WorldWideScience

Sample records for paratenic hosts

  1. Fish as paratenic hosts of Serpinema trispinosum (Leidy, 1852) (Nematoda: Camallanidae).

    Science.gov (United States)

    Moravec, F; Mendoza-Franco, E; Vivas-Rodríguez, C

    1998-04-01

    Third-stage larvae of the nematode Serpinema trispinosum (Leidy, 1852) were collected from the intestine of the freshwater cichlid, Cichlasoma urophthalmus (Günther), from a small lake in Yucatan, Mexico. This is the first record of Serpinema larvae from fishes, and their presence may reflect the importance of fishes as paratenic hosts of turtle parasites in this genus.

  2. Mice serve as paratenic hosts for the transmission of Caryospora duszynskii (Apicomplexa: Eimeriidae) between snakes of the genus Elaphe

    Czech Academy of Sciences Publication Activity Database

    Modrý, David; Šlapeta, Jan Roger; Koudela, Břetislav

    2005-01-01

    Roč. 52, č. 3 (2005), s. 205-208 ISSN 0015-5683 Grant - others:GA ČR(CZ) GP524/03/D104; GA ČR(CZ) GA524/00/P015 Institutional research plan: CEZ:AV0Z60220518 Keywords : Coccidia * Eimeriidae * Caryospora duszynskii * transmission * paratenic host Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.138, year: 2005

  3. Three-spined stickleback Gasterosteus aculeatus, as a possible paratenic host for salmonid nematodes in a subarctic lake.

    Science.gov (United States)

    Braicovich, Paola E; Kuhn, Jesper A; Amundsen, Per-Arne; Marcogliese, David J

    2016-03-01

    In Takvatn, a subarctic lake in northern Norway, 35 of 162 three-spined sticklebacks examined were infected with 106 specimens of third-stage larvae of Philonema oncorhynchi. The prevalence and mean intensity of P. oncorhynchi were 10 % and 2.0 in 2013 and 24 % and 3.0 in 2014, respectively. A single specimen of Cystidicola farionis was found in an additional sample. While the latter is considered an accidental infection, three-spined sticklebacks may function as paratenic hosts of P. oncorhynchi, potentially enhancing its transmission to salmonids due to their central role in the lacustrine food web of this subarctic lake.

  4. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Science.gov (United States)

    Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health

  5. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Directory of Open Access Journals (Sweden)

    Jürgen Krücken

    Full Text Available Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1 and specifically Toxoplasma gondii (repetitive element in brain and ascarids (ITS-2 in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8, Toxocara cati (4 and Parascaris sp. (1 were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to

  6. The 33.1 kDa Excretory/secretory Protein Produced by Toxo-cara canis Larvae Serves as a Potential Common Biomarker for Serodiagnosis of Toxocariasis in Paratenic Animals and Human

    Directory of Open Access Journals (Sweden)

    Huu-Hung NGUYEN

    2017-02-01

    Full Text Available Background: Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear.Methods: Excreted/secreted (E/S antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm’s E/S antigens in different infected hosts including mice, rabbits and human, were examined.Results: In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band. Conclusion: 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation.

  7. Anuran parasites from three biotopes in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    ... for Nigeria and a multi-host parasite. We suspect Hyperolius concolor to be a paratenic rather than a definitive host for the immature Camallanus sp. recovered from the frog. Other parasites using anurans as paratenic hosts were also encountered. Keywords: Anurans, parasites, ecological biotopes, Rivers State, Nigeria ...

  8. Alaria mesocercariae in the tails of red-sided garter snakes: Evidence for parasite-mediated caudectomy

    OpenAIRE

    Uhrig, Emily J.; Spagnoli, Sean T.; Tkach, Vasyl V.; Kent, Michael L.; Mason, Robert T.

    2015-01-01

    Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host’s tail. In the current study, we used morphological examination and molecu...

  9. A gastropod scavenger serving as paratenic host for larval helminth communities in shore crabs

    DEFF Research Database (Denmark)

    Latham, A D M; Fredensborg, Brian Lund; McFarland, L H

    2003-01-01

    postingestion. Survival of all 4 helminth species was generally very high, though it decreased day by day in 2 species. Given that the avian definitive hosts of all 4 helminths also eat whelks, our results indicate that alternative transmission pathways exist and that parasites can take routes through food webs...

  10. Wild Rodents as Experimental Intermediate Hosts of Lagochilascaris minor Leiper, 1909

    Directory of Open Access Journals (Sweden)

    Julieta Machado Paçô

    1999-07-01

    Full Text Available A total of 25 specimens of Cavia porcellus (guinea pig, 5 Dasyprocta agouti (agouti, and 22 Calomys callosus (vesper mice were inoculated with infective eggs of Lagochilascaris minor. The inoculum was prepared with embryonated eggs and orally administered to each individual animal through an esophagus probe. In parallel, 100 specimens of Felis catus domesticus were individually fed with 55-70 nodules containing 3rd-stage larvae encysted in tissues of infected rodents. Animals were examined and necropsied at different time intervals. The migration and encystment of L3 larva was observed in viscera, skeletal muscle, adipose and subcutaneous tissues from all rodents. Adult worms localized at abscesses in the cervical region, rhino, and oropharynx were recovered from domestic cats inoculated with infected rodent tissues. Through this study we can conclude that: (1 wild rodents act as intermediate hosts, characterizing this ascarid heteroxenic cycle; (2 in natural conditions rodents could possibly act as either intermediate hosts or paratenic hosts of Lagochilascaris minor; (3 despite the occurrence of an auto-infecting cycle, in prime-infection of felines (definite hosts the cycle is only completed when intermediate hosts are provided; and (4 in the wild, rodents could serve as a source of infection for humans as they are frequently used as food in regions with the highest incidence of human lagochilascariasis.

  11. Identifying anti-Toxocara IgG antibodies in horses of Mexico

    Directory of Open Access Journals (Sweden)

    R. Heredia

    Full Text Available ABSTRACT Both the presence of owned dogs and stray dogs allows the spread of Toxocara, a parasite whose eggs can be found in soil, water and food. Animals, including horses, serve as definitive and paratenic hosts. In México, where consumption of horse meat is common, Toxocara is a zoonotic parasite. The aim of this study was to identify the presence of anti-Toxocara antibodies in work horses and horses intended for human consumption by ELISA. ELISA was chosen for analysis as paratenic hosts do not shed Toxocara eggs in their feces. Blood samples were collected from a total of 188 horses, 94 of which were work horses and 94 horses from the slaughter house. Samples were analyzed by ELISA, and the general equine seroprevalence was found to be 44.6% (n = 188. Adult horses for slaughter had a 61.7% greater presence of anti-Toxocara antibodies (p = 0.006. Toxocara IgG antibodies were found in horses, confirming that horses are paratenic hosts and possible sources of infection for other animals and people.

  12. Toxocariasis in humans in Africa - A systematic review

    NARCIS (Netherlands)

    Lötsch, Felix; Vingerling, Rieke; Spijker, Rene; Grobusch, Martin Peter

    2017-01-01

    Background: Toxocariasis is a globally distributed zoonosis. The most important definitive hosts are dogs, whereas humans serve as paratenic hosts. Transmission to humans occurs by accidental ingestion of eggs, e.g. by consumption of contaminated fruits or vegetables. Although exposure to Toxocara

  13. Nematode eel parasite found inside acanthocephalan cysts--a "Trojan horse" strategy?

    Science.gov (United States)

    Emde, Sebastian; Rueckert, Sonja; Kochmann, Judith; Knopf, Klaus; Sures, Bernd; Klimpel, Sven

    2014-11-18

    The invasive eel parasite Anguillicoloides crassus (syn. Anguillicola crassus) is considered one of the major causes for the decline of the European eel (Anguilla anguilla) panmictic population. It impairs the swim bladder function and reduces swimming performance of its host. The life cycle of this parasite involves different intermediate and paratenic hosts. Despite an efficient immune system of the paratenic fish hosts acting against infections with A. crassus, levels of parasitized eels remain high in European river systems. Recently, the round goby Neogobius melanostomus (Gobiidae) has become dominant in many rivers in Europe and is still spreading at a rapid pace. This highly invasive species might potentially act as an important, so far neglected paratenic fish host for A. crassus. Based on own observations and earlier single sightings of A. crassus in N. melanostomus, 60 fresh individuals of N. melanostomus were caught in the Rhine River and examined to assess the infection levels with metazoan parasites, especially A. crassus. Glycerin preparations were used for parasite identification. The parasite most frequently found in N. melanostomus was the acanthocephalan Pomphorhynchus sp. (subadult stage) which occurred mainly encysted in the mesenteries and liver. Every third gobiid (P = 31.7%) was infected by A. crassus larvae (L3) which exclusively occurred inside the acanthocephalan cysts. No intact or degenerated larvae of A. crassus were detected elsewhere in the goby, neither in the body cavity and mesenteries nor in other organs. Affected cysts contained the acanthocephalan larvae and 1-12 (mI =3) living A. crassus larvae. Additionally, encysted larvae of the nematode Raphidascaris acus were detected in the gobies, but only in the body cavity and not inside the acanthocephalan cysts. Based on our observations, we suggest that A. crassus might actively bypass the immune response of N. melanostomus by invading the cysts of acanthocephalan parasites of the

  14. Metazoan parasites of African annual killifish (Nothobranchiidae): abundance, diversity, and their environmental correlates

    Czech Academy of Sciences Publication Activity Database

    Nezhybová, Veronika; Reichard, Martin; Blažek, Radim; Ondračková, Markéta

    2017-01-01

    Roč. 49, č. 2 (2017), s. 229-238 ISSN 0006-3606 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:68081766 Keywords : distribution patterns * fish intermediate host * habitat variation * Limpopo * Mozambique * Nothobranchius furzeri * paratenic host Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.730, year: 2016

  15. Gnathostomiasis in a Wild-Caught Nine-Banded Armadillo (Dasypus Novemcinctus)

    Science.gov (United States)

    1993-12-01

    were below nal host. In addition, many paratenic hosts aid in transmis- normal limits. Peripheral circulation was poor. When the sion through predation ...debris. H&E stain. caused by the aberrant mi-,ttk,, or q l~rv.a form of this 120x. 631 \\ol 41:, No ki Laltmatoryv Aimal Sci,,ac 1),v,111 er 1 992

  16. Histopathology of nymphal pentastomid infections (Sebekia mississippiensis) in paratenic hosts.

    Science.gov (United States)

    Boyce, W M; Kazacos, E A

    1991-02-01

    The histopathologic alterations occurring in mice, hamsters, turtles, and a frog were described following experimental infection with nymphs of Sebekia mississippiensis. Initially, nymphal migration caused traumatic tissue damage and hemorrhage characteristic of larva migrans. Subsequent inflammatory responses included cellular infiltration with eosinophils, macrophages, and lymphocytes, and fibrotic encapsulation of the nymphs. Dead nymphs were surrounded by a necrotic granulomatous response similar to that reported previously in humans and other animals. Differences were not seen in animals given single or multiple infections, but mice and hamsters exhibited a more marked inflammatory response than turtles. Overall, the histopathologic response to nymphal infections resembled those seen in infections resulting from ingestion of eggs, and both sources of infection should be considered in epidemiologic investigations of naturally occurring pentastomiasis.

  17. Larvae of Contracaecum sp. (Nematoda: Anisakidae) in the threatened freshwater fish Sandelia capensis (Anabantidae) in South Africa

    Czech Academy of Sciences Publication Activity Database

    Moravec, František; van Rensburg, C.J.; Van As, L. L.

    2016-01-01

    Roč. 120, č. 3 (2016), s. 251-254 ISSN 0177-5103 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : parasitic nematode * third-stage larva * paratenic host * endangered fish species * Africa Subject RIV: EG - Zoology Impact factor: 1.549, year: 2016

  18. Angiostrongylus cantonensis and Rat Lungworm Disease in Brazil

    Science.gov (United States)

    de Oliveira Simões, Raquel; Fernandez, Monica Ammon; Júnior, Arnaldo Maldonado

    2013-01-01

    The metastrongyloid nematode genus Angiostrongylus includes 18 species, two of which are relevant from a medical standpoint, Angiostrongylus costaricensis and Angiostrongylus cantonensis. The first was described from Costa Rica in 1971 and causes abdominal angiostrongyliasis in the Americas, including in Brazil. Angiostrongylus cantonensis, first described in 1935 from Canton, China, is the causative agent of eosinophilic meningitis. The natural definitive hosts are rodents, and molluscs are the intermediate hosts. Paratenic or carrier hosts include crabs, freshwater shrimp, amphibians, flatworms, and fish. Humans become infected accidentally by ingestion of intermediate or paratenic hosts and the parasite does not complete the life cycle as it does in rats. Worms in the brain cause eosinophilic meningitis. This zoonosis, widespread in Southeast Asia and the Pacific islands, has now been reported from other regions. In the Americas there are records from the United States, Cuba, Jamaica, Brazil, Ecuador, and Haiti. In Brazil seven human cases have been reported since 2007 from the southeastern and northeastern regions. Epidemiological studies found infected specimens of Rattus norvegicus and Rattus rattus as well as many species of molluscs, including the giant African land snail, Achatina fulica, from various regions of Brazil. The spread of angiostrongyliasis is currently a matter of concern in Brazil. PMID:23901376

  19. Meerkats (Suricata suricatta, a new definitive host of the canid nematode Angiostrongylus vasorum

    Directory of Open Access Journals (Sweden)

    Nina Gillis-Germitsch

    2017-12-01

    Full Text Available Angiostronglyus vasorum is a cardiopulmonary nematode infecting mainly canids such as dogs (Canis familiaris and foxes (Vulpes vulpes. Natural infections have also been reported in mustelids and red pandas (Ailurus fulgens fulgens. We report the occurrence of natural A. vasorum infections in a group of captive meerkats (Suricata suricatta, housed at a university facility in Switzerland. A. vasorum first-stage larvae (L1 were initially identified in a pooled faecal sample. Individual samples, investigated with the Baermann-Wetzel technique, revealed that 41% (7/17 of the meerkats were infected, with ranges of 2–125 L1/g faeces. PCR and sequencing of part of the ITS-2 region resulted in 100% identity with A. vasorum. Infected animals did not show clinical signs. One meerkat died two days after diagnosis. Upon necropsy one adult specimen was recovered; histological examination of the lung revealed granulomatous pneumonia caused by A. vasorum larvae and eggs as well as intima and media hyperplasia and isolated arteriosclerosis of larger lung vessels. However, the cause of death was a spleen rupture with associated blood loss. All meerkats were topically treated with 10 mg imidacloprid/2.5 mg moxidectin per animal, after which they became negative in all follow up faecal examinations. Potential intermediate (gastropods and paratenic hosts (birds were collected from within or outside the meerkats enclosure. Gastropods were examined by PCR and bird samples by digestion. Four out of 193 (2.1% gastropod samples were positive for A. vasorum, whereas none of the bird samples were positive. Meerkats, belonging to the Herpestidae, therefore are suitable definitive hosts for A. vasorum, with production and excretion of live L1. Meerkats kept in captivity in areas where A. vasorum is endemic and with potential contact to intermediate hosts are at risk of infection. Regular faecal examinations including Baermann-Wetzel technique should be considered

  20. Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy.

    Science.gov (United States)

    Uhrig, Emily J; Spagnoli, Sean T; Tkach, Vasyl V; Kent, Michael L; Mason, Robert T

    2015-12-01

    Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host's tail. In the current study, we used morphological examination and molecular analyses based on partial sequences of nuclear large ribosomal subunit gene and mitochondrial cytochrome C oxidase subunit 1 gene to identify larvae in the tails of red-sided garter snakes (Thamnophis sirtalis parietalis) as mesocercariae of Alaria marcianae, Alaria mustelae, and Alaria sp. as well as metacercariae of Diplostomidae sp. of unknown generic affiliation. We assessed infection prevalence, absolute and relative intensity, and associated pathological changes in these snakes. Infection prevalence was 100 % for both male and female snakes. Infection intensity ranged from 11 to more than 2000 mesocercariae per snake tail but did not differ between the sexes. Gross pathological changes included tail swelling while histopathological changes included mild inflammation and the presence of mucus-filled pseudocysts surrounding mesocercariae, as well as the compression and degeneration of muscle fibers. Our results indicate that mesocercariae can lead to extensive muscle damage and loss in both sexes which likely increases the fragility of the tail making it more prone to breakage. As tail loss in garter snakes can affect both survival and reproduction, infection by Alaria mesocercariae clearly has serious fitness implications for these snakes.

  1. Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens)

    Science.gov (United States)

    Schott, Kristen C; Krusor, Colin; Tinker, M. Tim; Moore, James G.; Conrad, Patricia A.; Shapiro, Karen

    2016-01-01

    Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2–3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.

  2. Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens).

    Science.gov (United States)

    Schott, Kristen C; Krusor, Colin; Tinker, M Tim; Moore, James; Conrad, Patricia A; Shapiro, Karen

    2016-11-01

    Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2-3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.

  3. Taxonomy and ecology of metazoan parasites of otariids from Patagonia, Argentina : adult and infective stages

    OpenAIRE

    Hernández Orts, Jesús Servando

    2013-01-01

    At present, the metazoan parasite fauna of most species of otariids is generally poorly known, in part because these marine mammals are mostly protected and, therefore, sampling is limited to specimens stranded on the coast or captured as by-catch in fisheries. Similar problems also occur for the larval stages of gastrointestinal helminths of otariids. For most of these parasite species, the specific identity of the intermediate/paratenic of hosts is unknown and, therefore, many stages of the...

  4. A case of a facultative life-cycle diversification in the fluke Pleurogenoides sp. (Lecithodendriidae, Plagiorchiida).

    Science.gov (United States)

    Hassl, Andreas R

    2010-10-01

    Numerous specimens of the native, intestinal digenean fluke Pleurogenoides sp. (Lecithodendriidae, Plagiorchiida), a genus known for the simultaneous co-existence of genuine adults and progenetic, adult-like metacercaria, were found by chance parasitizing in the oesophagus of a recently imported, tropical Bristly Bush Viper (Atheris hispida). The snake had before been force-fed with native water frogs, the assumed definitive host of these flukes. Hence water frogs act as the second intermediate host or as a paratenic host for Pleurogenoides flukes, as they must house progenetic fluke larvae, which develop to genuine adults when transmitted to an appropriate consecutive host, the ancestral definitive host, a reptile. The European Pleurogenoides fluke species seem to display a facultative life-cycle diversification, they can adjust their life-history strategy according to their immediate transmission opportunities. This phenotypic plasticity allows the parasite to respond quickly to any changes in the abundance of a host; usually this biological oddity results in a life-cycle truncation by the elimination of the definitive host.

  5. Integrating animal health surveillance and food safety: the example of Anisakis.

    Science.gov (United States)

    Pozio, E

    2013-08-01

    Nematodes of the genera Anisakis and Pseudoterranova (family Anisakidae) are zoonotic parasites for which marine mammals (e.g., whales, dolphins, porpoises, seals, sea lions, walruses) act as final hosts, and crustaceans, cephalopods and fish as intermediate and/or paratenic hosts. In humans, the ingestion of Anisakidae larvae can result in infection with live larvae, an allergic reaction to Anisakidae allergens (even when dead larvae are ingested), or both. Worldwide, more than 2000 infections are diagnosed in humans every year, yet most of the infections and allergic reactions are undiagnosed. A very high prevalence of anisakid larvae has been found in many commercially important species of fish, cephalopods and crustaceans. Preventive measures for anisakiosis focus on post-harvest handling.

  6. New data in France on the trematode Alaria alata (Goeze, 1792) obtained during Trichinella inspections

    Science.gov (United States)

    Portier, J.; Jouet, D.; Ferté, H.; Gibout, O.; Heckmann, A.; Boireau, P.; Vallée, I.

    2011-01-01

    The trematode Alaria alata is a cosmopolite parasite found in red foxes (Vulpes vulpes), the main definitive host in Europe. In contrast only few data are reported in wild boars (Sus scrofa), a paratenic host. The aim of this paper is to describe the importance and distribution of Alaria alata mesocercariae in wild boars, information is given by findings of these larvae during Trichinella mandatory meat inspection on wild boars’ carcasses aimed for human consumption. More than a hundred cases of mesocercariae positive animals are found every year in the East of France. First investigations on the parasite’s resistance to deep-freezing in meat are presented in this work. PMID:21894269

  7. Parachordodes tegonotus n. sp. (Gordioidea: Nematomorpha), a hairworm parasite of ground beetles (Carabidae: Coleoptera), with a summary of gordiid parasites of carabids.

    Science.gov (United States)

    Poinar, George; Rykken, Jessica; LaBonte, Jim

    2004-06-01

    A new species of hairworm, Parachordodes tegonotus n. sp. (Gordioidea: Nematomorpha) is described from three species of ground beetles (Carabidae: Coleoptera) from the state of Oregon. This is the first record of Parachordodes Camerano parasitising carabid beetles in North America. Diagnostic characters for the new species include size, colour, the nature and arrangement of the areoles, and the character, shape and extant of ornamentation on the ventral surface of the male tail. Encysted hairworm larvae found in the internal tissues of mayfly and caddisfly larvae at the type-locality were presumed to be those of P. tegonotus, indicating an indirect life-cycle involving paratenic hosts. A worldwide host list shows that some 70 species of ground beetles have been documented as developmental hosts to hairworms belonging to at least five genera, namely Gordius, Parachordodes, Dacochordodes, Gordionus and Paragordionus.

  8. Parasites of the Antarctic toothfish (Dissostichus mawsoni Norman, 1937 (Perciformes, Nototheniidae in the Pacific sector of the Antarctic

    Directory of Open Access Journals (Sweden)

    Ilya I. Gordeev

    2016-06-01

    Full Text Available The Antarctic toothfish (Dissostichus mawsoni Norman, 1937 is one of the main target species of commercial fisheries in the Antarctic. It is an endemic and is found along the shelf of Antarctica, as well as on the slopes of seamounts, underwater elevations and islands in the sub-Antarctic. It feeds on a variety of fish and cephalopods and can be an intermediate/paratenic host of some helminthes, whose final hosts are whales, seals, large rays and sharks. This article presents new data on toothfish infection in the Pacific sector of the Antarctic. Specimens were examined during commercial longline fishing in the Ross Sea and the Amundsen Sea in January–February 2013. Fourteen species of parasites were found using standard parasitological methods and genetic analysis.

  9. Third-stage larvae of the enoplid nematode Dioctophyme renale (Goeze, 1782) in the freshwater turtle Trachemys dorbigni from southern Brazil.

    Science.gov (United States)

    Mascarenhas, C S; Müller, G

    2015-09-01

    The giant kidney worm Dioctophyme renale is normally found in wild carnivores and domestic dogs, with aquatic oligochaetes acting as intermediate hosts. In the present study a prevalence of 50% of third-stage larvae of D. renale was recorded in 60 specimens of the freshwater turtle Trachemys dorbigni from southern Brazil. Larvae were encysted in muscles, the coelomic cavity and mesentery, the serous lining of the stomach and on the surfaces of the lung, heart, liver, pancreas, spleen and intestines. There are no previous records of reptiles being part of the life cycle of D. renale, although fish and amphibians normally act as paratenic hosts. This is the first report of third-stage D. renale larvae in the freshwater turtle, T. dorbigni.

  10. Genetically distinct isolates of Spirocerca sp. from a naturally infected red fox (Vulpes vulpes) from Denmark

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Hansen, Mette Sif; Chriél, Mariann

    2014-01-01

    sugar-salt solu-tion, and sieving failed to detect eggs of Spirocerca sp. in feces collected from the colon.This is the first report of spirocercosis in Denmark, and may have been caused by a recentintroduction by migrating paratenic or definitive host. Analysis of two overlapping par-tial sequences...... of the cox1 gene, from individual worms, revealed distinct genetic variation(7–9%) between the Danish worms and isolates of S. lupi from Europe, Asia and Africa.This was confirmed by phylogenetic analysis that clearly separated the Danish worms fromother isolates of S. lupi. The distinct genetic differences...

  11. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae).

    Science.gov (United States)

    Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng

    2016-06-01

    The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected.

  13. The occurrence of Toxocara species in naturally infected broiler chickens revealed by molecular approaches.

    Science.gov (United States)

    Zibaei, M; Sadjjadi, S M; Maraghi, S

    2017-09-01

    Consuming raw and undercooked meat is known to enhance the risk of human toxocariasis because Toxocara species have a wide range of paratenic hosts, including chickens. The aim of this study was to identify species of Toxocara in naturally infected broiler chickens using molecular approaches. A polymerase chain reaction (PCR) method was used for the differentiation of Toxocara canis and Toxocara cati larvae recovered from tissues and organs, and identified by microscopic observations. Thirty-three 35- to 47-day-old broiler chickens were used for examination of Toxocara larvae. The duodenum, liver, lungs, heart, kidneys, skeletal muscles and brain of each chicken were examined using the pepsin method, and DNA from each tissue was extracted as the template for PCR assay. The findings revealed that 5 of 33 (15.2%) broiler chickens were infected with Toxocara larvae. Larvae were recovered from the liver (n = 19), duodenum (n = 8), skeletal muscles (n = 8) and brain (n = 2) of broiler chickens naturally infected with Toxocara spp. The results showed that the frequencies of the species in the chickens were T. canis larvae (n = 5, 83.3%) and T. cati larvae (n = 1, 16.7%). Our data from the present study demonstrated the importance of broiler chickens as a paratenic host for the parasite's life cycle in the environment. The implementation of DNA amplification as a routine diagnostic technique is a specific and alternative method for identification of Toxocara larvae, and allowed the observation of specific species under field conditions within the locations where broiler chickens are typically raised and exposed to Toxocara spp. eggs or larvae.

