WorldWideScience

Sample records for parasitophorous vacuolar membrane

  1. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Science.gov (United States)

    Ploemen, Ivo H J; Croes, Huib J; van Gemert, Geert-Jan J; Wijers-Rouw, Mietske; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  2. Isolation and Characterization of Erythrocyte and Parasite Membranes from Rhesus Red Cells Infected with P. knowlesi.

    Science.gov (United States)

    1981-06-01

    initiated experiments to separate and isolate the vacuolar membrane and the parasite plasma menbrane . For this, the surfaces of intact schizonts...controlled nitrogen decompression (1) is surrounded by two membranes, its own plasma membrane and the membrane of the parasitophorous vacuole. We have

  3. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    International Nuclear Information System (INIS)

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H + translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ ≅ 70,000 and ≅ 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-[ 14 C]ethylmaleimide and 7-chloro-4-nitro[ 14 C]benzo-2-oxa-1,3-diazole, labeled the M/sub r/ ≅ 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-[ 14 C]dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ ≅ 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10 5 , 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ ≅ 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F 0 F 1 ATPases

  4. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    Science.gov (United States)

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.

  5. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  6. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.

    Science.gov (United States)

    Tomioku, Kan-Na; Shigekuni, Mikiko; Hayashi, Hiroki; Yoshida, Akane; Futagami, Taiki; Tamaki, Hisanori; Tanabe, Kenji; Fujita, Akikazu

    2018-05-01

    In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    Science.gov (United States)

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  8. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    Science.gov (United States)

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  9. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.

    Science.gov (United States)

    Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A

    2006-04-21

    The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.

  10. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  11. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  13. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    Science.gov (United States)

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    Science.gov (United States)

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  15. The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase.

    Science.gov (United States)

    Namkoong, Sim; Lee, Kang Il; Lee, Jin I; Park, Rackhyun; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo

    2015-01-01

    The PKA-CREB signaling pathway is involved in many cellular processes including autophagy. Recent studies demonstrated that PKA-CREB inhibits autophagy in yeast; however, the role of PKA-CREB signaling in mammalian cell autophagy has not been fully characterized. Here, we report that the integral membrane protein ITM2A expression is positively regulated by PKA-CREB signaling and ITM2A expression interferes with autophagic flux by interacting with vacuolar ATPase (v-ATPase). The ITM2A promoter contains a CRE element, and mutation at the CRE consensus site decreases the promoter activity. Forskolin treatment and PKA expression activate the ITM2A promoter confirming that ITM2A expression is dependent on the PKA-CREB pathway. ITM2A expression results in the accumulation of autophagosomes and interferes with autolysosome formation by blocking autophagic flux. We demonstrated that ITM2A physically interacts with v-ATPase and inhibits lysosomal function. These results support the notion that PKA-CREB signaling pathway regulates ITM2A expression, which negatively regulates autophagic flux by interfering with the function of v-ATPase.

  16. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    Science.gov (United States)

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  17. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells.

    Science.gov (United States)

    Deponte, Marcel; Hoppe, Heinrich C; Lee, Marcus C S; Maier, Alexander G; Richard, Dave; Rug, Melanie; Spielmann, Tobias; Przyborski, Jude M

    2012-12-01

    Quite aside from its immense importance as a human pathogen, studies in recent years have brought to light the fact that the malaria parasite Plasmodium falciparum is an interesting eukaryotic model system to study protein trafficking. Studying parasite cell biology often reveals an overrepresentation of atypical cell biological features, possibly driven by the parasites' need to survive in an unusual biological niche. Malaria parasites possess uncommon cellular compartments to which protein traffic must be directed, including secretory organelles such as rhoptries and micronemes, a lysosome-like compartment referred to as the digestive vacuole and a complex (four membrane-bound) plastid, the apicoplast. In addition, the parasite must provide proteins to extracellular compartments and structures including the parasitophorous vacuole, the parasitophorous vacuolar membrane, the Maurer's clefts and both cytosol and plasma membrane of the host cell, the mature human red blood cell. Although some of these unusual destinations are possessed by other cell types, only Plasmodium parasites contain them all within one cell. Here we review what is known about protein and membrane transport in the P. falciparum-infected cell, highlighting novel features of these processes. A growing body of evidence suggests that this parasite is a real "box of tricks" with regards to protein traffic. Possibly, these tricks may be turned against the parasite by exploiting them as novel therapeutic targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Plasmodium falciparum merozoite surface protein 1 - Glycosylation and localization to low-density, detergent-resistant membranes in the parasitized erythrocyte

    DEFF Research Database (Denmark)

    Hoessli, D.C.; Poincelet, M.; Gupta, Ramneek

    2003-01-01

    In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protein....... Subcellular fractionation of parasitized erythrocytes in the late trophozoite/schizont stage reveals that GPI-anchored C-terminal fragments of MSP-1 are recovered in Triton X-100 resistant, low-density membrane fractions. Our results suggest that O -GlcNAc-modified MSP-1 N-terminal fragments tend to localize...... within the parasitophorous vacuolar membrane while GPI-anchored MSP-1 C-terminal fragments associate with low-density, Triton X-100 resistant membrane domains (rafts), redistribute in the parasitized erythrocyte and are eventually shed as membrane vesicles that also contain the endogenous, GPI-linked CD...

  19. Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.

    Science.gov (United States)

    Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk

    2012-11-01

    We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Transfer of phagocytosed particles to the parasitophorous vacuole of Leishmania mexicana is a transient phenomenon preceding the acquisition of annexin I by the phagosome.

    Science.gov (United States)

    Collins, H L; Schaible, U E; Ernst, J D; Russell, D G

    1997-01-01

    The eukaryotic intracellular pathogen Leishmania mexicana resides inside macrophages contained within a membrane bound parasitophorous vacuole which, as it matures, acquires the characteristics of a late endosomal compartment. This study reports the selectivity of fusion of this compartment with other particle containing vacuoles. Phagosomes containing zymosan or live Listeria monocytogenes rapidly fused with L. mexicana parasitophorous vacuoles, while those containing latex beads or heat killed L. monocytogenes failed to do so. Fusigenicity of phagosomes was not primarily dependent on the receptor utilized for ingestion, as opsonization with defined ligands could not overcome the exclusion of either latex beads or heat killed organisms. However modulation of intracellular pH by pharmacological agents such as chloroquine and ammonium chloride increased delivery of live Listeria and also induced transfer of previously excluded particles. The absence of fusion correlated with the acquisition of annexin I, a putative lysosomal targeting, molecule, on the phagosome membrane. We propose that the acquisition of cellular membrane constituents such as annexin I during phagosome maturation can ultimately direct the fusion pathway of the vesicles formed and have described a model system to further document changes in vesicle fusigenicity within cells.

  1. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gao, Caiqiu; Wang, Yucheng; Jiang, Bo; Liu, Guifeng; Yu, Lili; Wei, Zhigang; Yang, Chuanping

    2011-02-01

    Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.

  2. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  3. TRANSPARENT TESTA 13 is a tonoplast P3A -ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Appelhagen, I.; Nordholt, N.; Seidel, T.; Spelt, K.; Koes, R.; Quattrochio, F.; Sagasser, M.; Weisshaar, B.

    2015-01-01

    Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P-type H(+) -ATPases in the plasma membrane, and multimeric vacuolar-type H(+) -ATPases (V-ATPases) and vacuolar H(+)

  4. Differential activity of Plasma and Vacuolar Membrane Transporters contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    DEFF Research Database (Denmark)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana

    2013-01-01

    quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa....... These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce......Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow...

  5. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  6. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Edgar Bonales-Alatorre

    2013-04-01

    Full Text Available Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd., a facultative C3 halophyte species, can efficiently control the activity of slow (SV and fast (FV tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013 Plant Physiology. This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i a higher rate of Na+ exclusion from leaf mesophyll; (ii maintenance of low cytosolic Na+ levels; (iii better K+ retention in the leaf mesophyll; (iv a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  7. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-04-29

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  8. Miopatia vacuolar do lupus eritematoso

    Directory of Open Access Journals (Sweden)

    José Antonio Levy

    1962-06-01

    Full Text Available Após considerações rápidas sôbre as miosites, particularmente sôbre a miopatia vacuolar do lúpus eritematoso, é relatado o caso de uma paciente no qual êsse diagnóstico pôde ser confirmado pelo exame histopatológico.

  9. Vacuolar structures can be identified by AFM elasticity mapping

    International Nuclear Information System (INIS)

    Riethmueller, Christoph; Schaeffer, Tilman E.; Kienberger, Ferry; Stracke, Werner; Oberleithner, Hans

    2007-01-01

    Fluid-filled organelles like vesicles, endosomes and pinosomes are inevitable parts of cellular signalling and transport. Endothelial cells, building a barrier between blood and tissue, can form vacuolar organelles. These structures are implicated in upregulated fluid transport across the endothelium under inflammatory conditions. Vacuolar organelles have been described by transmission electron microscopy so far. Here, we present a method that images and mechanically characterizes intracellular structures in whole cells by atomic force microscopy (AFM). After crosslinking the cellular proteins with the fixative glutaraldehyde, plasma membrane depressions become observable, which are scattered around the cell nucleus. Nanomechanical analysis identifies them as spots of reduced stiffness. Scanning electron microscopy confirms their pit-like appearance. In addition, fluorescence microscopy detects an analogous pattern of protein-poor spots, thereby confirming mechanical rigidity to arise from crosslinked proteins. This AFM application opens up a mechanical dimension for the investigation of intracellular organelles

  10. Acidification of the parasitophorous vacuole containing Toxoplasma gondii in the presence of hydroxyurea

    Directory of Open Access Journals (Sweden)

    Cristiane S. Carvalho

    2006-09-01

    Full Text Available Toxoplasma gondii multiplies within parasitophorous vacuole that is not recognized by the primary no oxidative defense of host cells, mainly represented by the fusion with acidic organelles. Recent studies have already shown that hydroxyurea arrested the intracellular parasites leading to its destruction. In the present work we investigated the cellular mechanism involved in the destruction of intracellular Toxoplasma gondii. Fluorescent vital stains were used in order to observe possible acidification of parasitophorous vacuole-containing Toxoplasma gondii in presence of hydroxyurea. Vero cells infected with tachyzoites were treated with hydroxyurea for 12, 24 or 48 hours. Fluorescence, indicative of acidification, was observed in the parasitophorous vacuole when the cultures were incubated in presence of acridine orange. LysoTracker red was used in order to determine whether lysosomes were involved in the acidification process. An intense fluorescence was observed after 12 and 24 hours of incubation with hydroxyurea, achieving it is highly intensity after 48 hours of treatment. Ultrastructural cytochemistry for localization of the acid phosphatase lysosomal enzyme was realized. Treated infected cultures showed reaction product in vesicles fusing with vacuole or associated with intravacuolar parasites. These results suggest that fusion with lysosomes and acidification of parasitophorous vacuole leads to parasites destruction in the presence pf hydroxyurea.Toxoplasma gondii se multiplica dentro do vacúolo parasitóforo que não é reconhecido pela defesa primária não oxidativa de células hospedeiras: a fusão com organelas ácidas. Estudos anteriores mostraram que hidroxiuréia interrompeu a multiplicação dos parasitos intracelulares causando sua eliminação. No presente trabalho nós investigamos o mecanismo celular envolvido na destruição do Toxoplasma gondii intracelular. Marcadores vitais fluorescentes foram usados para observar a

  11. The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging.

    Directory of Open Access Journals (Sweden)

    Fernando Real

    Full Text Available An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i hosting amastigotes of either L. major or L. amazonensis and ii loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.

  12. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    Science.gov (United States)

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  13. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole.

    Directory of Open Access Journals (Sweden)

    Aurélie Fougère

    2016-11-01

    Full Text Available Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC. P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.

  14. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Science.gov (United States)

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  15. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  17. The plant vacuolar Na+/H+ antiport.

    Science.gov (United States)

    Barkla, B J; Apse, M P; Manolson, M F; Blumwald, E

    1994-01-01

    Salt stress imposes severe limitations on plant growth, however, the extent of growth reduction depends upon the soil salinity level and the plant species. One of the mechanisms employed by salt tolerant plants is the effective vacuolar compartmentalization of sodium. The sequestration of sodium into the vacuole occurs by the operation of a Na+/H+ antiport located at the tonoplast. Evidence for a plant vacuolar Na+/H+ antiport has been demonstrated in tissues, intact vacuoles and isolated tonoplast vesicles. In sugar beet cell suspensions, the activity of the vacuolar Na+/H+ antiport increased with increasing NaCl concentrations in the growth medium. This increased activity was correlated with the increased synthesis of a 170 kDa tonoplast polypeptide. In vivo labelling of tonoplast proteins showed the enhanced synthesis of the 170 kDa polypeptide not only upon exposure of the cells to salt, but also when the cells were grown in the presence of amiloride. Exposure of the cells to amiloride also resulted in increased vacuolar Na+/H+ antiport activity. Polyclonal antibodies raised against the 170 kDa polypeptide almost completely inhibited the antiport activity, suggesting the association of this protein with the plant vacuolar Na+/H+ antiport. Antibodies against the Na+/H+ antiport-associated polypeptide were used to screen a Beta lambda ZAP expression library. A partial clone of 1.65 kb was sequenced and found to encode a polypeptide with a putative transmembrane domain and a large hydrophilic C terminus. This clone showed no homology to any previously cloned gene at either the nucleic acid or the amino acid level.

  18. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  19. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase.

    Science.gov (United States)

    Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin

    2015-12-01

    The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. © 2015 American Society of Plant Biologists. All rights reserved.

  20. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    Science.gov (United States)

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  2. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  3. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  4. Characterization of the vacuolar H sup + -ATPase of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Manolson, M F

    1988-01-01

    The tonoplast H{sup +}-ATPase of Beta vulgaris L. was partially purified by Triton X-100 solubilization and Sepharose 4B chromatography resulting in the enrichment of two polypeptides. Kinetic analysis of ({alpha}-{sup 32}P) BzATP labeling identified the 57 kDa polypeptide as a nucleotide-binding subunit with a possible regulatory function. In addition, ({sup 14}C) DCCD-labeling identified a 16 kDa polypeptide as a putative transmembrane proton channel. It is concluded that the tonoplast H{sup +}-ATPase is a multimer composed of at least three polypeptides. Anti-57 and anti-67 kDa sera reacted with polypeptides of the corresponding size in bovine chromaffin granules, bovine clathrin-coated vesicles, and yeast vacuolar membranes, suggesting common structural features and common ancestry for endomembrane H{sup +}-ATPase of different organelles and different phyla. Anti-57 serum was used to isolate a cDNA encoding the corresponding subunit from Arabidopsis. Protein sequence analysis revealed homologies between endomembrane, F{sub 0}F{sub 1} and archaebacterial ATPases, suggesting that these different classes of ATPases have evolved from a common ancestor.

