effective application in the clinic.

  18. A mathematical model of a recombinant humanized anti-cocaine monoclonal antibody's effects on cocaine pharmacokinetics in mice.

    Science.gov (United States)

    Wetzel, Hanna N; Zhang, Tongli; Norman, Andrew B

    2017-09-01

    A recombinant humanized anti-cocaine monoclonal antibody (mAb), h2E2, is at an advanced stage of pre-clinical development as an immunotherapy for cocaine abuse. It is hypothesized that h2E2 binds to and sequesters cocaine in the blood. A three-compartment model of the effects of h2E2 on cocaine's distribution was constructed. The model assumes that h2E2 binds to cocaine and that the h2E2-cocaine complex does not enter the brain but distributes between the central and peripheral compartments. Free cocaine is eliminated from both the central and peripheral compartments, and h2E2 and the h2E2-cocaine complex are eliminated from the central compartment only. This model was tested against a new dataset measuring cocaine concentrations in the brain and plasma over 1h in the presence and absence of h2E2. The mAb significantly increased plasma cocaine concentrations with a concomitant significant decrease in brain concentration. Plasma concentrations declined over the 1-hour sampling period in both groups. With a set of parameters within reasonable physiological ranges, the three-compartment model was able to qualitatively and quantitatively simulate the increased plasma concentration in the presence of the antibody and the decreased peak brain concentration in the presence of antibody. Importantly, the model explained the decline in plasma concentrations over time as distribution of the cocaine-h2E2 complex into a peripheral compartment. This model will facilitate the targeting of ideal mAb PK/PD properties thus accelerating the identification of lead candidate anti-drug mAbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model.

    Science.gov (United States)

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1 G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t 1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1 G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of

  20. Clinical Pharmacokinetics of Paclitaxel Monotherapy

    DEFF Research Database (Denmark)

    Stage, Tore B; Bergmann, Troels K; Kroetz, Deanna L

    2018-01-01

    Paclitaxel is an anticancer agent efficacious in the treatment of ovarian, breast, and lung cancer. Due to a strong link between the pharmacokinetics and therapeutic efficacy of paclitaxel, we reviewed the literature on paclitaxel pharmacokinetics. Systematic data mining was performed to extract ...

  1. Population pharmacokinetics of olprinone in healthy male volunteers

    Directory of Open Access Journals (Sweden)

    Kunisawa T

    2014-03-01

    Full Text Available Takayuki Kunisawa,1 Hidefumi Kasai,2 Makoto Suda,2 Manabu Yoshimura,3 Ami Sugawara,3 Yuki Izumi,3 Takafumi Iida,3 Atsushi Kurosawa,3 Hiroshi Iwasaki3 1Surgical Operation Department, Asahikawa Medical University Hospital, Hokkaido, Japan; 2Clinical Study Management Division, Bell Medical Solutions Inc, Tokyo, Japan; 3Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan Background: Olprinone decreases the cardiac preload and/or afterload because of its vasodilatory effect and increases myocardial contractility by inhibiting phosphodiesterase III. Purpose: The objective of this study was to characterize the population pharmacokinetics of olprinone after a single continuous infusion in healthy male volunteers. Methods: We used 500 plasma concentration data points collected from nine healthy male volunteers for the study. The population pharmacokinetic analysis was performed using the nonlinear mixed effect model (NONMEM® software. Results: The time course of plasma concentration of olprinone was best described using a two-compartment model. The final pharmacokinetic parameters were total clearance (7.37 mL/minute/kg, distribution volume of the central compartment (134 mL/kg, intercompartmental clearance (7.75 mL/minute/kg, and distribution volume of the peripheral compartment (275 mL/kg. The interindividual variability in the total clearance was 12.4%, and the residual error variability (exponential and additive were 22.2% and 0.129 (standard deviation. The final pharmacokinetic model was assessed using a bootstrap method and visual predictive check. Conclusion: We developed a population pharmacokinetic model of olprinone in healthy male adults. The bootstrap method and visual predictive check showed that this model was appropriate. Our results might be used to develop the population pharmacokinetic model in patients. Keywords: phosphodiesterase III inhibitor, men, pharmacokinetic model

  2. [Study on differences between pharmacokinetics and chromatopharmacodynamics for Chinese materia medica formulae].

