WorldWideScience

Sample records for parasite trypanosoma brucei

  1. Regulation and spatial organization of PCNA in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas; Leonhardt, Heinrich; Janzen, Christian J.

    2012-01-01

    Highlights: ► Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). ► TbPCNA is a suitable marker to detect replication in T. brucei. ► TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  2. Novel molecular mechanism for targeting the parasite Trypanosoma brucei with snake venom toxins

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings. During parasites’extracellular lives in the mammalian host, its outer coat, mainly composedof Variable surface glycoproteins (VSGs)[2...

  3. Regulation and spatial organization of PCNA in Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Doris; Gassen, Alwine [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Maiser, Andreas; Leonhardt, Heinrich [University of Munich (LMU), Department Biology II, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Janzen, Christian J., E-mail: christian.janzen@uni-wuerzburg.de [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  4. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei

    NARCIS (Netherlands)

    Bienen, E. J.; Maturi, R. K.; Pollakis, G.; Clarkson, A. B.

    1993-01-01

    The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has

  5. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanoso...ma_brucei_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanoso...ma+brucei&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  6. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, Andres [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Altabe, Silvia G. [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Deumer, Gladys; Wallemacq, Pierre [Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, LTAP, Universite Catholique de Louvain, Brussels (Belgium); Michels, Paul A.M. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Uttaro, Antonio D., E-mail: toniuttaro@yahoo.com.ar [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina)

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  7. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    International Nuclear Information System (INIS)

    Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A.; Altabe, Silvia G.; Deumer, Gladys; Wallemacq, Pierre; Michels, Paul A.M.; Uttaro, Antonio D.

    2011-01-01

    Highlights: → Inhibiting Δ9 desaturase drastically changes T. brucei's fatty-acid composition. → Isoxyl specifically inhibits the Δ9 desaturase causing a growth arrest. → RNA interference of desaturase expression causes a similar effect. → Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. → 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC 50 ) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC 50 values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  8. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  9. The flagellum of Trypanosoma brucei: new tricks from an old dog

    Science.gov (United States)

    Ralston, Katherine S.; Hill, Kent L.

    2010-01-01

    African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102

  10. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity.

    Directory of Open Access Journals (Sweden)

    Géraldine De Muylder

    2013-10-01

    Full Text Available In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.

  11. Evaluation of In Vitro Activity of Essential Oils against Trypanosoma brucei brucei and Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    Nathan Habila

    2010-01-01

    Full Text Available Essential oils (EOs from Cymbopogon citratus (CC, Eucalyptus citriodora (EC, Eucalyptus camaldulensis (ED, and Citrus sinensis (CS were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb and Trypanosoma evansi (T. evansi. The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09% in CS, 6-octenal (77.11% in EC, Eucalyptol (75% in ED, and Citral (38.32% in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.

  12. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  13. A tropical tale: how Naja nigricollis venom beats Trypanosoma brucei

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings [1]. During the parasite’s extracellular life in the mammalian host,its outer coat, mainly composed of Variable Surface Glycoproteins (VSGs)...

  14. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.

    Science.gov (United States)

    Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M

    2016-11-01

    Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation

    NARCIS (Netherlands)

    Weelden, van S.W.H.; Fast, B.; Vogt, A.; Meer, van der P.; Saas, J.; Hellemond, van J.J.; Tielens, A.G.M.; Boshart, M.

    2003-01-01

    The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene

  16. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Classical clinical signs in rats experimemtally infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-02-01

    Full Text Available Objective: To investigate clinical signs in Trypanosoma brucei infection in albino rats. Methods: Fourteen rats grouped into 2 with 7 rats in each group were used to determine classical clinical manifestation of Trypanosoma brucei infection in rats. Group A rats were uninfected control and Group B rats were infected with Trypanosoma brucei. Results: Parasitaemia was recorded in Group B by (3.86±0.34 d and the peak of parasitaemia was observed at Day 5 post infection. Classical signs observed included squint eyes, raised whiskers, lethargy, no weight loss, pyrexia, isolation from the other rats, and starry hair coat. Conclusions: These signs could be diagnostic or aid in diagnosis of Trypanosoma brucei infection in rats.