  5. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    Science.gov (United States)

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  6. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    Science.gov (United States)

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  7. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-05-01

    Soil salinity is a major abiotic stress for land plants, and multiple mechanisms of salt tolerance have evolved. Tissue tolerance is one of these mechanisms, which involves the sequestration of sodium into the vacuole to retain low cytosolic sodium concentrations. This enables the plant to maintain cellular functions, and ultimately maintain growth and yield. However, the molecular components involved in tissue tolerance remain elusive. Several candidate genes for vacuolar sodium sequestration have recently been identified by proteome analysis of vacuolar membranes purified from the salt-tolerant cereal Hordeum vulgare (barley). In this study, I aimed to characterize these candidates in more detail. I successfully cloned coding sequences for the majority of candidate genes with primers designed based on the barley reference genome sequence. During the course of this study a newer genome sequence with improved annotations was published, to which I also compared my observations. To study the candidate genes, I used the heterologous expression system Saccharomyces cerevisiae (yeast). I used several salt sensitive yeast strains (deficient in intrinsic sodium transporters) to test whether the candidate genes would affect their salt tolerance by mediating the sequestration of sodium into the yeast vacuole. I observed a reduction in growth upon expression for several of the gene candidate under salt-stress conditions. However, confocal microscopy suggests that most gene products are subject to degradation, and did not localize to the vacuolar membrane (tonoplast). Therefore, growth effects cannot be linked to protein function without further evidence. Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  8. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis.

    Science.gov (United States)

    Morel, Mélanie; Crouzet, Jérôme; Gravot, Antoine; Auroy, Pascaline; Leonhardt, Nathalie; Vavasseur, Alain; Richaud, Pierre

    2009-02-01

    The Arabidopsis (Arabidopsis thaliana) Heavy Metal Associated3 (AtHMA3) protein belongs to the P1B-2 subgroup of the P-type ATPase family, which is involved in heavy metal transport. In a previous study, we have shown, using heterologous expression in the yeast Saccharomyces cerevisiae, that in the presence of toxic metals, AtHMA3 was able to phenotypically complement the cadmium/lead (Cd/Pb)-hypersensitive strain ycf1 but not the zinc (Zn)-hypersensitive strain zrc1. In this study, we demonstrate that AtHMA3 in planta is located in the vacuolar membrane, with a high expression level in guard cells, hydathodes, vascular tissues, and the root apex. Confocal imaging in the presence of the Zn/Cd fluorescent probe BTC-5N revealed that AtHMA3 participates in the vacuolar storage of Cd. A T-DNA insertional mutant was found more sensitive to Zn and Cd. Conversely, ectopic overexpression of AtHMA3 improved plant tolerance to Cd, cobalt, Pb, and Zn; Cd accumulation increased by about 2- to 3-fold in plants overexpressing AtHMA3 compared with wild-type plants. Thus, AtHMA3 likely plays a role in the detoxification of biological (Zn) and nonbiological (Cd, cobalt, and Pb) heavy metals by participating in their vacuolar sequestration, an original function for a P1B-2 ATPase in a multicellular eukaryote.

  9. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  10. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. Co...

  11. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  12. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...

  13. Targeting vacuolar H+-ATPases as a new strategy against cancer.

    Science.gov (United States)

    Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin

    2007-11-15

    Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.

  14. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    Science.gov (United States)

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  15. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  16. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    Science.gov (United States)

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  17. Vacuolar myelinopathy in waterfowl from a North Carolina impoundment

    Science.gov (United States)

    Augspurger, T.; Fischer, John R.; Thomas, Nancy; Sileo, L.; Brannian, Roger E.; Miller, Kimberli J.; Rocke, Tonie E.

    2003-01-01

    Vacuolar myelinopathy was confirmed by light and electron microscopic examination of mallards (Anas platyrhynchos), ring-necked ducks (Aythya collaris), and buffleheads (Bucephala albeola) collected during an epizootic at Lake Surf in central North Carolina (USA) between November 1998 and February 1999. Clinical signs of affected birds were consistent with central nervous system impairment of motor function (incoordination, abnormal movement and posture, weakness, paralysis). This is the first report of this disease in wild waterfowl (Anseriformes).Aug

  18. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  19. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  20. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  1. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T.; Rubinstein, John L.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases. PMID:27532044

  2. Functional size of vacuolar H+ pumps: Estimates from radiation inactivation studies

    International Nuclear Information System (INIS)

    Sarafian, V.; Poole, R.J.

    1991-01-01

    The PPase and the ATPase from red beet (Beta vulgaris) vacuolar membranes were subjected to radiation inactivation by a 60 Co source in both the native tonoplast and detergent-solubilized states, in order to determine their target molecular sizes. Analysis of the residual phosphohydrolytic and proton transport activities, after exposure to varying doses of radiation, yielded exponential relationships between the activities and radiation doses. The deduced target molecular sizes for PPase activity in native and solubilized membranes were 125kD and 259kD respectively and 327kD for H + -transport. This suggests that the minimum number of subunits of 67kD for PPi hydrolysis is two in the native state and four after Triton X-100 solubilization. At least four subunits would be required for H + -translocation. Analysis of the ATPase inactivation patterns revealed target sizes of 384kD and 495kD for ATP hydrolysis in native and solubilized tonoplast respectively and 430kD for H + -transport. These results suggest that the minimum size for hydrolytic or transport functions is relatively constant for the ATPase

  3. Regulation of Vacuolar pH in Citrus limon

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Taiz

    2005-06-22

    The primary objective of this grant was to characterize the vacuolar V-ATPase of lemon fruits. Lemon fruit vacuoles have an internal pH of about 2.5. Since a typical plant vacuole has a luminal pH of around 5.5, the lemon fruit V-APTase must have special properties which allow it to acidify the lumen to such a low pH: (1) it might have a different structure; (2) it might have a different H{sup +}/ATP stoichiometry; and (3) it might be regulated differently. During the course of the investigations (which began in 1996) they characterized these aspects of the V-ATPases of both lemon fruits and lime fruits. They examined lime fruits because of the availability of both acidic limes with a low vacuolar pH and sweet limes, which have a much higher vacuolar pH. The existence of two types of lime fruits allowed a comparison of the V-ATPases of the two varieties. In this report they are including two publications from 1996 and 1997 as background for the later publications. A review article with Heven Sze on V-ATPase nomenclature was also generated during the funding period. In addition to the studies on citrus fruit vacuoles, they also initiated studies in two new areas: polar auxin transport and the regulation of stomatal opening by UV-B irradiation. These studies were intended to serve as a basis of future separate grants, but the proposals they submitted on these topics were not funded.

  4. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Science.gov (United States)

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  5. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase for anti-fungal therapy

    Directory of Open Access Journals (Sweden)

    Summer R. Hayek

    2014-01-01

    Full Text Available Vacuolar proton-translocating ATPase (V-ATPase is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae (S. cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans (C. albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

  6. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    Science.gov (United States)

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  7. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Science.gov (United States)

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  8. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  9. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Science.gov (United States)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  10. RNAi-directed downregulation of vacuolar H(+ -ATPase subunit a results in enhanced stomatal aperture and density in rice.

    Directory of Open Access Journals (Sweden)

    Huiying Zhang

    Full Text Available Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L. vacuolar H(+-ATPase subunit A (OsVHA-A gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+-ATPase activity and an enhancement of plasma membrane H(+-ATPase activity, thereby increasing the concentrations of extracellular H(+ and intracellular K(+ and Na(+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+-ATPase 3 and downregulation of CAM1 (calmodulin 1, CAM3 (calmodulin 3 and YDA1 (YODA, a MAPKK gene. Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.

  11. Vacuolar processing enzyme: an executor of plant cell death.

    Science.gov (United States)

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  12. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  13. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Helene Tournu

    Full Text Available The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs. Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans.

  14. Failure to transmit avian vacuolar myelinopathy to mallard ducks

    Science.gov (United States)

    Larsen, R.S.; Nutter, F.B.; Augspurger, T.; Rocke, T.E.; Thomas, N.J.; Stoskopf, M.K.

    2003-01-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease that has been diagnosed in free-ranging birds in the southeastern United States. Bald eagles (Haliaeetus leuocephalus), American coots (Fulica americana), and mallards (Anas platyrhynchos) have been affected. Previous investigations have not determined the etiology of this disease. In November and December 2002, we attempted to induce AVM in game-farmed mallards through four, 7-day exposure trials. Mallards were housed in six groups of eight, with two of these groups serving as controls. One group was housed with AVM-affected coots; one group was tube fed daily with water from the lake where affected coots were captured; one group was tube fed daily with aquatic vegetation (Hydrilla verticillata) from the same lake; and another group was tube fed daily with sediment from the lake. No ducks exhibited clinical neurologic abnormalities consistent with AVM and no evidence of AVM was present at histopathologic examination of brain tissue. Although limitations in sample size, quantity of individual doses, frequency of dose administration, duration of exposure, and timing of these trials restrict the interpretation of the findings, AVM was not readily transmitted by direct contact, water, hydrilla, or sediment in this investigation.

  15. Regulation of vacuolar H+-ATPase in microglia by RANKL

    International Nuclear Information System (INIS)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H + -ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  16. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  17. TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection

    Science.gov (United States)

    Radtke, Andrea L; Delbridge, Laura M; Balachandran, Siddharth; Barber, Glen N; O'Riordan, Mary X. D

    2007-01-01

    TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1−/− than tbk1+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1−/−cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity. PMID:17335348

  18. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  19. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  20. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  1. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    Science.gov (United States)

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  2. Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import

    DEFF Research Database (Denmark)

    Welinder, Karen Gjesing; Jørgensen, Malene

    that the path is via the Golgi apparatus. However, the vacuolar targeting signal has never been identified for this storage and defence protein, which amounts to 25-40% of tuber protein. We propose that a six-residue ct-propeptide, -ANKASY-COO- composes this signal. The crystallographic structure...... the Danish Research Council for Technology and Production, and grant 2052-03-0022 from the Danish Research Agency.   Reference Welinder KG, Jørgensen M (2009) Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import. J. Biol. Chem., Feb 2009; doi:10.1074/jbc.M809674200....

  3. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  4. Sequential analysis of trans-SNARE formation in intracellular membrane fusion.

    Directory of Open Access Journals (Sweden)

    Kannan Alpadi

    2012-01-01

    Full Text Available SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a, Q(b, and Q(c from target (t-SNAREs and one (R from the vesicular (v-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a SNARE, leaving behind a Q(bcR subcomplex. This subcomplex serves as an acceptor for a Q(a SNARE from the opposite membrane, leading to Q(a-Q(bcR trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bcR cis-complex and the formation of the Q(a-Q(bcR trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex. This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.

  5. Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import

    DEFF Research Database (Denmark)

    Welinder, Karen Gjesing; Jørgensen, Malene

    2009-01-01

    patatin (Rydel, T. J., Williams, J. M., Krieger, E., Moshiri, F., Stallings, W. C., Brown, S. M., Pershing, J. C., Prucell, J. P., and Alibhai, M. F. (2003) Biochemistry 42, 6696-6708), which included this propeptide thus, for the first time, shows the structure of a putative ligand of the vacuolar...

  6. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).

    Science.gov (United States)

    Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki

    2006-01-01

    We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.

  7. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  8. Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence

    Directory of Open Access Journals (Sweden)

    Ata Ghavidel

    2018-05-01

    Full Text Available The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1 are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2, leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS. Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.

  9. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation.

    Science.gov (United States)

    Nguyen, Trung D; Walker, Michelle E; Gardner, Jennifer M; Jiranek, Vladimir

    2018-04-01

    Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L -1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L -1 or 200 g L -1 . These findings offer insight to the importance of VA to cell growth in high sugar media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hereditary vacuolar internal anal sphincter myopathy causing proctalgia fugax and constipation: a new case contribution.

    Science.gov (United States)

    de la Portilla, Fernando; Borrero, Juan José; Rafel, Enrique

    2005-03-01

    Hereditary anal sphincter myopathy is rare. We present a family with one affected member with proctalgia fugax, constipation and internal anal sphincter hypertrophy. Ultrastructural findings show vacuolization of smooth muscle cells without the characteristic polyglucosan inclusion. Further relief of symptoms was obtained using an oral calcium antagonist. Based on clinical presentation, endosonography and morphological findings, we consider our case is a histological variant of the vacuolar myopathy originally described.

  11. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Marceau, Francois

    2008-01-01

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent K M 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥ 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking

  12. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    Energy Technology Data Exchange (ETDEWEB)

    Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  13. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    International Nuclear Information System (INIS)

    Kohio, Hinissan P.; Adamson, Amy L.

    2013-01-01

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells

  14. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    Science.gov (United States)

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  15. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  16. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Directory of Open Access Journals (Sweden)

    Valerio Alejandro

    2011-10-01

    Full Text Available Abstract Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya. Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA. Conclusion The importance of the V-H+PPase function and the

  17. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease.

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD.

  18. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L.; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD. PMID:27932943

  19. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells

    Science.gov (United States)

    Mitchell, Gabriel

    2017-01-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284

  20. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Allon Weiner

    2016-05-01

    Full Text Available Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial

  1. Transient anterior subcapsular vacuolar change of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation.

    Science.gov (United States)

    Chung, Jin Kwon; Shin, Jin Hee; Lee, Sung Jin

    2013-10-25

    We present two cases of transient vacuolar changes in the anterior subcapsular space of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation. Implantable collamer lenses (ICL) were implanted in healthy myopic patients. Vacuolar changes developed just after the irrigating procedure through the narrow space between the ICL and the crystalline lens. Slit-lamp examinations and spectral domain optical coherence tomography showed bleb-like lesions in the anterior subcapsular space of one eye in each case, though the lesions gradually improved without visual deterioration. Consequently, the lesions turned into a few anterior subcapsular small faint opacities. Direct irrigation of the narrow space confined by the ICL and the crystalline lens is at risk for the development of vacuolar changes in the crystalline lens. The observed spontaneous reversal indicates that surgeons should not rush to surgical intervention but rather opt for close follow over several weeks.

  2. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis

    International Nuclear Information System (INIS)

    Milgrom, Elena M.; Milgrom, Yakov M.

    2012-01-01

    Highlights: ► MgATP protects V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. ► V-ATPase activity saturation with MgATP is not sufficient for complete protection. ► The results support a bi-site catalytic mechanism for V-ATPase. -- Abstract: Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibition by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K m values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.

  3. Abscisic acid induction of vacuolar H+-ATPase activity in mesembryanthemum crystallinum is developmentally regulated

    Science.gov (United States)

    Barkla; Vera-Estrella; Maldonado-Gama; Pantoja

    1999-07-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.

  4. A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape.

    Science.gov (United States)

    Quereda, Juan J; Pizarro-Cerdá, Javier; Balestrino, Damien; Bobard, Alexandre; Danckaert, Anne; Aulner, Nathalie; Shorte, Spencer; Enninga, Jost; Cossart, Pascale

    2016-01-01

    Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a β-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface β-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).

    Science.gov (United States)

    Slugina, M A; Shchennikova, A V; Kochieva, E Z

    2017-10-01

    Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.