  14. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  15. ELEVATED TRANS-MAMMARY TRANSMISSION OF Toxocara canis LARVAE IN BALB/c MICE

    Directory of Open Access Journals (Sweden)

    Paula de Lima Telmo

    2015-02-01

    Full Text Available Toxocariasis is a widespread zoonosis and is considered an important worldwide public health problem. The aim of this study was to investigate the frequency of trans-mammary Toxocara canis infection in newborn BALB/c mice nursed by females experimentally infected with 1,200 eggs after delivery. After 50 days of age, the presence of larvae in different organs of the offspring was investigated. Trans-mammary infection was confirmed in 73.9% of the mice that had been nursed by infected females. These data show a high trans-mammary transmission of T. canis and confirm the significance of this transmission route in paratenic hosts.

  16. Endohelminth parasites of the leafscale gulper shark, Centrophorus squamosus (Bonnaterre, 1788) (Squaliformes:Centrophoridae) off Madeira Archipelago.

    Science.gov (United States)

    Costa, Graça; Chada, Tomás; Melo-Moreira, Egberto; Cavallero, Serena; D'Amelio, Stefano

    2014-06-01

    The endohelminth parasite fauna of a deep water shark, the leafscale gulper shark, Centrophorus squamosus, examined from Madeiran waters, from September 2009 to January 2010, consisted of larval and juvenile cestodes of two orders, namely Trypanorhyncha and Tetraphyllidea, and L3 stages of Anisakis spp. Infection with Anisakis spp. could be due to the shark's opportunistic feeding on squids and black-scabbard fish, Aphanopus carbo, which is heavily parasitized by Anisakis spp. in Madeira waters. The occurrence of larval and juvenile cestodes only, in this shark, suggests that the leafscale gulper shark features as a paratenic or a dead-end host for the parasites.

  17. Larval recovery of Toxocara cati in experimentally infected Rattus norvegicus and analysis of the rat as potential reservoir for this ascarid

    Directory of Open Access Journals (Sweden)

    Sérgio V Santos

    2009-09-01

    Full Text Available Toxocara cati is a common feline parasite transmitted by the ingestion of embryonated eggs, by the transmammary route or by predation of paratenic hosts harbouring third-stage larvae in their bodies. In the present study, the larval distribution of T. cati in tissues and organs of Rattus norvegicus experimentally infected with 300 embryonated eggs was analysed. Third-stage larvae were recovered from livers, lungs, kidneys, eyes, brains and carcasses of infected rats, following tissue digestion with HCl 0.5% for 24 h at 37°C. Some differences from the known larval distribution of Toxocara canisin the same rodent species were found.

  18. Experimental studies on the development of Contracaecum rudolphii (Nematoda: Anisakidae) in copepod and fish paratenic hosts

    Czech Academy of Sciences Publication Activity Database

    Moravec, František

    2009-01-01

    Roč. 56, č. 3 (2009), s. 185-193 ISSN 0015-5683 R&D Projects: GA MŠk LC522; GA AV ČR IA62211 Institutional research plan: CEZ:AV0Z60220518 Keywords : Contracaecum rudolphii * life cycle * Czech Republic Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.266, year: 2009

  19. Rückstandsanalytische Untersuchungen für eine aktualisierte Bewertung des Einsatzes hormonal wirksamer Leistungsförderer in der Tiermast

    OpenAIRE

    Lange, Iris Gudrun

    2005-01-01

    Bei der Anwendung hormonal wirksamer Leistungsförderer in der Tiermast in Form von Implantationspräparaten ist die Einhaltung der "Guten Veterinärpraxis" unabdingbar. Gelangen Implantationsstellen in die Nahrungskette, können ganze Chargen von Fleischprodukten kontaminiert werden. Das höchste Gefährdungspotential geht dabei von Trenbolonacetatpräparaten aus, gefolgt von Östradiol bzw. Östradiolbenzoat, Testosteronpropionat und Progesteron. Eine Evaluierung von Zeranol war diesbezüglich im Rah...

  20. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  1. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  2. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  3. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  4. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  5. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  6. Centrarchid fish as paratenic hosts of the giant kidney worm, Dioctophyma renale (Goeze, 1782), in Ontario, Canada.

    Science.gov (United States)

    Measures, L N; Anderson, R C

    1985-01-01

    Infective larvae of Dioctophyma renale were found in the hypaxial musculature of pumpkinseed (Lepomis gibbosus L.) from three lakes in Algonquin Provincial Park, Ontario, Canada. This represents the first report of D. renale in centrarchid fish. In the three lakes surveyed prevalence and mean intensity ranged from 5 to 23% and one to two larvae respectively. Larvae elicited a mild granulomatous reaction in pumpkinseed. Two ferrets were each given five larvae from pumpkinseed. Adult D. renale were recovered from the right kidney capsule of ferrets 108 and 134 days post-infection. An opening in the ventral surface of the right kidney capsule was present in one ferret. Chronic peritonitis was associated with eggs of D. renale and cellular debris which probably entered the abdominal cavity from the right kidney capsule.

  7. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  8. Helminth associations in white-toothed shrews Crocidura russula (Insectivora: Soricidae) from the Albufera Natural Park, Spain.

    Science.gov (United States)

    Portolés, Enrique; Granel, Pedro; Esteban, J Guillermo; Cabaret, Jacques

    2004-06-01

    The helminths of 218 white-toothed shrews from 29 sites in 2 biotopes in the Albufera Natural Park (Valencia, Spain) were examined from July 1990 to August 1991. An association analysis of helminths occurring at a prevalence of more than 4% was carried out for 4 species of cestodes located in the intestine (Hymenolepis pistillum, H. scalaris, H. tiara, and Pseudhymenolepis redonica) and 3 species of nematodes (Pseudophysaloptera sp. located in the stomach, Stammerinema rhopocephala larvae in the intestine and abdominal cavity, and Porrocaecum sp. in the thoracic and abdominal cavities). Bivariate (species pairs) versus multivariate analyses (associations within the entire set of species) were performed of presence-absence and of quantitative records (influence of intensity on associations). The associations were evaluated with respect to the sex and age of the host and to the sampling date and sites. The host and environment played a limited role, and the major determinant of species assemblage was phylogenetic. Positive associations were found among both the cestodes and the nematodes, whereas negative associations were found between cestodes and nematodes. The type of life cycle was probably the second greatest determinant of species associations. Nematodes using shrews as a paratenic host or as their definitive host were both positively associated.

  9. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  10. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  11. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  12. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  13. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    Science.gov (United States)

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host

  14. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  15. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]....

  16. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  17. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  18. Presence of Anti-Toxocara Antibodies in Sheep from the State of Mexico

    Directory of Open Access Journals (Sweden)

    Camilo Romero

    2016-01-01

    Full Text Available Toxocariasis is a parasitic zoonosis caused by the nematode Toxocara canis, and less frequently Toxocara cati, whose final hosts are the dog and cat, respectively. It is acquired by the ingestion of embryonated parasite eggs; the ingestion of meat from animals carrying cystic larvae plays a central role in this disease. The study was conducted in Ayapango, Mexico. Ninety-two sheep where used, of which 72 were females and 20 males. The total prevalence of anti-Toxocara antibodies was 15.21% (14/92, ranging from 17.24% in the one to six months age group to 14.28% in the group older sheep six months, with a higher percentage in females (19.44% compared to males (5.0%, with a significant difference between positive males and females older than six months of age (Chi-square test = 4.22, P < 0.05. The prevalence of anti-Toxocara antibodies in sheep suggests that a high number of animals are infected with Toxocara spp. The consumption of meat from paratenic hosts, including sheep, is considered a means of transmission of toxocariasis to humans.

  19. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  20. Importance of host feeding for parasitoids that attack honeydew-producing hosts

    NARCIS (Netherlands)

    Burger, J.M.S.; Komany, A.; Lenteren, van J.C.; Vet, L.E.M.

    2005-01-01

    Insect parasitoids lay their eggs in arthropods. Some parasitoid species not only use their arthropod host for oviposition but also for feeding. Host feeding provides nutrients to the adult female parasitoid. However, in many species, host feeding destroys an opportunity to oviposit. For parasitoids

  1. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  2. Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de L.J.; Langevelde, van F.

    2018-01-01

    Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  3. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  5. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  7. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  8. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    Science.gov (United States)

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-08

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  9. A Redescription of Serrasentis sagittifer (Rhadinorhynchidae: Serrasentinae) from Rachycentron canadum (Rachycentridae) with Comments on its Biology and its Relationship to Other Species of Serrasentis.

    Science.gov (United States)

    Barton, Diane P; Smales, Lesley; Morgan, Jess A T

    2018-04-01

    Adult and cystacanth forms of the acanthocephalan Serrasentis sagittifer from Australian coastal waters are redescribed and verified as the same species using both molecular and morphological data. This study provides the baseline 18S rDNA, 28S rDNA, and cox1 sequence data to serve as genetic barcode for S. sagittifer. The validity of the currently recognized species of Serrasentis is discussed. The most recently described species are junior synonyms of either Serrasentis nadakali or S. sagittifer, and a number of species are species inquirenda. When using morphological characters to distinguish the species of Serrasentis, consideration needs to be given to the maturity of the specimens, since the trunk elongates and the number and distribution of the ventral combs changes as worms mature, although the proboscis armature itself does not change. A simple key to assist in the identification of species of Serrasentis is provided. Adult S. sagittifer appear to be highly host specific to the cobia, Rachycentron canadum, in northern Australian waters, whereas cystacanths have been reported from a wide range of fish species. The relationship between host length and number of cystacanths shows that most paratenic infections are acquired as young fish, most likely via a crustacean intermediate host.

  10. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  11. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  12. Data from: Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de Lana; Langevelde, van F.

    2017-01-01

    Trophically-transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  13. Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative?

    NARCIS (Netherlands)

    Burger, J.S.M.; Reijnen, T.M.; Van Lenteren, J.C.; Vet, L.E.M.

    2004-01-01

    Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non-destructive feeding on host-derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed

  14. Local host adaptation and use of a novel host in the seed beetle Megacerus eulophus.

    Directory of Open Access Journals (Sweden)

    Gisela C Stotz

    Full Text Available Spatial variation in host plant availability may lead to specialization in host use and local host adaptation in herbivorous insects, which may involve a cost in performance on other hosts. We studied two geographically separated populations of the seed beetle Megacerus eulophus (Coleoptera: Bruchidae in central Chile: a population from the host Convolvulus chilensis (in Aucó and a population from C. bonariensis (in Algarrobo. In Aucó C. chilensis is the only host plant, while in Algarrobo both C. bonariensis and C. chilensis are available. We tested local adaptation to these native host plants and its influence on the use of another, exotic host plant. We hypothesized that local adaptation would be verified, particularly for the one-host population (Aucó, and that the Aucó population would be less able to use an alternative, high-quality host. We found evidence of local adaptation in the population from C. chilensis. Thus, when reared on C. chilensis, adults from the C. chilensis population were larger and lived longer than individuals from the C. bonariensis population, while bruchids from the two populations had the same body size and longevity when reared on C. bonariensis. Overall, bruchids from the C. chilensis population showed greater performance traits than those from the C. bonariensis population. There were no differences between the bruchid populations in their ability to use the alternative, exotic host Calystegia sepium, as shown by body size and longevity patterns. Results suggest that differences in local adaptation might be explained by differential host availability in the study populations.

  15. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  16. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    Science.gov (United States)

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  17. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    Directory of Open Access Journals (Sweden)

    Sara M. Rodríguez

    2017-08-01

    Full Text Available Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm than large molecrabs (<15 mm. Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host

  18. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  19. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  20. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  1. Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict?

    Science.gov (United States)

    Poulin, Robert; Nichol, Katherine; Latham, A David M

    2003-04-01

    Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the

  2. Animal salmonelloses: a brief review of “host adaptation and host specificity” of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Grammato Evangelopoulou

    2013-07-01

    Full Text Available Salmonella enterica, the most pathogenic species of the genusSalmonella, includes more than 2,500 serovars, many of which are of great veterinary and medical significance. The emergence of food-borne pathogens, such as Salmonella spp., has increased knowledge about the mechanisms helping microorganisms to persist and spread within new host populations. It has also increased information about the properties they acquire for adapting in the biological environment of a new host. Thedifferences observed between serovars in their host preference and clinical manifestations are referred to as “serovar-host specificity” or “serovar-host adaptation”. The genus Salmonella, highly adaptive to vertebrate hosts, has many pathogenic serovars showing host specificity. Serovar Salmonella Typhi, causing disease to man and higher primates, is a good example of host specificity. Thus, understanding the mechanisms that Salmonella serovars use to overcome animal species' barriers or adapt to new hosts is also important for understanding the origins of any other infectious diseases or the emergence of new pathogens. In addition, molecular methods used to study the virulence determinants of Salmonella serovars, could also be used to model ways of studying the virulence determinants used by bacteria in general, when causing disease to a specific animal species

  3. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    Science.gov (United States)

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  4. Guidelines for Hosted Payload Integration

    Science.gov (United States)

    2014-06-06

    reduces risk. Need to consider mass simulator to protect host launch window. Average Payload Power Both BOL and EOL . Host must consider orbit...acceptance testing. Peak Payload Power Both BOL and EOL . Host must consider orbit constraints. Typically driven by Payload operations but must...post-retirement failure might cause damage to the Spacecraft Host or its payloads. Safe conditions at EOL should consider thermal and radiation

  5. Host density increases parasite recruitment but decreases host risk in a snail-trematode system.

    Science.gov (United States)

    Buck, J C; Hechinger, R F; Wood, A C; Stewart, T E; Kuris, A M; Lafferty, K D

    2017-08-01

    Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk at local scales. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail-density-trematode-prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (California, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective

  6. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Directory of Open Access Journals (Sweden)

    Dominique Angèle Vuitton

    2010-01-01

    Full Text Available Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.

  7. Hepatozoon spp. infections in wild rodents in an area of endemic canine hepatozoonosis in southeastern Brazil.

    Science.gov (United States)

    Demoner, Larissa de Castro; Magro, Natalia Mizuhira; da Silva, Maria Regina Lucas; de Paula Antunes, João Marcelo Azevedo; Calabuig, Cecilia Irene Pérez; O'Dwyer, Lucia Helena

    2016-07-01

    Hepatozoon canis is a tick-borne parasite that occurs worldwide. In rural areas of Brazil, H. canis vectors remain unknown, which has led to speculation about alternative routes of transmission. Small rodents can play a role in the transmission (via predation) of Hepatozoon americanum, which led us to question whether predation might be an alternative mode of transmission for H. canis. Thus, this study investigated whether Hepatozoon spp. are present in wild small rodents in forest fragments that surround rural areas in Botucatu County, São Paulo, Brazil, where canine hepatozoonosis is endemic. The study included blood samples from 158 dogs, which were screened by microscopy and molecular analysis. Blood samples and tissues from 67 rodents were obtained for histopathology and molecular detection. The prevalence of H. canis was high (66.45%) in dogs from rural areas of Botucatu, São Paulo, Brazil. The molecular analysis showed that wild rodent species in Brazil were infected with Hepatozoon spp. other than H. canis. Therefore, although the hypothesis that sylvatic rodents act as reservoirs for H. canis was not supported, the presence of monozoic cysts in the rodents suggests that, in addition to intermediate hosts, wild small rodents in Brazil might act as paratenic hosts of Hepatozoon spp. because they harbor infective stages for intermediate host predators. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. A novel bacterial symbiont in the nematode Spirocerca lupi

    Directory of Open Access Journals (Sweden)

    Gottlieb Yuval

    2012-07-01

    Full Text Available Abstract Background The parasitic nematode Spirocerca lupi (Spirurida: Thelaziidae, the canine esophageal worm, is the causative agent of spirocercosis, a disease causing morbidity and mortality in dogs. Spirocerca lupi has a complex life cycle, involving an obligatory coleopteran intermediate host (vector, an optional paratenic host, and a definitive canid host. The diagnosis of spirocercosis is challenging, especially in the early disease stages, when adult worms and clinical signs are absent. Thus, alternative approaches are needed to promote early diagnosis. The interaction between nematodes and their bacterial symbionts has recently become a focus of novel treatment regimens for other helminthic diseases. Results Using 16S rDNA-based molecular methods, here we found a novel bacterial symbiont in S. lupi that is closely related to Comamonas species (Brukholderiales: Comamonadaceae of the beta-proteobacteria. Its DNA was detected in eggs, larvae and adult stages of S. lupi. Using fluorescent in situ hybridization technique, we localized Comamonas sp. to the gut epithelial cells of the nematode larvae. Specific PCR enabled the detection of this symbiont's DNA in blood obtained from dogs diagnosed with spirocercosis. Conclusions The discovery of a new Comamonas sp. in S. lupi increase the complexity of the interactions among the organisms involved in this system, and may open innovative approaches for diagnosis and control of spirocercosis in dogs.

  9. Host community heterogeneity and the expression of host specificity in avian haemosporidia in the Western Cape, South Africa.

    Science.gov (United States)

    Jones, Sharon M; Cumming, Graeme S; Peters, Jeffrey L

    2018-05-16

    Similar patterns of parasite prevalence in animal communities may be driven by a range of different mechanisms. The influences of host heterogeneity and host-parasite interactions in host community assemblages are poorly understood. We sampled birds at 27 wetlands in South Africa to compare four hypotheses explaining how host community heterogeneity influences host specificity in avian haemosporidia communities: the host-neutral hypothesis, the super-spreader hypothesis, the host specialist hypothesis and the heterogeneity hypothesis. A total of 289 birds (29%) were infected with Plasmodium, Haemoproteus and/or Leucocytozoon lineages. Leucocytozoon was the most diverse and generalist parasite genus, and Plasmodium the most conservative. The host-neutral and host specialist hypotheses received the most support in explaining prevalence by lineage (Leucocytozoon) and genus (Plasmodium and Haemoproteus), respectively. We observed that haemosporidian prevalence was potentially amplified or reduced with variation in host and/or parasitic taxonomic levels of analysis. Our results show that Leucocytozoon host abundance and diversity was influential to parasite prevalence at varying taxonomic levels, particularly within heterogeneous host communities. Furthermore, we note that prevalent mechanisms of infection can potentially act as distinct roots for shaping communities of avian haemosporidia.

  10. Host range, host ecology, and distribution of more than 11800 fish parasite species

    Science.gov (United States)

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  11. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  12. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species.

    Science.gov (United States)

    Jones, Thomas S; Bilton, Adam R; Mak, Lorraine; Sait, Steven M

    2015-01-01

    Parasitoids face challenges by switching between host species that influence survival and fitness, determine their role in structuring communities, influence species invasions, and affect their importance as biocontrol agents. In the generalist parasitoid, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), we investigated the costs in encapsulation, survival, and body size on juveniles when adult parasitoids switched from their original host, Plodia interpunctella (Hübner) (Lepidotera, Pyralidae) to a novel host, Ephestia kuehniella (Zeller) (Lepidoptera, Pyralidae), over multiple generations. Switching had an initial survival cost for juvenile parasitoids in the novel host, but increased survival occurred within two generations. Conversely, mortality in the original host increased. Body size, a proxy for fecundity, also increased with the number of generations in the novel host species, reflecting adaptation or maternal effects due to the larger size of the novel host, and therefore greater resources available to the developing parasitoid. Switching to a novel host appears to have initial costs for a parasitoid, even when the novel host may be better quality, but the costs rapidly diminish. We predict that the net cost of switching to a novel host for parasitoids will be complex and will depend on the initial reduction in fitness from parasitizing a novel host versus local adaptations against parasitoids in the original host.

  14. Host location by ichneumonid parasitoids is associated with nest dimensions of the host bee species.

    Science.gov (United States)

    Flores-Prado, L; Niemeyer, H M

    2012-08-01

    Parasitoid fitness depends on the ability of females to locate a host. In some species of Ichneumonoidea, female parasitoids detect potential hosts through vibratory cues emanating from them or through vibrational sounding produced by antennal tapping on the substrate. In this study, we (1) describe host location behaviors in Grotea gayi Spinola (Hymenoptera: Ichneumonidae) and Labena sp. on nests of Manuelia postica Spinola (Hymenoptera: Apidae), (2) compare nest dimensions between parasitized and unparasitized nests, (3) correlate the length of M. postica nests with the number of immature individuals developing, and (4) establish the relative proportion of parasitized nests along the breeding period of M. postica. Based on our results, we propose that these parasitoids use vibrational sounding as a host location mechanism and that they are able to assess host nest dimensions and choose those which may provide them with a higher fitness. Finally, we discuss an ancestral host-parasitoid relationship between Manuelia and ichneumonid species.

  15. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  16. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens.

    Science.gov (United States)

    Navaud, Olivier; Barbacci, Adelin; Taylor, Andrew; Clarkson, John P; Raffaele, Sylvain

    2018-03-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data.

    Science.gov (United States)

    Guirimand, Thibaut; Delmotte, Stéphane; Navratil, Vincent

    2015-01-01

    VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  19. Host restriction factors in retroviral infection: promises in virus-host interaction

    Directory of Open Access Journals (Sweden)

    Zheng Yong-Hui

    2012-12-01

    Full Text Available Abstract Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs, and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

  20. Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.

    OpenAIRE

    Foitzik, S.; DeHeer, C. J.; Hunjan, D. N.; Herbers, J. M.

    2001-01-01

    Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host...

  1. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  2. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host.

    Science.gov (United States)

    Heuer, Holger; Fox, Randal E; Top, Eva M

    2007-03-01

    IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.

  3. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens

    OpenAIRE

    Taylor, Andrew; Clarkson, John; Raffaele, Sylvain; Navaud, Olivier; Barbacci, Adelin

    2017-01-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae , a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events, and host range variation dur...

  4. An Endoparasitoid Avoids Hyperparasitism by Manipulating Immobile Host Herbivore to Modify Host Plant Morphology

    Science.gov (United States)

    Fujii, Tomohisa; Matsuo, Kazunori; Abe, Yoshihisa; Yukawa, Junichi; Tokuda, Makoto

    2014-01-01

    Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant's development to avoid hyperparasitism by thickening galls. PMID:25033216

  5. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz-Montoya

    Full Text Available Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size on B. campestris, and on PC1 and PC2 (body length relative to body size on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  6. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  7. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  8. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  9. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  10. Dioctophyme renale: prevalence and risk factors of parasitism in dogs of São Cristóvão district, Três Barras county, Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Pedrassani

    Full Text Available Abstract Dioctophyme renale is a nematode that can be found parasitizing the kidney, peritoneal cavity and, rarely, other organs of canids and mustelids. This disease has high occurrence in the municipality of Três Barras, state of Santa Catarina, thus making this an interesting area to study the epidemiological aspects of infection by D. renale in dogs. Among 197 dogs, 14.2% showed the parasite eggs in urine and 16.4% showed IgG antibodies anti-D. renale in serum samples according to the indirect ELISA method; among seropositive dogs, 15 (37.5% animals did not show any parasite eggs in their urine. Parasitism was more frequent in females, and there was no finding of interference from age on parasitism. Factors such as water potential and presence of paratenic hosts in the studied region were reported by the owners of dogs and may have contributed to the occurrence of parasitism.

  11. Host specificity in bat ectoparasites: a natural experiment.

    Science.gov (United States)

    Seneviratne, Sampath S; Fernando, H Chandrika; Udagama-Randeniya, Preethi V

    2009-07-15

    We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were "allopatric" roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were "sympatric" roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from chi(2)-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage

  12. Host preference of the bean weevil Zabrotes subfasciatus

    Institute of Scientific and Technical Information of China (English)

    Isabel Ribeiro do Valle Teixeira; Angel Roberto Barchuk; Fernando Sérgio Zucoloto

    2008-01-01

    It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus.However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largelyun known. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z. subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different popula-tions (reared for~30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts,indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.

  13. Molecular systematics of pinniped hookworms (Nematoda: Uncinaria): species delimitation, host associations and host-induced morphometric variation.

    Science.gov (United States)

    Nadler, Steven A; Lyons, Eugene T; Pagan, Christopher; Hyman, Derek; Lewis, Edwin E; Beckmen, Kimberlee; Bell, Cameron M; Castinel, Aurelie; Delong, Robert L; Duignan, Padraig J; Farinpour, Cher; Huntington, Kathy Burek; Kuiken, Thijs; Morgades, Diana; Naem, Soraya; Norman, Richard; Parker, Corwin; Ramos, Paul; Spraker, Terry R; Berón-Vera, Bárbara

    2013-12-01

    Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the

  14. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  15. Codivergence of mycoviruses with their hosts.