    Science.gov (United States)

    He, Fuyuan; Deng, Kaiwen; Zou, Huan; Qiu, Yun; Chen, Feng; Zhou, Honghao

    2011-01-01

    To study on the differences between chromatopharmacokinetics (pharmacokinetics with fingerprint chromatography) and chromatopharmacodynamics (pharmacodynamics with fingerprint chromatography) of Chinese materia medica formulae to answer the question whether the pharmacokinetic parameters of multiple composites can be utilized to guide the medication of multiple composites. On the base of established four chromatopharmacology (pharmacology with chromatographic fingerprint), the pharmacokinetics, and pharmacodynamics were analyzed comparably on their mathematical model and parameter definition. On the basis of quantitative pharmacology, the function expressions and total statistical parameters, such as total zero moment, total first moment, total second moment of the pharmacokinetics, and pharmacodynamics were analyzed to the common expressions and elucidated results for single and multiple components in Chinese materia medica formulae. Total quantitative pharmacokinetic, i.e., chromatopharmacokinetic parameter were decided by each component pharmacokinetic parameters, whereas the total quantitative pharmacodynamic, i.e., chromatopharmacodynamic parameter were decided by both of pharmacokinetic and pharmacodynamic parameters of each components. The pharmacokinetic parameters were corresponded to pharmacodynamic parameters with an existing stable effective coefficient when the constitutive ratio of each composite was a constant. The effects of Chinese materia medica were all controlled by pharmacokinetic and pharmacodynamic coefficient. It is a special case that the pharmacokinetic parameter could independently guide the clinical medication for single component whereas the chromatopharmacokinetic parameters are not applied to the multiple drug combination system, and not be used to solve problems of chromatopharmacokinetic of Chinese materia medica formulae.

  3. Modeling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species–pharmacokinetic and therapeutic implications

    OpenAIRE

    Boretti, Felicitas S.; Baek, Jin Hyen; Palmer, Andre F.; Schaer, Dominik J.; Buehler, Paul W.

    2014-01-01

    Background: Haptoglobin (Hp) prevents hemoglobin (Hb) extravasation and attenuates Hb induced tissue oxidation and vasoconstriction. Small animal models such as mouse, rat and guinea pig appear to demonstrate proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from humans in the clearance of Hb:Hp and demonstrate long persistence of circulating Hb:Hp complexes. Objective: The focus of this study is to understand Hb:Hp...

  4. Limited-sampling strategy models for estimating the pharmacokinetic parameters of 4-methylaminoantipyrine, an active metabolite of dipyrone

    Directory of Open Access Journals (Sweden)

    Suarez-Kurtz G.

    2001-01-01

    Full Text Available Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS models for estimating the area under the plasma concentration versus time curve (AUC and the peak plasma concentration (Cmax of 4-methylaminoantipyrine (MAA, an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336, measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias 0.85 of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h, but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4% as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%. Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.

  5. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach.

    Science.gov (United States)

    Betts, Alison; Keunecke, Anne; van Steeg, Tamara J; van der Graaf, Piet H; Avery, Lindsay B; Jones, Hannah; Berkhout, Jan

    2018-04-10

    The linear pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs) can be considered a class property with values that are similar to endogenous IgG. Knowledge of these parameters across species could be used to avoid unnecessary in vivo PK studies and to enable early PK predictions and pharmacokinetic/pharmacodynamic (PK/PD) simulations. In this work, population-pharmacokinetic (popPK) modeling was used to determine a single set of 'typical' popPK parameters describing the linear PK of mAbs in human, cynomolgus monkey and transgenic mice expressing the human neonatal Fc receptor (hFcRn Tg32), using a rich dataset of 27 mAbs. Non-linear PK was excluded from the datasets and a 2-compartment model was applied to describe mAb disposition. Typical human popPK estimates compared well with data from comparator mAbs with linear PK in the clinic. Outliers with higher than typical clearance were found to have non-specific interactions in an affinity-capture self-interaction nanoparticle spectroscopy assay, offering a potential tool to screen out these mAbs at an early stage. Translational strategies were investigated for prediction of human linear PK of mAbs, including use of typical human popPK parameters and allometric exponents from cynomolgus monkey and Tg32 mouse. Each method gave good prediction of human PK with parameters predicted within 2-fold. These strategies offer alternative options to the use of cynomolgus monkeys for human PK predictions of linear mAbs, based on in silico methods (typical human popPK parameters) or using a rodent species (Tg32 mouse), and call into question the value of completing extensive in vivo preclinical PK to inform linear mAb PK.