  6. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jørgensen, M U; Emr, S D; Winther, Jakob R.

    1999-01-01

    Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand bind...

  7. Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation

    DEFF Research Database (Denmark)

    van Voorst, F; Kielland-Brandt, Morten; Winther, Jakob R.

    1996-01-01

    The core of the vacuolar targeting signal of yeast carboxypeptidase Y (CPY) is recognized by the receptor Vps10p and consists of four contiguous amino acid residues, Gln24-Arg-Pro-Leu27, near the amino terminus of the propeptide (Valls, L.A., Winther, J. R., and Stevens, T. H. (1990) J. Cell Biol...

  8. Yeast carboxypeptidase Y requires glycosylation for efficient intracellular transport, but not for vacuolar sorting, in vivo stability, or activity

    DEFF Research Database (Denmark)

    Winther, Jakob R.; Stevens, T H; Kielland-Brandt, Morten

    1991-01-01

    Functions of the carbohydrate side chains of the yeast vacuolar enzyme carboxypeptidase Y (CPY) were investigated by removal, through site-directed mutagenesis, of the sequences which act as signals for N-linked glycosylation. The mutant forms of the enzyme were analysed with respect to activity...

  9. The patatin-like protein from the latex of Hevea brasiliensis (Hev b 7) is not a vacuolar protein

    NARCIS (Netherlands)

    Jekel, PA; Hofsteenge, J; Beintema, JJ

    Upon centrifugation, rubber latex is divided into a layer of rubber particles, the cytosol, and the lutoid-body fraction, which is of vacuolar origin. One of the proteins isolated from the lutoid-body fraction is a protein with a molecular mass of 43 kDa, which has esterase activity on

  10. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity.

    Science.gov (United States)

    Zhao, Jian; Barkla, Bronwyn J; Marshall, Joy; Pittman, Jon K; Hirschi, Kendal D

    2008-02-01

    Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.

  11. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Science.gov (United States)

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  12. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  14. Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells.

    Science.gov (United States)

    Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V

    2008-01-01

    Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.

  15. Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated1

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Maldonado-Gama, Minerva; Pantoja, Omar

    1999-01-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. PMID:10398716

  16. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  17. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple).

    Science.gov (United States)

    Antony, Edna; Taybi, Tahar; Courbot, Mikaël; Mugford, Sam T; Smith, J Andrew C; Borland, Anne M

    2008-01-01

    In photosynthetic tissues of the CAM plant pineapple (Ananas comosus), storage of soluble sugars in the central vacuole during the daytime and their remobilization at night is required to provide carbon skeletons for nocturnal CO(2) fixation. However, soluble sugars produced photosynthetically must also be exported to support growth processes in heterotrophic tissues. To begin to address how vacuolar sugar storage and assimilate partitioning are regulated in A. comosus, degenerate PCR and cDNA library screening were used to clone three candidate sugar transporters from the leaves of this species. Subcellular localization of the three transporters was investigated via expression of YFP-fusion proteins in tobacco epidermal cells and their co-localization with subcellular markers by confocal microscopy. Using this strategy, a putative hexose transporter (AcMST1) and a putative inositol transporter (AcINT1) were identified that both localized to the tonoplast, whereas a putative sucrose transporter (AcSUT1) was found to localize to prevacuolar compartments. A cDNA (AcMST2) with high similarity to a recently characterized tonoplast hexose transporter in Arabidopsis was also identified from an A. comosus fruit EST database. Analyses of transcript abundance indicated that AcMST1 was more highly expressed in fruits compared to leaves of A. comosus, whilst transcripts of AcINT1, AcSUT1, and AcMST2 were more abundant in leaves. Transcript abundance of AcINT1, the putative inositol transporter, showed day-night changes comparable to those of other CAM-related transcripts described in Mesembryanthemum crystallinum. The results are discussed in terms of the role of vacuolar sugar transporters in regulating carbon flow during the diel cycle in CAM plants.

  18. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Science.gov (United States)

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  19. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Directory of Open Access Journals (Sweden)

    Erik Ronzone

    Full Text Available Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  20. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Polatnick, J.; Wool, S.H.

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [ 3 H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  1. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Polatnick, J.; Wool, S.H. (United States Department of Agriculture, Science and Education, Greenport, New York (USA). Agricultural Research, Plum Island Animal Disease Center)

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated (/sup 3/H) uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity.

  2. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    Science.gov (United States)

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-03

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes

    Czech Academy of Sciences Publication Activity Database

    Petrezsélyová, Silvia; Domínguez, A.; Herynková, Pavla; Macias, J. F.; Sychrová, Hana

    2013-01-01

    Roč. 30, č. 10 (2013), s. 395-402 ISSN 0749-503X R&D Projects: GA MŠk(CZ) LC531; GA AV ČR(CZ) IAA500110801 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200110901 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : heterologous expression * CCC family * alkali-metal-cation tolerance * Saccharomyces cerevisiae * ion homeostasis Subject RIV: EE - Microbiology, Virology Impact factor: 1.742, year: 2013

  4. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and

  5. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  6. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  7. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Science.gov (United States)

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    Science.gov (United States)

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  9. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    Directory of Open Access Journals (Sweden)

    Fuyuki Tokumasu

    2014-05-01

    Full Text Available Plasmodium falciparum (Pf infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM, a parasitophorous vacuole membrane (PVM, a tubulovesicular network (TVN, and Maurer's clefts (MC. Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA and hemoglobin S-containing (HbAS, HbAS erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM. Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes.

  10. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion

  11. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    International Nuclear Information System (INIS)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François

    2013-01-01

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K M 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V max . PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion trapping

  12. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  13. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  14. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.

    Science.gov (United States)

    Thayer, S S; Huffaker, R C

    1984-05-01

    The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

  15. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  16. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Science.gov (United States)

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed.

    Science.gov (United States)

    Kumamaru, Toshihiro; Uemura, Yuji; Inoue, Yoshimi; Takemoto, Yoko; Siddiqui, Sadar Uddin; Ogawa, Masahiro; Hara-Nishimura, Ikuko; Satoh, Hikaru

    2010-01-01

    To identify the function of genes that regulate the processing of proglutelin, we performed an analysis of glup3 mutants, which accumulates excess amounts of proglutelin and lack the vacuolar processing enzyme (VPE). VPE activity in developing seeds from glup3 lines was reduced remarkably compared with the wild type. DNA sequencing of the VPE gene in glup3 mutants revealed either amino acid substitutions or the appearance of a stop codon within the coding region. Microscopic observations showed that alpha-globulin and proglutelin were distributed homogeneously within glup3 protein storage vacuoles (PSVs), and that glup3 PSVs lacked the crystalline lattice structure typical of wild-type PSVs. This suggests that the processing of proglutelin by VPE in rice is essential for proper PSV structure and compartmentalization of storage proteins. Growth retardation in glup3 seedlings was also observed, indicating that the processing of proglutelin influences early seedling development. These findings indicate that storage of glutelin in its mature form as a crystalline structure in PSVs is required for the rapid use of glutelin as a source of amino acids during early seedling development. In conclusion, VPE plays an important role in the formation of protein crystalline structures in PSVs.

  18. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  19. Vacuolar-proton-ATPase is involved in the response of cancer cells to ionizing radiation and is a new target for radiosensitization

    International Nuclear Information System (INIS)

    Hollister, T.C.; Paglin, S.; McMahill, M.S.; Gilles, F.; Yahalom, J.

    2001-01-01

    Purpose: We have recently described a novel response of human cancer cells to radiation consisting of accumulation of acidic vesicular organelles (AVO) (Cancer Research, 61:439-444, 2001). Acidification of AVO was inhibited by bafilomycin A1 - a specific inhibitor of vacuolar-proton-ATPase. To examine the role of AVO function in the cellular response to radiation, we determined the effect of specific inhibitors of v-H+-ATPase (bafilomycin and concanamycin) on the clonogenic survival of various cancer cell lines. In addition, Northern analysis of mRNA encoding v-H+-ATPase was performed to elucidate possible mechanisms of post-radiation v-H+-ATPase regulation. Materials and Methods: Total RNA was isolated from human cancer cell lines including MCF-7 (breast), LoVo (colon), and LNCaP (prostate) cells 48 hours post-irradiation, and Northern analyses were performed. RNA was separated on a denaturing formaldehyde gel and blotted to a nylon membrane. Probes made from cDNAs to v-H+-ATPase were radioactively labeled, hybridized to the membranes, and exposed to X-ray film for determination of mRNA expression levels. Clonogenic survival assays were performed with MCF-7 and LoVo cell lines. Cells were plated at 30 cells/cm 2 , and irradiated 24 hours post-plating. Bafilomycin or concanamycin were added to culture media in various concentrations at the time of irradiation. The media was changed after a 24-hour incubation, and colonies were stained with crystal violet for counting 7 days post-irradiation. Results: Radiation-induced accumulation of acidic vesicular organelles in MCF-7, LoVo and LNCaP cells was associated with a two-fold increase in the steady-state level of mRNA for subunit c of v-H+-ATPase. Bafilomycin and concanamycin increased clonogenic cell death after irradiation in a dose-dependent manner. At low concentrations (bafilomycin 2nM, concanamycin 2pM) these agents acted as radiosensitizers, without significant toxicity to unirradiated cells. At 2nM, bafilomycin

  20. Vacuolar Protein Sorting genes in Parkinson’s Disease: a re-appraisal of mutations detection rate and neurobiology of disease

    Directory of Open Access Journals (Sweden)

    Stefano Gambardella

    2016-11-01

    Full Text Available Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN. Recently, retromers have been linked to Parkinson's Disease (PD since the identification of the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35 as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation, which represent critical steps in the molecular mechanisms of disease. Other slightly penetrant and mildly deleterious mutations in VPS genes have been reported in both sporadic and familial PD. Therefore, understanding the actual prevalence of the whole range of VPS gene mutations is key to understand the relevance of retromers impairment in PD. This scenario indicates a plethora of mutations occurring in different pathways (autophagy, mitophagy, proteasome, endosomes, protein misfolding all converging to cell clearing systems. This may explain how genetic predispositions to PD may derive from slightly deleterious mutations when combining with heterogeneous environmental factors. This manuscript is a re-appraisal of genetic data produced in the last five years redefining the prevalence of VPS mutations in PD. The prevalence of p.Asp620Asn in VPS35 is 0.286 of familial PD. This data increases up to 0.548 considering mutations affecting all VPS genes, thus representing the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the key role of retromers alterations in PD, strongly candidate environmentally-induced VPS alterations as key molecular mechanisms in the genesis of PD. rations as key molecular mechanisms in the genesis of PD.

  1. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Blumwald Eduardo

    2007-04-01

    Full Text Available Abstract Background AtNHX1, the most abundant vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of Na+ and K+ into the vacuole, influencing plant development and contributing to salt tolerance. In this report, microarray expression profiles of wild type plants, a T-DNA insertion knockout mutant of AtNHX1 (nhx1, and a 'rescued' line (NHX1::nhx1 were exposed to both short (12 h and 48 h and long (one and two weeks durations of a non-lethal salt stress to identify key gene transcripts associated with the salt response that are influenced by AtNHX1. Results 147 transcripts showed both salt responsiveness and a significant influence of AtNHX1. Fifty-seven of these genes showed an influence of the antiporter across all salt treatments, while the remaining genes were influenced as a result of a particular duration of salt stress. Most (69% of the genes were up-regulated in the absence of AtNHX1, with the exception of transcripts encoding proteins involved with metabolic and energy processes that were mostly down-regulated. Conclusion While part of the AtNHX1-influenced transcripts were unclassified, other transcripts with known or putative roles showed the importance of AtNHX1 to key cellular processes that were not necessarily limited to the salt stress response; namely calcium signaling, sulfur metabolism, cell structure and cell growth, as well as vesicular trafficking and protein processing. Only a small number of other salt-responsive membrane transporter transcripts appeared significantly influenced by AtNHX1.

  2. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  3. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  4. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  5. Identification of a new target of miR-16, Vacuolar Protein Sorting 4a.

    Directory of Open Access Journals (Sweden)

    Neeta Adhikari

    Full Text Available The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs to discover pathways in heart failure (HF.The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD.BEDTools v2.14.3 was used to discriminate SNPs within predicted 3'UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001. MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a expression in HEK 293T cells (p<0.01. The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3'UTR of VPS4a (p<0.05. VPS4a was increased in the circulation of end-stage HF patients (p<0.001, and led to a decrease in the number of HEK 293T cells in vitro (p<0.001.We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.

  6. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress

    Directory of Open Access Journals (Sweden)

    Paul-Christian Burda

    2017-04-01

    Full Text Available A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2 reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.

  8. Effect of external pH on the cytoplasmic and vacuolar pHs in Mung bean root-tip cells

    International Nuclear Information System (INIS)

    Torimitsu, Keiichi; Yazaki, Yoshiaki; Nagasuka, Kinuyo; Ohta, Eiji; Sakata, Makoto

    1984-01-01

    The effect of the external pH on the intracellular pH in mung bean (Vigna mungo (L.) Hepper) root-tip cells was investigated with the 31 P nuclear magnetic resonance (NMR) method. The 31 P NMR spectra showed three peaks caused by cytoplasmic G-6-P, cytoplasmic Psub(i) and vacuolar Psub(i). The cytoplasmic and vacuolar pHs could be determined by comparing the Psub(i) chemical shifts with the titration curve. When the external pH was changed over a range from pH 3 to 10, the cytoplasmic pH showed smaller changes than the vacuolar pH, suggesting that the former is regulated more strictly than the latter. The H + -ATPase inhibitor, DCCD, caused the breakdown of the mechanism that regulates the intracellular pH. H + -ATPase appears to have an important part in the regulation of the intracellular pH. (author)

  9. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant.

    Directory of Open Access Journals (Sweden)

    Takashi Negishi

    Full Text Available Hydrangea (Hydrangea macrophylla is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT and plasma membrane Al transporter 1 (PALT1, respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively.

  10. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  11. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  12. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum.

    Science.gov (United States)

    Khoudi, Habib; Maatar, Yafa; Brini, Faïçal; Fourati, Amine; Ammar, Najoua; Masmoudi, Khaled

    2013-01-01

    transgenic A. thaliana lines were more Cd-tolerant than the WT plants. These results suggested that ectopic expression of a vacuolar proton pump in A. thaliana plants can lead to various biotechnological applications including the phytoremediation of industrial wastes.

  13. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme

    International Nuclear Information System (INIS)

    Kasho, V.N.; Boyer, P.D.