    Directory of Open Access Journals (Sweden)

    Markus Göker

    Full Text Available BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology

  16. Species of Angiostrongylus (Nematoda: Metastrongyloidea in wildlife: A review

    Directory of Open Access Journals (Sweden)

    David M. Spratt

    2015-08-01

    Full Text Available Twenty-one species of Angiostrongylus plus Angiostrongylus sp. (Nematoda: Metastrongyloidea are known currently in wildlife. These occur naturally in rodents, tupaiids, mephitids, mustelids, procyonids, felids, and canids, and aberrantly in a range of avian, marsupial and eutherian hosts including humans. Adults inhabit the pulmonary arteries and right atrium, ventricle and vena cava, bronchioles of the lung or arteries of the caecum and mesentery. All species pass first-stage larvae in the faeces of the host and all utilise slugs and/or aquatic or terrestrial snails as intermediate hosts. Gastropods are infected by ingestion or penetration of first-stage larvae; definitive hosts by ingestion of gastropods or gastropod slime. Transmission of at least one species may involve ingestion of paratenic hosts. Five developmental pathways are identified in these life cycles. Thirteen species, including Angiostrongylus sp., are known primarily from the original descriptions suggesting limited geographic distributions. The remaining species are widespread either globally or regionally, and are continuing to spread. Small experimental doses of infective larvae (ca. 20 given to normal or aberrant hosts are tolerated, although generally eliciting a granulomatous histopathological response; large doses (100–500 larvae often result in clinical signs and/or death. Two species, A. cantonensis and A. costaricensis, are established zoonoses causing neurological and abdominal angiostrongliasis respectively. The zoonotic potential of A. mackerrasae, A. malaysiensis and A. siamensis particularly warrant investigation. Angiostrongylus cantonensis occurs in domestic animals, mammalian and avian wildlife and humans in the metropolitan areas of Brisbane and Sydney, Australia, where it has been suggested that tawny frogmouths and brushtail possums may serve as biosentinels. A major conservation issue is the devastating role A. cantonensis may play around zoos and fauna

  17. Location of Host and Host Habitat by Fruit Fly Parasitoids

    Directory of Open Access Journals (Sweden)

    Pascal Rousse

    2012-11-01

    Full Text Available Augmentative releases of parasitoids may be a useful tool for the area-wide management of tephritid pests. The latter are parasitized by many wasp species, though only a few of them are relevant for augmentative biocontrol purposes. To date, nearly all the actual or potential biocontrol agents for such programs are egg or larval Opiinae parasitoids (Hymenoptera: Braconidae. Here, we review the literature published on their habitat and host location behavior, as well as the factors that modulate this behavior, which is assumed to be sequential; parasitoids forage first for the host habitat and then for the host itself. Parasitoids rely on chemical, visual, and mechanical stimuli, often strongly related to their ecology. Behavioral modulation factors include biotic and abiotic factors including learning, climatic conditions and physiological state of the insect. Finally, conclusions and perspectives for future research are briefly highlighted. A detailed knowledge of this behavior may be very useful for selecting the release sites for both inundative/augmentative releases of mass-reared parasitoids and inoculative releases for classical biocontrol.

  18. Host selection by the shiny cowbird

    Science.gov (United States)

    Wiley, J.W.

    1988-01-01

    Factors important in Shiny Cowbird (Molothrus bonariensis) host selection were examined within the mangrove community in Puerto Rico. Cowbirds did not parasitize birds in proportion to their abundance. The cowbird breeding season coincided with those of its major hosts, which were 'high-quality' foster species (i.e., species that fledge .gtoreq. 55% of cowbirds hatched: Yellow Warbler, Dendroica petechia; Yellow-shouldered Blackbird, Agelaius xanthomus; Black-whiskered Vireo, Vireo altiloquus; Black-cowled Oriole, Icterus dominicensis; Peurto Rican Flycatcher, Myiarchus antillarum; Troupial, Icterus icterus), and did not extend into other periods even though nests of 'low-quality: species (i.e., species that fledge < 55% of cowbird chicks that hatched: Bronze Mannikin, Lonchura cucullata; Greater Antillean Grackle, Quiscalus niger; Gray Kingbird, Tyrannus dominicensis; Northern Mockingbird, Mimus polyglottos; Red-legged Thrush, Turdus plumbeus) were available. Shiny Cowbird food habits and egg size were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this combination. Cowbirds located host nests primarily by cryptically watching activities of birds in likely habitats. Other nest locating strategies were active searching of suitable habitat and 'flushing' of hosts by the cowbird's noisy approach. Cowbirds closely monitored nest status with frequent visits that peaked on the host's first day of egg laying. Hosts using covered nests (e.g., cavities, domed nests) were as vulnerable to cowbird parasitism as those building open nests.

  19. Nestedness of ectoparasite-vertebrate host networks.

    Directory of Open Access Journals (Sweden)

    Sean P Graham

    2009-11-01

    Full Text Available Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks--including three derived from molecular bloodmeal analysis of mosquito feeding patterns--using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same "generalized" hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks.

  20. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  1. Carp erythrodermatitis : host defense-pathogen interaction

    OpenAIRE

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the host's defense system. On the other hand, the host's resistance to a bacterial attack depends on its physiological state, the intensity of the bacterial attack and the efficacy of the defense system to ...

  2. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  3. Co-niche construction between hosts and symbionts

    Indian Academy of Sciences (India)

    Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host ...

  4. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    Science.gov (United States)

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  5. Specific detection of Angiostrongylus cantonensis in the snail Achatina fulica using a loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Liu, Chun-Yan; Song, Hui-Qun; Zhang, Ren-Li; Chen, Mu-Xin; Xu, Min-Jun; Ai, Lin; Chen, Xiao-Guang; Zhan, Xi-Mei; Liang, Shao-Hui; Yuan, Zi-Guo; Lin, Rui-Qing; Zhu, Xing-Quan

    2011-08-01

    Angiostrongylus cantonensis, a rat lungworm, can cause eosinophilic meningitis and angiostrongyliasis in humans following ingestion of contaminated foods or intermediate/paratenic hosts with infective larvae. The snail Achatina fulica is one of the important intermediate hosts of A. cantonensis and is commonly eaten by humans in some countries. In the present study, we developed a loop-mediated isothermal amplification (LAMP) method for the specific detection of A. cantonensis in Ac. fulica. Primers for LAMP were designed based on the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA) of A. cantonensis. Specificity tests showed that only the products of A. cantonensis were detected when DNA samples of A. cantonensis and the heterologous control samples Anisakis simplex s.s, Trichuris trichiura, Toxocara canis, Trichinella spiralis and Ascaris lumbricoides were amplified by LAMP. Sensitivity evaluation indicated that the LAMP assay is 10 times more sensitive than the conventional polymerase chain reaction (PCR) assay. The established LAMP assay is rapid, inexpensive and easy to be performed. It can be used in clinical applications for rapid and sensitive detection of A. cantonensis in snails, which has implications for the effective control of angiostrongyliasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities.

    Science.gov (United States)

    Wang, Hsiao-Hsuan; Grant, W E; Teel, P D; Hamer, S A

    2015-12-01

    Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities

  7. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  8. Host Specificity in the Parasitic Plant Cytinus hypocistis

    International Nuclear Information System (INIS)

    Thorogood, C.J.; Hiscock, S.J.

    2007-01-01

    Host specificity in the parasitic plant Cytinus hypocistis was quantified at four sites in the Algarve region of Portugal from 2002 to 2007. The parasite was found to be locally host specific, and only two hosts were consistently infected: Halimium halimifolium and Cistus monspeliensis. C. hypocistis did not infect hosts in proportion to their abundance; at three sites, 100% of parasites occurred on H. halimifolium which represented just 42.4%, 3% and 19.7% of potential hosts available, respectively. At the remaining site, where H. halimifolium was absent, 100% of parasites occurred on C. monspeliensis which represented 81.1% of potential hosts available. Other species of potential host were consistently uninfected irrespective of their abundance. Ecological niche divergence of host plants H. halimifolium and C. monspeliensis may isolate host-specific races of C. hypocistis, thereby potentially driving allopatric divergence in this parasitic plant.

  9. Differential host growth regulation by the solitary endoparasitoid, Meteorus pulchricornis in two hosts of greatly differing mass.

    Science.gov (United States)

    Harvey, Jeffrey A; Sano, Takeshi; Tanaka, Toshiharu

    2010-09-01

    Solitary koinobiont endoparasitoids generally reduce the growth of their hosts by a significant amount compared with healthy larvae. Here, we compared the development and host usage strategies of the solitary koinobiont endoparasitoid, Meteorus pulchricornis, when developing in larvae of a large host species (Mythimna separata) and a much smaller host species (Plutella xylostella). Caterpillars of M. separata were parasitized as L2 and P. xylostella as L3, when they weighed approximately 2mg. The growth of parasitized M. separata larvae was reduced by almost 95% compared with controls, whereas parasitized P. xylostella larvae grew some 30% larger than controls. Still, adult wasps emerging from M. separata larvae were almost twice as large as wasps emerging from P. xylostella larvae, had larger egg loads after 5 days and produced more progeny. Survival to eclosion was also higher on M. separata than on P. xylostella, although parasitoids developed significantly faster when developing on P. xylostella. Our results provide evidence that koinobionts are able to differentially regulate the growth of different host species. However, there are clearly also limitations in the ability of parasitoids to regulate phenotypic host traits when size differences between different host species are as extreme as demonstrated here.

  10. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  11. Host age modulates parasite infectivity, virulence and reproduction.

    Science.gov (United States)

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  12. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    Science.gov (United States)

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  13. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  14. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  15. The epidemiology and public health importance of toxocariasis: a zoonosis of global importance.

    Science.gov (United States)

    Macpherson, Calum N L

    2013-11-01

    Toxocariasis, caused by infection with larvae of Toxocara canis, and to a lesser extent by Toxocara cati and other ascaridoid species, manifests in humans in a range of clinical syndromes. These include visceral and ocular larva migrans, neurotoxocariasis and covert or common toxocariasis. Toxocara canis is one of the most widespread public health and economically important zoonotic parasitic infections humans share with dogs, cats and wild canids, particularly foxes. This neglected disease has been shown through seroprevalence studies to be especially prevalent among children from socio-economically disadvantaged populations both in the tropics and sub-tropics and in industrialised nations. Human infection occurs by the accidental ingestion of embryonated eggs or larvae from a range of wild and domestic paratenic hosts. Most infections remain asymptomatic. Clinically overt infections may go undiagnosed, as diagnostic tests are expensive and can require serological, molecular and/or imaging tests, which may not be affordable or available. Treatment in humans varies according to symptoms and location of the larvae. Anthelmintics, including albendazole, thiabendazole and mebendazole may be given together with anti-inflammatory corticosteroids. The development of molecular tools should lead to new and improved strategies for the treatment, diagnosis and control of toxocariasis and the role of other ascaridoid species in the epidemiology of Toxocara spp. Molecular technologies may also help to reveal the public health importance of T. canis, providing new evidence to support the implementation of national control initiatives which have yet to be developed for Toxocara spp. A number of countries have implemented reproductive control programs in owned and stray dogs to reduce the number of young dogs in the population. These programs would positively impact upon T. canis transmission since the parasite is most fecund and prevalent in puppies. Other control measures for T

  16. Host-Associated Differentiation: The Gape-and-Pinch Model

    Directory of Open Access Journals (Sweden)

    Stephen B. Heard

    2012-01-01

    Full Text Available Ecological speciation via host shifting has contributed to the astonishing diversity of phytophagous insects. The importance for host shifting of trait differences between alternative host plants is well established, but much less is known about trait variation within hosts. I outline a conceptual model, the “gape-and-pinch” (GAP model, of insect response to host-plant trait variation during host shifting and host-associated differentiation. I offer four hypotheses about insect use of plant trait variation on two alternative hosts, for insects at different stages of host-associated differentiation. Collectively, these hypotheses suggest that insect responses to plant trait variation can favour or oppose critical steps in herbivore diversification. I provide statistical tools for analysing herbivore trait-space use, demonstrate their application for four herbivores of the goldenrods Solidago altissima and S. gigantea, and discuss their broader potential to advance our understanding of diet breadth and ecological speciation in phytophagous insects.

  17. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    Science.gov (United States)

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Host factors in nidovirus replication

    NARCIS (Netherlands)

    Wilde, Adriaan Hugo de

    2013-01-01

    The interplay between nidoviruses and the infected host cell was investigated. Arterivirus RNA-synthesising activity was shown to depend on intact membranes and on a cytosolic host protein which does not cosediment with the RTC. Furthermore, the immunosuppressant drug cyclosporin A (CsA) blocks

  19. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  20. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation.

    Science.gov (United States)

    da Graça, Rodrigo J; Fabrin, Thomaz M C; Gasques, Luciano S; Prioli, Sônia M A P; Balbuena, Juan A; Prioli, Alberto J; Takemoto, Ricardo M

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species.

  1. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp

    NARCIS (Netherlands)

    Rijk, de Marjolein; Yang, Daowei; Engel, Bastiaan; Dicke, Marcel; Poelman, Erik H.

    2016-01-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait-and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs)

  2. New host records of Aglaomelissa duckei and a compilation of host associations of Ericrocidini bees (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Léo C. Rocha-Filho

    2009-06-01

    Full Text Available For the first time, confirmed host records are reported for the monotypic Ericrocidini genus Aglaomelissa Snelling & Brooks, 1985. Aglaomelissa duckei (Friese, 1906 emerged from trap-nests of Centris (Heterocentris analis (Fabricius, 1804 and C. (Heterocentris terminata Smith, 1874 from two sites in the Brazilian Amazonian region. The parasitism ratio caused by A. duckei was high, varying from 80 to 100% of the brood cells in a single trap-nest. Also, a compilation of the known host records for the species of Ericrocidini is presented and host-parasite associations are discussed. Host associations are known for seven of the 11 genera and about 17 of the 42 species of the tribe, involving a total of 34 confirmed or putative host species of Centridini bees. All species of the tribe are known to attack only nests of Centris Fabricius, 1804, except Mesoplia rufipes (Perty, 1833 that also parasitizes nests of Epicharis Klug, 1807. Although the phylogenetic relationships within Ericrocidini and among the subgenera of Centris are not well resolved, the current knowledge of the host-parasite associations points to a relatively high degree of specificity and possible coevolution between them.

  3. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  5. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  6. Host Adaptation of Staphylococcal Leukocidins

    NARCIS (Netherlands)

    Vrieling, M

    2016-01-01

    Staphylococcus aureus is a human and animal pathogen of global importance and has the capacity to cause disease in distinct host populations, using a large arsenal of secreted proteins to evade the host immune response. Amongst the immune evasion proteins of S. aureus, secreted cytotoxins play a

  7. The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala and their decapod hosts.

    Directory of Open Access Journals (Sweden)

    Christina Nagler

    Full Text Available Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa, and a trophic, root like system situated inside the hosts body (the interna. Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling, we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass and the volume of the entire host. Our results show positive correlations between the volume of (1 entire rhizocephalan (externa + interna and host body, (2 rhizocephalan externa and host body, (3 rhizocephalan visceral mass and rhizocephalan body, (4 egg mass and rhizocephalan externa, (5 rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans.

  8. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  9. Hologenomics: Systems-Level Host Biology.

    Science.gov (United States)

    Theis, Kevin R

    2018-01-01

    The hologenome concept of evolution is a hypothesis explaining host evolution in the context of the host microbiomes. As a hypothesis, it needs to be evaluated, especially with respect to the extent of fidelity of transgenerational coassociation of host and microbial lineages and the relative fitness consequences of repeated associations within natural holobiont populations. Behavioral ecologists are in a prime position to test these predictions because they typically focus on animal phenotypes that are quantifiable, conduct studies over multiple generations within natural animal populations, and collect metadata on genetic relatedness and relative reproductive success within these populations. Regardless of the conclusion on the hologenome concept as an evolutionary hypothesis, a hologenomic perspective has applied value as a systems-level framework for host biology, including in medicine. Specifically, it emphasizes investigating the multivarious and dynamic interactions between patient genomes and the genomes of their diverse microbiota when attempting to elucidate etiologies of complex, noninfectious diseases.

  10. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  11. Host-bacterial interplay in periodontal disease

    Directory of Open Access Journals (Sweden)

    Rudrakshi Chickanna

    2015-01-01

    Full Text Available A literature search was performed using MEDLINE (PubMed and other electronic basis from 1991 to 2014. Search included books and journals based on the systematic and critical reviews, in vitro and in vivo clinical studies on molecular basis of host microbial interactions. Clearly, an understanding of the host susceptibility factor in addition to microbial factors by elucidating the molecular basis offers opportunity for therapeutic manipulation of advancing periodontal destruction. One of the hallmarks of pathogenesis is the ability of pathogenic organisms to invade surrounding tissues and to evade the host defence. This paper focuses the general overview of molecular mechanisms involved in the microbiota and host response to bacterial inimical behavior in periodontics.

  12. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Use of Host-like Peptide Motifs in Viral Proteins Is a Prevalent Strategy in Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Tzachi Hagai

    2014-06-01

    Full Text Available Viruses interact extensively with host proteins, but the mechanisms controlling these interactions are not well understood. We present a comprehensive analysis of eukaryotic linear motifs (ELMs in 2,208 viral genomes and reveal that viruses exploit molecular mimicry of host-like ELMs to possibly assist in host-virus interactions. Using a statistical genomics approach, we identify a large number of potentially functional ELMs and observe that the occurrence of ELMs is often evolutionarily conserved but not uniform across virus families. Some viral proteins contain multiple types of ELMs, in striking similarity to complex regulatory modules in host proteins, suggesting that ELMs may act combinatorially to assist viral replication. Furthermore, a simple evolutionary model suggests that the inherent structural simplicity of ELMs often enables them to tolerate mutations and evolve quickly. Our findings suggest that ELMs may allow fast rewiring of host-virus interactions, which likely assists rapid viral evolution and adaptation to diverse environments.

  14. The Host RNAs in Retroviral Particles

    Directory of Open Access Journals (Sweden)

    Alice Telesnitsky

    2016-08-01

    Full Text Available As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA, some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs’ packaging determinants differ from the viral genome’s, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1 reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs—if any—have remained elusive.

  15. Effects of actonomycin D and ultraviolet irradiation on multiplication of brome mosaic virus in host and non-host cells

    International Nuclear Information System (INIS)

    Maekawa, K.; Furusawa, I.; Okuno, T.

    1981-01-01

    The modes of multiplication of brome mosaic virus (BMV) were compared in protoplasts isolated from host and non-host plants. BMV actively multiplied in the leaves and isolated mesophyll protoplasts of barley, a host of BMV. BMV multiplication in barley protoplasts was inhibited by addition of actinomycin D immediately after inoculation or by u.v. irradiation of the protoplasts before inoculation. In contrast, although BMV could not multiply in leaves of radish and turnip (non-hosts for BMV) it multiplied at a low level in protoplasts isolated from these two plant species. Moreover, u.v. irradiation, or the addition of actinomycin D, enhanced multiplication of BMV in radish and turnip protoplasts. These results suggest that (i) in the host cells replication of BMV is dependent on cellular metabolism of nucleic acid and protein, and (ii) in the non-host cells a substance(s) inhibitory to replication of BMV is synthesized. (author)

  16. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    Science.gov (United States)

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  17. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.

    Science.gov (United States)

    Garira, Winston; Mathebula, Dephney; Netshikweta, Rendani

    2014-10-01

    In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases. Furthermore, for infections with free-living pathogens in the environment, there is an additional stumbling block in that there is a gap in knowledge on how environmental factors (through water, air, soil, food, fomites, etc.) alter many aspects of such infections including susceptibility to infective dose, persistence of infection, pathogen shedding and severity of the disease. In this work, we link the two subsystems (within-host and between-host models) by identifying the within-host and between-host variables and parameters associated with the environmental dynamics of the pathogen and then design a feedback of the variables and parameters across the within-host and between-host models using human schistosomiasis as a case study. We study the mathematical properties of the linked model and show that the model is epidemiologically well-posed. Using results from the analysis of the endemic equilibrium expression, the disease reproductive number R0, and numerical simulations of the full model, we adequately account for the reciprocal influence of the linked within-host and between-host models. In particular, we illustrate that for human schistosomiasis, the outcome of infection at the individual level determines if, when and how much the individual host will further transmit the infectious agent into the environment, eventually affecting the spread of the infection in the host population. We expect the conceptual modelling framework developed here to be applicable to many infectious disease with free-living pathogens in the environment beyond the specific disease system of human

  18. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  19. Proteomic Characterization of Host Response to Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Chromy, B; Perkins, J; Heidbrink, J; Gonzales, A; Murhpy, G; Fitch, J P; McCutchen-Maloney, S

    2004-05-11

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.

  20. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  1. Multiple infestation of Dioctophyme renale in dogs with leishmaniasis in Uruguaiana, RS - Report of five cases

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Arruda Mistieri

    2014-06-01

    Full Text Available ABSTRACT. Mistieri M.L. de A., Pascon J.P. da E. & dos Santos F.P. [Multiple infestation of Dioctophyme renale in dogs with leishmaniasis in Uruguaiana, RS - Report of five cases.] Infestação múltipla de Dioctophyme renale em cães portadores de leishmaniose em Uruguaiana, RS - Relato de cinco casos. Revista Brasileira de Medicina Veterinária, 36(2:195-198, 2014. Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS 97500-970, Brasil. Email: mariamistieri@unipampa.edu.br Dioctophyme renale is a parasite of different animal species, including human beings. The parasite life cycle can be complex, involving intermediate hosts, definitive hosts and paratenic hosts, represented by different species of frog, rat and fish, specially. The domestic dogs are considered unusual and terminal hosts because they commonly present single parasite, enabling its reproduction and the cycle maintenance. This report presents a multiple infestation of D. renale (male and female specimens in five of nine dogs that underwent to euthanasia due to leishmaniasis. It was noticed two to eight parasites in each affected dog, summing 27 specimens, 12 males measuring between 9.0 and 21.5 cm in length and 15 females with 23.5 to 42.0 cm. In all dogs, the right kidney was completely destroyed. Actual epidemiological studies are necessary to check the real prevalence of the dioctophimosis in the region of Uruguaiana and the determination of the local parasite cycle. Deficient sanitary and hygiene conditions are commonly observed in the progression of D. renale and Leishmania sp. infections. It is possible that those conditions are the link between both disorders in the studied dogs.

  2. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  3. Host Selection Behavior and the Fecundity of Plutella xylostella (Lepidoptera: Plutellidae) on Multiple Host Plants

    Science.gov (United States)

    Huang, Bin; Shi, Zhanghong; Hou, Youming

    2014-01-01

    Abstract Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella . Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition. PMID:25527573

  4. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Host social behavior and parasitic infection: A multifactorial approach

    Science.gov (United States)

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  6. Macromolecule exchange in Cuscuta-host plant interactions.

    Science.gov (United States)

    Kim, Gunjune; Westwood, James H

    2015-08-01

    Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

    Science.gov (United States)

    Wolfe, Benjamin E; Pringle, Anne

    2012-04-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

  8. EPR of divalent manganese in non-Kramers hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lech, J.; Slezak, A. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Various interactions which lead to the observation of sharp EPR spectra of the high half-integer spin impurity Mn{sup 2+} (S=5/2) in paramagnetic hosts with integer spins S=1 and S=2 have been studied. Studies have been carried out on the basis of data extracted from experimental EPR spectra of Mn{sup 2+} in single crystal of divalent nickel Ni{sup 2+} (S=1) and Fe{sup 2+} (S=1) perchlorate hexahydrates. It has been shown that dipolar host-host and host-guest couplings broaden resonance lines of Mn{sup 2+}. Narrowing of the lines in the both crystals can be mainly attributed to the host-guest exchange interactions and quenching of the host spins. 19 refs, 3 figs, 1 tab.

  9. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by

  10. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  11. Climate change, phenology, and butterfly host plant utilization.

    Science.gov (United States)

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  12. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  13. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  14. Host-exclusivity and host-recurrence by wood decay fungi (Basidiomycota - Agaricomycetes in Brazilian mangroves

    Directory of Open Access Journals (Sweden)

    Georgea S. Nogueira-Melo

    2017-09-01

    Full Text Available ABSTRACT This study aimed to investigate for the first time the ecological interactions between species of Agaricomycetes and their host plants in Brazilian mangroves. Thirty-two field trips were undertaken to four mangroves in the state of Pernambuco, Brazil, from April 2009 to March 2010. One 250 x 40 m stand was delimited in each mangrove and six categories of substrates were artificially established: living Avicennia schaueriana (LA, dead A. schaueriana (DA, living Rhizophora mangle (LR, dead R. mangle (DR, living Laguncularia racemosa (LL and dead L. racemosa (DL. Thirty-three species of Agaricomycetes were collected, 13 of which had more than five reports and so were used in statistical analyses. Twelve species showed significant values for fungal-plant interaction: one of them was host-exclusive in DR, while five were host-recurrent on A. schauerianna; six occurred more in dead substrates, regardless the host species. Overall, the results were as expected for environments with low plant species richness, and where specificity, exclusivity and/or recurrence are more easily seen. However, to properly evaluate these relationships, mangrove ecosystems cannot be considered homogeneous since they can possess different plant communities, and thus different types of fungal-plant interactions.