  6. Tubocurarine and pancuronium: a pharmacokinetic view.

    Science.gov (United States)

    Shanks, C A; Somogyi, A A; Ramzan, M I; Triggs, E J

    1980-02-01

    This review is an attempt to bring together the pharmacokinetic data on d-tubocurarine and pancuronium with clinical observations on relaxant dosage and effect. The modelling techniques used here represent an oversimplification of the relationships between relaxant plasma concentration and response as they do not predict either the time of onset of paralysis or its peak intensity. However, they do enable calculation of a bolus dose of relaxant required to achieve a particular intensity of paralysis for the average patient once pseudo-distribution equilibrium has been achieved. This has been further extended to predict the cumulation of the relaxants with subsequent dosage in average patients. Suggested regimens incorporating bolus and infusion doses of the relaxants to achieve continuous neuromuscular blockade have been calculated also. Averaged pharmacokinetic parameters derived from patients with renal or hepatic dysfunction have been used to predict the likely duration and intensities of paralysis for the relaxants.

  7. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  8. Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug

    International Nuclear Information System (INIS)

    Wang, Jing-Hung; Endsley, Aaron N.; Green, Carol E.; Matin, A. C.

    2016-01-01

    Success of cancer prodrugs relying on a foreign gene requires specific delivery of the gene to the cancer, and improvements such as higher level gene transfer and expression. Attaining these objectives will be facilitated in preclinical studies using our newly discovered CNOB-GDEPT, consisting of the produrg: 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-phenoxazine (CNOB) and its activating enzyme ChrR6, which generates the cytotoxic product 9-amino-6-chloro-5H-benzo[a]phenoxazine-5-one (MCHB). MCHB is fluorescent and can be noninvasively imaged in mice, and here we investigated whether MCHB fluorescence quantitatively reflects its concentration, as this would enhance its reporter value in further development of the CNOB-GDEPT therapeutic regimen. PK parameters were estimated and used to predict more effective CNOB administration schedules. CNOB (3.3 mg/kg) was injected iv in mice implanted with humanized ChrR6 (HChrR6)-expressing 4T1 tumors. Fluorescence was imaged in live mice using IVIS Spectrum, and quantified by Living Image 3.2 software. MCHB and CNOB were quantified also by LC/MS/MS analysis. We used non-compartmental model to estimate PK parameters. Phoenix WinNonlin software was used for simulations to predict a more effective CNOB dosage regimen. CNOB administration significantly prolonged mice survival. MCHB fluorescence quantitatively reflected its exposure levels to the tumor and the plasma, as verified by LC/MS/MS analysis at various time points, including at a low concentration of 2 ng/g tumor. The LC/MS/MS data were used to estimate peak plasma concentrations, exposure (AUC 0-24 ), volume of distribution, clearance and half-life in plasma and the tumor. Simulations suggested that the CNOB-GDEPT can be a successful therapy without large increases in the prodrug dosage. MCHB fluorescence quantifies this drug, and CNOB can be effective at relatively low doses. MCHB fluorescence characteristics will expedite further development of CNOB-GDEPT by, for example

  9. HPLC assay for ethiofos in plasma: Application to pharmacokinetics in the beagle dog

    International Nuclear Information System (INIS)

    Swynnerton, N.F.; Mangold, D.J.; Ludden, T.M.

    1985-01-01

    An HPLC assay for ethiofos [S-2-(3-amino-propylamino)ethyl phosphorothioate, WR 2727] in plasma is presented. Its application to the development of pharmacokinetic parameters following IV administration of the drug to beagle dogs is demonstrated and preliminary pharmacokinetics of four dosings will be presented. Following a dose of 150 mg kg -1 , the plasma concentration versus time profile was best described by a two-compartment pharmacokinetics model. Mean pharmacokinetic parameters were: terminal elimination half-life = 16.0 minutes, volume of central compartment = 129 mL kg -1 , and clearance = 11.0 mL min -1 kg -1

  10. Availability of Acute and/or Subacute Toxicokinetic Data for Select Compounds for the Rat and Physiologically Based Pharmacokinetic (PBPK) Models for Rats and Humans for Those Compounds

    Science.gov (United States)