  18. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  19. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  20. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  1. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    OpenAIRE

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human...

  2. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  3. In vivo trypanocidal activity of Nymphaea lotus Linn. methanol extract against Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Muhammad Haruna Garba

    2015-10-01

    Full Text Available Objective: To evaluate the antitrypanosomal potentials of methanol extract of Nymphaea lotus Linn. (N. lotus with the aim of obtaining a new lead for formulating safe, inexpensive, nontoxic and readily available trypanocidal drugs. Methods: Seventy percent (v/v (methanol/water crude extract of N. lotus was evaluated for antitrypanosomal activity in experimental trypanosomiasis using Trypanosoma brucei bruceiinfected mice. Infected mice in different groups were administered intraperitoneally 100, 200, 300 and 400 mg/kg body weight/day of the crude for two weeks, while a positive control group was treated with standard drug, berenil. Results: The crude extract at a dose of 100 mg/kg body weight/day was more effective than the higher doses in completely clearing parasites from the blood of mice infected with Trypanosoma brucei brucei. Pre-treatment of healthy mice with the crude extract for 5 days before infection did not prevent the establishment of the infection, indicating that the extract had no prophylactic activity. Subinoculation of the blood and cerebrospinal fluid drawn from the cured mice into healthy mice failed to produce any infection within 50 days post inoculation. Administration of 1 000 mg/kg body weight of the crude extract led to the death of 50% of the experimental animals indicating a high level of toxicity of the extract at higher doses. Conclusions: This study has demonstrated the potency of the crude extract of N. lotus in treating experimental trypanosomiasis at lower doses.

  4. Mating compatibility in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  5. Genetic control of resistance to Trypanosoma brucei brucei infection in mice

    Czech Academy of Sciences Publication Activity Database

    Šíma, Matyáš; Havelková, Helena; Quan, L.; Svobodová, M.; Jarošíková, T.; Vojtíšková, Jarmila; Stassen, A. P. M.; Demant, P.; Lipoldová, Marie

    2011-01-01

    Roč. 5, č. 6 (2011), e1173 ISSN 1935-2735 R&D Projects: GA AV ČR IAA500520606; GA MŠk(CZ) LC06009 Grant - others:NIH-NCI(US) 1R01CA127162-01 Institutional research plan: CEZ:AV0Z50520514 Keywords : Trypanosoma brucei brucei * mouse recombinant congenic strains * Tbbr Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  6. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2016-04-01

    Full Text Available Neglected tropical diseases (NTDs affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness, caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.

  7. Analytical purification of a 60-kDa target protein of artemisinin detected in Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Benetode Konziase

    2015-12-01

    Full Text Available Here we describe the isolation and purity determination of Trypanosoma brucei (T. b. brucei candidate target proteins of artemisinin. The candidate target proteins were detected and purified from their biological source (T. b. brucei lysate using the diazirine-free biotinylated probe 5 for an affinity binding to a streptavidin-tagged resin and, subsequently, the labeled target proteins were purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. We herein showed the electrophoresis gel and the immunoblotting film containing the 60-kDa trypanosomal candidate target protein of artemisinin as a single band, which was visualized on-gel by the reverse-staining method and on a Western blotting film by enhanced chemiluminescence. The data provided in this article are related to the original research article “Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins”, by Konziase (Anal. Biochem., vol. 482, 2015, pp. 25–31. http://dx.doi.org/10.1016/j.ab.2015.04.020.

  8. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie

    2011-05-24

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F oF 1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Sharlow

    2010-04-01

    Full Text Available The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK, an enzyme essential to the parasite that transfers the gamma-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were approximately 20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.

  10. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 2; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  11. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  12. Characterization of Trypanosoma brucei gambiense stocks isolated ...