  15. Light emission mechanism of mixed host organic light-emitting diodes

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  16. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  17. Flexible host choice and common host switches in the evolution of generalist and specialist cuckoo bees (Anthophila: Sphecodes.

    Directory of Open Access Journals (Sweden)

    Jana Habermannová

    Full Text Available Specialization makes resource use more efficient and should therefore be a common process in animal evolution. However, this process is not as universal in nature as one might expect. Our study shows that Sphecodes (Halictidae cuckoo bees frequently change their host over the course of their evolution. To test the evolutionary scenario of host specialization in cuckoo bees, we constructed well-supported phylogenetic trees based on partial sequences of five genes for subtribe Sphecodina (Halictini. We detected up to 17 host switches during Sphecodes evolution based on 37 ingroup species subject to mapping analysis of the hosts associated with the cuckoo bee species. We also examine the direction of evolution of host specialization in Sphecodes using the likelihood ratio test and obtain results to support the bidirectional evolutionary scenario in which specialists can arise from generalists, and vice versa. We explain the existence of generalist species in Sphecodes based on their specialization at the individual level, which is recently known in two species. Our findings suggest flexible host choice and frequent host switches in the evolution of Sphecodes cuckoo bees. This scenario leads us to propose an individual choice constancy hypothesis based on the individual specialization strategy in cuckoo bees. Choice constancy has a close relationship to flower constancy in bees and might be an extension of the latter. Our analysis also shows relationships among the genera Microsphecodes, Eupetersia, Sphecodes and Austrosphecodes, a formerly proposed Sphecodes subgenus. Austrosphecodes species form a basal lineage of the subtribe, and Microsphecodes makes it paraphyletic.

  18. Seasonal forcing in a host-macroparasite system.

    Science.gov (United States)

    Taylor, Rachel A; White, Andrew; Sherratt, Jonathan A

    2015-01-21

    Seasonal forcing represents a pervasive source of environmental variability in natural systems. Whilst it is reasonably well understood in interacting populations and host-microparasite systems, it has not been studied in detail for host-macroparasite systems. In this paper we analyse the effect of seasonal forcing in a general host-macroparasite system with explicit inclusion of the parasite larval stage and seasonal forcing applied to the birth rate of the host. We emphasise the importance of the period of the limit cycles in the unforced system on the resulting dynamics in the forced system. In particular, when subject to seasonal forcing host-macroparasite systems are capable of multi-year cycles, multiple solution behaviour, quasi-periodicity and chaos. The host-macroparasite systems show a larger potential for multiple solution behaviour and a wider range of periodic solutions compared to similar interacting population and microparasite systems. By examining the system for parameters that represent red grouse and the macroparasite nematode Trichostrongylus tenuis we highlight how seasonality could be an important factor in explaining the wide range of seemingly uncorrelated cycle periods observed in grouse abundance in England and Scotland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  20. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    Science.gov (United States)

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  1. Host-race formation: promoted by phenology, constrained by heritability.

    Science.gov (United States)

    Whipple, A V; Abrahamson, W G; Khamiss, M A; Heinrich, P L; Urian, A G; Northridge, E M

    2009-04-01

    Host-race formation is promoted by genetic trade-offs in the ability of herbivores to use alternate hosts, including trade-offs due to differential timing of host-plant availability. We examined the role of phenology in limiting host-plant use in the goldenrod gall fly (Eurosta solidaginis) by determining: (1) whether phenology limits alternate host use, leading to a trade-off that could cause divergent selection on Eurosta emergence time and (2) whether Eurosta has the genetic capacity to respond to such selection in the face of existing environmental variation. Experiments demonstrated that oviposition and gall induction on the alternate host, Solidago canadensis, were the highest on young plants, whereas the highest levels of gall induction on the normal host, Solidago gigantea, occurred on intermediate-age plants. These findings indicate a phenological trade-off for host-plant use that sets up the possibility of divergent selection on emergence time. Heritability, estimated by parent-offspring regression, indicated that host-race formation is impeded by the amount of genetic variation, relative to environmental, for emergence time.

  2. Predictors of Host Specificity among Behavior-Manipulating Parasites

    DEFF Research Database (Denmark)

    Fredensborg, B. L.

    2014-01-01

    specifically, hosts’ behavioral modification that involves interaction with the central nervous system presumably restricts parasites to more closely related hosts than does manipulation of the host’s behavior via debilitation of the host’s physiology. The results of the analysis suggest that phylogenetic......-specialist that has a restricted ecological niche that it masters. Parasites that manipulate hosts’ behavior are often thought to represent resource-specialists based on a few spectacular examples of manipulation of the host’s behavior. However, the determinants of which, and how many, hosts a manipulating parasite...... of parasites and hosts. Using individual and multivariate analyses, I examined the effect of the host’s and parasite’s taxonomy, location of the parasite in the host, type of behavioral change, and the effect of debilitation on host-specificity, measured as the mean taxonomic relatedness of hosts...

  3. Host association of Borrelia burgdorferi sensu lato--the key role of host complement.

    Science.gov (United States)

    Kurtenbach, Klaus; De Michelis, Simona; Etti, Susanne; Schäfer, Stefanie M; Sewell, Henna-Sisko; Brade, Volker; Kraiczy, Peter

    2002-02-01

    Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.

  4. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector

    Science.gov (United States)

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-01-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative

  5. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  6. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  7. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  8. Brood parasitic cowbird nestlings use host young to procure resources.

    Science.gov (United States)

    Kilner, Rebecca M; Madden, Joah R; Hauber, Mark E

    2004-08-06

    Young brood parasites that tolerate the company of host offspring challenge the existing evolutionary view of family life. In theory, all parasitic nestlings should be ruthlessly self-interested and should kill host offspring soon after hatching. Yet many species allow host young to live, even though they are rivals for host resources. Here we show that the tolerance of host nestlings by the parasitic brown-headed cowbird Molothrus ater is adaptive. Host young procure the cowbird a higher provisioning rate, so it grows more rapidly. The cowbird's unexpected altruism toward host offspring simply promotes its selfish interests in exploiting host parents.

  9. Relationships between host viremia and vector susceptibility for arboviruses.

    Science.gov (United States)

    Lord, Cynthia C; Rutledge, C Roxanne; Tabachnick, Walter J

    2006-05-01

    Using a threshold model where a minimum level of host viremia is necessary to infect vectors affects our assessment of the relative importance of different host species in the transmission and spread of these pathogens. Other models may be more accurate descriptions of the relationship between host viremia and vector infection. Under the threshold model, the intensity and duration of the viremia above the threshold level is critical in determining the potential numbers of infected mosquitoes. A probabilistic model relating host viremia to the probability distribution of virions in the mosquito bloodmeal shows that the threshold model will underestimate the significance of hosts with low viremias. A probabilistic model that includes avian mortality shows that the maximum number of mosquitoes is infected by feeding on hosts whose viremia peaks just below the lethal level. The relationship between host viremia and vector infection is complex, and there is little experimental information to determine the most accurate model for different arthropod-vector-host systems. Until there is more information, the ability to distinguish the relative importance of different hosts in infecting vectors will remain problematic. Relying on assumptions with little support may result in erroneous conclusions about the importance of different hosts.

  10. Helminth communities of two sympatric skinks (Mabuya agilis and Mabuya macrorhyncha) from two "restinga" habitats in southeastern Brazil.

    Science.gov (United States)

    Vrcibradic, D; Rocha, C F D; Bursey, C R; Vicente, J J

    2002-12-01

    The helminth fauna of two sympatric congeneric skinks (Mabuya agilis and M. macrorhyncha) from two distinct "restinga" habitats (Praia das Neves and Grussaí) in southeastern Brazil were studied, totalling four data sets (sample sizes ranging from 11 to 28). A total of ten helminth species were associated with the skinks: Raillietiella sp., Paradistomum parvissimum, Pulchrosomoides elegans, Oochoristica ameivae, Hexametra boddaertii, Parapharyngodon sceleratus, Physalopteroides venancioi, Physaloptera sp., an unidentified acuariid nematode and an unidentified centrorhynchid acanthocephalan. Except for Hexametra boddaertii (found only in Grussaí) and Pulchrosomoides elegans (found only in Praia das Neves), all helminth species were present at both localities. Half of the helminth species were present only as larvae and, in most cases, appear to represent paratenic parasitism. Overall prevalences of infection were high for both host species in both localities. Mabuya agilis tended to have richer and more diverse infracommunities than M. macrorhyncha. Some parameters of infection by individual helminth species seem to be related to the ecology of each Mabuya species. The parasite faunas were qualitatively very similar among species and/or localities, but quantitative similarities were more varied, due to differential representativeness of individual helminth species among host populations. The helminth communities of both skink species can be classified as non-interactive, being composed of site-specialists and immature stages of non-lizard parasites.

  11. Molecular Characterization of Coccidia Associated with an Epizootic in Green Sea Turtles (Chelonia mydas in South East Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Phoebe A Chapman

    Full Text Available In the spring of 2014, mass mortalities among wild green sea turtles occurred off the coast of south-east Queensland, Australia. The suspected causative agent was Caryospora cheloniae, an eimeriid coccidian implicated in previous epizootics. Necropsies were undertaken on a subset of 11 dead turtles, with subsequent histopathology and molecular analyses. All turtles returned positive PCR results for coccidial infection in various tissues; these included the brain, gastrointestinal tract, lung, kidney and thyroid. Granulomatous encephalitis was consistently observed, as well as enteritis and, less frequently, thyroiditis and nephritis. Sequencing and phylogenetic analyses indicated the presence of two distinct coccidian genotypes, presumably separate species-one associated with the brain, gastrointestinal tract and lung, and the second with the thyroid and kidney. Maximum likelihood and Bayesian inference analyses placed the first genotype closest to the lankesterellid genus Schellackia, rather than in the Eimeriidae, while the second was paraphyletic to the eimeriids. Presence of coccidial stages in extra-intestinal tissues of the primary host raises questions about the potential presence of intermediate or paratenic hosts within the life cycles, as well as their current placement relative to the genus Caryospora. This study represents the first genetic characterization of this emerging disease agent in green sea turtles, an endangered species, and has relevance for life-cycle elucidation and future development of diagnostics.

  12. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    Science.gov (United States)

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  13. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    Science.gov (United States)

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  14. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  15. The parasites of the invasive Chinese sleeper Perccottus glenii (Fam. Odontobutidae, with the first report of Nippotaenia mogurndae in Ukraine

    Directory of Open Access Journals (Sweden)

    Kvach Y.

    2013-06-01

    Full Text Available The parasites of the Asian invasive fish, Chinese sleeper Perccottus glenii, were studied in 6 localities in different parts of Ukraine. In total, 15 taxa of parasites were registered; among them were 1 species of Microsporidia, 5 species of ciliates, 2 species of cestodes, 2 species of trematodes, 2 species of nematodes, 1 species of acanthocephalan, 1 species of parasitic crustacean and 1 mollusk (glochidia. The invasive Chinese sleeper is included as a paratenic host in the life cycle of the parasites of indigenous reptiles in Europe. The non-indigenous cestode Nippotaenia mogurndae occurred in the intestine of the Chinese sleeper from the Ivachiv Reservoir (Dniester River basin. This cestode is recorded for Ukrainian fauna for the first time. In addition, 3 species of parasites were recorded in the Chinese sleeper for the first time: Nicolla skrjabini, Cosmocephalus obvelatus and Pomphorhynchus laevis. We note the low similarity among the different localities and the low parasite richness, that suggest that the parasite fauna of the Chinese sleeper in Ukraine is in transition.

  16. First molecular detection and characterization of Hepatozoon and Sarcocystis spp. in field mice and voles from Japan.

    Science.gov (United States)

    Moustafa, Mohamed Abdallah Mohamed; Shimozuru, Michito; Mohamed, Wessam; Taylor, Kyle Rueben; Nakao, Ryo; Sashika, Mariko; Tsubota, Toshio

    2017-08-01

    Sarcocystis and Hepatozoon species are protozoan parasites that are frequently detected in domestic and wild animals. Rodents are considered common intermediate and paratenic hosts for several Sarcocystis and Hepatozoon species. Here, blood DNA samples from a total of six rodents, including one Myodes rutilus, one Myodes rufocanus, and four Apodemus speciosus, collected from Hokkaido, Japan, were shown by conventional PCR of the 18S ribosomal RNA (rRNA) gene to contain Sarcocystis and Hepatozoon DNA. Sequencing of the DNA detected one Sarcocystis sp. in the M. rufocanus sample and two different Hepatozoon spp. in the M. rutilus and A. speciosus samples. Phylogenetic analysis showed that the detected Sarcocystis sp. sequence grouped with GenBank Sarcocystis sequences from rodents, snakes, and raccoons from Japan and China. The 18S rRNA partial gene sequences of both detected Hepatozoon spp. clustered with GenBank Hepatozoon sequences from snakes, geckos and voles in Europe, Africa, and Asia. This study provides evidence that wild rodents have a role in the maintenance of Sarcocystis and Hepatozoon species on the island of Hokkaido.

  17. Contamination, distribution and pathogenicity of Toxocara canis and T. cati eggs from sandpits in Tokyo, Japan.

    Science.gov (United States)

    Macuhova, K; Akao, N; Fujinami, Y; Kumagai, T; Ohta, N

    2013-09-01

    The contamination, distribution and pathogenicity of Toxocara canis and T. cati eggs in sandpits in the Tokyo metropolitan area, Japan, are described. A total of 34 sandpits were examined, 14 of which were contaminated with T. cati eggs, as assessed by the floatation method and polymerase chain reaction (PCR) analysis. Two naturally contaminated sandpits were investigated to determine the vertical and horizontal distribution of eggs, and an inverse relationship between the sand depth and number of eggs was observed. To examine the pathogenicity of the eggs, three ICR mice were inoculated with 300 eggs, which were recovered from sandpits. The mice exhibited eosinophilia in the peripheral blood and IgG antibody production in the sera after 3 weeks of infection. Most migrating larvae were recovered from carcasses, although three were found in the brains of two infected mice. These three larvae were determined to be T. canis by PCR, revealing that not only T. cati, but also T. canis eggs could be found in sandpits and, further, that eggs recovered from sandpits have the ability to invade a paratenic host.

  18. Use of habitat odour by host-seeking insects.

    Science.gov (United States)

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  19. Data hosting infrastructure for primary biodiversity data

    Science.gov (United States)

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  20. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  2. Influence of the host contact sequence on the outcome of competition among aspergillus flavus isolates during host tissue invasion.

    Science.gov (United States)

    Mehl, H L; Cotty, P J

    2011-03-01

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion.

  3. Carp erythrodermatitis : host defense-pathogen interaction

    NARCIS (Netherlands)

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the

  4. Gastrointestinal function in the parasitized host

    International Nuclear Information System (INIS)

    Castro, G.A.

    1981-01-01

    Emphasis in this review is on (1) digestive-absorptive, secretory and smooth muscle functions altered by gastrointestinal (GI) parasites, (2) mechanisms by which parasites induce changes, and (3) the influence of parasite-induced alterations on the health of the host. Examples involving laboratory and domestic animals indicate that inflammation is an important factor in pathological alterations in epithelial and smooth muscle tissues throughout the alimentary canal. Observations on GI secretory activity reveal an influence of parasites on the host GI endocrine system. It is argued that assessments of the significance of parasite-induced changes on the host must be balanced with the adaptive potential and 'reserve capacity' of the GI system. In this regard host immunity should be considered a specific adaptation. Some tracer studies are mentioned marginally, such as the use of 14 C polyethylene glycol to estimate the direction of not fluid movement in the small intestine, and the use of 51 Cr to demonstrate the significantly faster intestinal transit in Trichinella spiralis infected animals

  5. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The Potential for Hosted Payloads at NASA

    Science.gov (United States)

    Andraschko, Mark; Antol, Jeffrey; Baize, Rosemary; Horan, Stephen; Neil, Doreen; Rinsland, Pamela; Zaiceva, Rita

    2012-01-01

    The 2010 National Space Policy encourages federal agencies to actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including...hosting government capabilities on commercial spacecraft. NASA's Science Mission Directorate has taken an important step towards this goal by adding an option for hosted payload responses to its recent Announcement of Opportunity (AO) for Earth Venture-2 missions. Since NASA selects a significant portion of its science missions through a competitive process, it is useful to understand the implications that this process has on the feasibility of successfully proposing a commercially hosted payload mission. This paper describes some of the impediments associated with proposing a hosted payload mission to NASA, and offers suggestions on how these impediments might be addressed. Commercially hosted payloads provide a novel way to serve the needs of the science and technology demonstration communities at a fraction of the cost of a traditional Geostationary Earth Orbit (GEO) mission. The commercial communications industry launches over 20 satellites to GEO each year. By exercising this repeatable commercial paradigm of privately financed access to space with proven vendors, NASA can achieve science goals at a significantly lower cost than the current dedicated spacecraft and launch vehicle approach affords. Commercial hosting could open up a new realm of opportunities for NASA science missions to make measurements from GEO. This paper also briefly describes two GEO missions recommended by the National Academies of Science Earth Science Decadal Survey, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Precipitation and All-weather Temperature and Humidity (PATH) mission. Hosted payload missions recently selected for implementation by the Office of the Chief Technologist are also discussed. Finally, there are

  7. Host conservatism or host specialization? Patterns of fungal diversification are influenced by host specificity in Ophiognomonia (Gnomoniaceae, Diaporthales)

    Science.gov (United States)

    Species of Ophiognomonia (Gnomoniaceae) are perithecial fungi that occur as endophytes, pathogens, and latent saprobes on leaf and stem tissue of plants in the Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. In this study host plant patte...

  8. Fluorescence-Based Comparative Binding Studies of the Supramolecular Host Properties of PAMAM Dendrimers Using Anilinonaphthalene Sulfonates: Unusual Host-Dependent Fluorescence Titration Behavior

    Directory of Open Access Journals (Sweden)

    Natasa Stojanovic

    2010-04-01

    Full Text Available This work describes the fluorescence enhancement of the anilinonaphthalene sulfonate probes 1,8-ANS, 2,6-ANS, and 2,6-TNS via complexation with PAMAM dendrimer hosts of Generation 4, 5 and 6. The use of this set of three very closely related probes allows for comparative binding studies, with specific pairs of probes differing only in shape (1,8-ANS and 2,6-ANS, or in the presence of a methyl substituent (2,6-TNS vs. 2,6-ANS. The fluorescence of all three probes was significantly enhanced upon binding with PAMAM dendrimers, however in all cases except one, a very unusual spike was consistently observed in the host fluorescence titration plots (fluorescence enhancement vs. host concentration at low dendrimer concentration. This unprecedented fluorescence titration curve shape makes fitting the data to a simple model such as 1:1 or 2:1 host: guest complexation very difficult; thus only qualitative comparisons of the relative binding of the three guests could be made based on host titrations. In the case of G4 and G5 dendrimers, the order of binding strength was qualitatively determined to be 1,8-ANS < 2,6-ANS indicating that the more streamlined 2,6-substituted probes are a better match for the dendrimer cavity shape than the bulkier 1,8-substituted probe. This order of binding strength was also indicated by double fluorometric titration experiments, involving both host and guest titrations. Further double fluorometric titration experiments on 2,6-ANS in G4 dendrimer revealed a host concentration-dependent change in the nature of the host: guest complexation, with multiple guests complexed per host molecule at very low host concentrations, but less than one guest per host at higher concentrations.

  9. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    Science.gov (United States)

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  10. Proteinaceous molecules mediating Bifidobacterium-host interactions

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz

    2016-08-01

    Full Text Available Bifidobacteria are commensal microoganisms found in the gastrointestinal tract.Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs.

  11. A parasitic selfish gene that affects host promiscuity.

    Science.gov (United States)

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  12. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    Directory of Open Access Journals (Sweden)

    Brittany F Sears

    Full Text Available Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo terrestris (southern toad, Hyla squirella (squirrel tree frog, Lithobates ( = Rana sphenocephala (southern leopard frog, and Osteopilus septentrionalis (Cuban tree frog. These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.

  13. [A new parasitological index for the estimation of peculiarities of the relationships between parasite and its host, and biotope of the host].

    Science.gov (United States)

    Bogdanov, I I; Chachina, S B; Korallo, N P; Dmitriev, V V

    2006-01-01

    A new parasitological index (hostal-topical index) for the estimation of the degree of ectoparasite's relationship with its host and biotope of the host is proposed: [formula: see text], where [formula: see text]--hostal-topical index; n--amount of ectoparasites of the given species on the given host species in the biotope; N--amount of ectoparasites of all species from the given taxonomic group on the given host species in the biotope; n1--amount of hosts of the given species in the biotope; N1--amount of hosts of all species from the given taxonomic group in the biotope; n2--amount of ectoparasites of the given species in the biotope; N2--amount of ectoparasites of all species from the given taxonomic group in the biotope. Values [formula: see text] 0.5 indicate a significant relationship with the host. By means of this index we have analyzed peculiarity of several parasitic species of fleas and gamasid mites to their hosts, biotopes, and biotope through the host. As it was found on the materials from different native zones and subzones of the Omsk Region (Western Siberia, Russia), values of the hostal-topical index for polyhostal parasitic species are lesser than those for oligohostal species. Values of this index can be different for the same species in the different native zones and subzones as well as in the different biotopes of the same native zone (subzone).

  14. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  15. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi

    OpenAIRE

    Miller, Christine L.; Rajasekhar Karna, S. L.; Seshu, J.

    2013-01-01

    The RpoS transcription factor of Borrelia burgdorferi is a “gatekeeper” because it activates genes required for spirochetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate-responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are e...

  16. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission.

    Science.gov (United States)

    Pucciarelli, M Graciela; García-Del Portillo, Francisco

    2017-07-01

    More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.

  17. Host Range Specificity in Verticillium dahliae.

    Science.gov (United States)

    Bhat, R G; Subbarao, K V

    1999-12-01

    ABSTRACT Verticillium dahliae isolates from artichoke, bell pepper, cabbage, cauliflower, chili pepper, cotton, eggplant, lettuce, mint, potato, strawberry, tomato, and watermelon and V. albo-atrum from alfalfa were evaluated for their pathogenicity on all 14 hosts. One-month-old seedlings were inoculated with a spore suspension of about 10(7) conidia per ml using a root-dip technique and incubated in the greenhouse. Disease incidence and severity, plant height, and root and shoot dry weights were recorded 6 weeks after inoculation. Bell pepper, cabbage, cauliflower, cotton, eggplant, and mint isolates exhibited host specificity and differential pathogenicity on other hosts, whereas isolates from artichoke, lettuce, potato, strawberry, tomato, and watermelon did not. Bell pepper was resistant to all Verticillium isolates except isolates from bell pepper and eggplant. Thus, host specificity exists in some isolates of V. dahliae. The same isolates were characterized for vegetative compatibility groups (VCGs) through complementation of nitrate nonutilizing (nit) mutants. Cabbage and cauliflower isolates did not produce nit mutants. The isolate from cotton belonged to VCG 1; isolates from bell pepper, eggplant, potato, and tomato, to VCG 4; and the remaining isolates, to VCG 2. These isolates were also analyzed using the random amplified polymorphic DNA (RAPD) method. Forty random primers were screened, and eighteen of them amplified DNA from Verticillium. Based on RAPD banding patterns, cabbage and cauliflower isolates formed a unique group, distinct from other V. dahliae and V. albo-atrum groups. Minor genetic variations were observed among V. dahliae isolates from other hosts, regardless of whether they were host specific or not. There was no correlation among pathogenicity, VCGs, and RAPD banding patterns. Even though the isolates belonged to different VCGs, they shared similar RAPD profiles. These results suggest that management of Verticillium wilt in some crops

  18. Host tree resistance against the polyphagous

    Science.gov (United States)

    W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer

    2004-01-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...

  19. Unique physiology of host-parasite interactions in microsporidia infections.

    Science.gov (United States)

    Williams, Bryony A P

    2009-11-01

    Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.

  20. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...