    2017-05-04

    DMA, and total As in urine Mouse: radioactivity in feces, liver, kidneys, lungs, and carcass (DMA), DMA in urine; after arsenate dose...radioactivity in urine, feces, liver, kidneys, lungs, skin, carcass and blood and AsV, AsIII, MMA and DMA excreted in urine; after arsenite dose, AsV, AsIII...Pharmacokinetic parameter values were taken from a variety of sources, including animal studies (e.g., oral absorption rate), in vitro kinetic

  11. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    Science.gov (United States)

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17polar bears. We therefore

  12. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    Science.gov (United States)

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  13. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  14. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    Directory of Open Access Journals (Sweden)

    Qiu JX

    2015-02-01

    2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π–π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood–brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a synergistic effect on platelet aggregation in humans. Moreover, ginger components showed a rapid half-life and no to low toxicity in humans. Taken together, this study shows that ginger components may regulate the activity and expression of various human CYPs, probably resulting in alterations in drug clearance and response. More studies are warranted to identify and confirm potential ginger–drug interactions and explore possible interactions of ginger with human CYPs and other functionally important proteins, to reduce and avoid side effects induced by unfavorable ginger–drug interactions.Keywords: CYP, drug metabolism, ginger, drug interaction, docking

  15. Pharmacokinetics of clomipramine during pregnancy

    NARCIS (Netherlands)

    Ter Horst, P G J; Proost, J H; Smit, J P; Vries, M T; de Jong-van den Berg, Lolkje; Wilffert, B

    2015-01-01

    Clomipramine is one of the drugs for depression during pregnancy; however, pharmacokinetic data of clomipramine and its active metabolite desmethylclomipramine in this vulnerable period are lacking. In this study, we describe clomipramine and desmethylclomipramine concentrations including their

  16. PHARMACOKINETIC RESEARCHES AND PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    V. G. Belolipetskaya

    2015-12-01

    Full Text Available An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very  persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime.

  17. PHARMACOKINETIC RESEARCHES AND PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    V. G. Belolipetskaya

    2005-01-01

    Full Text Available An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very  persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime.

  18. Effects of humeral intraosseous versus intravenous epinephrine on pharmacokinetics and return of spontaneous circulation in a porcine cardiac arrest model: A randomized control trial.

    Science.gov (United States)

    Johnson, Don; Garcia-Blanco, Jose; Burgert, James; Fulton, Lawrence; Kadilak, Patrick; Perry, Katherine; Burke, Jeffrey

    2015-09-01

    Cardiopulmonary Resuscitation (CPR), defibrillation, and epinephrine administration are pillars of advanced cardiac life support (ACLS). Intraosseous (IO) access is an alternative route for epinephrine administration when intravenous (IV) access is unobtainable. Previous studies indicate the pharmacokinetics of epinephrine administration via IO and IV routes differ, but it is not known if the difference influences return of spontaneous circulation (ROSC). The purpose of this prospective, experimental study was to determine the effects of humeral IO (HIO) and IV epinephrine administration during cardiac arrest on pharmacokinetics, ROSC, and odds of survival. Swine (N = 21) were randomized into 3 groups: humeral IO (HIO), peripheral IV (IV) and CPR/defibrillation control. Cardiac arrest was induced under general anesthesia. The swine remained in arrest for 2 min without intervention. Chest compressions were initiated and continued for 2 min. Epinephrine was administered and serial blood samples collected for pharmacokinetic analysis over 4 min. Defibrillation and epinephrine administration proceeded according to ACLS guidelines continuing for 20 min or until ROSC. Seven HIO swine, 4 IV swine, and no control swine had ROSC. There were no significant differences in ROSC, maximum concentration; except at 30 s, and time-to-concentration-maximum between the HIO and IV groups. Significant differences existed between the experimental groups and the control. The HIO delivers a higher concentration of epinephrine than the IV route at 30 s which may be a survival advantage. Clinicians may consider using the IO route to administer epinephrine during CA when there is no preexisting IV access or when IV access is unobtainable.

  19. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model.

    LENUS (Irish Health Repository)

    Gibbons, Aileen

    2011-09-01

    Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.

  20. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (IVIVE)

    Science.gov (United States)

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds us...

  1. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (SOT)

    Science.gov (United States)

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we ...