    1989-01-01

    Recent studies with vacuolar ATPases have shown that multiple copies catalytic subunits are present and that these have definite sequence homology with catalytic subunits of the F 1 , F 0 -ATPases. Experiments are reported that assess whether the vacuolar ATPases may have the unusual catalytic cooperativity with sequential catalytic site participation as in the binding change mechanism for the F 1 ,F 0 -ATPases. The extent of reversal of bound ATP hydrolysis to bound ADP and P i as medium ATP concentration was lowered was determined by 18 O-exchange measurements for yeast and neurospora vacuolar ATPases. The results show a pronounced increase in the extent of water oxygen incorporation into the P i formed as ATP concentration is decreased to the micromolar range. The F 1 ,F 0 -ATPase from neurospora mitochondria showed an event more pronounced modulation, similar to that of other F 1 -type ATPases. The vacuolar ATPases thus appear to have a catalytic mechanism quite analogous to that of the F 1 ,F 0 -ATPases

  14. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion

    DEFF Research Database (Denmark)

    Takeda, Kozue; Cabrera, Margarita; Rohde, Jan

    2008-01-01

    At yeast vacuoles, phosphorylation of the HOPS subunit Vps41 depends on the Yck3 kinase. In a screen for mutants that mimic the yck3Delta phenotype, in which Vps41 accumulates in vacuolar dots, we observed that mutants in the V0-part of the V0/V1-ATPase, in particular in vma16Delta, also accumulate...

  15. Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

    Science.gov (United States)

    Yeoman, Jeffrey A; Hanssen, Eric; Maier, Alexander G; Klonis, Nectarios; Maco, Bohumil; Baum, Jake; Turnbull, Lynne; Whitchurch, Cynthia B; Dixon, Matthew W A; Tilley, Leann

    2011-04-01

    The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.

  16. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters.

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K; Barkla, Bronwyn J; Shigaki, Toshiro; Hirschi, Kendal D

    2003-02-01

    The Arabidopsis Ca(2+)/H(+) transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca(2+) levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca(2+)/H(+) antiport activity, a 40% reduction in tonoplast V-type H(+)-translocating ATPase activity, a 36% increase in tonoplast Ca(2+)-ATPase activity, and increased expression of the putative vacuolar Ca(2+)/H(+) antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn(2+) and Mg(2+) stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters.

  17. The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters

    Science.gov (United States)

    Cheng, Ning-Hui; Pittman, Jon K.; Barkla, Bronwyn J.; Shigaki, Toshiro; Hirschi, Kendal D.

    2003-01-01

    The Arabidopsis Ca2+/H+ transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca2+ levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca2+/H+ antiport activity, a 40% reduction in tonoplast V-type H+-translocating ATPase activity, a 36% increase in tonoplast Ca2+-ATPase activity, and increased expression of the putative vacuolar Ca2+/H+ antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn2+ and Mg2+ stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters. PMID:12566577

  18. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  19. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  20. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  1. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  2. The potential of fluorinated surfactants in membrane biochemistry.

    Science.gov (United States)

    Shepherd, F H; Holzenburg, A

    1995-01-01

    Detergents are important reagents in membrane biochemistry. Since each membrane system studied places different demands on the detergent in terms of desirous physicochemical properties, detergents new to biochemistry must continuously be sought. Ammonium perfluorooctanoate (APFO) was investigated, as representative of fluorinated surfactants, in terms of its suitability as a "biological detergent." It did not interfere with the Markwell modification of the Lowry procedure at detergent concentrations of up to 2% (w/v). Critical micellization concentration (cmc) values (0.013-0.0275 M) for this detergent were determined in a number of buffers of biological interest. It was demonstrated that the detergent can be removed by dialysis, albeit slowly. This slow removal may be particularly useful for reconstitution/crystallization studies. Solubilization studies on several membrane systems containing the proteins listed (the major protein of the membrane sector of the vacuolar H(+)-ATPase (16 kDa protein); photosystem II; equine herpes virus (EHV) envelope proteins) indicate that it is a potent solubilizing agent, likely to enhance the yield in cases where solubilization has already been demonstrated, and, in other cases, to solubilize proteins formerly recalcitrant to solubilization. The removal of APFO from solubilized 16-kDa protein by means of Extracti-Gel D resin as a means of exchanging detergents quickly and with a minimum requirement for second detergent was investigated.

  3. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  4. Vacuolar invertase gene silencing in potato (Solanum tuberosum L. improves processing quality by decreasing the frequency of sugar-end defects.

    Directory of Open Access Journals (Sweden)

    Xiaobiao Zhu

    Full Text Available Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  5. A systematic analysis of the early transcribed membrane protein family throughout the life cycle of Plasmodium yoelii.

    Science.gov (United States)

    MacKellar, Drew C; Vaughan, Ashley M; Aly, Ahmed S I; DeLeon, Sasha; Kappe, Stefan H I

    2011-11-01

    The early transcribed membrane proteins (ETRAMPs) are a family of small, highly charged transmembrane proteins unique to malaria parasites. Some members of the ETRAMP family have been localized to the parasitophorous vacuole membrane that separates the intracellular parasite from the host cell and thus presumably have a role in host-parasite interactions. Although it was previously shown that two ETRAMPs are critical for rodent malaria parasite liver-stage development, the importance of most ETRAMPs during the parasite life cycle remains unknown. Here, we comprehensively identify nine new etramps in the genome of the rodent malaria parasite Plasmodium yoelii, and elucidate their conservation in other malaria parasites. etramp expression profiles are diverse throughout the parasite life cycle as measured by RT-PCR. Epitope tagging of two ETRAMPs demonstrates protein expression in blood and liver stages, and reveals differences in both their timing of expression and their subcellular localization. Gene targeting studies of each of the nine uncharacterized etramps show that two are refractory to deletion and thus likely essential for blood-stage replication. Seven etramps are not essential for any life cycle stage. Systematic characterization of the members of the ETRAMP family reveals the diversity in importance of each family member at the interface between host and parasite throughout the developmental cycle of the malaria parasite. © 2011 Blackwell Publishing Ltd.

  6. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  7. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  8. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  9. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    Science.gov (United States)

    Barkla, B J; Blumwald, E

    1991-12-15

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  10. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    International Nuclear Information System (INIS)

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya; Nishikawa, Shuh-ichi

    2010-01-01

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  11. Clinical features of progressive vacuolar hepatopathy in Scottish Terriers with and without hepatocellular carcinoma: 114 cases (1980-2013).

    Science.gov (United States)

    Cortright, Catherine C; Center, Sharon A; Randolph, John F; McDonough, Sean P; Fecteau, Kellie A; Warner, Karen L; Chiapella, Ann M; Pierce, Rhonda L; Graham, A Heather; Wall, Linda J; Heidgerd, John H; Degen, Melisa A; Lucia, Patricia A; Erb, Hollis N

    2014-10-01

    To characterize signalment, clinical features, clinicopathologic variables, hepatic ultrasonographic characteristics, endocrinologic profiles, treatment response, and age at death of Scottish Terriers with progressive vacuolar hepatopathy (VH) with or without hepatocellular carcinoma (HCC). Retrospective case series. 114 Scottish Terriers with progressive VH. Electronic databases from 1980 to 2013 were searched for adult (age > 1 year) Scottish Terriers with histopathologic diagnoses of diffuse glycogen-like VH. Available sections of liver specimens were histologically reevaluated to confirm diffuse VH with or without HCC; 8 dogs with HCC only had neoplastic tissue available. Physical examination, clinicopathologic, treatment, and survival data were obtained. 39 of 114 (34%) dogs with VH had HCC detected at surgery or necropsy or by abdominal ultrasonography. Histologic findings indicated that HCC was seemingly preceded by dysplastic hepatocellular foci. No significant differences were found in clinicopathologic variables or age at death between VH-affected dogs with or without HCC. Fifteen of 26 (58%) dogs with high hepatic copper concentrations had histologic features consistent with copper-associated hepatopathy. Although signs consistent with hyperadrenocorticism were observed in 40% (46/114) of dogs, definitive diagnosis was inconsistently confirmed. Assessment of adrenal sex hormone concentrations before and after ACTH administration identified high progesterone and androstenedione concentrations in 88% (22/25) and 80% (20/25) of tested dogs, respectively. Results suggested that VH in Scottish Terriers may be linked to adrenal steroidogenesis and a predisposition to HCC. In dogs with VH, frequent serum biochemical analysis and ultrasonographic surveillance for early tumor detection are recommended.

  12. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishikawa, Shuh-ichi, E-mail: shuh@biochem.chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2010-03-12

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  13. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    Science.gov (United States)

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  14. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Science.gov (United States)

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  15. The LRRC8A Mediated “Swell Activated” Chloride Conductance Is Dispensable for Vacuolar Homeostasis in Neutrophils

    Directory of Open Access Journals (Sweden)

    Philippe Behe

    2017-05-01

    Full Text Available The dialysis of human and mouse neutrophils in patch clamp experiments in the conventional whole-cell mode induces the emergence of a chloride (Cl- current that appeared to be primarily regulated by cytoplasmic ionic strength. The characteristics of this current resembled that of the classical, and ubiquitous volume-sensitive outwardly rectifying Cl- current: strong outward rectification, selectivity sequence of the Eisenman1 type, insensitivity to external pH and strong inhibition by tamoxifen, DCPIB and WW781. We show that this current is essentially supported by the leucine rich repeat containing 8 A (LRRC8A; the naturally occurring LRRC8A truncation mutant in ebo/ebo mice drastically reduced Cl- conductance in neutrophils. Remarkably, the residual component presents a distinct pharmacology, but appears equally potentiated by reduced ionic strength. We have investigated the role of the LRRC8A-supported current in the ionic homeostasis of the phagosomal compartment. The vacuolar pH, measured using SNARF-1 labeled Candida albicans, normally rises because of NADPH oxidase activity, and this elevation is blocked by certain Cl- channel inhibitors. However, the pH rise remains intact in neutrophils from the ebo/ebo mice which also demonstrate preserved phagocytic and respiratory burst capacities and normal-sized vacuoles. Thus, the LRRC8A-dependent conductance of neutrophils largely accounts for their “swell activated” Cl- current, but is not required for homeostasis of the phagosomal killing compartment.

  16. Inhibition of the Vacuolar-like ATPase from Halobacterium saccharovorum by Thiol Reagents: Evidence for Different Functional Thiols

    Science.gov (United States)

    Hochstein, L. I.; Stanlotter, H.; Emrich, E.; Morrison, David (Technical Monitor)

    1994-01-01

    N-Ethylmaleimide (NEM) inhibited the vacuolar-like ATPase from Halobacterium saccharovorum (K(sub i) approximately 1 mM) by modifying one or more of the thiols located on the largest of the subunit. ATP protected against inhibition and coincidentally prevented NEM binding which suggested that NEM acts at or near the catalytic site. p-Chloromercuriphenylsulfonate (PCMS) also inhibited this ATPase (K(sub i) approximately 90 microM). ATP did not protect against PCMS inhibition. Dithiothreitol (DTT) partially reversed PCMS inhibition and restored approximately half of the initial activity of 90% inhibited enzyme. DTT did not restore activity of the NEM-inhibited enzyme or the PCMS-inhibited enzyme when it was subsequently incubated with NEM. The failure of ATP to protect against PCMS inhibition and the inability of DTT to restore activity of enzyme incubated in the presence of PCMS and NEM suggests these reagents react with different thiols and that the PCMS-sensitive thiol may have a structural role.

  17. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  18. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta.

    Directory of Open Access Journals (Sweden)

    Albert D Mercurio

    Full Text Available Vacuolar myelinopathy (VM is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter "UCB" for "uncharacterized cyanobacterium". Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta would develop VM after feeding on Hydrilla (Hydrilla verticillata, colonized by the UCB (Hydrilla is the most common "host" of UCB. We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, "toxicity" was verified by feeding it to domestic chickens (Gallus gallus domesticus or necropsy of field collected American coots (Fulica americana captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the

  20. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    Science.gov (United States)

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Vacuolar H+ -ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition.

    Science.gov (United States)

    Byun, Yu Jeong; Lee, Seong-Beom; Lee, Hwa Ok; Son, Min Jeong; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2011-08-01

    We examined the role of the c subunit (ATP6L) of vacuolar H(+) -ATPase and its molecular mechanisms in glial cell death induced by sodium nitroprusside (SNP). ATP6L siRNA-transfected cells treated with SNP showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, but reduction of ATP6L did not affect the regulation of lysosomal pH in analyses with lysosomal pH-dependent fluorescence probes. Photodegraded SNP and ferrous sulfate induced cytotoxicity with the same pattern as that of SNP, but SNAP and potassium cyanide did not show activity. Pretreatment of the transfected cells with deferoxamine (DFO) reduced ROS production and significantly inhibited the cytotoxicity, which indicates that primarily iron rather than nitric oxide or cyanide from SNP contributes to cell death. Involvement of apoptotic processes in the cells was not shown. Pretreatment with JNK or p38 chemical inhibitor significantly inhibited the cytotoxicity, and we also confirmed that the MAPKs were activated in the cells by immunoblot analysis. Significant increase of LC3-II conversion was observed in the cells, and the conversions were inhibited by cotransfection of the MAPK siRNAs and pretreatment with DFO. Introduction of Atg5 siRNA inhibited the cytotoxicity and inhibited the activation of MAPKs and the conversion of LC3. We finally confirmed autophagic cell death and involvement of MAPKs by observation of autophagic vacuoles via electron microscopy. These data suggest that ATP6L has a protective role against SNP-induced autophagic cell death via inhibition of JNK and p38 in GSH-depleted glial cells. Copyright © 2011 Wiley-Liss, Inc.

  2. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  3. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    Science.gov (United States)

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Guo, Jiangbo; Xu, Wenzhong; Ma, Mi

    2012-01-01

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  5. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue.

    Science.gov (United States)

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.

  6. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  7. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  8. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  10. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations

    Directory of Open Access Journals (Sweden)

    Xu Na Wu

    2017-09-01

    Full Text Available Mass spectrometry (MS-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed “ShortPhos,” an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. “ShortPhos” can produce label-free datasets with a high quantitative reproducibility. In addition, the “ShortPhos” protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied “ShortPhos” to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The “ShortPhos” identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.

  11. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  12. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana)

    Science.gov (United States)

    Thomas, N.J.; Meteyer, C.U.; Sileo, L.

    1998-01-01

    toxicity from hexachlorophene, triethyltin, bromethalin, isonicotinic acid hydrazide, and certain exotic plant toxins; however, despite exhaustive testing, no etiology was determined for the DeGray Lake mortality events. This is the first report of vacuolar myelinopathy associated with spontaneous mortality in wild birds.