  1. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    Science.gov (United States)

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  2. Host habitat assessment by a parasitoid using fungal volatiles

    Directory of Open Access Journals (Sweden)

    Steidle Johannes LM

    2007-02-01

    Full Text Available Abstract Background The preference – performance hypothesis predicts that oviposition preference of insects should correlate with host suitability for offspring development. Therefore, insect females have to be able to assess not only the quality of a given host but also the environmental conditions of the respective host habitat. Chemical cues are a major source of information used by insects for this purpose. Primary infestation of stored grain by stored product pests often favors the intense growth of mold. This can lead to distinct sites of extreme environmental conditions (hot-spots with increased insect mortality. We studied the influence of mold on chemical orientation, host recognition, and fitness of Lariophagus distinguendus, a parasitoid of beetle larvae developing in stored grain. Results Volatiles of wheat infested by Aspergillus sydowii and A. versicolor repelled female parasitoids in an olfactometer. Foraging L. distinguendus females are known to be strongly attracted to the odor of larval host feces from the granary weevil Sitophilus granarius, which may adhere in remarkable amounts to the surface of the grains. Feces from moldy weevil cultures elicited neutral responses but parasitoids clearly avoided moldy feces when non-moldy feces were offered simultaneously. The common fungal volatile 1-octen-3-ol was the major component of the odor of larval feces from moldy weevil cultures and repelled female parasitoids at naturally occurring doses. In bioassays investigating host recognition behavior of L. distinguendus, females spent less time on grains containing hosts from moldy weevil cultures and showed less drumming and drilling behavior than on non-moldy controls. L. distinguendus had a clearly reduced fitness on hosts from moldy weevil cultures. Conclusion We conclude that L. distinguendus females use 1-octen-3-ol for host habitat assessment to avoid negative fitness consequences due to secondary mold infestation of host

  3. Host country attractiveness for CDM non-sink projects

    International Nuclear Information System (INIS)

    Jung, Martina

    2006-01-01

    In the present study, CDM host countries are classified according to their attractiveness for CDM non-sink projects by using cluster analysis. The attractiveness of host countries for CDM non-sink projects is described by three indicators: mitigation potential, institutional CDM capacity and general investment climate. The results suggest that only a small proportion of potential host countries will attract most of the CDM investment. The CDM (non-sink) stars are China, India, Brazil, Argentina, Mexico, South Africa, Indonesia and Thailand. They are followed by attractive countries like Costa Rica, Trinidad and Tobago, Mongolia, Panama, and Chile. While most of the promising CDM host countries are located in Latin America and Asia, the general attractiveness of African host countries is relatively low (with the exception of South Africa). Policy implications of this rather inequitable geographical distribution of CDM project activities are discussed briefly

  4. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  5. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    Directory of Open Access Journals (Sweden)

    Koella Jacob C

    2009-03-01

    Full Text Available Abstract Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing or 14 (late killing days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations, parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host can lead to the evolution of distinct parasite strategies.

  6. The Case for GEO Hosted SSA Payloads

    Science.gov (United States)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  7. Host partitioning by parasites in an intertidal crustacean community.

    Science.gov (United States)

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  8. A matching-allele model explains host resistance to parasites.

    Science.gov (United States)

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Lingyan; Li, Shitao

    2017-08-01

    The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus-host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV-host interactions and how these interactions contribute to host defense and viral pathogenesis.

  10. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  11. Transcriptome profiling during a natural host-parasite interaction.

    Science.gov (United States)

    McTaggart, Seanna J; Cézard, Timothée; Garbutt, Jennie S; Wilson, Phil J; Little, Tom J

    2015-08-28

    Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.

  12. The path to host extinction can lead to loss of generalist parasites.

    Science.gov (United States)

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  14. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface.

    Directory of Open Access Journals (Sweden)

    Vanda Juranic Lisnic

    Full Text Available Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq. We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus

  15. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  16. Ontology-based representation and analysis of host-Brucella interactions.

    Science.gov (United States)

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  17. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  18. Host defence peptides in human burns.

    Science.gov (United States)

    Kaus, Aljoscha; Jacobsen, Frank; Sorkin, Michael; Rittig, Andrea; Voss, Bruno; Daigeler, Adrien; Sudhoff, Holger; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2008-02-01

    The goal of this study was to analyse expression profiles of human epithelial host defence peptides in burned and unburned skin tissue, samples of which were obtained during debridements and snap-frozen in liquid nitrogen. Total RNA was isolated, and cDNA of epithelial host defence peptides and proteins (hCAP-18/LL-37, hBD1-hBD4, dermcidin, S100A7/psoriasin and RNAse7) was quantified by qRT-PCR. In situ hybridisation and immunohistochemical staining localised gene expression of hCAP-18/LL-37, hBD2 and hBD3 in histological sections. Most of the analysed host defence peptides and proteins showed higher mRNA levels in partial-thickness burns than in unburned tissue. In situ hybridisation revealed expression of hCAP-18/LL-37, hBD2 and hBD3 at the surface of burns that was independent of burn depth. However, the finding of higher host defence peptide gene expression rates does not correlate with the incidence of wound infection in burns. We hypothesise that the epithelial innate immune response in burns is complex.

  19. Modulation of Host Learning in Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A

    2018-02-05

    How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Exploring NAD+ metabolism in host-pathogen interactions.

    Science.gov (United States)

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  1. Host Plants of Xylosandrus mutilatus in Mississippi

    International Nuclear Information System (INIS)

    Stone, W.D.; Nebeker, T.E.; Gerard, P.D.

    2007-01-01

    Host range of Xylosandrus mutilatus (Blandford) in North America is reported here for the first time. Descriptive data such as number of attacks per host, size of stems at point of attacks, and height of attacks above ground are presented. Hosts observed in Mississippi were Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux, and Vitus rotundifolia Michaux. Liquidamber styraciflua had significantly more successful attacks, significantly higher probability of attacks, and significantly higher number of adult beetles per host tree than did Carya spp., A. rubrum, and L. tulipifera. This information is relevant in determining the impact this exotic beetle may have in nurseries, urban areas, and other forestry systems where this beetle becomes established. (author) [es

  2. Host factors influencing viral persistence

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, A; Ørding Andreasen, Susanne

    2000-01-01

    host were used. Our results reveal that very different outcomes may be observed depending on virus strain and immunocompetence of the host. Thus while CD4+ cells are not critical during the initial phase of virus control, infectious virus reappear in mice lacking CD4+ cells, B cells or CD40 ligand...... replication, mice lacking the ability to produce interferon-gamma may develop either a severe, mostly fatal, T-cell mediated wasting syndrome or a chronic infection characterized by long-term coexistence of antiviral cytotoxic T lymphocytes and infectious virus. Mathematical modelling indicates...

  3. Does host complement kill Borrelia burgdorferi within ticks?

    Science.gov (United States)

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M

    2003-02-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within the vector. The Lyme disease outer surface protein A (OspA) vaccine is a transmission-blocking vaccine that targets spirochetes in the vector. In experiments with mice hyperimmunized with OspA, complement was not required to kill spirochetes within nymphs and to block transmission from nymphs to the vaccinated host. However, host complement did enhance the ability of OspA antibody to block larvae from acquiring spirochetes. Thus, the effects of OspA antibody on nymphal transmission and larval acquisition appear to be based on different mechanisms.

  4. How the Host Nation's Boundary Drawing Affects Immigrants' Belonging

    DEFF Research Database (Denmark)

    Simonsen, Kristina Bakkær

    2016-01-01

    Across Western democracies, the place for newcomers in the host society is debated, involving often a questioning of immigrants’ belonging to their new nation. This article argues that immigrants’ feeling of host national belonging depends on how the host nation imagines its community and its...

  5. Wolbachia mediate variation of host immunocompetence.

    Directory of Open Access Journals (Sweden)

    Christine Braquart-Varnier

    Full Text Available BACKGROUND: After decades during which endosymbionts were considered as silent in their hosts, in particular concerning the immune system, recent studies have revealed the contrary. In the present paper, we addressed the effect of Wolbachia, the most prevalent endosymbiont in arthropods, on host immunocompetence. To this end, we chose the A. vulgare-Wolbachia symbiosis as a model system because it leads to compare consequences of two Wolbachia strains (wVulC and wVulM on hosts from the same population. Moreover, A. vulgare is the only host-species in which Wolbachia have been directly observed within haemocytes which are responsible for both humoral and cellular immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We sampled gravid females from the same population that were either asymbiotic, infected with wVulC, or infected with wVulM. The offspring from these females were tested and it was revealed that individuals harbouring wVulC exhibited: (i lower haemocyte densities, (ii more intense septicaemia in their haemolymph and (iii a reduced lifespan as compared to individuals habouring wVulM or asymbiotic ones. Therefore, individuals in this population of A. vulgare appeared to suffer more from wVulC than from wVulM. Symbiotic titer and location in the haemocytes did not differ for the two Wolbachia strains showing that these two parameters were not responsible for differences observed in their extended phenotypes in A. vulgare. CONCLUSION/SIGNIFICANCE: The two Wolbachia strains infecting A. vulgare in the same population induced variation in immunocompetence and survival of their hosts. Such variation should highly influence the dynamics of this host-symbiont system. We propose in accordance with previous population genetic works, that wVulM is a local strain that has attenuated its virulence through a long term adaptation process towards local A. vulgare genotypes whereas wVulC, which is a widespread and invasive strain, is not locally adapted.

  6. Multifaceted effects of host plants on entomopathogenic nematodes.

    Science.gov (United States)

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016

  7. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  8. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  9. Characterization of the Sulfolobus host-SSV2 virus interaction

    DEFF Research Database (Denmark)

    Contursi, P.; Jensen, S.; Aucelli, T.

    2006-01-01

    The Sulfolobus spindle virus, SSV2, encodes a tyrosine integrase which furthers provirus formation in host chromosomes. Consistently with the prediction made during sequence analysis, integration was found to occur in the downstream half of the tRNAGly (CCC) gene. In this paper we report the find......The Sulfolobus spindle virus, SSV2, encodes a tyrosine integrase which furthers provirus formation in host chromosomes. Consistently with the prediction made during sequence analysis, integration was found to occur in the downstream half of the tRNAGly (CCC) gene. In this paper we report...... during the growth of the natural host REY15/4, the cellular content of SSV2 DNA remains fairly low throughout the incubation of the foreign host. The accumulation of episomal DNA in the former case cannot be traced to decreased packaging activity because of a simultaneous increase in the virus titre...... in the medium. In addition, the interaction between SSV2 and its natural host is characterized by the concurrence of host growth inhibition and the induction of viral DNA replication. When this virus-host interaction was investigated using S. islandicus REY15A, a strain which is closely related to the natural...

  10. The Poxvirus C7L Host Range Factor Superfamily

    OpenAIRE

    Liu, Jia; Rothenburg, Stefan; McFadden, Grant

    2012-01-01

    Host range factors, expressed by the poxvirus family, determine the host tropism of species, tissue, and cell specificity. C7L family members exist in the genomes of most sequenced mammalian poxviruses, suggesting an evolutionarily conserved effort adapting to the hosts. In general, C7L orthologs influence the host tropism in mammalian cell culture, and for some poxviruses it is essential for the complete viral life cycle in vitro and in vivo. The C7L family members lack obvious sequence homo...

  11. Tree phylogenetic diversity promotes host-parasitoid interactions.

    Science.gov (United States)

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).

  12. Serpin functions in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Jialing Bao

    2018-04-01

    Full Text Available Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.

  13. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  15. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  16. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  17. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  18. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  19. Role of volatiles emitted by host and non-host plants in the foraging behaviour of Dentichasmias busseolae, a pupal parasitoid of the spotted stemborer Chilo partellus

    NARCIS (Netherlands)

    Gohole, L.S.; Overholt, W.A.; Khan, Z.R.; Vet, L.E.M.

    2003-01-01

    The role of volatiles from stemborer host and non-host plants in the host-finding process of Dentichasmias busseolae Heinrich (Hymenoptera: Ichneumonidae) a pupal parasitoid of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) was studied. The non-host plant, molasses grass (Melinis minutiflora

  20. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  1. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    Science.gov (United States)

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  2. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  3. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  4. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  5. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    DEFF Research Database (Denmark)

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.

    2015-01-01

    -mass main-sequence hosts, as well as for the cohort of “full-frame image” stars (observed at a 30-min cadence). The latter cohort offers the exciting prospect of conducting asteroseismology on a significant number of evolved hosts. Also, the brightest solar-type hosts with asteroseismology will become some...

  6. Evolution in action : host race formation in Galerucella nymphaeae

    NARCIS (Netherlands)

    Pappers, Stephanie Maria

    2001-01-01

    A host race is a population which is partially reproductively isolated as a direct consequence of adaptation to a certain host. For host race formation to occur five conditions should be met. First of all, the populations should occur in sympatry, which means that they co-occur within the normal

  7. Host-pathogen interactions: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  8. Social Host Ordinances and Policies. Prevention Update

    Science.gov (United States)

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011

    2011-01-01

    Social host liability laws (also known as teen party ordinances, loud or unruly gathering ordinances, or response costs ordinances) target the location in which underage drinking takes place. Social host liability laws hold noncommercial individuals responsible for underage drinking events on property they own, lease, or otherwise control. They…

  9. Biofilms and host response - helpful or harmful

    DEFF Research Database (Denmark)

    Moser, Claus; Pedersen, Hannah Trøstrup; Lerche, Christian Johann

    2017-01-01

    infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response...

  10. Study of GRBs Hosts Galaxies Vicinity Properties

    Science.gov (United States)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  11. Collective defence portfolios of ant hosts shift with social parasite pressure.

    Science.gov (United States)

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-09-22

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  13. Does Host Complement Kill Borrelia burgdorferi within Ticks?

    OpenAIRE

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M.

    2003-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within ...

  14. Continuous host-macroparasite models with application to aquaculture

    Directory of Open Access Journals (Sweden)

    Catherine Bouloux Marquet

    2004-11-01

    Full Text Available We study a continuous deterministic host-macroparasite system which involves populations of hosts, parasites, and larvae. This system leads to a countable number of partial differential equations that under certain hypotheses, is reduced to finitely many equations. Also we assume hypotheses to close the system and to define the global dynamics for the hosts. Then, we analyze the spatially homogeneous model without demography (aquaculture hypothesis, and show some preliminary results for the spatially structured model.

  15. A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation.

    Science.gov (United States)

    Zúñiga, Martha C

    2002-09-01

    The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia.

  16. The predictability of phytophagous insect communities: host specialists as habitat specialists.

    Directory of Open Access Journals (Sweden)

    Jörg Müller

    Full Text Available The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of

  17. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.).

    Science.gov (United States)

    Miller, N J; Kift, N B; Tatchell, G M

    2005-05-01

    Pemphigus bursarius is a host-alternating aphid in which annual rounds of sexual reproduction on its primary host, Populus nigra, are interspersed with parthenogenesis on a range of secondary hosts. Evidence was sought for the existence of genetically distinct populations, associated with different secondary hosts, in P. bursarius. Microsatellite markers revealed that genetically distinct populations were present on three different secondary host species. Microsatellites were also used, in conjunction with mitochondrial DNA sequence variation, to investigate the relationships between aphids on Populus, following sexual reproduction, and those on the secondary hosts. Evidence was found for a distinct, cyclically parthenogenetic population that exploited Lactuca sativa as its secondary host. In contrast, populations associated with Matricaria inodora appeared to be largely composed of obligate parthenogens or may even have been another species of Pemphigus. Populations on Lapsana communis appeared to be a mixture of cyclical and obligate parthenogens and were more genetically heterogeneous than those on other secondary hosts, possibly due to founder effects. Experiments to measure the performance of P. bursarius clones on different secondary hosts were inconclusive, failing to demonstrate either the presence or absence of adaptations to secondary hosts.

  19. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  20. Host Specialization in the Charcoal Rot Fungus, Macrophomina phaseolina.

    Science.gov (United States)

    Su, G; Suh, S O; Schneider, R W; Russin, J S

    2001-02-01

    ABSTRACT To investigate host specialization in Macrophomina phaseolina, the fungus was isolated from soybean, corn, sorghum, and cotton root tissue and soil from fields cropped continuously to these species for 15 years in St. Joseph, LA. Chlorate phenotype of each isolate was determined after growing on a minimal medium containing 120 mM potassium chlorate. Consistent differences in chlorate sensitivity were detected among isolates from different hosts and from soil versus root. To further explore genetic differentiation among fungal isolates from each host, these isolates were examined by restriction fragment length polymorphism and random amplified polymorphic DNA (RAPD) analysis. No variations were observed among isolates in restriction patterns of DNA fragments amplified by polymerase chain reaction covering the internal transcribed spacer region, 5.8S rRNA and part of 25S rRNA, suggesting that M. phaseolina constitutes a single species. Ten random primers were used to amplify the total DNA of 45 isolates, and banding patterns resulting from RAPD analysis were compared with the neighbor-joining method. Isolates from a given host were genetically similar to each other but distinctly different from those from other hosts. Chlorate-sensitive isolates were distinct from chlorate-resistant isolates within a given host. In greenhouse tests, soybean, sorghum, corn, and cotton were grown separately in soil infested with individual isolates of M. phaseolina that were chosen based on their host of origin and chlorate phenotype. Root colonization and plant weight were measured after harvesting. More colonization of corn roots occurred when corn was grown in soil containing corn isolates compared with isolates from other hosts. However, there was no host specialization in isolates from soybean, sorghum, or cotton. More root colonization in soybean occurred with chlorate-sensitive than with chlorate-resistant isolates.

  1. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  2. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  3. Cockchafer larvae smell host root scents in soil.

    Directory of Open Access Journals (Sweden)

    Sonja Weissteiner

    Full Text Available In many insect species olfaction is a key sensory modality. However, examination of the chemical ecology of insects has focussed up to now on insects living above ground. Evidence for behavioral responses to chemical cues in the soil other than CO(2 is scarce and the role played by olfaction in the process of finding host roots below ground is not yet understood. The question of whether soil-dwelling beetle larvae can smell their host plant roots has been under debate, but proof is as yet lacking that olfactory perception of volatile compounds released by damaged host plants, as is known for insects living above ground, occurs. Here we show that soil-dwelling larvae of Melolontha hippocastani are well equipped for olfactory perception and respond electrophysiologically and behaviorally to volatiles released by damaged host-plant roots. An olfactory apparatus consisting of pore plates at the antennae and about 70 glomeruli as primary olfactory processing units indicates a highly developed olfactory system. Damage induced host plant volatiles released by oak roots such as eucalyptol and anisol are detected by larval antennae down to 5 ppbv in soil air and elicit directed movement of the larvae in natural soil towards the odor source. Our results demonstrate that plant-root volatiles are likely to be perceived by the larval olfactory system and to guide soil-dwelling white grubs through the dark below ground to their host plants. Thus, to find below-ground host plants cockchafer larvae employ mechanisms that are similar to those employed by the adult beetles flying above ground, despite strikingly different physicochemical conditions in the soil.

  4. Volatile chemical cues guide host location and host selection by parasitic plants

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2006-01-01

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...

  5. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Fish, fans and hydroids: host species of pygmy seahorses

    Directory of Open Access Journals (Sweden)

    Bastian Reijnen

    2011-06-01

    Full Text Available An overview of the octocoral and hydrozoa host species of pygmy seahorses is provided, based on recently collected data for H. bargibanti, H. denise and H. pontohi and literature records. Seven new interspecific host-species associations are recognized, and an overview of the so far documented number of host species is given. Detailed re-examination of octocoral type material and a review of the taxonomic history are included, as a baseline for further studies. The host-specificity and colour morphs of pygmy seahorses are discussed, as well as the validity of (previous identifications and conservations issues.

  7. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  8. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  9. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    Science.gov (United States)

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  10. Establishing the relative importance of sympatric definitive hosts in the transmission of the sealworm, Pseudoterranova decipiens: a host-community approach

    Directory of Open Access Journals (Sweden)

    F Javier Aznar

    2001-11-01

    Full Text Available The importance of a given host to a particular parasite can be determined according to three different criteria: host preference, host physiological suitability and host contribution to transmission. Most studies on the sealworm Pseudoterranova decipiens have focussed on the latter factor, but few attempts have been made to develop a quantitative transmission model evaluating the relative importance of each host. The purpose of this study was to propose a flow-chart model to study sealworm transmission within a seal community. The model was applied to hypothetical data of four seal species acting as definitive hosts of P. decipiens sensu stricto in eastern Canada: harp seal Phoca groenlandica, harbour seal P. vitulina, grey seal Halichoerus grypus and hooded seal Cystophora cristata. The dynamics of the model was studied using population estimates from 1990 to 1996. To illustrate the interrelationship of the seal populations in the flow dynamics, the model’s behaviour was explored by manipulation of the harp seal population size. The results showed that grey seals accounted by far for most transmission from and to the seals. The harbour seal population also sustained a biologically significant proportion of the flow, whereas the role of hooded and harp seals seemed negligible despite their large population sizes. The hypothetical removal of the harp seal population resulted in small increases in the relative flows to the other seals. These results conform to previous qualitative assessments on the relative importance of these seal species in sealworm transmission. The model provided some heuristic rules useful to understand transmission patterns. The data suggested that the harbour seal population should be about twice that of the grey seals to account for a larger share of transmission than grey seals. Although this is unlikely to occur at a large geographic scale, harbour seals outnumber grey seals in some areas and, therefore, the role of

  11. PHIDIAS- Pathogen Host Interaction Data Integration and Analysis

    Indian Academy of Sciences (India)

    PHIDIAS- Pathogen Host Interaction Data Integration and Analysis- allows searching of integrated genome sequences, conserved domains and gene expressions data related to pathogen host interactions in high priority agents for public health and security ...

  12. Tracer techniques for the study of host-parasite relations

    International Nuclear Information System (INIS)

    Mendgen, K.

    1975-01-01

    Autoradiographic techniques have been used to study the interaction of many facultative and obligate parasites, including viruses. After feeding the host plant with labelled substrates, labelled material accumulates in the infected cells and seems to penetrate into structures of the parasite. After labelling the parasite, its influence on the host may be studied. We use this technique to study the interaction of host (bean) and parasite (bean rust) during the infection process. After infection with uredospores labelled with tritiated orotic acid, the radioactivity is retained almost completely within the young haustorium at 22 h after inoculation. This may indicate a very small influence of the parasite on its compatible host. In incompatible host-parasite combinations, the infection process proceeds in a different way. The use of autoradiographic techniques to compare combinations of varying compatibilities will be discussed. (author)

  13. The impact of home-host cultural distance on foreign affiliate sales : The moderating role of cultural variation within host countries

    NARCIS (Netherlands)

    Beugelsdijk, Sjoerd; Slangen, Arjen; Maseland, Robbert; Onrust, Marjolijn

    Research on how multinational firms deal with home-host cultural differences argues that cultural differences are minimized and assumes that foreign cultures are homogenous. In this paper we relax the cultural homogeneity assumption. In the presence of cultural variation in host countries the

  14. A place for host-microbe symbiosis in the comparative physiologist's toolbox.

    Science.gov (United States)

    Kohl, Kevin D; Carey, Hannah V

    2016-11-15

    Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans. © 2016. Published by The Company of Biologists Ltd.

  15. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    Science.gov (United States)

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  16. Dot enzyme-linked immunosorbent assay (ELISA) for the detection of Toxocara infection using a rat model.

    Science.gov (United States)

    Paller, Vachel Gay V; Besana, Cyrelle M; Valdez, Isabel Kristine M

    2017-12-01

    Toxocariasis is a zoonotic disease usually caused by dog and cat roundworms, Toxocara canis and T. cati. Detection and diagnosis is difficult in paratenic and accidental hosts, including humans, as they cannot be detected through conventional methods such as fecal examination. Diagnosis therefore relies on immunological methods and molecular methods such as enzyme-linked immunosorbent assay (ELISA) and Western Blot, which are both time-consuming and requires sophisticated equipment. In the Philippines, only a few studies are available on Toxocara seroprevalence. Therefore, there is a need to adapt methods for serodiagnosis of Toxocara infection in humans for the Philippine setting. A dot enzyme linked immunosorbent assay (dot-ELISA) was standardized using T. canis excretory-secretory antigens. Test sera were collected from laboratory rats (Sprague-Dawley strain) experimentally infected with embryonated eggs of T. canis and Ascaris suum as well as rice field rats naturally infected with Taenia taeniaeformis and Nippostrongylus sp. Optimum conditions used were 20 µg/ml antigen concentration and 1:10 serum dilution. The sensitivity, specificity, positive, and negative predictive values were 90% (95% CI 55.5-99.7%), 100% (95% CI 69.2-100.0%), 100% (95% CI 66.4-100%), and 90.9% (95% CI 58.7-99.8%), respectively. Dot-ELISA has the potential to be developed as a cheaper, simpler, and more practical method for detection of anti- Toxocara antibodies on accidental hosts. This is a preliminary study conducted on experimental animals before optimization and standardization for human serum samples.

  17. New and already known acanthocephalans from amphibians and reptiles in Vietnam, with keys to species of Pseudoacanthocephalus Petrochenko, 1956 (Echinorhynchidae) and Sphaerechinorhynchus Johnston and Deland, 1929 (Plagiorhynchidae).

    Science.gov (United States)

    Amin, Omar M; Ha, Ngyuen Van; Heckmann, Richard A

    2008-02-01

    Adults of 2 new species in 2 orders of acanthocephalans obtained from the intestines of terrestrial amphibians and reptiles collected between 1998 and 2004 in Vietnam are described here. Pseudoacanthocephalus nguyenthileae n. sp. (Palaeacnthocephala: Echinorhynchidae) was collected from 5 species of terrestrial amphibians: (1) the common Sunda toad Bufo melanostictus Schneider (Bufonidae); (2) Paa verucospinosa (Bourret); (3) Gunther's Amoy frog Rana guentheri Boulenger; (4) Taipei frog R. taipehensis Denburgh (Ranidae), and (5) the Burmese whipping frog Polypedates mutus (Smith) (Racophoridae); as well as from the Chinese cobra Naja atra Cantor (Reptilia: Elapidae) and house gecko Hemidactylus frenatus Dumeril and Bibron (Reptilia: Gekkonidae). Sphaerechinorhynchus maximesospinus n. sp. (Plagiorhynchidae: Sphaerechinorhynchinae) was isolated from a king cobra Ophiophagus hannah (cantor) (Reptilia: Elapidae). Cystacanths of Porrorchis houdemeri (Joyeux and Baer, 1935) Schmidt and Kuntz, 1967 (Plagiorhynchidae: Porrorchinae) obtained from the mesenteries of banded krait Bungarus fasciatus (Schneider) (Reptilia: Elapidae), a paratenic host, are reported for the first time. Keys to the species of Pseudoacanthocephalus and Sphaerechinorhynchus are included. Characteristic features distinguishing the new species from related taxa include: P. nguyenthileae has 15-19 (usually 16-18) proboscis hook rows, each with 5-6 hooks that progressively increase in length and size posteriorly. The largest, intermediate, and smallest proboscis hooks of S. maximesospinus are the middle, anterior, and posterior hooks, respectively; the proboscis and neck are enclosed in a membrane. Morphometric characteristics of P. nguyenthileae show host-related variability.