  2. Whole body [O-15]water pharmacokinetics measured in blood

    NARCIS (Netherlands)

    Maguire, RP; Spyrou, NM; Leenders, KL

    A simple pharmacokinetic model to explain the time course of [0-15]water in human whole blood after bolus injection is described. The model has been derived from measurements in twelve healthy volunteers who were measured repeatedly, resulting in 67 datasets, made in the context of PET blood flow

  3. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI.

    Science.gov (United States)

    Kim, Heejung; Lee, Sung-Jin; Davies-Venn, Cynthia; Kim, Jin Su; Yang, Bo Yeun; Yao, Zhengsheng; Kim, Insook; Paik, Chang H; Bluemke, David A

    2016-02-01

    The aim of this study was to investigate the pharmacokinetics of (64)Cu-DOTA (1,4,7,10-azacyclododecane-N,N',N'',N'''-tetraacetic acid), a positron surrogate analog of the late gadolinium (Gd)-enhancement cardiac magnetic resonance agent, Gd-DOTA, in a rat model of chronic myocardial infarction (MI) and its microdistribution in the cardiac fibrosis by autoradiography. DOTA was labeled with (64)Cu-acetate. CD rats (n=5) with MI by left anterior descending coronary artery ligation and normal rats (n=6) were injected intravenously with (64)Cu-DOTA (18.5 MBq, 0.02 mmol DOTA/kg). Dynamic PET imaging was performed for 60 min after injection. (18)F-Fluorodeoxyglucose ([(18)F]-FDG) PET imaging was performed to identify the viable myocardium. For the region of interest analysis, the (64)Cu-DOTA PET image was coregistered to the [(18)F]-FDG PET image. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and by histological staining with Masson's trichrome. (64)Cu-DOTA was rapidly taken up in the infarct area. The time-activity curves demonstrated that (64)Cu-DOTA concentrations in the blood, fibrotic tissue, and perfusion-rich organs peaked within a minute post injection; thereafter, it was rapidly washed out in parallel with blood clearance and excreted through the renal system. The blood clearance curve was biphasic, with a distribution half-life of less than 3 min and an elimination half-life of ∼21.8 min. The elimination half-life of (64)Cu-DOTA from the focal fibrotic tissue (∼22.4 min) and the remote myocardium (∼20.1 min) was similar to the blood elimination half-life. Consequently, the uptake ratios of focal fibrosis-to-blood and remote myocardium-to-blood remained stable for the time period between 10 and 60 min. The corresponding ratios obtained from images acquired from 30 to 60 min were 1.09 and 0.59, respectively, indicating that the concentration of (64)Cu-DOTA in the focal

  4. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology

    Science.gov (United States)

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-01-01

    Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680

  5. Clinical pharmacokinetics of phenobarbital in neonates

    NARCIS (Netherlands)

    Touw, D J; Graafland, O; Cranendonk, A; Vermeulen, R J; van Weissenbruch, M M

    2000-01-01

    Demographic and clinical pharmacokinetic data collected from term and preterm neonates who were treated with intravenous phenobarbital have been analysed to evaluate the role of patient characteristics in pharmacokinetic parameters. Significant relationships between total body weight (TBW) or body

  6. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.

    Science.gov (United States)

    Kast, Johannes; Yu, Yichao; Seubert, Christoph N; Wotring, Virginia E; Derendorf, Hartmut

    2017-11-15

    Space agencies are working intensely to push the current boundaries of human spaceflight by sending astronauts deeper into space than ever before, including missions to Mars and asteroids. Spaceflight alters human physiology due to fluid shifts, muscle and bone loss, immune system dysregulation, and changes in the gastrointestinal tract and metabolic enzymes. These alterations may change the pharmacokinetics and/or pharmacodynamics of medications used by astronauts and subsequently might impact drug efficacy and safety. Most commonly, medications are administered during space missions to treat sleep disturbances, allergies, space motion sickness, pain, and sinus congestion. These medications are administered under the assumption that they act in a similar way as on Earth, an assumption that has not been investigated systematically yet. Few inflight pharmacokinetic data have been published, and pharmacodynamic and pharmacokinetic/pharmacodynamic studies during spaceflight are also lacking. Therefore, bed-rest models are often used to simulate physiological changes observed during microgravity. In addition to pharmacokinetic/pharmacodynamic changes, decreased drug and formulation stability in space could also influence efficacy and safety of medications. These alterations along with physiological changes and their resulting pharmacokinetic and pharmacodynamic effects must to be considered to determine their ultimate impact on medication efficacy and safety during spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Low heritability in pharmacokinetics of talinolol