  13. Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Yefu; Song, Lulu; Han, Yueran; Liu, Mingming; Gong, Rui; Luo, Weiwei; Guo, Xuewu; Xiao, Dongguang

    2017-01-01

    Proteinase A (PrA), encoded by PEP4 gene, is detrimental to beer foam stability. There are two transport pathways for the new synthesized PrA in yeast, sorting to the vacuole normally, or excreting out of the cells under stress conditions. They were designated as the Golgi-to-vacuole pathway and the constitutive secretory pathway, respectively. To reduce PrA excretion in some new way instead of its coding gene deletion, which had a negative effect on cell metabolism and beer fermentation, we modified the PrA transport based on these above two pathways. In the Golgi-to-vacuole pathway, after the verification that Vps10p is the dominant sorting receptor for PrA Golgi-to-vacuolar transportation by VPS10 deletion, VPS10 was then overexpressed. Furthermore, SEC5, encoding exocyst complexes' central subunit (Sec5p) in the constitutive secretory pathway, was deleted. The results show that PrA activity in the broth fermented with WGV10 (VPS10 overexpressing strain) and W∆SEC5 (SEC5 deletion strain) was lowered by 76.96 and 32.39%, compared with the parental strain W303-1A, at the end of main fermentation. There are negligible changes in fermentation performance between W∆SEC5 and W303-1A, whereas, surprisingly, WGV10 had a significantly improved fermentation performance compared with W303-1A. WGV10 has an increased growth rate, resulting in higher biomass and faster fermentation speed; finally, wort fermentation is performed thoroughly. The results show that the biomass production of WGV10 is always higher than that of W∆SEC5 and W303-1A at all stages of fermentation, and that ethanol production of WGV10 is 1.41-fold higher than that of W303-1A. Obviously, VPS10 overexpression is beneficial for yeast and is a more promising method for reduction of PrA excretion.

  14. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure.

    Science.gov (United States)

    Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki

    2011-02-01

    Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.

  15. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

    Science.gov (United States)

    Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.

    1995-10-01

    Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast.

  16. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lydie Michaillat

    Full Text Available The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  17. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  18. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  19. Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing?

    Science.gov (United States)

    Wong, Louise H; Levine, Tim P

    2016-04-15

    Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly? © 2016 Authors; published by Portland Press Limited.

  20. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  1. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  2. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  3. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Bouthillier, Johanne; Marceau, Francois

    2008-01-01

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H 1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA 2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H 1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H 1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  4. Cryptosporidia: Epicellular parasites embraced by the host cell membrane

    Czech Academy of Sciences Publication Activity Database

    Valigurová, A.; Jirků, Miloslav; Koudela, Břetislav; Gelnar, M.; Modrý, David; Šlapeta, J.

    2008-01-01

    Roč. 38, 8/9 (2008), s. 913-922 ISSN 0020-7519 R&D Projects: GA ČR GD524/03/H133; GA ČR GA524/05/0992; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium * host cell invasion * epicellular * parasitophorous sac * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.752, year: 2008

  5. Mielite transversa como manifestação clínica inicial de linfoma não Hodgkin disseminado e mielopatia vacuolar associada ao HIV: relato de caso Transverse myelitis as initial symptom of disseminated non-Hodgkin lymphoma and HIV-associated vacuolar myelopathy: case report

    Directory of Open Access Journals (Sweden)

    Leandro P. de Moura

    1996-06-01

    Full Text Available Linfomas não Hodgkin de alto grau são comumente relatados em pacientes com a síndrome da imunodeficiência adquirida (AIDS. Comprometendo com grande freqüência o sistema nervoso central, particularmente as leptomeninges e os hemisférios cerebrais. O acometimento epidural é pouco freqüente, variando de 3,5% a 8,3% de acordo com os registros da literatura. Os autores relatam o caso de um paciente de 27 anos de idade com AIDS, cuja manifestação clínica inicial da doença linfomatosa disseminada foi a mielite transversa associada à mielopatia vacuolar. Destaca-se a importância do diagnóstico diferencial precoce das mielopatias na AIDS, em virtude da alta malignidade da neoplasia e da evolução extremamente rápida nesses pacientes.Non-Hodgkin lymphoma is frequently seen in AIDS patients usually affecting the central nervous system (CNS, especially the leptomeninges and the cerebral hemispheres. The epidural involvement is rarely described, ranging from 3.5% to 8.3% among the CNS sites. The authors present a case of disseminated non Hodgkin lymphoma associated to vacuolar myelopathy in a 27 years-old male patient with AIDS emphasizing the importance of this differential diagnosis in the myelopathies of AIDS.

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  8. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  9. Membrane with integrated spacer

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    Many membrane processes are severely influenced by concentration polarisation. Turbulence promoting spacers placed in between the membranes can reduce the diffusional resistance of concentration polarisation by inducing additional mixing. Electrodialysis (ED) used for desalination suffers from

  10. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  11. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  12. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  13. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  14. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  15. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  16. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  17. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  18. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  19. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  20. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  1. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  2. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  3. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  4. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    Science.gov (United States)

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-02-03

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.

  5. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis.

    Science.gov (United States)

    Li, Chao; Wei, Zhiwei; Liang, Dong; Zhou, Shasha; Li, Yonghong; Liu, Changhai; Ma, Fengwang

    2013-09-01

    High salinity is a major abiotic factor that limits crop production. The dwarfing apple rootstock M.26 is sensitive to such stress. To obtain an apple that is adaptable to saline soils, we transformed this rootstock with a vacuolar Na(+)/H(+) antiporter, MdNHX1. Differences in salt tolerance between transgenic and wild-type (WT) rootstocks were examined under field conditions. We also compared differences when 'Naganofuji No. 2' apple was grafted onto these transgenic or WT rootstocks. Plants on the transgenic rootstocks grew well during 60 d of mild stress (100 mM NaCl) while the WT exhibited chlorosis, inhibited growth and even death. Compared with the untreated control, the stomatal density was greater in both non-grafted and grafted WT plants exposed to 200 mM NaCl. In contrast, that density was significantly decreased in leaves from grafted transgenic plants. At 200 mM NaCl, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and chlorophyll contents were markedly reduced in the WT, whereas the declines in those values were only minor in similarly stressed transgenic plants. Therefore, we conclude that overexpressing plants utilize a better protective mechanism for retaining higher photosynthetic capacity. Furthermore, this contrast in tolerance and adaptability to stress is linked to differences in stomatal behavior and photosynthetic rates. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  7. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  8. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  9. Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion.

    Science.gov (United States)

    Martins, Nadini Oliveira; Souza, Renata Torres de; Cordero, Esteban Mauricio; Maldonado, Danielle Cortez; Cortez, Cristian; Marini, Marjorie Mendes; Ferreira, Eden Ramalho; Bayer-Santos, Ethel; Almeida, Igor Correia de; Yoshida, Nobuko; Silveira, José Franco da

    2015-11-01

    The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by

  10. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  11. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  12. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  13. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.

    Science.gov (United States)

    Migocka, Magdalena; Papierniak, Anna; Kosatka, Ewelina; Klobus, Grazyna

    2011-10-01

    The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.

  14. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  15. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  16. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  17. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  18. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  19. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  20. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  1. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  2. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  3. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.

    Science.gov (United States)

    Anjaneyulu, Ediga; Reddy, Palle Surender; Sunita, Merla Srilakshmi; Kishor, Polavarapu B Kavi; Meriga, Balaji

    2014-06-15

    A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Structures and immunolocalization of Na+, K+ -ATPase, Na+ /H+ exchanger 3 and vacuolar-type H+ -ATPase in the gills of blennies (Teleostei: Blenniidae) inhabiting rocky intertidal areas.

    Science.gov (United States)

    Uchiyama, M; Komiyama, M; Yoshizawa, H; Shimizu, N; Konno, N; Matsuda, K

    2012-05-01

    The structure and immunolocalization of the ion transporters Na(+) ,K(+) -ATPase (NKA), Na(+) /H(+) exchanger (NHE3) and vacuolar-type H(+) -ATPase (VHA) were examined in the gills of teleosts of the family Blenniidae, which inhabit rocky shores with vertical zonation in subtropical seas. These features were compared among the following species with different ecologies: the amphibious rockskipper blenny Andamia tetradactylus, the intertidal white-finned blenny Praealticus tanegasimae and the purely marine yaeyama blenny Ecsenius yaeyamaensis. Light and electron microscopic observations indicated that thick gill filaments were arranged close to each other and alternately on two hemibranches of a gill arch in the opercular space of A. tetradactylus. Many mucous cells (MC) and mitochondrion-rich cells (MRC) were present in the interlamellar regions of the gill filament. An immunohistochemical study demonstrated that numerous NKA, NHE3 and some VHA were located predominantly on presumed MRCs of gill filaments and at the base of the lamellae. Analyses using serial (mirror image) sections of the gills indicated that only a few NKA immunoreactive cells (IRC) were colocalized with VHA on some MRCs in the filaments. In the gills of P. tanegasimae, NKA- and NHE3-IRCs were observed in the interlamellar region of the filaments and at the base of the lamellae. VHA-IRCs were located sparsely on the lamellae and filaments. In the gills of E. yaeyamaensis, the lamellae and filaments were thin and straight, respectively. MCs were located at the tip as well as found scattered in the interlamellar region of gill filaments. NKA-, NHE3- and VHA-IRCs were moderately frequently observed in the filaments and rarely on the lamellae. This study shows that the structure and distribution of ion transporters in the gills differ among the three blennid species, presumably reflecting their different ecologies. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the

  5. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation.

    Science.gov (United States)

    Huang, Chun-Yen; Chao, Pei-Lin; Lin, Hui-Chen

    2010-03-01

    The aquatic air-breathing fish, Trichogaster microlepis, can be found in fresh water and estuaries. We further evaluated the changes in two important osmoregulatory enzymes, Na(+)/K(+)-ATPase (NKA) and vacuolar-type H(+)-ATPase (VHA), in the gills when fish were subjected to deionized water (DW), fresh water (FW), and salinated brackish water (salinity of 10 g/L). Fish were sampled only 4 days after experimental transfer. The mortality, plasma osmolality, and Na(+) concentration were higher in 10 g/L acclimated fish, while their muscle water content decreased with elevated external salinity. The highest NKA protein abundance was found in the fish gills in 10 g/L, and NKA activity was highest in the DW and 10 g/L acclimated fish. The VHA protein levels were highest in 10 g/L, and VHA activity was highest in the DW treatment. From immunohistochemical results, we found three different cell populations: (1) NKA-immunoreactive (NKA-IR) cells, (2) both NKA-IR and HA-IR cells, and (3) HA-IR cells. NKA-IR cells in the lamellar and interlamellar regions significantly increased in DW and 10 g/L treatments. Only HA-IR cells in the lamellar region were significantly increased in DW. In the interlamellar region, there was no difference in the number of HA-IR cells among the three treated. From these results, T. microlepis exhibited osmoregulatory ability in DW and 10 g/L treatments. The cell types involved in ionic regulation were also examined with immunofluorescence staining; three ionocyte types were found which were similar to the zebrafish model. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. ALTERNATE FOOD-CHAIN TRANSFER OF THE TOXIN LINKED TO AVIAN VACUOLAR MYELINOPATHY AND IMPLICATIONS FOR THE ENDANGERED FLORIDA SNAIL KITE (ROSTRHAMUS SOCIABILIS).

    Science.gov (United States)

    Dodd, Shelley R; Haynie, Rebecca S; Williams, Susan M; Wilde, Susan B

    2016-04-28

    Avian vacuolar myelinopathy (AVM) is a neurologic disease causing recurrent mortality of Bald Eagles ( Haliaeetus leucocephalus ) and American Coots ( Fulica americana ) at reservoirs and small impoundments in the southern US. Since 1994, AVM is considered the cause of death for over 170 Bald Eagles and thousands of American Coots and other species of wild birds. Previous studies link the disease to an uncharacterized toxin produced by a recently described cyanobacterium, Aetokthonos hydrillicola gen. et sp. nov. that grows epiphytically on submerged aquatic vegetation (SAV). The toxin accumulates, likely in the gastrointestinal tract of waterbirds that consume SAV, and birds of prey are exposed when feeding on the moribund waterbirds. Aetokthonos hydrillicola has been identified in all reservoirs where AVM deaths have occurred and was identified growing abundantly on an exotic SAV hydrilla ( Hydrilla verticillata ) in Lake Tohopekaliga (Toho) in central Florida. Toho supports a breeding population of a federally endangered raptor, the Florida Snail Kite ( Rostrhamus sociabilis ) and a dense infestation of an exotic herbivorous aquatic snail, the island applesnail ( Pomacea maculata ), a primary source of food for resident Snail Kites. We investigated the potential for transmission in a new food chain and, in laboratory feeding trials, confirmed that the AVM toxin was present in the hydrilla/A. hydrillicola matrix collected from Toho. Additionally, laboratory birds that were fed apple snails feeding on hydrilla/A. hydrillicola material from a confirmed AVM site displayed clinical signs (3/5), and all five developed brain lesions unique to AVM. This documentation of AVM toxin in central Florida and the demonstration of AVM toxin transfer through invertebrates indicate a significant risk to the already diminished population of endangered Snail Kites.

  9. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    Science.gov (United States)

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  10. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.

    Science.gov (United States)

    Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

    2012-01-01

    Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.

  11. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  13. Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck).

    Science.gov (United States)

    Podazza, G; Rosa, M; González, J A; Hilal, M; Prado, F E

    2006-09-01

    Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots ( CITRUS LIMONIA L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H (+)-ATPase activity.

  14. [Effect of adaptogenic preparations on Na+/H+-antiporter function in plasma membrane of corn root cells under salinity conditions].

    Science.gov (United States)

    Kovalenko, N O; Bilyk, Zh I; Palladina, T O

    2014-01-01

    Salinity is a hard stress factor for plant organisms which negative effect is caused chiefly by sodium toxic for plants. Plant cells try to remove Na+ from their cytoplasm outside and to vacuolar space by secondary active Na+/H+-antiporters. Their functions can be intensified by gene engineering methods however we try do it with the help of non-toxic bioactive preparations. A comparison of their effect on the plasma membrane of Na+/H+-antiporters was carried out on corn seedling roots of Zea mays L. exposed at 0.1 M NaCl. Before we have established that Methyure used by seed pretreating possesses a high salt protective ability as against Ivine. It was found that without NaCl exposition Na+/H+-antiporter activity in root plasma membrane was nearly unnoticeable but increased slightly with seedling age. Methyure and Ivine did not influence its activity in control root seedling. One day 0.1 M NaCl exposition evoked a considerable increasing of Na+/H+-antiporter activity and its gene expression but these effects disappeared at 10 day NaCl exposition. Methyure use reinforced Na+/H+-antiporter activity and prolonged it at NaCl exposition without effect on its gene expression whereas Ivine effects on these indexes were insignificant. Obtained results showed that the salt protective capability of Methyure is connected with plasma membrane Na+/H+-antiporter activation which is realized on molecular level.