  18. Species associations among larval helminths in an amphipod intermediate host.

    Science.gov (United States)

    Dezfuli, B S; Giari, L; Poulin, R

    2000-10-01

    Larval helminths that share the same intermediate host may or may not also share the same definitive hosts. If one or more of these helminth species can manipulate the phenotype of the intermediate host, there can be great advantages or severe costs for other helminths resulting from co-occurring with a manipulator, depending on whether they have the same definitive host or not. Among 2372 specimens of the amphipod Echinogammarus stammeri collected from the river Brenta, northern Italy, there was a positive association between two acanthocephalan species with the same fish definitive hosts, the relatively common Pomphorhynchus laevis and the much less prevalent Acanthocephalus clavula. The number of cystacanths of P. laevis per infected amphipod, which ranged from one to five, did not influence the likelihood that the amphipod would also host A. clavula. A third acanthocephalan species, Polymorphus minutus,which matures in birds, showed no association with either of the two other species. These results show that associations among helminth species in intermediate hosts are not random, and are instead the product of selection favouring certain pathways of transmission.

  19. Host ant independent oviposition in the parasitic butterfly Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias A; Nash, David Richard

    2010-01-01

    to host-ant nests and non-host-ant nests, and the number and position of eggs attached were assessed. Our results show no evidence for host-ant-based oviposition in M. alcon, but support an oviposition strategy based on plant characteristics. This suggests that careful management of host-ant distribution......Parasitic Maculinea alcon butterflies can only develop in nests of a subset of available Myrmica ant species, so female butterflies have been hypothesized to preferentially lay eggs on plants close to colonies of the correct host ants. Previous correlational investigations of host......-ant-dependent oviposition in this and other Maculinea species have, however, shown equivocal results, leading to a long-term controversy over support for this hypothesis. We therefore conducted a controlled field experiment to study the egg-laying behaviour of M. alcon. Matched potted Gentiana plants were set out close...

  20. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    Science.gov (United States)

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  1. The Inflammasome in Host Defense

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2009-12-01

    Full Text Available Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  2. Marek’s disease herpesvirus vaccines integrate into chicken host chromosomes yet lack a virus-host phenotype associated with oncogenic transformation

    Science.gov (United States)

    Marek's disease (MD) is a lymphotrophic and oncogenic disease of chickens that can lead to death in susceptible and unimmunized host birds. The causative pathogen, Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus, integrates into host genome near the telomeres during viral latency an...

  3. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  4. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  5. New host records of Aglaomelissa duckei and a compilation of host associations of Ericrocidini bees (Hymenoptera: Apidae)

    OpenAIRE

    Léo C. Rocha-Filho; Élder F. Morato; Gabriel A. R. Melo

    2009-01-01

    For the first time, confirmed host records are reported for the monotypic Ericrocidini genus Aglaomelissa Snelling & Brooks, 1985. Aglaomelissa duckei (Friese, 1906) emerged from trap-nests of Centris (Heterocentris) analis (Fabricius, 1804) and C. (Heterocentris) terminata Smith, 1874 from two sites in the Brazilian Amazonian region. The parasitism ratio caused by A. duckei was high, varying from 80 to 100% of the brood cells in a single trap-nest. Also, a compilation of the known host r...

  6. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    Science.gov (United States)

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  8. A chemical arms race at sea mediates algal host-virus interactions.

    Science.gov (United States)

    Bidle, Kay D; Vardi, Assaf

    2011-08-01

    Despite the critical importance of viruses in shaping marine microbial ecosystems and lubricating upper ocean biogeochemical cycles, relatively little is known about the molecular mechanisms mediating phytoplankton host-virus interactions. Recent work in algal host-virus systems has begun to shed novel insight into the elegant strategies of viral infection and subcellular regulation of cell fate, which not only reveal tantalizing aspects of viral replication and host resistance strategies but also provide new diagnostic tools toward elucidating the impact of virus-mediated processes in the ocean. Widespread lateral gene transfer between viruses and their hosts plays a prominent role in host-virus diversification and in the regulation of host-virus infection mechanisms by allowing viruses to manipulate and 'rewire' host metabolic pathways to facilitate infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Host use does not clarify the evolutionary history of African ticks ...

    African Journals Online (AJOL)

    Where host-parasite associations are rigid and unique, the host preference(s) of parasites and the evolutionary relationships between their hosts may offer insights into the parasites' evolu–tionary history. Where such associations are less rigid, however, the assumption that current host preferences are useful in formulating ...

  10. Eco-evolutionary dynamics in a coevolving host-virus system.

    Science.gov (United States)

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  11. Host exploitation strategies of the social parasite Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias Alois

    as model systems. These enable the study of adaptations and counter-adaptations that might evolve in the arms-race between a parasite pursuing maximum gain and a host trying to avoid exploitation. One such system is the socially parasitic butterfly Maculinea alcon and its host the ant Myrmica rubra....... Throughout the first instars M. alcon lives on a specific food plant, however, in the last instar before pupation it develops into an obligate social parasite, posing a considerably cost to its host ant colony. I here focus on the different exploitation strategies of M. alcon throughout its lifecycle...... a fitness cost to infected host ant colonies, the host ants are expected to have developed defense mechanisms in response to the presence of the social parasite. I was able to demonstrate that the efficiency of ant colonies to defend themselves against intruders depends on a multitude of often correlated...

  12. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    Science.gov (United States)

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction

  13. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology.

    Science.gov (United States)

    Martin, Lynn B; Burgan, S C; Adelman, James S; Gervasi, Stephanie S

    2016-12-01

    The new fields of ecological immunology and disease ecology have begun to merge, and the classic fields of immunology and epidemiology are beginning to blend with them. This merger is occurring because the integrative study of host-parasite interactions is providing insights into disease in ways that traditional methods have not. With the advent of new tools, mathematical and technological, we could be on the verge of developing a unified theory of infectious disease, one that supersedes the barriers of jargon and tradition. Here we argue that a cornerstone of any such synthesis will be host competence, the propensity of an individual host to generate new infections in other susceptible hosts. In the last few years, the emergence of systems immunology has led to novel insight into how hosts control or eliminate pathogens. Most such efforts have stopped short of considering transmission and the requisite behaviors of infected individuals that mediate it, and few have explicitly incorporated ecological and evolutionary principles. Ultimately though, we expect that the use of a systems immunology perspective will help link suborganismal processes (i.e., health of hosts and selection on genes) to superorganismal outcomes (i.e., community-level disease dynamics and host-parasite coevolution). Recently, physiological regulatory networks (PRNs) were cast as whole-organism regulatory systems that mediate homeostasis and hence link suborganismal processes with the fitness of individuals. Here, we use the PRN construct to develop a roadmap for studying host competence, taking guidance from systems immunology and evolutionary ecology research. We argue that PRN variation underlies heterogeneity in individual host competence and hence host-parasite dynamics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  15. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  16. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  17. Proteomic characterization of host response to Yersinia pestis and near neighbors

    International Nuclear Information System (INIS)

    Chromy, Brett A.; Perkins, Julie; Heidbrink, Jenny L.; Gonzales, Arlene D.; Murphy, Gloria A.; Fitch, J. Patrick; McCutchen-Maloney, Sandra L.

    2004-01-01

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague

  18. Does reservoir host mortality enhance transmission of West Nile virus?

    Directory of Open Access Journals (Sweden)

    Foppa Ivo M

    2007-05-01

    Full Text Available Abstract Background Since its 1999 emergence in New York City, West Nile virus (WNV has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Results Inspection of the Ross-Macdonald expression of the basic reproductive number (R0 suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Conclusion Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined.

  19. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins

    OpenAIRE

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-01-01

    Productive viral replication requires overcoming many barriers posed by the host innate immune system. Human sterile alpha motif domain-containing 9 (SAMD9) is a newly identified antiviral factor that is specifically targeted by poxvirus proteins belonging to the C7 family of host-range factors. Here we provide the first, to our knowledge, atomic view of two functionally divergent proteins from the C7 family and determine the molecular basis that dictates whether they can target SAMD9 effecti...

  20. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    Science.gov (United States)

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  1. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  2. Micro-autoradiographic studies on host-parasite interactions. Pt. 1

    International Nuclear Information System (INIS)

    Mendgen, K.; Heitefuss, R.

    1975-01-01

    Tritium labeled uredospores of Uromyces phaseoli were produced be feeding the host, Phaseolus vulgaris, with 2 H-orotic acid. These spores were allowed to germinate on and to penetrate into a bean leaf. 24 hrs after inoculation, the bean rust had formed the first haustorium. All fungal structures, including the fungus walls, were heavily labeled. No label could be detected in the cells that had come into contact with the hyphae. In the infected host cell, the haustorium was labeled heavily, but the sheath around the haustorium and the host cell remained free of label. These results indicate that no detectable amounts of label leach from the bean rust into the host at this stage of infection although it is known that the rust takes up many metabolites. Since the sheath remains free of label and all fungal structures are evenly labeled, it is concluded that the sheath is formed by the host. (orig.) [de

  3. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  4. Gut Microbiota Co-microevolution with Selection for Host Humoral Immunity

    Directory of Open Access Journals (Sweden)

    Lingyu Yang

    2017-07-01

    Full Text Available To explore coevolution between the gut microbiota and the humoral immune system of the host, we used chickens as the model organism. The host populations were two lines (HAS and LAS developed from a common founder that had undergone 40 generations of divergent selection for antibody titers to sheep red blood cells (SRBC and two relaxed sublines (HAR and LAR. Analysis revealed that microevolution of host humoral immunity contributed to the composition of gut microbiota at the taxa level. Relaxing selection enriched some microorganisms whose functions were opposite to host immunity. Particularly, Ruminococcaceae and Oscillospira enriched in high antibody relaxed (HAR and contributed to reduction in antibody response, while Lactobacillus increased in low antibody relaxed (LAR and elevated the antibody response. Microbial functional analysis showed that alterations were involved in pathways relating to the immune system and infectious diseases. Our findings demonstrated co-microevolution relationships of host-microbiota and that gut microorganisms influenced host immunity.

  5. Glycoconjugates in host-helminth interactions

    Directory of Open Access Journals (Sweden)

    Nina Salinger Prasanphanich

    2013-08-01

    Full Text Available Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development and diagnostics.

  6. Host-driven divergence in the parasitic plant Orobanche minor Sm. (Orobanchaceae).

    Science.gov (United States)

    Thorogood, C J; Rumsey, F J; Harris, S A; Hiscock, S J

    2008-10-01

    Many parasitic angiosperms have a broad host range and are therefore considered to be host generalists. Orobanche minor is a nonphotosynthetic root parasite that attacks a range of hosts from taxonomically disparate families. In the present study, we show that O. minor sensu lato may comprise distinct, genetically divergent races isolated by the different ecologies of their hosts. Using a three-pronged approach, we tested the hypothesis that intraspecific taxa O. minor var. minor and O. minor ssp. maritima parasitizing either clover (Trifolium pratense) or sea carrot (Daucus carota ssp.gummifer), respectively, are in allopatric isolation. Morphometric analysis revealed evidence of divergence but this was insufficient to define discrete, host-specific taxa. Intersimple sequence repeat (ISSR) marker-based data provided stronger evidence of divergence, suggesting that populations were isolated from gene flow. Phylogenetic analysis, using sequence-characterized amplified region (SCAR) markers derived from ISSR loci, provided strong evidence for divergence by clearly differentiating sea carrot-specific clades and mixed-host clades. Low levels of intrapopulation SCAR marker sequence variation and floral morphology suggest that populations on different hosts are probably selfing and inbreeding. Morphologically cryptic Orobanche taxa may therefore be isolated from gene flow by host ecology. Together, these data suggest that host specificity may be an important driver of allopatric speciation in parasitic plants.

  7. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  8. Echinococcus-Host Interactions at Cellular and Molecular Levels.

    Science.gov (United States)

    Brehm, K; Koziol, U

    2017-01-01

    The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Host specialization and phylogenetic diversity of Corynespora cassiicola.

    Science.gov (United States)

    Dixon, L J; Schlub, R L; Pernezny, K; Datnoff, L E

    2009-09-01

    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya.

  10. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

    Science.gov (United States)

    Devchand, Pallavi R; Schmidt, Birgitta A; Primo, Valeria C; Zhang, Qing-yin; Arnaout, M Amin; Serhan, Charles N; Nikolic, Boris

    2005-02-01

    Lipoxin A(4) (LXA(4)) and aspirin-triggered 15-epi-LXA(4) are potent endogenous lipid mediators thought to define the inflammatory set-point. We used single prophylactic administrations of a synthetic aspirin-triggered lipoxin A(4) signal mimetic, ATLa, to probe dynamics of early host-donor interactions in a mouse model for the inflammation-associated multifactorial disease of allogeneic bone marrow transplant (BMT) -induced graft-vs.-host disease (GvHD). We first demonstrated that both host and donor are responsive to the ATLa signals. The simple and restricted regimen of a single prophylactic administration of ATLa [100 ng/mL to donor cells or 1 microg (approximately 50 microg/kg) i.v. to host] was sufficient to delay death. Clinical indicators of weight, skin lesions, diarrhea and eye inflammation were monitored. Histological analyses on day 45 post-BMT showed that the degree of cellular trafficking, particularly neutrophil infiltrate, and protection of end-organ target pathology are different, depending on whether the host or donor was treated with ATLa. Taken together, these results chart some ATLa protective effects on GvHD cellular dynamics over time and identify a previously unrecognized effect of host neutrophils in the early phase post-BMT as important determinants in the dynamics of GvHD onset and progression.-Devchand, P. R., Schmidt, B. A., Primo, V. C., Zhang, Q.-y., Arnaout, M. A., Serhan, C. N., Nikolic, B. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

  11. Regulation of the Host Antiviral State by Intercellular Communications

    Directory of Open Access Journals (Sweden)

    Sonia Assil

    2015-08-01

    Full Text Available Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.

  12. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Anna Papa

    2017-05-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission.

  13. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  14. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  15. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  16. Epigenetic modulation of host: new insights into immune evasion by ...

    Indian Academy of Sciences (India)

    Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ ...

  17. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  18. Host specialization in ticks and transmission of tick-borne diseases: a review.

    Science.gov (United States)

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  19. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.

    Science.gov (United States)

    Tsai, Yi-Hsin Erica; Manos, Paul S

    2010-09-28

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.

  20. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    Science.gov (United States)

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  1. New mechanisms of disease and parasite-host interactions.

    Science.gov (United States)

    de Souza, Tiago Alves Jorge; de Carli, Gabriel Jose; Pereira, Tiago Campos

    2016-09-01

    An unconventional interaction between a patient and parasites was recently reported, in which parasitic cells invaded host's tissues, establishing several tumors. This finding raises various intriguing hypotheses on unpredicted forms of interplay between a patient and infecting parasites. Here we present four unusual hypothetical host-parasite scenarios with intriguing medical consequences. Relatively simple experimental designs are described in order to evaluate such hypotheses. The first one refers to the possibility of metabolic disorders in parasites intoxicating the host. The second one is on possibility of patients with inborn errors of metabolism (IEM) being more resistant to parasites (due to accumulation of toxic compounds in the bloodstream). The third one refers to a mirrored scenario: development of tumors in parasites due to ingestion of host's circulating cancer cells. The last one describes a complex relationship between parasites accumulating a metabolite and supplying it to a patient with an IEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fire creates host plant patches for monarch butterflies

    Science.gov (United States)

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  3. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.

    Science.gov (United States)

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-12-01

    Human sterile alpha motif domain-containing 9 (SAMD9) protein is a host restriction factor for poxviruses, but it can be overcome by some poxvirus host-range proteins that share homology with vaccinia virus C7 protein. To understand the mechanism of action for this important family of host-range factors, we determined the crystal structures of C7 and myxoma virus M64, a C7 family member that is unable to antagonize SAMD9. Despite their different functions and only 23% sequence identity, the two proteins have very similar overall structures, displaying a previously unidentified fold comprised of a compact 12-stranded antiparallel β-sandwich wrapped in two short α helices. Extensive structure-guided mutagenesis of C7 identified three loops clustered on one edge of the β sandwich as critical for viral replication and binding with SAMD9. The loops are characterized with functionally important negatively charged, positively charged, and hydrophobic residues, respectively, together forming a unique "three-fingered molecular claw." The key residues of the claw are not conserved in two C7 family members that do not antagonize SAMD9 but are conserved in distantly related C7 family members from four poxvirus genera that infect diverse mammalian species. Indeed, we found that all in the latter group of proteins bind SAMD9. Taken together, our data indicate that diverse mammalian poxviruses use a conserved molecular claw in a C7-like protein to target SAMD9 and overcome host restriction.

  4. Targeting host factors to treat West Nile and dengue viral infections.

    Science.gov (United States)

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-10

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  5. Horizontal transfer of facultative endosymbionts is limited by host relatedness.

    Science.gov (United States)

    Łukasik, Piotr; Guo, Huifang; van Asch, Margriet; Henry, Lee M; Godfray, H Charles J; Ferrari, Julia

    2015-10-01

    Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Statistical Properties of Gamma-Ray Burst Host Galaxies. Jie-Min Chen1, Jin Zhang2,3, ... of GRB host galaxies and explore possible correlations between these properties. We also investigate possible cosmic ... hydrogen column density for the GRB host galaxies in our sample. 6.295. The stellar masses are mainly in the ...

  7. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  8. Spectro-photometric study of the GRB 030329 host galaxy

    International Nuclear Information System (INIS)

    Gorosabel, J.; Ramirez, D. Perez

    2005-01-01

    In this study we present optical/near-infrared (NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ∼ 150 Myr and an extinction A ν ∼ 0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFRN ∼ 0.6 Myr -1 . The low absolute magnitude of the host (M B ∼ -16.5) implies a high specific star formation rate value, SSFR ≅ 34 Myr -1 (L/L) -1

  9. Molecular Mechanisms of Host Cytoskeletal Rearrangements by Shigella Invasins

    Directory of Open Access Journals (Sweden)

    Jun Hyuck Lee

    2014-10-01

    Full Text Available Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells.

  10. Social host liability for minors and underage drunk-driving accidents.

    Science.gov (United States)

    Dills, Angela K

    2010-03-01

    Social host laws for minors aim to reduce teenage alcohol consumption by imposing liability on adults who host parties. Parents cite safety reasons as part of their motivation for hosting parties, preferring their teens and their teens' friends to drink in a supervised and safe locale. Both sides predict an effect of social host liability for minors on alcohol-related traffic accident rates for under-aged drinkers; the effects, however, work in opposite directions. This paper finds that, among 18-20 year olds, social host liability for minors reduced the drunk-driving fatality rate by 9%. I find no effect on sober traffic fatalities. Survey data on drinking and drunk driving suggest the declines resulted mostly from reductions in drunk driving and not reductions in drinking. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Parasitology: Parasite survives predation on its host

    DEFF Research Database (Denmark)

    Ponton, Fleur; Lebarbenchon, Camille; Lefèvre, Thierry

    2006-01-01

    As prisoners in their living habitat, parasites should be vulnerable to destruction by the predators of their hosts. But we show here that the parasitic gordian worm Paragordius tricuspidatus is able to escape not only from its insect host after ingestion by a fish or frog but also from...

  12. Methods for production of proteins in host cells

    Science.gov (United States)

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  13. Sarcocystis pantherophis, n. sp. from eastern rat snakes (Pantherophis alleghaniensis) definitive hosts and interferongamma gene knockout mice as experimental intermediate hosts

    Science.gov (United States)

    Here we report a new species, Sarcocystis pantherophisi with the Eastern rat snake (Pantherophis alleghaniensis) as natural definitive host and the interferon gamma gene knockout (KO) mouse as the experimental intermediate host. Sporocysts (n=15) from intestinal contents of the snake were 17.3 x 10....

  14. Do host species evolve a specific response to slave-making ants?

    Directory of Open Access Journals (Sweden)

    Delattre Olivier

    2012-12-01

    Full Text Available Abstract Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections towards parasite

  15. High virulence of Wolbachia after host switching: when autophagy hurts.

    Directory of Open Access Journals (Sweden)

    Winka Le Clec'h

    Full Text Available Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare to another species (Porcellio d. dilatatus. Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulC's densities in main organs including Central Nervous System (CNS of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.

  16. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  17. Digbeth hosts the Big Bang

    CERN Multimedia

    2002-01-01

    Birminham museum of science and discovery, Thinktank, is hosting 'Building The Universe', a free exhibition about the work undertaken at the European Laboratory for Particle Physics, in Geneva (3 paragraphs).

  18. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  19. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  20. Nesting bird "host funnel" increases mosquito-bird contact rate.

    Science.gov (United States)

    Caillouët, Kevin A; Riggan, Anna E; Bulluck, Lesley P; Carlson, John C; Sabo, Roy T

    2013-03-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a "host funnel," concentrating host-seeking mosquitoes to the few remaining nestlings. The relative abundance of mosquitoes collected by the NMT suggests that significantly more Aedes albopictus (Skuse) and Culex pipiens (L.) /restuans (Theobald) sought nesting bird bloodmeals than were predicted by their relative abundances in CO2-baited Centers for Disease Control and Prevention light and gravid traps. Culex salinarius (Coquillett) and Culex erraticus Dyar and Knab were collected in NMTs in proportion to their relative abundances in the generic traps. Temporal host funnels and nesting bird host specificity may enhance arbovirus amplification and explain observed West Nile virus and St. Louis encephalitis virus amplification periods.

  1. Data integration aids understanding of butterfly-host plant networks.

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  2. Data integration aids understanding of butterfly–host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  3. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  4. Limited by the host: Host age hampers establishment of holoparasite Cuscuta epithymum

    Science.gov (United States)

    Meulebrouck, Klaar; Verheyen, Kris; Brys, Rein; Hermy, Martin

    2009-07-01

    A good understanding of the relationship between plant establishment and the ecosystem of which they are part of is needed to conserve rare plant species. Introduction experiments offer a direct test of recruitment limitation, but generally only the seed germination and seedling phases are monitored. Thus the relative importance of different establishment stages in the process of recruitment is not considered. This is particularly true for parasitic plants where empirical data are generally missing. During two consecutive growing seasons we examined the effect of heathland management applications, degree of heathland succession (pioneer, building and mature phase) and seed-density on the recruitment and establishment of the endangered holoparasite Cuscuta epithymum. In general, recruitment after two growing seasons was low with 4.79% of the sown seeds that successfully emerged to the seedling stage and a final establishment of 89 flowering adults (i.e. <1.5% of the sown seeds). Although a higher seed-density resulted in a higher number of seedlings, seed-density did not significantly affected relative germination percentages. The management type and subsequent heath succession had no significant effect on seedling emergence; whereas, seedling attachment to the host, establishment and growth to full-grown size were hampered in older heath vegetation (i.e. high, dense, and mature canopy). Establishment was most successful in turf-cut pioneer heathland, characterised by a relatively open and low vegetation of young Calluna vulgaris. The age of C. vulgaris, C. epithymum's main host, proved to be the most limiting factor. These results emphasise the importance of site quality (i.e. successional phase of its host) on recruitment success of C. epithymum, which is directly affected by the management applied to the vegetation. Lack of any heathland management will thus seriously restrict establishment of the endangered parasite.

  5. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts

    Directory of Open Access Journals (Sweden)

    Lucas Tirloni

    2017-12-01

    Full Text Available Understanding the molecular basis of how ticks adapt to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD epidemiology. There is evidence that ticks differentially express specific sets of genes when stimulated to start feeding. This study was initiated to investigate if ticks such as Ixodes scapularis and Amblyomma americanum that are adapted to feed on multiple hosts utilized the same sets of proteins to prepare for feeding. We exposed I. scapularis and A. americanum to feeding stimuli of different hosts (rabbit, human, and dog by keeping unfed adult ticks enclosed in a perforated microfuge in close contact with host skin, but not allowing ticks to attach on host. Our data suggest that ticks of the same species differentially express tick saliva proteins (TSPs when stimulated to start feeding on different hosts. SDS-PAGE and silver staining analysis revealed unique electrophoretic profiles in saliva of I. scapularis and A. americanum that were stimulated to feed on different hosts: rabbit, human, and dog. LC-MS/MS sequencing and pairwise analysis demonstrated that I. scapularis and A. americanum ticks expressed unique protein profiles in their saliva when stimulated to start feeding on different hosts: rabbit, dog, or human. Specifically, our data revealed TSPs that were unique to each treatment and those that were shared between treatments. Overall, we identified a total of 276 and 340 non-redundant I. scapularis and A. americanum TSPs, which we have classified into 28 functional classes including: secreted conserved proteins (unknown functions, proteinase inhibitors, lipocalins, extracellular matrix/cell adhesion, heme/iron metabolism, signal transduction and immunity-related proteins being the most predominant in saliva of unfed ticks. With exception of research on vaccines against Rhipicephalus microplus, which its natural host, cattle, research on vaccine against other ticks relies feeding ticks

  6. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  7. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  8. The vaginal microbiota, host defence and reproductive physiology.