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Tzvetkov, Mladen V; Gal, Valerie

    2016-01-01

    BACKGROUND: Efflux transporters like MDR1 and MRP2 may modulate the pharmacokinetics of about 50 % of all drugs. It is currently unknown how much of the variation in the activities of important drug membrane transporters like MDR1 or MRP2 is determined by genetic or by environmental factors...... of talinolol was predefined as the primary parameter. Heritability was analyzed by structural equation modeling and by within- and between-subject variance and talinolol clearance was correlated with polymorphisms in MDR1, MRP2, BCRP, MDR5, OATP1B1, and OCT1. RESULTS: Talinolol clearance varied approximately...

  8. Computational opioid prescribing: a novel application of clinical pharmacokinetics.

    Science.gov (United States)

    Linares, Oscar A; Linares, Annemarie L

    2011-01-01

    We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist prescribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen designs for individual patients using COP, and those values are not readily available to prescribers because they exist scattered in the vast pharmacology literature, we estimated the population pharmacokinetic parameter values for 12 commonly prescribed opioids from various sources using the bootstrap resampling technique. Our results show that opioid dosing regimen design, evaluation, and modification is feasible using COP. We conclude that COP is a new technique for the quantitative assessment of opioid dosing regimen design evaluation and adjustment, which may help prescribers to manage acute and chronic pain at the point-of-care. Potential benefits include opioid dose optimization and minimization of adverse opioid drug events, leading to potential improvement in patient treatment outcomes and safety.

  9. Albendazole nanocrystals with improved pharmacokinetic performance in mice.

    Science.gov (United States)

    Paredes, Alejandro J; Bruni, Sergio Sánchez; Allemandi, Daniel; Lanusse, Carlos; Palma, Santiago D

    2018-02-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.

  10. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.

    Science.gov (United States)

    Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan

    2018-03-21

    Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.

  11. Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling

    DEFF Research Database (Denmark)

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F.

    2009-01-01

    Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health...... effects, including reproductive, were conducted during 1990–2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk......, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79–1271 ng g−1 lw) and PCBs (range: 4128–53 923 ng g−1 lw) reported...

  12. A Comparative Oncology Study of Iniparib Defines Its Pharmacokinetic Profile and Biological Activity in a Naturally-Occurring Canine Cancer Model.

    Directory of Open Access Journals (Sweden)

    Corey Saba

    Full Text Available Development of iniparib as an anti-cancer agent was hindered in part by lingering questions regarding its mechanism of action, the activity of its metabolites, and their potential accumulation in tumors. Due to strong similarities in metabolism of iniparib between humans and dogs, a veterinary clinical trial in pet dogs with spontaneous cancers was designed to answer specific questions pertaining to pharmacokinetic exposures and tolerability of iniparib. Dogs were treated with iniparib alone and in combination with carboplatin chemotherapy. Iniparib doses ranged between 10-70 mg/kg intravenously (IV. Plasma, tumor and normal tissue samples were collected before and at various time points scheduled after exposure for pharmacokinetic and biologic analysis. The primary endpoints included characterization of dose-limiting toxicities (DLT and determination of the drug exposures that could be achieved in both normal and tumor tissues. Nineteen dogs were treated. DLT included fever, anorexia, diarrhea, neutropenia, and thrombocytopenia; most effects were attributable to carboplatin based on the timing of adverse event onset. The maximum tolerated dose (MTD of iniparib was not identified. Moderate to high variability in plasma exposure was noted for iniparib and all metabolites between animals. When quantifiable, iniparib and metabolite plasma:tumor ratios were < 0.088 and <1.7, respectively. In this study, iniparib was well tolerated as a single agent and in combination with carboplatin over a range of doses. However, clinically relevant concentrations of the parent drug and selected metabolites were not detectable in canine tumor tissues at any studied dose, thus eliminating expectations for clinical responses in dogs or humans. Negative clinical trials in humans, and the uncertainties of its mechanism of action, ultimately led to the decision to stop clinical development of the drug. Nevertheless, the questions that can be asked and answered within

  13. PHARMACOKINETICS AND PHARMACOKINETIC DYNAMIC RELATIONSHIP OF ROCURONIUM BROMIDE IN HUMANS

    NARCIS (Netherlands)

    WIERDA, JMKH; PROOST, JH; SCHIERE, S; HOMMES, FDM

    The existing human pharmacokinetic studies have been reviewed and compared with data derived from animals. The earliest study confirms the similarity of rocuronium to vecuronium with respect to the variables derived from the plasma concentration decay curves and the proportion excreted renally.