  15. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  16. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  17. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  18. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  19. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  20. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  1. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  3. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  6. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  7. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  8. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji; Mineta, Katsuhiko; Amano, Taro; Toyoda, Atsushi; Fujiwara, Toru; Naito, Satoshi; Takano, Junpei

    2015-01-01

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range

  9. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast

    Directory of Open Access Journals (Sweden)

    Kasaras Alexis

    2012-04-01

    Full Text Available Abstract Background Arabidopsis DMP1 was discovered in a genome-wide screen for senescence-associated membrane proteins. DMP1 is a member of a novel plant-specific membrane protein family of unknown function. In rosette leaves DMP1 expression increases from very low background level several 100fold during senescence progression. Results Expression of AtDMP1 fused to eGFP in Nicotiana benthamiana triggers a complex process of succeeding membrane remodeling events affecting the structure of the endoplasmic reticulum (ER and the vacuole. Induction of spherical structures (“bulbs”, changes in the architecture of the ER from tubular to cisternal elements, expansion of smooth ER, formation of crystalloid ER, and emergence of vacuolar membrane sheets and foamy membrane structures inside the vacuole are proceeding in this order. In some cells it can be observed that the process culminates in cell death after breakdown of the entire ER network and the vacuole. The integrity of the plasma membrane, nucleus and Golgi vesicles are retained until this stage. In Arabidopsis thaliana plants expressing AtDMP1-eGFP by the 35S promoter massive ER and vacuole vesiculation is observed during the latest steps of leaf senescence, whereas earlier in development ER and vacuole morphology are not perturbed. Expression by the native DMP1 promoter visualizes formation of aggregates termed “boluses” in the ER membranes and vesiculation of the entire ER network, which precedes disintegration of the central vacuole during the latest stage of senescence in siliques, rosette and cauline leaves and in darkened rosette leaves. In roots tips, DMP1 is strongly expressed in the cortex undergoing vacuole biogenesis. Conclusions Our data suggest that DMP1 is directly or indirectly involved in membrane fission during breakdown of the ER and the tonoplast during leaf senescence and in membrane fusion during vacuole biogenesis in roots. We propose that these properties of DMP1

  10. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  11. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  12. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  13. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  14. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  15. Endocytosis regulates membrane localization and function of the fusogen EFF-1.

    Science.gov (United States)

    Smurova, Ksenia; Podbilewicz, Benjamin

    2017-07-03

    Cell fusion is essential for sexual reproduction and formation of muscles, bones, and placenta. Two families of cell fusion proteins (Syncytins and FFs) have been identified in eukaryotes. Syncytins have been shown to form the giant syncytial trophoblasts in the placenta. The FFs are essential to fuse cells in the skin, reproductive, excretory, digestive and nervous systems in nematodes. EFF-1 (Epithelial Fusion Failure 1), a member of the FF family, is a type I membrane glycoprotein that is essential for most cell fusions in C. elegans. The crystal structure of EFF-1 ectodomain reveals striking structural similarity to class II fusion glycoproteins from enveloped viruses (e.g. dengue and rubella) that mediate virus to cell fusion. We found EFF-1 to be present on the plasma membrane and in RAB-5-positive early endosomes, with EFF-1 recycling between these 2 cell compartments. Only when EFF-1 proteins transiently arrive to the surfaces of 2 adjacent cells do they dynamically interact in trans and mediate membrane fusion. EFF-1 is continuously internalized by receptor-mediated endocytosis via the activity of 2 small GTPases: RAB-5 and Dynamin. Here we propose a model that explains how EFF-1 endocytosis together with interactions in trans can control cell-cell fusion. Kontani et al. showed that vacuolar ATPase (vATPase) mutations result in EFF-1-dependent hyperfusion. 1 We propose that vATPase is required for normal degradation of EFF-1. Failure to degrade EFF-1 results in delayed hyperfusion and mislocalization to organelles that appear to be recycling endosomes. EFF-1 is also required to fuse neurons as part of the repair mechanism following injury and to prune dendrites. We speculate that EFF-1 may regulate neuronal tree like structures via endocytosis. Thus, endocytosis of cell-cell fusion proteins functions to prevent merging of cells and to sculpt organs and neurons.

  16. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  17. Aquaporin-2 membrane targeting

    DEFF Research Database (Denmark)

    Olesen, Emma T B; Fenton, Robert A

    2017-01-01

    The targeting of the water channel aquaporin-2 (AQP2) to the apical plasma membrane of kidney collecting duct principal cells is regulated mainly by the antidiuretic peptide hormone arginine vasopressin (AVP). This process is of crucial importance for the maintenance of body water homeostasis...... of aquaporin-2 (AQP2) to the apical plasma membrane of collecting duct (CD) principal cells (10, 20). This process is mainly regulated by the actions of AVP on the type 2 AVP receptor (V2R), although the V1a receptor may also play a minor role (26). The V2R is classified within the group of 7-transmembrane....... For example, 1) stimulation with the nonspecific AC activator forskolin increases AQP2 membrane accumulation in a mouse cortical collecting duct cell line [e.g., Norregaard et al. (16)]; 2) cAMP increases CD water permeability (15); 3) the cAMP-activated protein kinase A (PKA) can phosphorylate AQP2 on its...

  18. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  19. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  20. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  1. Membrane accessibility of glutathione

    DEFF Research Database (Denmark)

    Garcia, Almudena; Eljack, N., D.; Sani, ND

    2015-01-01

    Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate...... that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane...

  2. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  3. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  4. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  5. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  6. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  7. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L.

    2013-01-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission

  8. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  10. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  11. Imaging of membranous dysmenorrhea

    Energy Technology Data Exchange (ETDEWEB)

    Rouanet, J.P.; Daclin, P.Y.; Turpin, F.; Karam, R.; Prayssac-Salanon, A. [Dept. of Radiology, C. M. C. Beausoleil, Montpellier (France); Courtieu, C.R. [Dept. of Gynecology, C. M. C. Beausoleil, Montpellier (France); Maubon, A.J. [Dept. of Radiology, C. M. C. Beausoleil, Montpellier (France); Dept. of Radiology, C. H. U. Dupuytren, Limoges (France)

    2001-06-01

    Membranous dysmenorrhea is an unusual clinical entity. It is characterized by the expulsion of huge fragments of endometrium during the menses, favored by hormonal abnormality or drug intake. This report describes a case with clinical, US, and MRI findings before the expulsion. Differential diagnoses are discussed. (orig.)

  12. Imaging of membranous dysmenorrhea

    International Nuclear Information System (INIS)

    Rouanet, J.P.; Daclin, P.Y.; Turpin, F.; Karam, R.; Prayssac-Salanon, A.; Courtieu, C.R.; Maubon, A.J.

    2001-01-01

    Membranous dysmenorrhea is an unusual clinical entity. It is characterized by the expulsion of huge fragments of endometrium during the menses, favored by hormonal abnormality or drug intake. This report describes a case with clinical, US, and MRI findings before the expulsion. Differential diagnoses are discussed. (orig.)

  13. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  14. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  15. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological membranes. K Katsov M Müller M Schick. Invited Talks:- Topic 11. Biologically motivated problems (protein-folding models, dynamics at the scale of the cell; biological networks, evolution models, etc.) Volume 64 Issue 6 June 2005 pp ...

  16. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...

  17. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  18. Membrane Transfer Phenomena (MTP)

    Science.gov (United States)

    Mason, Larry

    1996-01-01

    Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.

  19. Extracorporeal membrane oxygenation (ECMO)

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is not a novel therapy in the true sense of the ... Intention-to-treat analysis showed benefit for ECMO, with a relative risk ... no doubt that VV-ECMO is an advance in medical technology, and that.

  20. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W; Fossier, Philippe; Gleize, Vincent; Vitale, Nicolas; Morel, Nicolas

    2013-10-28

    Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.

  1. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  2. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  3. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  4. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  5. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  7. Membrane distillation for milk concentration

    NARCIS (Netherlands)

    Moejes, S.N.; Romero Guzman, Maria; Hanemaaijer, J.H.; Barrera, K.H.; Feenstra, L.; Boxtel, van A.J.B.

    2015-01-01

    Membrane distillation is an emerging technology to concentrate liquid products while producing high quality water as permeate. Application for desalination has been studied extensively the past years, but membrane distillation has also potential to produce concentrated food products like

  8. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  9. From shell to membrane theory

    International Nuclear Information System (INIS)

    Destuynder, P.

    1981-02-01

    A new formulation of the membrane theory is presented in this paper. The assumptions which allow the Budiansky-Sanders' model or the membrane theory to be deduced from the three-dimensional case are pointed out [fr

  10. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  11. Cheap Thin Film Oxygen Membranes

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite...... structure with a crystal size of about 1 to 100 nm, and a method for producing same....

  12. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  13. Membranes suited for immobilizing biomolecules

    NARCIS (Netherlands)

    2009-01-01

    The present invention relates to flow-through membranes suitable for the immobilization of biomols., methods for the prepn. of such membranes and the use of such membranes for the immobilization of biomols. and subsequent detection of immobilized biomols. The invention concerns a flow-through

  14. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    International Nuclear Information System (INIS)

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-01-01

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2 + gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2 + gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking

  15. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  16. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  17. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  18. Membrane microparticles and diseases.

    Science.gov (United States)

    Wu, Z-H; Ji, C-L; Li, H; Qiu, G-X; Gao, C-J; Weng, X-S

    2013-09-01

    Membrane microparticles (MPs) are plasma membrane-derived vesicles shed by various types of activated or apoptotic cells including platelets, monocytes, endothelial cells, red blood cells, and granulocytes. MPs are being increasingly recognized as important regulators of cell-to-cell interactions. Recent evidences suggest they may play important functions not only in homeostasis but also in the pathogenesis of a number of diseases such as vascular diseases, cancer, infectious diseases and diabetes mellitus. Accordingly, inhibiting the production of MPs may serve as a novel therapeutic strategy for these diseases. Here we review recent advances on the mechanism underlying the generation of MPs and the role of MPs in vascular diseases, cancer, diabetes, inflammation, and pathogen infection.

  19. Physics of smectic membranes

    Science.gov (United States)

    Pieranski, P.; Beliard, L.; Tournellec, J.-Ph.; Leoncini, X.; Furtlehner, C.; Dumoulin, H.; Riou, E.; Jouvin, B.; Fénerol, J.-P.; Palaric, Ph.; Heuving, J.; Cartier, B.; Kraus, I.

    1993-03-01

    Due to their layered structure, smectic liquid crystals can form membranes, similar to soap bubbles, that can be spanned on frames. Such smectic membranes have been used extensively as samples in many structural X-ray studies of smectic liquid crystals. In this context they have been considered as very convenient and highly perfect samples but little attention has been paid to the reasons for their existence and to the process of their formation. Our aim here is to address a first list of questions, which are the most urgent to answer. We will also describe experiments and models that have been conceived especially in order to understand the physics of these fascinating systems.

  20. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries. (orig.)

  1. Radiation effects on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Koeteles, G.J.

    1982-11-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries.

  2. Choroidal neovascular membrane

    OpenAIRE

    Bhatt Nitul; Diamond James; Jalali Subhadra; Das Taraprasad

    1998-01-01

    Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose o...

  3. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  4. Membrane Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-30

    The Electrosynthesis Co. Inc. (ESC) was contracted by the Westinghouse Savannah River Company to investigate the long term performance and durability of cell components (anode, membrane, cathode) in an electrochemical caustic recovery process using a simulated SRC liquid waste as anolyte solution. This report details the results of two long-term studies conducted using an ICI FM01 flow cell. This cell is designed and has previously been demonstrated to scale up directly into the commercial scale ICI FM21 cell.

  5. Membrane technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, A

    1990-10-01

    Due to a continuing emphasis on increasing the efficiency of utilizing the Province's electrical energy system, a Membrane Testing and Development Facility (MTDF) has been established at Ontario Hydro Research Division. The MTDF comprises bench-scale and pilot-scale reverse osmosis (RO) and ultrafiltration (UF) systems. RO and UF are membrane separation technologies which with microfiltration (MF) have found numerous industrial applications in wastewater treatment and/or byproduct recovery. Since no phase change is involved in RO and UF, they are more energy efficient separation processes than, say, evaporation or distillation. Initial tests have been carried out to demonstrate the capability of the newly-established MTDF. Bench- and pilot-scale RO treatment, at 4.1 MPa applied pressure, of a simulated nickel plating waste rinse stream was demonstrated. RO membrane rejection efficiencies for nickel were 99+% (in the bench scale test) and 99.9+% (on the pilot scale). Volume reduction factors of about 25 were attained, at purified water flux rates in the range 1 to 1.5 m{sup 3}/m{sup 2} per day. Good correlation was noted between bench-scale and pilot-scale RO test results. Pilot-scale UF of a simulated industrial cutting oil/water waste emulsion at 0.40 MPa gave 99+% oil rejection (pilot scale) at a flux rate of 0.7 m{sup 3}/m{sup 2} per day. A volume reduction of about 5.2 was attained. Overviews of opportunities for membrane separation technology applied to the metal cutting and surface finishing industries, and the food and beverage industry are given. Capabilities (and some present needs) of the MTDF are outlined, with recommendations. 17 refs., 10 figs., 7 tabs.

  6. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  7. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

  8. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  9. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  10. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  11. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  12. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  13. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  14. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  15. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  16. Subcellular localization of H(+)-ATPase from pumpkin hypocotyls (Cucurbita maxima L.) by membrane fractionation.

    Science.gov (United States)

    Scherer, G F

    1984-03-01

    A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H(+)-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H(+) pump was directly demonstrated. The H(+) pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a Δ pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K(+)-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because α-mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.

  17. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    Science.gov (United States)

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  18. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  19. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  20. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  1. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  2. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  3. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  4. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  5. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  6. Choroidal neovascular membrane

    Directory of Open Access Journals (Sweden)

    Bhatt Nitul

    1998-01-01

    Full Text Available Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose of this review is to briefly outline the current concepts and the management strategy from a clinician′s viewpoint.

  7. Choroidal neovascular membrane.

    Science.gov (United States)

    Bhatt, N S; Diamond, J G; Jalali, S; Das, T

    1998-06-01

    Choroidal neovascular membrane in the macular area is one of the leading causes of severe visual loss. Usually a manifestation in elderly population, it is often associated with age-related macular degeneration. The current mainstay of management is early diagnosis, usually by fundus examination, aided by angiography and photocoagulation in selected cases. Various other modalities of treatment including surgery are being considered as alternate options, but with limited success. The purpose of this review is to briefly outline the current concepts and the management strategy from a clinician's viewpoint.

  8. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting with lipos......Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting...... with liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...

  9. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  10. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  11. Decrumpling membranes by quantum effects

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.

    2001-02-01

    The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/ln L.

  12. Epiretinal membrane surgery

    DEFF Research Database (Denmark)

    Hamoudi, Hassan; Correll Christensen, Ulrik; La Cour, Morten

    2017-01-01

    Purpose: To assess the impact of combined phacoemulsification-vitrectomy and sequential surgery for idiopathic epiretinal membrane (ERM) on refractive error (RE) and macular morphology. Methods: In this prospective clinical trial, we allocated phakic eyes with ERM to (1) cataract surgery and subs......Purpose: To assess the impact of combined phacoemulsification-vitrectomy and sequential surgery for idiopathic epiretinal membrane (ERM) on refractive error (RE) and macular morphology. Methods: In this prospective clinical trial, we allocated phakic eyes with ERM to (1) cataract surgery...... and achieved spherical equivalent); secondary outcomes were best-corrected visual acuity (BCVA), and incidence of cystoid macular oedema (CME) defined as >10% increment of central subfield macular thickness (CSMT). Results: Sixty-two eyes were enrolled. The mean RE showed a small myopic shift of -0.36D in all...... between the groups. Four cases (17%) in the CAT group had resolved visual complaints and improved BCVA after cataract surgery resulting in no need for PPV within the follow-up period. Conclusion: Surgery for idiopathic ERM in phakic eyes with either phaco-vitrectomy or sequential surgery are equal...