    Science.gov (United States)

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. The vaginal microbiota, host defence and reproductive physiology

    Science.gov (United States)

    Smith, Steven B

    2016-01-01

    Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture‐independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive‐aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic‐acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non‐Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine‐tuned interaction is key to maintaining women's reproductive health. PMID:27373840

  10. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  11. The bigger, the better? Volume measurements of parasites and hosts

    DEFF Research Database (Denmark)

    Nagler, Christina; Hörnig, Marie K.; Haug, Joachim T.

    2017-01-01

    ), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost......Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa....... Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan...

  12. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    Science.gov (United States)

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  13. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  14. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    Directory of Open Access Journals (Sweden)

    Manoj N. Krishnan

    2014-02-01

    Full Text Available West Nile (WNV and Dengue (DENV viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  15. Nonintegrated Host Association of Myrmecophilus tetramorii, a Specialist Myrmecophilous Ant Cricket (Orthoptera: Myrmecophilidae

    Directory of Open Access Journals (Sweden)

    Takashi Komatsu

    2013-01-01

    Full Text Available Myrmecophilus ant crickets (Orthoptera: Myrmecophilidae are typical ant guests. In Japan, about 10 species are recognized on the basis of morphological and molecular phylogenetic frameworks. Some of these species have restricted host ranges and behave intimately toward their host ant species (i.e., they are host specialist. We focused on one species, M. tetramorii, which uses the myrmicine ant Tetramorium tsushimae as its main host. All but one M. tetramorii individuals were collected specifically from nests of T. tsushimae in the field. However, behavioral observation showed that all individuals used in the experiment received hostile reactions from the host ants. There were no signs of intimate behaviors such as grooming of hosts or receipt of mouth-to-mouth feeding from hosts, which are seen in some host-specialist Myrmecophilus species among obligate host-ant species. Therefore, it may be that M. tetramorii is the species that is specialized to exploit the host by means other than chemical integration.

  16. Inhibition of host cell protein synthesis by UV-inactivated poliovirus

    International Nuclear Information System (INIS)

    Helentjaris, T.; Ehrenfeld, E.

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm 2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell

  17. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  18. Proteomics in the investigation of HIV-1 interactions with host proteins.

    Science.gov (United States)

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  20. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  1. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  2. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  3. Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species.

    Science.gov (United States)

    Duar, Rebbeca M; Frese, Steven A; Lin, Xiaoxi B; Fernando, Samodha C; Burkey, Thomas E; Tasseva, Guergana; Peterson, Daniel A; Blom, Jochen; Wenzel, Cory Q; Szymanski, Christine M; Walter, Jens

    2017-06-15

    The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs. IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We

  4. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  5. Sex-specific effects of a parasite evolving in a female-biased host population.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  6. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  7. Sex-specific effects of a parasite evolving in a female-biased host population

    Science.gov (United States)

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  8. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Host cells and methods for production of isobutanol

    Science.gov (United States)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2017-10-17

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  10. Host-Microbe Interactions in Microgravity: Assessment and Implications

    Directory of Open Access Journals (Sweden)

    Jamie S. Foster

    2014-05-01

    Full Text Available Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  11. Host-microbe interactions in microgravity: assessment and implications.

    Science.gov (United States)

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  12. The host range of Phomopsis cirsii

    DEFF Research Database (Denmark)

    Leth, Vibeke; Andreasen, Christian

    2012-01-01

    echinus, Cirsiumvulgare and Cynaracardunculusvar.scolymus (artichoke) with symptoms such as restricted necrotic leaf spots and too early senescence or death of entire leaf. Eleven hosts for P. cirsii were recorded but despite the expanded range of hosts we expect that its host range will be within...... Cardueae.P.cirsii,poses multi-target potential against several annual and biennial weedy thistles from warmer climates. The pathogenicity of P. cirsii towards the artichoke, however, could limit its field of application especially in the Mediterranean area. The potential of P. cirsii as a control agent......, in areas where artichokes are cultivated, would depend on the existence of P.cirsii resistant varieties or the existence of P.cirsiiisolates non-pathogenic to artichoke....

  13. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  14. Two-host, two-vector basic reproduction ratio (R(0 for bluetongue.

    Directory of Open Access Journals (Sweden)

    Joanne Turner

    Full Text Available Mathematical formulations for the basic reproduction ratio (R(0 exist for several vector-borne diseases. Generally, these are based on models of one-host, one-vector systems or two-host, one-vector systems. For many vector borne diseases, however, two or more vector species often co-occur and, therefore, there is a need for more complex formulations. Here we derive a two-host, two-vector formulation for the R(0 of bluetongue, a vector-borne infection of ruminants that can have serious economic consequences; since 1998 for example, it has led to the deaths of well over 1 million sheep in Europe alone. We illustrate our results by considering the situation in South Africa, where there are two major hosts (sheep, cattle and two vector species with differing ecologies and competencies as vectors, for which good data exist. We investigate the effects on R(0 of differences in vector abundance, vector competence and vector host preference between vector species. Our results indicate that R(0 can be underestimated if we assume that there is only one vector transmitting the infection (when there are in fact two or more and/or vector host preferences are overlooked (unless the preferred host is less beneficial or more abundant. The two-host, one-vector formula provides a good approximation when the level of cross-infection between vector species is very small. As this approaches the level of intraspecies infection, a combination of the two-host, one-vector R(0 for each vector species becomes a better estimate. Otherwise, particularly when the level of cross-infection is high, the two-host, two-vector formula is required for accurate estimation of R(0. Our results are equally relevant to Europe, where at least two vector species, which co-occur in parts of the south, have been implicated in the recent epizootic of bluetongue.

  15. Malaria-induced changes in host odors enhance mosquito attraction.

    Science.gov (United States)

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  16. Molecular crosstalks in Leishmania-sandfly-host relationships

    Directory of Open Access Journals (Sweden)

    Volf P.

    2008-09-01

    Full Text Available Sandflies (Diptera: Phlebotominae are vectors of Leishmania parasites, causative agents of important human and animal diseases with diverse manifestations. This review summarizes present knowledge about the vectorial part of Leishmania life cycle and parasite transmission to the vertebrate host. Particularly, it focuses on molecules that determine the establishment of parasite infection in sandfly midgut. It describes the concept of specific versus permissive sandfly vectors, explains the epidemiological consequences of broad susceptibility of permissive sandflies and demonstrates that genetic exchange may positively affect Leishmania fitness in the vector. Last but not least, the review describes recent knowledge about circulating antibodies produced by hosts in response to sandfly bites. Studies on specificity and kinetics of antibody response revealed that anti-saliva IgG could be used as a marker of host exposure to sandflies, i.e. as a useful tool for evaluation of vector control.

  17. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  18. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  19. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  20. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation.

    Science.gov (United States)

    Lee, Jun-Yeong; Han, Geon Goo; Kim, Eun Bae; Choi, Yun-Jaie

    2017-12-01

    Lactobacillus salivarius is an important member of the animal gut microflora and is a promising probiotic bacterium. However, there is a lack of research on the genomic diversity of L. salivarius species. In this study, we generated 21 L. salivarius draft genomes, and investigated the pan-genome of L. salivarius strains isolated from humans, pigs and chickens using all available genomes, focusing on host adaptation. Phylogenetic clustering showed a distinct categorization of L. salivarius strains depending on their hosts. In the pan-genome, 15 host-specific genes and 16 dual-host-shared genes that only one host isolate did not possess were identified. Comparison of 56 extracellular protein encoding genes and 124 orthologs related to exopolysaccharide production in the pan-genome revealed that extracellular components of the assayed bacteria have been globally acquired and mutated under the selection pressure for host adaptation. We also found the three host-specific genes that are responsible for energy production in L. salivarius. These results showed that L. salivarius has evolved to adapt to host habitats in two ways, by gaining the abilities for niche adhesion and efficient utilization of nutrients. Our study offers a deeper understanding of the probiotic species L. salivarius, and provides a basis for future studies on L. salivarius and other mutualistic bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    Science.gov (United States)

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  2. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  3. Intercalation of paracetamol into the hydrotalcite-like host

    International Nuclear Information System (INIS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-01-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg–Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets.▪ Highlights: ► Paracetamol was intercalated in Mg–Al hydrotalcite-like host by rehydration/reconstruction procedure. ► Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. ► Molecular simulations showed disordered arrangement of guest molecules in the interlayer. ► Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  4. Evaluating virtual hosted desktops for graphics-intensive astronomy

    Science.gov (United States)

    Meade, B. F.; Fluke, C. J.

    2018-04-01

    Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.

  5. Compensation for risks: host community benefits in siting locally unwanted facilities

    Science.gov (United States)

    Himmelberger, Jeffery J.; Ratick, Samuel J.; White, Allen L.

    1991-09-01

    This article analyzes the recent negotiations connected with siting 24 solid-waste landfills in Wisconsin. We examine the association between the type and amount of compensation paid to host communities by facility developers and the size of facilities, certain facility characteristics, the timing of negotiated agreements, the size of the host community, and the socioeconomic status of the host area. Our findings suggest that the level of compensation after adjusting for landfill capacity is positively associated with the percentage of total facility capacity dedicated to host community use, positively associated with the percentage of people of the host area who are in poverty, and larger for public facilities that accept municipal wastes. Other explanatory variables we examined, whose association with levels of compensation proved statistically insignificant, were facility size, facility status (new vs expansion), facility use (countyonly vs multicounty), timing of negotiation, host community size, and the host area education level, population density, and per capita income. We discuss the policy implications of our principal findings and future research questions in light of the persistent opposition surrounding the siting of solid-waste and other waste-management facilities.

  6. Fulminant transfusion-associated graft-versus-host disease in a premature infant

    International Nuclear Information System (INIS)

    Berger, R.S.; Dixon, S.L.

    1989-01-01

    A fatal case of transfusion-associated graft-versus-host disease developed in a premature infant after receiving several blood products, including nonirradiated white blood cells. Transfusion-associated graft-versus-host disease can be prevented. Irradiation of blood products is the least controversial and most effective method. Treatment was unsuccessful in most reported cases of transfusion-associated graft-versus-host disease. Therefore irradiation of blood products before transfusing to patients susceptible to transfusion-associated graft-versus-host disease is strongly recommended

  7. Differential survival of Ichthyophonus isolates indicates parasite adaptation to its host environment.

    Science.gov (United States)

    Hershberger, P K; Pacheco, C A; Gregg, J L; Purcell, M K; LaPatra, S E

    2008-10-01

    In vitro viability of Ichthyophonus spp. spores in seawater and freshwater corresponded with the water type of the host from which the spores were isolated. Among Ichthyophonus spp. spores from both marine and freshwater fish hosts (Pacific herring, Clupea pallasii, and rainbow trout, Oncorhynchus mykiss, respectively), viability was significantly greater (P < 0.05) after incubation in seawater than in freshwater at all time points from 1 to 60 min after immersion; however, magnitude of the spore tolerances to water type differed with host origin. Ichthyophonus sp. adaptation to its host environment was indicated by greater seawater tolerance of spores from the marine host and greater freshwater tolerance of spores from the freshwater host. Prolonged aqueous survival of Ichthyophonus spp. spores in the absence of a host provides insight into routes of transmission, particularly among planktivorous fishes, and should be considered when designing strategies to dispose of infected fish carcasses and tissues.

  8. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.

    Science.gov (United States)

    Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A

    2006-04-21

    The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.

  9. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  10. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  11. Feast or famine: the host-pathogen battle over amino acids.

    Science.gov (United States)

    Zhang, Yanjia J; Rubin, Eric J

    2013-07-01

    Intracellular bacterial pathogens often rely on their hosts for essential nutrients. Host cells, in turn, attempt to limit nutrient availability, using starvation as a mechanism of innate immunity. Here we discuss both host mechanisms of amino acid starvation and the diverse adaptations of pathogens to their nutrient-deprived environments. These processes provide both key insights into immune subversion and new targets for drug development. © 2013 John Wiley & Sons Ltd.

  12. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    Directory of Open Access Journals (Sweden)

    Raina K Plowright

    2016-08-01

    Full Text Available Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.

  13. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?

    Science.gov (United States)

    Dumas, Pascaline; Legeai, Fabrice; Lemaitre, Claire; Scaon, Erwan; Orsucci, Marion; Labadie, Karine; Gimenez, Sylvie; Clamens, Anne-Laure; Henri, Hélène; Vavre, Fabrice; Aury, Jean-Marc; Fournier, Philippe; Kergoat, Gael J; d'Alençon, Emmanuelle

    2015-06-01

    The moth Spodoptera frugiperda is a well-known pest of crops throughout the Americas, which consists of two strains adapted to different host-plants: the first feeds preferentially on corn, cotton and sorghum whereas the second is more associated with rice and several pasture grasses. Though morphologically indistinguishable, they exhibit differences in their mating behavior, pheromone compositions, and show development variability according to the host-plant. Though the latter suggest that both strains are different species, this issue is still highly controversial because hybrids naturally occur in the wild, not to mention the discrepancies among published results concerning mating success between the two strains. In order to clarify the status of the two host-plant strains of S. frugiperda, we analyze features that possibly reflect the level of post-zygotic isolation: (1) first generation (F1) hybrid lethality and sterility; (2) patterns of meiotic segregation of hybrids in reciprocal second generation (F2), as compared to the meiosis of the two parental strains. We found a significant reduction of mating success in F1 in one direction of the cross and a high level of microsatellite markers showing transmission ratio distortion in the F2 progeny. Our results support the existence of post-zygotic reproductive isolation between the two laboratory strains and are in accordance with the marked level of genetic differentiation that was recovered between individuals of the two strains collected from the field. Altogether these results provide additional evidence in favor of a sibling species status for the two strains.

  14. Host-country policy – commitment or no-commitment: a theoretical analysis

    NARCIS (Netherlands)

    Mukherjee, A.

    2000-01-01

    This paper develops a model of foreign entry strategy and examines welfare of the host-country under two situations - (i) where host-country government commits to the tax policy, (ii) where host-country government does not commit to the tax policy. It turns out that under the non-committed

  15. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  16. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  17. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  18. Protein prenylation: a new mode of host-pathogen interaction.

    Science.gov (United States)

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Evidence for mating between isolates of Colletotrichum gloeosporioides with different host specificities.

    Science.gov (United States)

    Cisar, C R; Spiegel, F W; TeBeest, D O; Trout, C

    1994-04-01

    Individual isolates of the ubiquitous plant pathogen Colletotrichum gloeosporioides (teleomorph Glomerella cingulata) can have very restricted host ranges. Isolates that share the same host range are considered to be genetically discrete units, and sexual compatibility has been reported to be limited to individuals that share the same host range. However, we have recently observed that some isolates of C. gloeosporioides that are specifically pathogenic to different, distantly-related hosts are sexually compatible. Ascospore progeny from one such cross were randomly isolated and outcrossing was verified by the reassortment of several RFLP markers among the progeny. In addition, the progeny were analyzed for pathogenicity to parental hosts. The implications of sexual compatibility between C. gloeosporioides isolates with different host specificities on the evolution of Colletotrichum species are discussed.

  20. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of

  1. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  2. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  3. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Poyin Chen

    2017-12-01

    Full Text Available Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO pretreatment of colonic epithelial cells (Caco-2 led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses.

  4. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    Science.gov (United States)

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Preferred Hosts for Short-Period Exoplanets

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In an effort to learn more about how planets form around their host stars, a team of scientists has analyzed the population of Kepler-discovered exoplanet candidates, looking for trends in where theyre found.Planetary OccurrenceSince its launch in 2009, Kepler has found thousands of candidate exoplanets around a variety of star types. Especially intriguing is the large population of super-Earths and mini-Neptunes planets with masses between that of Earth and Neptune that have short orbital periods. How did they come to exist so close to their host star? Did they form in situ, or migrate inwards, or some combination of both processes?To constrain these formation mechanisms, a team of scientists led by Gijs Mulders (University of Arizona and NASAs NExSS coalition) analyzed the population of Kepler planet candidates that have orbital periods between 2 and 50 days.Mulders and collaborators used statistical reconstructions to find the average number of planets, within this orbital range, around each star in the Kepler field. They then determined how this planet occurrence rate changed for different spectral types and therefore the masses of the host stars: do low-mass M-dwarf stars host more or fewer planets than higher-mass, main-sequence F, G, or K stars?Challenging ModelsAuthors estimates for the occurrence rate for short-period planets of different radii around M-dwarfs (purple) and around F, G, and K-type stars (blue). [Mulders et al. 2015]The team found that M dwarfs, compared to F, G, or K stars, host about half as many large planets with orbital periods of P 50 days. But, surprisingly, they host significantly more small planets, racking up an average of 3.5 times the number of planets in the size range of 12.8 Earth-radii.Could it be that M dwarfs have a lower total mass of planets, but that mass is distributed into more, smaller planets? Apparently not: the authors show that the mass of heavy elements trapped in short-orbital-period planets is higher for M

  6. Begging and cowbirds : brood parasites make hosts scream louder

    NARCIS (Netherlands)

    Boncoraglio, Giuseppe; Saino, Nicola; Garamszegi, Laszlo Z.

    2009-01-01

    Avian brood parasites have evolved striking begging ability that often allows them to prevail over the host progeny in competition for parental resources. Host young are therefore selected by brood parasites to evolve behavioral strategies that reduce the cost of parasitism. We tested the prediction

  7. Ectoparasite infestation and sex-biased local recruitment of hosts

    NARCIS (Netherlands)

    Heeb, P.; Werner, I.; Mateman, A.C.; Kolliker, M.; Brinkhof, M.W.G.; Lessells, C.M.; Richner, H.

    1999-01-01

    Dispersal patterns of organisms are a fundamental aspect of their ecology, modifying the genetic and social structure of local populations(1-4). Parasites reduce the reproductive success and survival of hosts and thereby exert selection pressure on host life-history traits(4-6), possibly affecting

  8. Addressing the use of cloud computing for web hosting providers

    OpenAIRE

    Fitó, Josep Oriol; Guitart Fernández, Jordi

    2009-01-01

    Nobody doubts about cloud computing is and will be a sea change for the Information Tech nology. Specifically, we address an application of this emerging paradigm into the web hosting providers. We create the Cloud Hosting Provider (CHP): a web hosting provider that uses the outsourcing technique in order to take advantage of cloud computing infrastructures (i.e. cloud-based outsourcing) for providing scalability and availability capabilities to the web applications deployed. Hence, the...

  9. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Directory of Open Access Journals (Sweden)

    David E Bellamy

    Full Text Available Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1 model derivation; 2 influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice; and, 3 variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD, Drosophila suzukii Matsumura (Diptera: Drosophilidae, with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (meanHPIvaried  = 301.9±8.39; rank 1 of 7 have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (meanHPIvaried  = 232.4±3.21; rank 7 of 7 having the least potential.

  10. Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.

    Science.gov (United States)

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Less attention has been paid to the parasitoid-host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids-host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Fish, fans and hydroids: host species of pygmy seahorses.

    Science.gov (United States)

    Reijnen, Bastian T; van der Meij, Sancia E T; van Ofwegen, Leen P

    2011-01-01

    An overview of the octocoral and hydrozoan host species of pygmy seahorses is provided based on literature records and recently collected field data for Hippocampus bargibanti, Hippocampus denise and Hippocampus pontohi. Seven new associations are recognized and an overview of the so far documented host species is given. A detailed re-examination of octocoral type material and a review of the taxonomic history of the alcyonacean genera Annella (Subergorgiidae) and Muricella (Acanthogorgiidae) are included as baseline for future revisions. The host specificity and colour morphs of pygmy seahorses are discussed, as well as the reliability of (previous) identifications and conservation issues.

  12. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  13. STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS

    International Nuclear Information System (INIS)

    Busha, Michael T.; Wechsler, Risa H.; Behroozi, Peter S.; Gerke, Brian F.; Klypin, Anatoly A.; Primack, Joel R.

    2011-01-01

    We calculate the probability that a Milky-Way (MW)-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the lambda cold dark matter model are in good agreement with observations of a large sample of Sloan Digital Sky Survey (SDSS) galaxies. Under the subhalo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v max , we make detailed comparisons to similar measurements using SDSS Data Release 7 data by Liu et al. Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, MW luminosity hosts have just a ∼10% chance of hosting two satellites similar to the MCs. In addition, we present a prediction for the probability for a host galaxy to have N sats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass-luminosity relation and because of variations in the star formation efficiency with halo mass.

  14. Hijacking of the Host Ubiquitin Network by Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    2017-12-01

    Full Text Available Protein ubiquitination is critical for regulation of numerous eukaryotic cellular processes such as protein homeostasis, cell cycle progression, immune response, DNA repair, and vesicular trafficking. Ubiquitination often leads to the alteration of protein stability, subcellular localization, or interaction with other proteins. Given the importance of ubiquitination in the regulation of host immunity, it is not surprising that many infectious agents have evolved strategies to interfere with the ubiquitination network with sophisticated mechanisms such as functional mimicry. The facultative intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila is phagocytosed by macrophages and is able to replicate within a niche called Legionella-containing vacuole (LCV. The biogenesis of LCV is dependent upon the Dot/Icm type IV secretion system which delivers more than 330 effector proteins into host cytosol. The optimal intracellular replication of L. pneumophila requires the host ubiquitin-proteasome system. Furthermore, membranes of the bacterial phagosome are enriched with ubiquitinated proteins in a way that requires its Dot/Icm type IV secretion system, suggesting the involvement of effectors in the manipulation of the host ubiquitination machinery. Here we summarize recent advances in our understanding of mechanisms exploited by L. pneumophila effector proteins to hijack the host ubiquitination pathway.

  15. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.

    2010-03-01

    A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships. © 2010 Blackwell Publishing Ltd.

  16. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Directory of Open Access Journals (Sweden)

    Steven R Parratt

    2016-06-01

    Full Text Available Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.

  17. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    Science.gov (United States)

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  18. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  19. Uncovering Dangerous Cheats: How Do Avian Hosts Recognize Adult Brood Parasites?

    Science.gov (United States)

    Trnka, Alfréd; Prokop, Pavol; Grim, Tomáš

    2012-01-01

    Background Co-evolutionary struggles between dangerous enemies (e.g., brood parasites) and their victims (hosts) lead to the emergence of sophisticated adaptations and counter-adaptations. Salient host tricks to reduce parasitism costs include, as front line defence, adult enemy discrimination. In contrast to the well studied egg stage, investigations addressing the specific cues for adult enemy recognition are rare. Previous studies have suggested barred underparts and yellow eyes may provide cues for the recognition of cuckoos Cuculus canorus by their hosts; however, no study to date has examined the role of the two cues simultaneously under a consistent experimental paradigm. Methodology/Principal Findings We modify and extend previous work using a novel experimental approach – custom-made dummies with various combinations of hypothesized recognition cues. The salient recognition cue turned out to be the yellow eye. Barred underparts, the only trait examined previously, had a statistically significant but small effect on host aggression highlighting the importance of effect size vs. statistical significance. Conclusion Relative importance of eye vs. underpart phenotypes may reflect ecological context of host-parasite interaction: yellow eyes are conspicuous from the typical direction of host arrival (from above), whereas barred underparts are poorly visible (being visually blocked by the upper part of the cuckoo's body). This visual constraint may reduce usefulness of barred underparts as a reliable recognition cue under a typical situation near host nests. We propose a novel hypothesis that recognition cues for enemy detection can vary in a context-dependent manner (e.g., depending on whether the enemy is approached from below or from above). Further we suggest a particular cue can trigger fear reactions (escape) in some hosts/populations whereas the same cue can trigger aggression (attack) in other hosts/populations depending on presence/absence of dangerous

  20. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  1. Chlamydia trachomatis’ struggle to keep its host alive

    Directory of Open Access Journals (Sweden)

    Barbara S. Sixt

    2017-03-01

    Full Text Available Bacteria of the phylum Chlamydiae infect a diverse range of eukaryotic host species, including vertebrate animals, invertebrates, and even protozoa. Characteristics shared by all Chlamydiae include their obligate intracellular lifestyle and a biphasic developmental cycle. The infectious form, the elementary body (EB, invades a host cell and differentiates into the replicative form, the reticulate body (RB, which proliferates within a membrane-bound compartment, the inclusion. After several rounds of division, RBs retro-differentiate into EBs that are then released to infect neighboring cells. The consequence of this obligatory transition between replicative and infectious forms inside cells is that Chlamydiae absolutely depend on the viability and functionality of their host cell throughout the entire infection cycle. We recently conducted a forward genetic screen in Chlamydia trachomatis, a common sexually transmitted human pathogen, and identified a mutant that caused premature death in the majority of infected host cells. We employed emerging genetic tools in Chlamydia to link this cytotoxicity to the loss of the protein CpoS (Chlamydia promoter of survival that normally localizes to the membrane of the pathogen-containing vacuole. CpoS-deficient bacteria also induced an exaggerated type-1 interferon response in infected cells, produced reduced numbers of infectious EBs in cell culture, and were cleared faster from the mouse genital tract in a transcervical infection model in vivo. The analysis of this CpoS-deficient mutant yielded unique insights into the nature of cell-autonomous defense responses against Chlamydia and highlighted the importance of Chlamydia-mediated control of host cell fate for the success of the pathogen.