  14. Population pharmacokinetics of oxaliplatin (85 mg/m(2)) in combination with 5-fluorouracil in patients with advanced colorectal cancer

    NARCIS (Netherlands)

    Kho, Y.H.; Jansman, F.G.A.; Prins, N.H.; Neef, C.; Brouwers, J.R.B.J.

    Pharmacokinetic (PK) studies of oxaliplatin, using a dose regimen of 85mg/m(2) are lacking. A PK model may be used in future studies to investigate the relationship between pharmacokinetics and dose limiting toxicity. The purpose of this study was to construct a population PK model to describe

  15. Pharmacokinetic-pharmacodynamic guided trial design in oncology

    NARCIS (Netherlands)

    van Kesteren, Ch; Mathôt, R. A. A.; Beijnen, J. H.; Schellens, J. H. M.

    2003-01-01

    The application of pharmacokinetic (PK) and pharmacodynamic (PD) modeling in drug development has emerged during the past decades and it is has been suggested that the investigation of PK-PD relationships during drug development may facilitate and optimize the design of subsequent clinical

  16. Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, 125Sn–177Lu is superior to 90Y–177Lu in peptide receptor radiotherapy

    International Nuclear Information System (INIS)

    Walrand, Stephan; Hanin, François-Xavier; Pauwels, Stanislas; Jamar, François

    2012-01-01

    Clinical trials on 177 Lu– 90 Y therapy used empirical activity ratios. Radionuclides (RN) with larger beta maximal range could favourably replace 90 Y. Our aim is to provide RN dose-deposition kernels and to compare the tumour control probability (TCP) of RN combinations. Dose kernels were derived by integration of the mono-energetic beta-ray dose distributions (computed using Monte Carlo) weighted by their respective beta spectrum. Nine homogeneous spherical tumours (1–25 mm in diameter) and four spherical tumours including a lattice of cold, but alive, spheres (1, 3, 5, 7 mm in diameter) were modelled. The TCP for 93 Y, 90 Y and 125 Sn in combination with 177 Lu in variable proportions (that kept constant the renal cortex biological effective dose) were derived by 3D dose kernel convolution. For a mean tumour-absorbed dose of 180 Gy, 2 mm homogeneous tumours and tumours including 3 mm diameter cold alive spheres were both well controlled (TCP > 0.9) using a 75–25% combination of 177 Lu and 90 Y activity. However, 125 Sn– 177 Lu achieved a significantly better result by controlling 1 mm-homogeneous tumour simultaneously with tumours including 5 mm diameter cold alive spheres. Clinical trials using RN combinations should use RN proportions tuned to the patient dosimetry. 125 Sn production and its coupling to somatostatin analogue appear feasible. Assuming similar pharmacokinetics 125 Sn is the best RN for combination with 177 Lu in peptide receptor radiotherapy justifying pharmacokinetics studies in rodent of 125 Sn-labelled somatostatin analogues. (paper)

  17. Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use.

    Science.gov (United States)

    Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C

    2015-04-01

    Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in

  18. Clinical pharmacokinetics of nisoldipine coat-core.

    Science.gov (United States)

    Heinig, R

    1998-09-01

    Nisoldipine, a calcium antagonist of the dihydropyridine type, is the active ingredient of the controlled release nisoldipine coat-core (CC) formulation. In humans, the absorption from nisoldipine CC occurs across the entire gastrointestinal tract with an increase in bioavailability in the colon because of the lower concentrations of metabolising enzymes in the distal gut wall. Although nisoldipine is almost completely absorbed, its absolute bioavailability from the CC tablet is only 5.5%, as a result of significant first-pass metabolism in the gut and liver. Nisoldipine is a high-clearance drug with substantial interindividual and relatively lower intraindividual variability in pharmacokinetics, dependent on liver blood flow. Nisoldipine is highly (> 99%) protein bound. Its elimination is almost exclusively via the metabolic route and renal excretion of metabolites dominates over excretion in the faeces. Although nisoldipine is administered as a racemic mixture, its plasma concentrations are almost entirely caused by the eutomer as a result of highly stereoselective intrinsic clearance. Nisoldipine CC demonstrates linear pharmacokinetics in the therapeutic dose range and its steady-state pharmacokinetics are predictable from single dose data. Steady-state is reached with the second dose when the drug is given once daily and the peak-trough fluctuations in plasma concentration is minimal. Plasma-concentrations of nisoldipine increase with age. Careful dose titration according to individual clinical response is recommended in the elderly. Nisoldipine CC should not be used in patients with liver cirrhosis, though dosage adjustments in patients with renal impairment are not necessary. Inter-ethnic differences in its pharmacokinetics are not evident. Owing to inhibition of metabolising enzymes, a small dosage adjustment decrement for nisoldipine CC may be required when it is given in combination with cimetidine. Concomitant ingestion of nisoldipine with grapefruit