  13. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  14. Track membranes, production, properties, applications

    International Nuclear Information System (INIS)

    Oganesjan, Yu.Ts.

    1994-01-01

    The problems of producing track membranes on heavy ion beams of the Flerov Laboratory are considered. The parameters of the running accelerators and equipment for the irradiation of polymer foils are presented. The process of production of track membranes based on different polymeric materials and various applications of the membranes are described. Special attention is given to the principally new applications and devices developed at the Laboratory. This report presents the results obtained by a big group of scientists and engineers working in the field of elaboration, investigation and application of track membranes (author). 21 refs, 20 figs, 1 tab

  15. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  16. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  17. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  18. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  19. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  20. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  1. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  2. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  3. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  4. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  5. Hijacking membrane transporters for arsenic phytoextraction

    Science.gov (United States)

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  6. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  7. Radio-chemical applications of functionalized membranes

    International Nuclear Information System (INIS)

    Pandey, Ashok K.

    2011-01-01

    Functionalized polymer membranes have many potential applications as they are task specific. We have developed many functionalized membranes like polymer inclusion membranes, pore-filled membranes and nano-membranes. Radiotracers and other methods have been used to understand the diffusional-transport properties of the Nafion-117 membrane as well as home-made membranes. These membranes have been used to develop novel analytical and separation methods for toxic metal ions and radionuclides. In this talk, an overview of our work on functionalized membrane is presented. (author)

  8. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  9. Vacuolar-type H+-ATPase and Na+, K+-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water

    DEFF Research Database (Denmark)

    Seidelin, Michel; Brauner, Colin J; Jensen, Frank Bo

    2001-01-01

    Changes in branchial vacuolar-type H+-ATPase B-subunit mRNA and Na+, K+-ATPase alpha- and beta-subunit mRNA and ATP hydrolytic activity were examined in smolting Atlantic salmon exposed to hyperoxic and/or hypercapnic fresh water. Pre-smolts, smolts, and post-smolts were exposed for 1 to 4 days...... Na+, K+-ATPase activity was generally unaffected by the experimental treatments. We suggest that the reduced expression of branchial vacuolar-type H(+)-ATPase B-subunit mRNA observed during internal hypercapnic acidosis may lead to reduction of functional V-type H+-ATPase abundance as a compensatory...

  10. Emergent geometry of membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-13

    In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.

  11. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly ...

  12. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  13. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  14. Membranes for Enhanced Emulsification Processes

    NARCIS (Netherlands)

    Güell, Carme; Ferrando, Montse; Schroen, C.G.P.H.

    2016-01-01

    The use of membrane technology for the production of single and double emulsions has been proven feasible for a wide range of systems. The low energy requirements and mild process conditions (shear stress and temperature) of membrane emulsification (ME) compared to conventional processes makes it of

  15. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli

    2017-06-16

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  16. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  17. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  18. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  19. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  20. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  1. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  2. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  3. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    Science.gov (United States)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  4. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  5. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  6. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    International Nuclear Information System (INIS)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-01-01

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions

  7. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  8. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  9. Hydrogen superpermeable membrane operation under plasma conditions

    International Nuclear Information System (INIS)

    Bacal, M.; Bruneteau, A.M.; Livshits, A.I.; Alimov, V.N.; Notkin, M.E.

    2003-01-01

    The effect of ion bombardment on hydrogen plasma-driven permeation through a superpermeable niobium membrane was investigated. It was found that the increase of membrane temperature and the doping of membrane material with oxygen results in the decrease of ion bombardment effect and in permeability increase. It was demonstrated that membrane decarbonization leads to the formation of a membrane state resistant to sputtering. Possible applications of the membrane resistant to ion bombardment as plasma facing components are considered

  10. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli; Salazar Moya, Octavio Ruben; Nunes, Suzana Pereira

    2016-01-01

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  11. FAS grafted superhydrophobic ceramic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jun [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Yu Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Zhou Jianer [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Song Lixin; Hu Xingfang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Larbot, Andre [Institut Europeen des Membranes, UMR 5635-CNRS, ENSCM, UMII, 1919 Route de Mende 34293, Montpellier Cedex 5 (France)

    2009-08-30

    The hydrophobic properties of {gamma}-Al{sub 2}O{sub 3} membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 deg. C) of the fluoroalkylsilane grafted on Al{sub 2}O{sub 3} powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and {gamma}-Al{sub 2}O{sub 3} membrane surface as well as the formed surface morphology.

  12. FAS grafted superhydrophobic ceramic membrane

    Science.gov (United States)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  13. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  14. Ultrastructure of Reissner's membrane in the rabbit

    DEFF Research Database (Denmark)

    Qvortrup, K.; Rostgaard, Jørgen; Bretlau, P.

    1994-01-01

    Anatomy, Reissner's membrane, electron microscopy, tubulocisternal endoplasmic reticulum, subsurface cisterns, rabbit......Anatomy, Reissner's membrane, electron microscopy, tubulocisternal endoplasmic reticulum, subsurface cisterns, rabbit...

  15. Nanofluidics : Silicon for the perfect membrane

    NARCIS (Netherlands)

    van den Berg, Albert; Wessling, Matthias

    2007-01-01

    Newly developed ultrathin silicon membranes can filter and separate molecules much more effectively than conventional polymer membranes. Many applications, of economic and medical significance, stand to benefit.

  16. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  17. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  18. Amniotic Membrane Transplantation

    Directory of Open Access Journals (Sweden)

    Alireza Baradaran-Rafii

    2008-12-01

    Full Text Available

    The past decade has witnessed the revival of amniotic membrane transplantation (AMT in ophthalmology. The importance of amniotic membrane lies in its ability to reduce inflammation and scarring, enhance epithelialization and wound healing, and in its antimicrobial properties. Amniotic membrane has recently been used as a substrate for culturing limbal stem cells for transplantation. It has also been used extensively in corneal conditions such as neurotrophic ulcers, persistent epithelial defects, shield ulcers, microbial keratitis, band keratopathy, bullous keratopathy, and following photorefractive keratectomy and chemical injuries. Other indications for AMT include ocular surface reconstruction surgery for conjunctival pathologies such as squamous neoplasia, pterygium, and symblepharon. In this review we describe the basic structure and properties of amniotic membrane, its preparation process and its applications in ophthalmology.

  1. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  2. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  3. Membrane modules for building ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, K.R.; Cussler, E.L.

    2002-01-01

    Hollow fibre and flat sheet membranes with an interfacially polymerized coating of polyamide have a permeance for water vapour of about 0.16 m sec{sup -1}. These membranes can serve as a basis for building ventilation which provides fresh air while recovering about 70% of the specific heat and 60% of the latent heat. Because these membranes are selective for water vapour, the air is exhausted with internal pollutants like carbon monoxide, formaldehyde, and radon. The expense of the ventilator should be recovered in reduced heating costs in about three years. (Author)

  4. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  5. Memcomputing with membrane memcapacitive systems

    International Nuclear Information System (INIS)

    Pershin, Y V; Traversa, F L; Ventra, M Di

    2015-01-01

    We show theoretically that networks of membrane memcapacitive systems—capacitors with memory made out of membrane materials—can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices. (paper)

  6. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8.

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

  7. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  8. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  9. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  10. Regulation of cellular pH: From molecules to membranes

    Science.gov (United States)

    Grabe, Michael David

    The vacuolar H+-ATPase (V-ATPase) is a universal class of proton pumps responsible for creating and maintaining acidic milieus in both intracellular and extracellular spaces. In the first chapter, I develop a mechanochemical model of this enzyme based upon the counter-rotation of adjacent subunits. The mathematical approach details a general integrated method for describing the mechanical and chemical reactions that occur in motor systems. A novel escapement is proposed for how the protons cross the protein-bilayer interface, and it is shown how this movement couples to ATP hydrolysis. This model reproduces a variety of experimental data while providing a framework for understanding the function of the enzyme's subunits. Specifically, it explains how ATP hydrolysis can uncouple from proton movement, which has important consequences for cellular energetics and pH regulation. Until now only an equilibrium theory of organelle acidification has been proposed; however, recent experiments show that large proton leaks prevent many cellular compartments from reaching thermodynamic equilibrium. The characterization of the V-ATPase is used in the second chapter in order to develop a unified model of organelle acidification based on the interplay of ion pumps and channels and the physical characteristics of the organelle. This model successfully describes the time dependent acidification of many different organelle systems. It accurately predicts both the electrical and concentration dependent terms of the chemical potential. In conjunction with fluorescence experiments, I determined the first measurements of the proton permeability of organelles along the secretory pathway. These measurements allowed me to make the first estimates of the number of V-ATPases in each compartment by analyzing the resting pH's of the respective organelles. I found a decrease in permeability from the endoplasmic reticulum (ER) (51 x 10-4 cm/s) to the Golgi (21 x 10-4 cm/s) to the mature secretory

  11. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.

    Science.gov (United States)

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-04-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. © 2015 Arlt et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Charuk, J.H.M.; Blumwald, E.; Cragoe, E.J. Jr.

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na + /H + antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na + /H + exchange in a competitive manner with a K i of 2.5 and 5.9 micromolar for ΔpH-dependent 22 Na + influx in tonoplast vesicles and Na + -dependent H + efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [ 3 H]MIA to tonoplast membranes revealed a high affinity binding component with a K d of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na + /H + antiport. Photolabeling of the tonoplast with [ 3 H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  13. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    Science.gov (United States)

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  14. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Science.gov (United States)

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  15. Resistance to inhibitors of cholinesterase (Ric-8A and Gαi contribute to cytokinesis abscission by controlling vacuolar protein-sorting (Vps34 activity.

    Directory of Open Access Journals (Sweden)

    Cedric Boularan

    Full Text Available Resistance to inhibitors of cholinesterase (Ric-8A is a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13, which is implicated in cell signaling and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes. Ric-8A, Gαi subunits, and their regulators are localized at the midbody prior to abscission and linked to the final stages of cell division. Here, we identify a molecular mechanism by which Ric-8A affects cytokinesis and abscission by controlling Vps34 activity. We showed that Ric-8A protein expression is post-transcriptionally controlled during the cell cycle reaching its maximum levels at mitosis. A FRET biosensor created to measure conformational changes in Ric-8A by FLIM (Fluorescence Lifetime Imaging Microscopy revealed that Ric-8A was in a close-state during mitosis and particularly so at cytokinesis. Lowering Ric-8A expression delayed the abscission time of dividing cells, which correlated with increased intercellular bridge length and multinucleation. During cytokinesis, Ric-8A co-localized with Vps34 at the midbody along with Gαi and LGN, where these proteins functioned to regulate Vps34 phosphatidylinositol 3-kinase activity.

  16. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  17. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    IAS Admin

    protein and the data can be cor- related with cellular .... these mutant cells under the electron microscope and found a large number of ... trans-Golgi network and early ..... Arrows represent the flow of membrane traffic: black arrows – antero-.

  19. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of

  20. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  1. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  2. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  3. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  4. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  5. The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion.

    Science.gov (United States)

    Schulte, Kathrin; Pawlowski, Nikolaus; Faelber, Katja; Fröhlich, Chris; Howard, Jonathan; Daumke, Oliver

    2016-03-02

    The immunity-related GTPases (IRGs) constitute a powerful cell-autonomous resistance system against several intracellular pathogens. Irga6 is a dynamin-like protein that oligomerizes at the parasitophorous vacuolar membrane (PVM) of Toxoplasma gondii leading to its vesiculation. Based on a previous biochemical analysis, it has been proposed that the GTPase domains of Irga6 dimerize in an antiparallel fashion during oligomerization. We determined the crystal structure of an oligomerization-impaired Irga6 mutant bound to a non-hydrolyzable GTP analog. Contrary to the previous model, the structure shows that the GTPase domains dimerize in a parallel fashion. The nucleotides in the center of the interface participate in dimerization by forming symmetric contacts with each other and with the switch I region of the opposing Irga6 molecule. The latter contact appears to activate GTP hydrolysis by stabilizing the position of the catalytic glutamate 106 in switch I close to the active site. Further dimerization contacts involve switch II, the G4 helix and the trans stabilizing loop. The Irga6 structure features a parallel GTPase domain dimer, which appears to be a unifying feature of all dynamin and septin superfamily members. This study contributes important insights into the assembly and catalytic mechanisms of IRG proteins as prerequisite to understand their anti-microbial action.

  6. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  7. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  8. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  9. Membrane structure in disease and drug therapy

    National Research Council Canada - National Science Library

    Zimmer, G

    2000-01-01

    ...) interaction with membranous transport systems (opening or closing of ion or substrate channels); (2) reaction with receptors; (3) activation or inhibition of membrane enzymes; or (4) cytosolic membranous signaling and exchange. These consequences within the membrane influence intracellular wellbeing: life is possible only if a bala...

  10. The plasma membrane as radiosensitive target

    International Nuclear Information System (INIS)

    Koeteles, Gy.J.

    1986-01-01

    Components and conditions rendering the plasma membrane susceptible for ionizing radiation are discussed. The list of reviews and articles pointing to various aspects of radiation effects on membranes is analyzed. Radiation induced alterations of plasma membrane and energy deposition in cellular microstructures are overviewed. The possible role of membrane alterations in the fate of irradiated cell is also discussed. (author)

  11. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  12. Organic fluid permeation through fluoropolymer membranes

    Science.gov (United States)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  13. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  15. Fabrication of asymmetric alumina membranes

    International Nuclear Information System (INIS)

    Firouzghalb, H.; Falamaki, C.

    2010-01-01

    The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al 2 O 3 -x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl 3 and Sr(NO 3 ) 2 salts using NH 4 OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 deg. C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al 2 O 3 ) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 deg. C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

  16. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  17. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  18. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil; Kim, Youngdeuk; Kim, Wooseung; Francis, Lijo; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement

  19. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. PMID:26368310

  20. Enhanced Salt Tolerance Conferred by the Complete 2.3 kb cDNA of the Rice Vacuolar Na(+)/H(+) Antiporter Gene Compared to 1.9 kb Coding Region with 5' UTR in Transgenic Lines of Rice.