  2. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Unknown

    349. Keywords. Antioxidant; baculovirus; host-pathogen; eIF2α-kinase; P35; PKR .... conferring a selective advantage to the virus, the capacity to prevent apoptosis is ..... totic extracts were found to cleave purified PKR in vitro. These findings ...

  3. Intercultural Competence in Host Students?

    DEFF Research Database (Denmark)

    Egekvist, Ulla Egidiussen; Lyngdorf, Niels Erik; Du, Xiangyun

    2016-01-01

    Although substantial work in intercultural education has been done on the intercultural competences of mobile students engaging in international study visits, there is a need to explore intercultural competences in host students. This chapter seeks to answer questions about the challenges...

  4. Balance of power in host-virus arms races.

    Science.gov (United States)

    Kok, Kin-Hang; Jin, Dong-Yan

    2013-07-17

    The sensing of viral RNA by the host innate immune system is mediated by RIG-I and its partner PACT. In this issue of Cell Host & Microbe, Luthra et al. (2013) show that the Ebola virus VP35 protein counteracts the action of PACT at the cost of compromising its own function in viral replication. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effect of host polymer blends to phosphorescence emission | Alias ...

    African Journals Online (AJOL)

    Each polymer was blended with the same ratio composition. The influences of host polymer composition to the phosphorescence emission were observed under pulsed UV excitation source of Xenon lamp. The results shows that there were changing in the phosphorescence emission and life time with difference host ...

  6. SPARCHS: Symbiotic, Polymorphic, Automatic, Resilient, Clean-Slate, Host Security

    Science.gov (United States)

    2016-03-01

    SPARCHS: SYMBIOTIC , POLYMORPHIC, AUTOMATIC, RESILIENT, CLEAN-SLATE, HOST SECURITY COLUMBIA UNIVERSITY MARCH 2016 FINAL... SYMBIOTIC , POLYMORPHIC, AUTOTOMIC, RESILIENT, CLEAN-SLATE, HOST SECURITY 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA8750-10-2-0253 5c. PROGRAM...17 4.2.3 SYMBIOTIC EMBEDDED MACHINES

  7. Host AMPK Is a Modulator of Plasmodium Liver Infection

    Directory of Open Access Journals (Sweden)

    Margarida T. Grilo Ruivo

    2016-09-01

    Full Text Available Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions.

  8. Host state screening process: Regional management plan: [Final report

    International Nuclear Information System (INIS)

    Drobny, N.L.

    1986-01-01

    This report discusses the procedure and cirteria that the Commission selected for designating a host state, should a state not volunteer for this role. Section 2 describes the wide range of approaches considered. Advantages and disadvantages of each are reviewed briefly, and the overall timetable established by the Commission for host state selection is presented. Section 3 describes the selected process for host state designation which involves emphasis on waste quantities generated and transportation factors. Section 4 presents relevant data on characteristics of wastes presently generated and presents estimates for future waste generation to Year 2015. Section 5 presents the results of transportation analyses considering the distance over which waste would be transported and safety (accident) statistics for waste transport routes. Section 6 integrates the conclusions from the analysis of waste volumes generated and transportation factors and suggests how these results might be used to designate a host state. 11 refs., 6 figs., 9 tabs

  9. Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host.

    Science.gov (United States)

    Coors, Anja; De Meester, Luc

    2011-01-01

    Host-parasite interactions are shaped by the co-evolutionary arms race of parasite virulence, transmission success as well as host resistance and recovery. The virulence and fitness of parasites may depend on host condition, which is mediated, for instance, by host energy constraints. Here, we investigated to what extent stress imposed by predation threat and environmental pollutants influences host-parasite interactions. We challenged the crustacean host Daphnia magna with the sterilizing bacterial endoparasite Pasteuria ramosa and simultaneously exposed the host to fish kairomones, the pesticide carbaryl or both stressors. While parasite virulence, measured as impact on host mortality and sterilization, increased markedly after short-term pesticide exposure, it was not influenced by predation threat. Parasite fitness, measured in terms of produced transmission stages, decreased both in fish and pesticide treatments. This effect was much stronger under predation threat than carbaryl exposure, and was attributable to reduced somatic growth of the host, presumably resulting in fewer resources for parasite development. While the indirect impact of both stressors on spore loads provides evidence for host condition-dependent parasite fitness, the finding of increased virulence only under carbaryl exposure indicates a stronger physiological impact of the neurotoxic chemical compared with the effect of a non-toxic fish kairomone.

  10. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    Science.gov (United States)

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  11. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Science.gov (United States)

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  12. Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.

    Science.gov (United States)

    Kim, Ye-Ram; Yang, Chul-Su

    2017-09-28

    Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

  13. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    Science.gov (United States)

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  14. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host

    Directory of Open Access Journals (Sweden)

    Jiun-Yan eDing

    2016-03-01

    Full Text Available The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral’s Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.

  15. Early development and life cycle of Contracaecum multipapillatum s.l. from a brown pelican Pelecanus occidentalis in the Gulf of California, Mexico.

    Science.gov (United States)

    Valles-Vega, Isabel; Molina-Fernández, Dolores; Benítez, Rocío; Hernández-Trujillo, Sergio; Adroher, Francisco Javier

    2017-08-09

    The initial developmental stages of Contracaecum multipapillatum (von Drasche, 1882) Lucker, 1941 sensu lato were studied using eggs obtained from the uteri of female nematodes (genetically identified) found in a brown pelican Pelecanus occidentalis from Bahía de La Paz (Gulf of California, Mexico). Optical microscopy revealed a smooth or slightly rough surface to the eggs. Egg dimensions were approximately 53 × 43 µm, although after the larvae had developed inside, egg size increased to 66 × 55 µm. Hatching and survival of the larvae were greater at 15°C than at 24°C, and increased salinity resulted in a slight increase in hatching but seemed to reduce survival at 24°C, but not at 15°C. The recently hatched larvae measured 261 × 16 µm within their sheath. When placed in culture medium, the larvae grew within their sheath, and a small percentage (~2%) exsheathed completely (314 × 19 µm). The larvae continued to grow and develop once they had exsheathed, attaining mean dimensions of 333 × 22 µm. Although they did not moult during culture, optical microscopy revealed a morphology typical of third-stage larvae. Finally, the genetic identity between the larval parasites collected from mullet Mugil curema and adult female parasites collected from the brown pelican suggests a life cycle of C. multipapillatum in which the mullet are involved as intermediate/paratenic hosts and the brown pelicans as final hosts in the geographical area of Bahía de La Paz.

  16. Effects of Irradiation on Insect Host-Parasite Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rahalkar, G. W.; Ramakrishnan, V. [Biology Division, Bhabha Atomic Research Centre, Trombay, Bombay (India)

    1968-06-15

    Effects of host irradiation on the development of its parasite were investigated. Females of Bracon brevicomis readily accepted irradiated larvae of tile wax moth (Galleria mellonella) and rice moth (Corcyra cephalonica) for oviposition. However, irradiated wax moth larvae adversely influenced the viability of eggs laid on them and also the survival of the parasite grubs feeding on their bodies. The female grubs were affected more than the males. Rice moth larvae, on the other hand, exerted no significant influence on the viability of parasite eggs, but adversely affected the survival of the grubs. The progeny of parents that had been reared on irradiated larvae also exhibited some developmental changes although grown on non-irradiated host larvae, and these changes were more pronounced when G. mellonella was used as the host insect. (author)

  17. Tools for evaluating Lipolexis oregmae (Hymenoptera: Aphidiidae) in the field: Effects of host aphid and host plant on mummy location and color plus improved methods for obtaining adults

    International Nuclear Information System (INIS)

    Singh, R.; Hoy, M.A.

    2007-01-01

    Lipolexis oregmae Gahan was introduced into Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida (Kirkaldy), on citrus. Prior to evaluating distribution, host range, and potential nontarget effects of L. oregmae in Florida, we evaluated the role of other potential host aphids and host plants on mummy production and location. Under laboratory conditions, this parasitoid produced the most progeny on the target pest, the brown citrus aphid on citrus. This parasitoid, unlike the majority of aphidiids, did not produce mummies on any of the host plants tested when reared in black citrus aphid T. aurantii (Boyer de Fonscolombe) on grapefruit, spirea aphid Aphis spiraecola Patch on grapefruit and pittosporum, cowpea aphid A. craccivora Koch on grapefruit and cowpeas, or melon aphid A. gossypii Glover on grapefruit and cucumber. Thus, sampling for L. oregmae mummies of these host aphids and host plants must involve holding foliage in the laboratory until mummies are produced. This parasitoid requires high relative humidity to produce adults because no adults emerged when mummies were held in gelatin capsules, but high rates of emergence were observed when mummies were held on 1.5% agar plates. In addition, we compared the color of 6 aphid hosts and the color of mummies produced by L. oregmae when reared in them to determine if color of mummies could be used to identify L. oregmae . Mummy color varied between aphid hosts and tested host plants, and is not a useful tool for identifying L. oregmae for nontarget effects. (author) [es

  18. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  19. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    Science.gov (United States)

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  20. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  1. Heat production / host rock compatibility; Waermeentwicklung / Gesteinsvertraeglichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Meleshyn, A.; Weyand, T.; Bracke, G.; Kull, H.; Wieczorek, K.

    2016-05-15

    For the final high-level radioactive waste repository potential host rock formations are either rock salt or clays (Kristallin). Heat generating waste (decay heat of the radioactive materials) can be absorbed by the host rock. The effect of temperature increase on the thermal conductivity, the thermal expansion and the mechanical properties of salt, Kristallin, clays and argilliferous geotechnical barriers are described. Further issues of the report are the mineralogical behavior, phase transformations, hydrochemistry, microbial processes, gas formation, thermochemical processes and gas ingress. Recommendations for further research are summarized.

  2. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Host Defence to Pulmonary Mycosis

    Directory of Open Access Journals (Sweden)

    Christopher H Mody

    1999-01-01

    Full Text Available OBJECTIVE: To provide a basic understanding of the mechanisms of host defense to pathogenic fungi. This will help physicians understand why some patients are predisposed to fungal infections and update basic scientists on how microbial immunology applies to fungal disease.

  4. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  5. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  6. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  7. Insects Can Count: Sensory Basis of Host Discrimination in Parasitoid Wasps Revealed.

    Directory of Open Access Journals (Sweden)

    Sara Ruschioni

    Full Text Available The solitary parasitoid Leptopilina heterotoma is one of the best studied organisms concerning the ecology, behaviour and physiology of host discrimination. Behavioural evidence shows that L. heterotoma uses its ovipositor to discriminate not only between parasitized and unparasitized Drosophila melanogaster larvae, but also to discriminate between hosts with different numbers of parasitoid eggs. The existing knowledge about how and when the parasitoid marks the host motivated us to unravel the chemosensory basis of host discrimination by L. heterotoma that allows it to choose the "best" host available. In this paper we report on electrophysiological recordings of multi-neural responses from the single taste sensillum on the tip of the unpaired ovipositor valve. We stimulated this sensillum with haemolymph of unparasitized, one-time-parasitized and two-times-parasitized Drosophila larvae. We demonstrate for the first time that quantitative characteristics of the neural responses to these haemolymph samples differed significantly, implying that host discrimination is encoded by taste receptor neurons in the multi-neuron coeloconic ovipositor sensillum. The activity of three of the six neurons present in the sensillum suffices for host discrimination and support the hypothesis that L. heterotoma females employ an ensemble code of parasitization status of the host.

  8. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  9. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts.

    Science.gov (United States)

    Petit, Elsa; Silver, Casey; Cornille, Amandine; Gladieux, Pierre; Rosenthal, Lisa; Bruns, Emily; Yee, Sarah; Antonovics, Janis; Giraud, Tatiana; Hood, Michael E

    2017-04-01

    Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages. © 2017 John Wiley & Sons Ltd.

  10. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  11. Studies on avian malaria in vectors and hosts of encephalitis in Kern County, California. I. Infections in avian hosts

    Science.gov (United States)

    Herman, C.M.; Reeves, W.C.; McClure, H.E.; French, E.M.; Hammon, W.M.

    1954-01-01

    An epizoological study of Plasmodium infections in wild birds of Kern County, California, in the years 1946 through 1951 greatly extended knowledge of the occurrence of these parasites and their behavior in nature. Examination of 10,459 blood smears from 8,674 birds representing 73 species resulted in the observation of Plasmodium spp. in 1,094 smears representing 888 individual birds of 27 species. Seven species of Plasmodium were found: relictum, elongatum, hexamerium, nucleophilum, polare, rouxi and vaughani. Plasmodium relictum was by far the most frequently observed species, occurring in at least 79 per cent of the infected birds. Twelve new host species are recorded for this parasite. Sufficient morphological variation was observed to indicate that two strains of this species probably exist in nature. Numerous new host records were made of plasmodia with elongate gametocytes. The finding of parasites believed to be P. rouxi in two new host species represents the first record of the occurrence of this Plasmodium outside of Algeria. Multiple smears were obtained from a number of individual birds over varying time periods. Evidence of prolonged parasitemia was unusual, but some individuals had parasitemia on consecutive months and even for three successive years. In most individuals, parasitemias were of short duration. The inoculation of blood from wild birds into canaries led to the demonstration of many infections not observed on blood smear examination of donors. Use of these two complementary techniques led to more complete host records and a truer picture of the prevalence of infection. Three age classes of birds were studied--nestling, immature (less than 1 year of age) and adult. Parasites were observed in all three groups but infections in the younger individuals were most susceptible to interpretation. As to time of onset, numerous records were obtained of infection in nestling birds. Prevalence rates in immature birds after a single season's exposure

  12. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  13. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    Science.gov (United States)

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  14. Re-evaluating Open Source for Sustaining Competitive Advantage for Hosted Applications

    Directory of Open Access Journals (Sweden)

    Daniel Crenna

    2010-03-01

    Full Text Available The use of open source in hosted solutions is undoubtedly widespread. However, it is seldom considered important in its own right, nor do the majority of hosted solutions providers contribute to or create open source as natural artifacts of doing good business. In this exploration of the nature of hosted solutions and their developers, it is suggested that not only consuming open source, but creating and disseminating it to collaborators and competitors alike, is essential to success. By establishing an open source ecosystem where hosted solutions compete on differentiation rather than lose time and money to concerns that are expected by users, do not add value, and benefit from public scrutiny, hosted solution providers can reduce the cost of their solution, the time it takes to deliver new ones, and improve their quality without additional resources.

  15. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  16. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  17. The host immunological response to cancer therapy: An emerging concept in tumor biology

    International Nuclear Information System (INIS)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval

    2013-01-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome

  18. The host immunological response to cancer therapy: An emerging concept in tumor biology

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, Tali [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel); Voest, Emile E. [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel)

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.

  19. Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes.

    Science.gov (United States)

    Kilner, Rebecca M; Langmore, Naomi E

    2011-11-01

    Avian parents and social insect colonies are victimized by interspecific brood parasites-cheats that procure costly care for their dependent offspring by leaving them in another species' nursery. Birds and insects defend themselves from attack by brood parasites; their defences in turn select counter-strategies in the parasite, thus setting in motion antagonistic co-evolution between the two parties. Despite their considerable taxonomic disparity, here we show striking parallels in the way that co-evolution between brood parasites and their hosts proceeds in insects and birds. First, we identify five types of co-evolutionary arms race from the empirical literature, which are common to both systems. These are: (a) directional co-evolution of weaponry and armoury; (b) furtiveness in the parasite countered by strategies in the host to expose the parasite; (c) specialist parasites mimicking hosts who escape by diversifying their genetic signatures; (d) generalist parasites mimicking hosts who escape by favouring signatures that force specialization in the parasite; and (e) parasites using crypsis to evade recognition by hosts who then simplify their signatures to make the parasite more detectable. Arms races a and c are well characterized in the theoretical literature on co-evolution, but the other types have received little or no formal theoretical attention. Empirical work suggests that hosts are doomed to lose arms races b and e to the parasite, in the sense that parasites typically evade host defences and successfully parasitize the nest. Nevertheless hosts may win when the co-evolutionary trajectory follows arms race a, c or d. Next, we show that there are four common outcomes of the co-evolutionary arms race for hosts. These are: (1) successful resistance; (2) the evolution of defence portfolios (or multiple lines of resistance); (3) acceptance of the parasite; and (4) tolerance of the parasite. The particular outcome is not determined by the type of preceding

  20. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  1. Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts?

    Czech Academy of Sciences Publication Activity Database

    Grim, T.; Samaš, P.; Moskát, C.; Kleven, O.; Honza, Marcel; Moksnes, A.; Roskaft, E.; Stokke, B. G.

    2011-01-01

    Roč. 80, č. 3 (2011), s. 508-518 ISSN 0021-8790 R&D Projects: GA AV ČR IAA600930605 Institutional research plan: CEZ:AV0Z60930519 Keywords : antiparasite defence * co-evolution * host selection * interactive effects * parasite avoidance Subject RIV: EG - Zoology Impact factor: 4.937, year: 2011

  2. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    Science.gov (United States)

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  3. Demonstration and suppression of a radioresistant host-versus-graft reaction

    International Nuclear Information System (INIS)

    Thierfelder, S.; Roessler, R. v.; Ruppelt, W.

    1975-01-01

    The possibilities of suppressing and measuring a radioresistant host-versus-graft reaction are described. According to the authors, the host-versus-graft immune reaction may outlast whole-body irradiation at high doses. (BSC/AK) [de

  4. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  5. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  6. Negative frequency-dependent selection between Pasteuria penetrans and its host Meloidogyne arenaria

    Science.gov (United States)

    In negative frequency-dependant selection (NFDS), parasite genotypes capable of infecting the numerically dominant host genotype are favored, while host genotypes resistant to the dominant parasite genotype are favored, creating a cyclical pattern of resistant genotypes in the host population and, a...

  7. Development of Meteorus pulchricornis and regulation of its noctuid host, Pseudaletia separata.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2007-10-01

    The solitary endoparasitoid Meteorus pulchricornis can parasitize many lepidopteran host species successfully. In the case of parasitization of Pseudaletia separata, developmental duration of M. pulchricornis was 8-9 days from egg to larval emergence and 6 days from prepupa to adult emergence. Successful parasitism by M. pulchricornis decreased with host age. Following parasitization of day-0 4th host instar, the parasitoid embryo, whilst still enclosed in serosal cell membrane, hatched out of the egg chorion 2 days after oviposition. Subsequently, the 1st instar parasitoid emerged from the surrounding serosal cell membrane. Serosal cells dissociated and developed as teratocytes 3.5 days after oviposition. One embryo of M. pulchricornis gave rise to approximately 1200 teratocytes, a number that remained constant until 6 days after parasitization, but decreased drastically to 200 at 7 days post-oviposition. The teratocytes of M. pulchricornis were round- or oval-shaped and grew from 65 microm at 4 days to 200 microm in the long axis at 6 days post-parasitization. At 4 days post-parasitization, many cells or cell clusters with lipid particles were observed in the hemocoels of parasitized hosts. In addition, paraffin sections of parasitized hosts revealed that many teratocytes were attached to the host's fat body and contributed to disrupting the fat body tissue. Further, examination of the total hemocyte count (THC) during parasitization revealed that THC was maintained at low levels. Surprisingly, a temporal decrease followed by restoration of THC was observed in hosts injected with virus-like particles of M. pulchricornis (MpVLPs) plus venom, which contrasts with the constant THC suppression seen in parasitized hosts. This indicates that MpVLP function is temporal and is involved in regulation of the host during early parasitism. Therefore, teratocytes, a host regulation factor in late parasitism, could be involved in keeping THC at a low level.

  8. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  9. Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Nason, John D; Heard, Stephen B; Williams, Frederick R

    2002-07-01

    Careful study of apparently generalist phytophagous insects often reveals that they instead represent complexes of genetically differentiated host races or cryptic species. The goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis, attacks two goldenrods in the Solidago canadensis complex: S. altissima and S. gigantea (Asteraceae). We tested for host-associated genetic differentiation in G. gallaesolidaginis via analysis of variation at 12 allozyme loci among larvae collected at six sites in Iowa, Minnesota, and Nebraska. Gnorimoschema gallaesolidaginis from each host are highly polymorphic (3.6-4.7 alleles/locus and expected heterozygosity 0.28-0.38 within site-host combinations). Although there were no fixed differences between larvae from S. altissima and S. gigantea at any site, these represent well differentiated host forms, with 11 of 12 loci showing significantly different allele frequencies between host-associated collections at one or more sites. Host plant has a larger effect on genetic structure among populations than does location (Wright's FST = 0.16 between host forms vs. F(ST) = 0.061 and 0.026 among altissima and gigantea populations, respectively). The estimated F(ST) between host forms suggests that the historical effective rate of gene flow has been low (N(e)m approximately 1.3). Consistent with this historical estimate is the absence of detectable recombinant (hybrid and introgressant between host form) individuals in contemporary populations (none of 431 genotyped individuals). Upper 95% confidence limits for the frequency of recombinant individuals range from 5% to 9%. Host association is tight, but imperfect, with only one likely example of a host mismatch (a larva galling the wrong host species). Our inferences about hybridization and host association are based on new maximum-likelihood methods for estimating frequencies of genealogical classes (in this case, two parental classes, F1 and F2 hybrids, and backcrosses) in a population

  10. Reviewing host proteins of Rhabdoviridae: possible leads for lesser studied viruses.

    Science.gov (United States)

    Guleria, A; Kiranmayi, M; Sreejith, R; Kumar, K; Sharma, S K; Gupta, S

    2011-12-01

    Rhabdoviridae, characterized by bullet-shaped viruses, is known for its diverse host range, which includes plants, arthropods, fishes and humans. Understanding the viral-host interactions of this family can prove beneficial in developing effective therapeutic strategies. The host proteins interacting with animal rhabdoviruses have been reviewed in this report. Several important host proteins commonly interacting with animal rhabdoviruses are being reported, some of which, interestingly, have molecular features, which can serve as potential antiviral targets. This review not only provides the generalized importance of the functions of animal rhabdovirus-associated host proteins for the first time but also compares them among the two most studied viruses, i.e. Rabies virus (RV) and Vesicular Stomatitis virus (VSV). The comparative data can be used for studying emerging viruses such as Chandipura virus (CHPV) and the lesser studied viruses such as Piry virus (PIRYV) and Isfahan virus (ISFV) of the Rhabdoviridae family.

  11. A parasitic selfish gene that affects host promiscuity

    OpenAIRE

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not nec...

  12. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  13. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    Science.gov (United States)

    Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik

    2018-05-01

    Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  14. Dual host specificity of phage SP6 is facilitated by tailspike rotation

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Jiagang [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States); Park, Taehyun [Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712 (United States); Morado, Dustin R. [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States); Hughes, Kelly T. [Department of Biology, University of Utah, Salt Lake City, UT 84112 (United States); Molineux, Ian J., E-mail: molineux@austin.utexas.edu [Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States)

    2017-07-15

    Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspike orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.

  15. Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host.

    Science.gov (United States)

    Moriyama, Minoru; Nikoh, Naruo; Hosokawa, Takahiro; Fukatsu, Takema

    2015-11-10

    Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host's fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia's genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia's riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect's reproduction in a

  16. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    Science.gov (United States)

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  17. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity

    Directory of Open Access Journals (Sweden)

    Irma van Die

    2017-11-01

    Full Text Available Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2 responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR in helminth–host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth–host interactions focusing on a few selected helminth species.

  18. Reservoir-host amplification of disease impact in an endangered amphibian.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  19. Identification of the host determinant of two prolate-headed phages infecting lactococcus lactis

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Birgitte; Janzen, Thomas; Schnabl, Jannie; Johansen, Eric

    2003-01-01

    A gene responsible for host determination was identified in two prolate-headed bacteriophages of the c2 species infecting strains of Lactococcus lactis. The identification of the host determinant gene was based on low DNA sequence homology in a specific open reading frame (ORF) between prolate-headed phages with different host ranges. When a host carrying this ORF from one phage on a plasmid was infected with another phage, we obtained phages with an altered host range at a frequency of 10 -6 to 10 -7 . Sequencing of phage DNA originating from 10 independent single plaques confirmed that a genetic recombination had taken place at different positions between the ORF on the plasmid and the infecting phage. The adsorption of the recombinant phages to their bacterial hosts had also changed to match the phage origin of the ORF. Consequently, it is concluded that this ORF codes for the host range determinant

  20. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways

    Directory of Open Access Journals (Sweden)

    Peter Wimmer

    2015-08-01

    Full Text Available Posttranslational modifications (PTMs of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub and small ubiquitin-like modifier (SUMO moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.