  19. Relative contributions of the major human CYP450 to the metabolism of icotinib and its implication in prediction of drug-drug interaction between icotinib and CYP3A4 inhibitors/inducers using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji; Hu, Pei

    2015-06-01

    Icotinib is an anticancer drug, but relative contributions of CYP450 have not been identified. This study was carried out to identify the contribution percentage of CYP450 to icotinib and use the results to develop a physiologically based pharmacokinetic (PBPK) model, which can help to predict drug-drug interaction (DDI). Human liver microsome (HLM) and supersome using relative activity factor (RAF) were employed to determine the relative contributions of the major human P450 to the net hepatic metabolism of icotinib. These values were introduced to develop a PBPK model using SimCYP. The model was validated by the observed data in a Phase I clinical trial in Chinese healthy subjects. Finally, the model was used to simulate the DDI with ketoconazole or rifampin. Final contribution of CYP450 isoforms determined by HLM showed that CYP3A4 provided major contributions to the metabolism of icotinib. The percentage contributions of the P450 to the net hepatic metabolism of icotinib were determined by HLM inhibition assay and RAF. The AUC ratio under concomitant use of ketoconazole and rifampin was 3.22 and 0.55, respectively. Percentage of contribution of CYP450 to icotinib metabolism was calculated by RAF. The model has been proven to fit the observed data and is used in predicting icotinib-ketoconazole/rifampin interaction.

  20. Population Pharmacokinetics of Tenofovir in Human Immunodeficiency Virus-Infected Patients Taking Highly Active Antiretroviral Therapy

    OpenAIRE

    Jullien, Vincent; Tréluyer, Jean-Marc; Rey, Elisabeth; Jaffray, Patrick; Krivine, Anne; Moachon, Laurence; Lillo-Le Louet, Agnès; Lescoat, Anne; Dupin, Nicolas; Salmon, Dominique; Pons, Gérard; Urien, Saïk

    2005-01-01

    The influence of renal function on tenofovir pharmacokinetics was investigated in 193 human immunodeficiency virus (HIV)-infected patients by the use of a population approach performed with the nonlinear mixed effects modeling program NONMEM. Tenofovir pharmacokinetics was well described by a two-compartment open model in which the absorption and the distribution rate constants are equal. Typical population estimates of apparent central distribution volume (Vc/F), peripheral distribution volu...

  1. Plasma and cerebrospinal fluid pharmacokinetics of flurbiprofen in children

    Science.gov (United States)

    Kumpulainen, Elina; Välitalo, Pyry; Kokki, Merja; Lehtonen, Marko; Hooker, Andrew; Ranta, Veli-Pekka; Kokki, Hannu

    2010-01-01

    AIMS This study was designed to characterize paediatric pharmacokinetics and central nervous system exposure of flurbiprofen. METHODS The pharmacokinetics of flurbiprofen were studied in 64 healthy children aged 3 months to 13 years, undergoing surgery with spinal anaesthesia. Children were administered preoperatively a single dose of flurbiprofen intravenously as prodrug (n = 27) or by mouth as syrup (n = 37). A single cerebrospinal fluid (CSF) sample (n = 60) was collected at the induction of anaesthesia, and plasma samples (n = 304) before, during and after the operation (up to 20 h after administration). A population pharmacokinetic model was built using the NONMEM software package. RESULTS Flurbiprofen concentrations in plasma were well described by a three compartment model. The apparent bioavailability of oral flurbiprofen syrup was 81%. The estimated clearance (CL) was 0.96 l h−1 70 kg−1. Age did not affect the clearance after weight had been included as a covariate. The estimated volume of distribution at