    Science.gov (United States)

    Amin, U S M; Biswas, Sudip; Elias, Sabrina M; Razzaque, Samsad; Haque, Taslima; Malo, Richard; Seraj, Zeba I

    2016-01-01

    Soil salinity is one of the most challenging problems that restricts the normal growth and production of rice worldwide. It has therefore become very important to produce more saline tolerant rice varieties. This study shows constitutive over-expression of the vacuolar Na(+)/H(+) antiporter gene (OsNHX1) from the rice landrace (Pokkali) and attainment of enhanced level of salinity tolerance in transgenic rice plants. It also shows that inclusion of the complete un-translated regions (UTRs) of the alternatively spliced OsNHX1 gene provides a higher level of tolerance to the transgenic rice. Two separate transformation events of the OsNHX1 gene, one with 1.9 kb region containing the 5' UTR with CDS and the other of 2.3 kb, including 5' UTR, CDS, and the 3' UTR regions were performed. The transgenic plants with these two different constructs were advanced to the T3 generation and physiological and molecular screening of homozygous plants was conducted at seedling and reproductive stages under salinity (NaCl) stress. Both transgenic lines were observed to be tolerant compared to WT plants at both physiological stages. However, the transgenic lines containing the CDS with both the 5' and 3' UTR were significantly more tolerant compared to the transgenic lines containing OsNHX1 gene without the 3' UTR. At the seedling stage at 12 dS/m stress, the chlorophyll content was significantly higher (P kb > 1.9 kb > and WT lines. Yield in g/plant in the best line from the 2.3 kb plants was significantly more (P kb line and WT plants at stress of 6 dS/m. Transformation with the complete transcripts rather than the CDS may therefore provide more durable level of tolerance.

  1. Membranous Dysmenorrhea: A Case Series

    Science.gov (United States)

    Omar, Hatim A.; Smith, Shawn J.

    2007-01-01

    The purpose was to illustrate the variability of hormonal contraception of patients that presented with membranous dysmenorrheal. A case analysis chart review was completed on six patients referred to a Pediatric Gynecologist in an academic setting. In each case the patient underwent a thorough pelvic and bimanual exam. Following the initial presentation, each patient continued to be followed on a regular visits. Cases: Two were using the transdermal contraceptive patch and oral contraceptive, but following the expulsion of decidual cast, they were both placed on depot medroxyprogesterone acetate (DMPA) without further complications. Three of the six cases were on DMPA prior to the similar occurrence of membranous dysmenorrheal and following this incident, continued on DMPA without further problems. The final case was on the transdermal patch prior to decidual cast expulsion and remained on this form of hormonal contraception without further complications. These cases indicate that membranous dysmenorrheal is not limited to the use of DMPA. PMID:18060329

  2. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  3. Membrane technology revolutionizes water treatment.

    Science.gov (United States)

    Wilderer, P A; Paris, S

    2007-01-01

    Membranes play a crucial role in living cells, plants and animals. They not only serve as barriers between the inside and outside world of cells and organs. More importantly, they are means of selective transport of materials and host for biochemical conversion. Natural membrane systems have demonstrated efficiency and reliability for millions of years and it is remarkable that most of these systems are small, efficient and highly reliable even under rapidly changing ambient conditions. Thus, it appears to be advisable for technology developers to keep a close eye on Mother Nature. By doing so it is most likely that ideas for novel technical solutions are born. Following the concept of natural systems it is hypothesized that the Millennium Development Goals can be best met when counting on small water and wastewater treatment systems. The core of such systems could be membranes in which chemical reactions are integrated allowing recovery and direct utilization of valuable substances.

  4. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  5. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  6. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John

    2016-01-01

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work...... reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution...... and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine...

  7. Uranium preconcentration from seawater using adsorptive membranes

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, A.K.; Manchanda, V.K.; Athawale, A.A.

    2009-01-01

    Uranium recovery from bio-aggressive but lean feed like seawater is a challenging problem as it requires in situ preconcentration of uranium in presence of huge excess of competing ions with fast sorption kinetics. In our laboratory, widely used amidoxime membrane (AO-membrane) was evaluated for uranium sorption under seawater conditions. This study indicated that AO-membrane was inherently slow because of the complexation chemistry involved in transfer of U(VI) from (UO 2 (CO 3 ) 3 ) 4 - to AO sites in membrane. In order to search better options, several chemical compositions of membrane were scanned for their efficacy for uranium preconcentration from seawater, and concluded that EGMP-membrane offers several advantages over AO-membrane. In this paper, the comparison of EGMP-membrane with AO-membrane for uranium sorption under seawater conditions has been reviewed. (author)

  8. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  9. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    Science.gov (United States)

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  10. Continuous production of polymethylpentene membranes

    Science.gov (United States)

    Epperson, B.J.; Burnett, L.J.; Helm, V.D.

    1983-11-15

    Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

  11. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    The treatment of radioactive wastes is necessary taking into account the potential hazard of radioactive substances to human health and surrounding environment. The choice of appropriate technology depends on capital and operational costs, wastes amount and their characteristics, appointed targets of the process, e.g. the values of decontamination factors and volume reduction coefficients. The conventional technologies applied for radioactive waste processing, such as precipitation coupled with sedimentation, ion exchange and evaporation have many drawbacks. These include high energy consumption and formation of secondary wastes, e.g. the sludge from sediment tanks, spent ion exchange adsorbents and regeneration solutions. There are also many limitations of such processes, i.e. foaming and drop entrainment in evaporators, loses of solvents and production of secondary wastes in solvent extraction or bed clogging in ion exchange columns. Membrane processes as the newest achievement of the process engineering can successfully supersede many non-effective, out-of-date methods. But in some instances they can also complement these methods whilst improving the parameters of effluents and purification economy. This monograph presents own research data on the application of recent achievements in the area of membrane processes for solving selected problems in nuclear technology. Relatively big space was devoted to the use of membrane processing of low and intermediate radioactive liquid wastes because of numerous applications of these processes in nuclear centres over the world and also because of the interests of the author that was reflected by her recent research projects and activity. This work presents a review on the membrane methods recently introduced into the nuclear technology against the background of the other, commonly applied separation techniques, with indications of the possibilities and prospects for their further developments. Particular attention was paid

  12. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  13. Mitochondrial fusion through membrane automata.

    Science.gov (United States)

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  14. Efficient preparation and analysis of membrane and membrane protein systems

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector

    2016-01-01

    Roč. 1858, č. 10 (2016), s. 2468-2482 ISSN 0005-2736 Institutional support: RVO:61388963 Keywords : tools and software * membrane building * protein insertion * molecular dynamics * lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  15. Membrane potentials of membranes with fixed ionic sites

    NARCIS (Netherlands)

    van den Berg, Albert; van der Wal, P.D.; van der Wal, P.D.; Skowronska-ptasinska, M.; Sudhölter, E.J.R.; Sudholter, Ernst; Bergveld, Piet; Reinhoudt, David

    1990-01-01

    A theoretical model has been developed to simulate the formation of a membrane potential as a function of physically accessible parameters. The description is an extension of the well-known Teorell-Meyer-Sievers (TMS) model, now including free and fixed ionic sites and free and fixed neutral

  16. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2017-01-01

    Roč. 8, č. 17 (2017), s. 4308-4313 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : giant unilamellar vesicles * single-molecule tracking * lipid bilayer membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  17. STUDI MEMBRAN KITOSAN DARI KULIT LOBSTER BAMBU SEBAGAI MEMBRAN FILTRASI

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Putri Windari

    2016-02-01

    Full Text Available The study of the extraction and characterization of chitosan from skin waste of Bamboo Lobster (Panulirus versicolor has been done. Chitosan is extracted using conventional method, namely the initial process: cleaning and drying (pretreatment, demineralization, deproteination, and deacetylation. The chitosan obtained has been used to prepare chitosan membrane 2% with acetic acid 1% as solvent. The membrane prepared by phase inversion method withprecipitation through solvent evaporation. The prepared membranes were characterized by FTIR spectrophotometer, Nova 1200e by BJH method and filtration method. The results obtained that degree of deacetylation (DD of chitosan is 70.016%. The thickness of the membrane is 0.361 mm. The FTIR spectra show that functional groups obtained are -NH, -CH, C=O, C-O and -CN. From BJH method obtained that the pore radius is 1.69 nm and pore density is 8.95 x 105pores/m3. From the filtration method obtained that at each pressure, 80-85 kPa and 90-100 kPa, the PWF values are 381.232 and 454.545 L/m2.h, respectively.

  18. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  19. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  20. Preparation of conductive membranes using poly pyrrole

    International Nuclear Information System (INIS)

    Madaeni, S.; Khavaran, B.

    2003-01-01

    Conductive membranes show many benefits including fouling reduction for feeds containing ionic species. These membranes may be prepared either by conductive polymers or coating of the surfaces of non-conductive membranes with conductive polymer. In this research, the commercial micro filtration GVHP membrane manufactured from PVDF was coated with poly pyrrole using two different techniques. The conductivity of the prepared membranes was measured. In this paper, effects of various factors including concentration of the solutions, oxidizing agents, time for leaving the support in the solutions, support type and temperature on membrane conductivity were investigated

  1. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  2. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  3. Proton exchange membrane water electrolysers

    International Nuclear Information System (INIS)

    Millet, P.

    2007-01-01

    This work deals with the PEM water electrolysis process. Are successively described: the thermodynamical, kinetic and energetic aspects, the different possible used electrolysis cells, the preparation of the membrane-electrode assembling, the used electrolysers, the annex production equipment, the uses fields and the limits of the process. (O.M.)

  4. Subaortic membrane mimicking hypertrophic cardiomyopathy.

    Science.gov (United States)

    Anderson, Mark Joseph; Arruda-Olson, Adelaide; Gersh, Bernard; Geske, Jeffrey

    2015-11-04

    A 34-year-old man was referred for progressive angina and exertional dyspnoea refractory to medical therapy, with a presumptive diagnosis of hypertrophic cardiomyopathy (HCM). Transthoracic echocardiography (TTE) revealed asymmetric septal hypertrophy without systolic anterior motion of the mitral valve leaflet and with no dynamic left ventricular outflow tract (LVOT) obstruction. However, the LVOT velocity was elevated at rest as well as with provocation, without the characteristic late peaking obstruction seen in HCM. Focused TTE to evaluate for suspected fixed obstruction demonstrated a subaortic membrane 2.2 cm below the aortic valve. Coronary CT angiography confirmed the presence of the subaortic membrane and was negative for concomitant coronary artery disease. Surgical resection of the subaortic membrane and septal myectomy resulted in significant symptomatic relief and lower LVOT velocities on postoperative TTE. This case reminds the clinician to carefully evaluate for alternative causes of LVOT obstruction, especially subaortic membrane, as a cause of symptoms mimicking HCM. 2015 BMJ Publishing Group Ltd.

  5. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  6. Guanidinium Pairing Facilitates Membrane Translocation

    Czech Academy of Sciences Publication Activity Database

    Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  7. Molecular Structure of Membrane Tethers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains

  8. PREMATURE RUPTURE OF THE MEMBRANES*

    African Journals Online (AJOL)

    In patients presenting with premature rupture of the membranes there are two factors which influence the foetal morbidity and mortality. These factors are prema- turity and intra-uterine infection. The purpose of this analysis was to elucidate which factor carried the greater risk to the foetus. Recently there has been a spate of.

  9. Osmosis and the Marvelous Membrane.

    Science.gov (United States)

    Cocanour, Barbara; Bruce, Alease S.

    1985-01-01

    Shows how the natural membrane of a decalcified chicken egg can demonstrate the principle of osmosis within a single class period. Various glucose and saline solutions used, periods of time, physiological effects experiments, and correction for differences in initial weights are noted. (DH)

  10. Intelligent Membranes: Dream or Reality?

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2013-07-01

    Full Text Available Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  11. Membrane microdomains in immunoreceptor signaling

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav; Hrdinka, Matouš

    2014-01-01

    Roč. 588, č. 15 (2014), s. 2392-2397 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : membrane raft * microdomain * immunoreceptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.169, year: 2014

  12. The Plasma Membrane Calcium Pump

    Science.gov (United States)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  13. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  14. Basement membrane proteoglycans and development

    DEFF Research Database (Denmark)

    Couchman, J R; Abrahamson, D R; McCarthy, K J

    1993-01-01

    -CSPG was only strongly expressed in the vasculature invading late comma stage glomeruli, and later in presumptive and mature Bowman's capsule. Over the first six to eight weeks, the capillary basement membranes contained BM-CSPG, but in gradually decreasing amounts until it became completely undetectable...

  15. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-11-05

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  16. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  17. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  18. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  19. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  1. Evaluation of antioxidant capacity and membrane stabilizing ...

    African Journals Online (AJOL)

    Both the leaf and root of C. adenocaulis were extracted with 70% ethanol to yield the ... ELE and ERE were able to protect red blood cell (RBC) membrane against ... antioxidant, anti-inflammatory, lipid peroxidation, membrane stabilization.

  2. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    Science.gov (United States)

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  3. Self-assembled Block Copolymer Membrane

    KAUST Repository

    Peinemann, Klaus-Viktor

    2012-12-20

    Embodiments of the invention include methods for the production of porous membranes. In certain aspects the methods are directed to producing polymeric porous membranes having a narrow pore size distribution.

  4. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  5. Biomimetic aquaporin membranes coming of age

    DEFF Research Database (Denmark)

    Tang, Chuyang; Wang, Zhining; Petrinić, Irena

    2015-01-01

    Membrane processes have been widely used for water purification because of their high stability, efficiency, low energy requirement and ease of operation. Traditional desalting membranes are mostly dense polymeric films with a "trade off" effect between permeability and selectivity. Biological...

  6. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  7. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  8. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  9. Self-assembled Block Copolymer Membrane

    KAUST Repository

    Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2012-01-01

    Embodiments of the invention include methods for the production of porous membranes. In certain aspects the methods are directed to producing polymeric porous membranes having a narrow pore size distribution.

  10. GOHAL!: sustainable membranes for alcohol dehydration

    DEFF Research Database (Denmark)

    Boffa, Vittorio

    2017-01-01

    the pristine graphene oxide membrane. The enhanced water permeability along with the good water/ethanol selectivity makes the GO-HAL membranes promising devices for alcohol dehydration technologies. This study provides a new basis for the rational design of the future generation of GO-based membranes......Treat, H2020-MSCA-RISE-2014 (n. 64555). [1] V. Boffa et. al., Carbon-based building blocks for alcohol dehydration membranes with disorder-enhanced water permeability, Carbon, under review....

  11. Electrodiffusion of Lipids on Membrane Surfaces

    OpenAIRE

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  12. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  13. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem

    2016-01-01

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  14. Membrane domains and polarized trafficking of sphingolipids

    NARCIS (Netherlands)

    Maier, O; Slimane, TA; Hoekstra, D

    The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid-cholesterol enriched membrane microdomains, so called rafts. In

  15. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  16. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  17. Membranes for Environmentally Friendly Energy Processes

    Science.gov (United States)

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  18. Infrasonic backpulsed membrane cleaning of micro- and ...

    African Journals Online (AJOL)

    Membrane fouling is universally considered to be one of the most critical problems in the wider application of membrane filtration. In this research microfiltration and ultrafiltration membranes were fouled during a cross-flow filtration process, using yeast and alumina suspensions in a flat cell. Infrasonic backpulsing directly ...

  19. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  20. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the