    African Journals Online (AJOL)

    Trypanosoma brucei gambiense was isolated twice from each of 23 patients in Côte d'Ivoire. Genetic characterization using RAPD (Random Primed Amplified Polymorphic DNA) showed additional variability within a given isoenzyme profile (zymodeme), confirming that this fingerprinting method has a higher discriminative ...

  13. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2016-12-01

    Full Text Available The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  14. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  15. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Chiara Tesoriero

    2018-02-01

    Full Text Available Trypanosoma brucei (T. b. gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN, have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes

  16. Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei.

    Science.gov (United States)

    Kamina, Anyango D; Jaremko, Daniel; Christen, Linda; Williams, Noreen

    2017-01-01

    Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei , the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T . brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei . IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of

  17. CHARACTERIZATION AND ANTIPARASITIC ACTIVITY OF BENZOPHENONE THIOSEMICARBAZONES ON Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Georges C. Accrombessi

    2011-02-01

    Full Text Available The structure of four synthesized thiosemicarbazones, substituted or not, of benzophenone has been confirmed by spectrometrical analysis IR, NMR 1H and 13C. Their anti-trypanosomal activities were evaluated on Trypanosoma brucei brucei. Among these compounds, benzophenone 4 phenyl-3-thiosemicarbazone 4 has the highest activity with the half-inhibitory concentration (IC50 = 8.48 micromolar (µM. Benzophenone 4-methyl-3-thiosemicarbazone 3 and benzophenone thiosemicarbazone 1 showed moderate anti-trypanosomal activity with IC50 values equal to 23.27 µM and 67.17 µM respectively. Benzophenone 2 methyl-3-thiosemicarbazone 2 showed no activity up to IC50 = 371.74 µM.

  18. Detection of Trypanosoma brucei gambiense and T. b. rhodesiense ...

    African Journals Online (AJOL)

    Detection of Trypanosoma brucei gambiense and T. b. rhodesiense in Glossina fuscipes fuscipes ( Diptera: Glossinidae ) and Stomoxys flies using the polymerase chain reaction (PCR) technique in southern Sudan.

  19. Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse.

    Directory of Open Access Journals (Sweden)

    Erik Vassella

    Full Text Available Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.

  20. Exosome secretion affects social motility in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Dror Eliaz

    2017-03-01

    Full Text Available Extracellular vesicles (EV secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB utilizing the endosomal sorting complexes required for transport (ESCRT, through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo. This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.

  1. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    Science.gov (United States)

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  2. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ward Pauline N

    2005-09-01

    Full Text Available Abstract Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs and atypical PKs (aPKs revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been

  3. Role of cytokines in Trypanosoma brucei-induced anaemia: A ...

    African Journals Online (AJOL)

    species Trypanosoma brucei that are transmitted by a tsetse fly (Glossina spp.) ... of autologous immunoglobulin antibodies on the red cell surfaces and also to ... development for the detection and management of anaemia in trypanosomiasis.

  4. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  5. What controls glycolysis in bloodstream form Trypanosoma brucei?

    NARCIS (Netherlands)

    Bakker, B.M.; Michels, P.A.M.; Opperdoes, F.R.; Westerhoff, H.V.

    1999-01-01

    On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the

  6. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  7. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  8. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.; Nguyen, B. N.; Lee, J. H.; Panigrahi, A. K.; Gunzl, A.

    2012-01-01

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface

  9. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  10. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation.

    Directory of Open Access Journals (Sweden)

    James P J Hall

    Full Text Available A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.

  11. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite.

    Directory of Open Access Journals (Sweden)

    Brian Panicucci

    2017-04-01

    Full Text Available The mitochondrial (mt FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF, but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF, which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm. Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1 binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1, but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.

  12. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.

    Directory of Open Access Journals (Sweden)

    Melissa L Sykes

    Full Text Available Human African Trypanosomiasis (HAT is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1 determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC, and 2 estimate the time to kill.

  13. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Science.gov (United States)

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  14. The activity of aminoglycoside antibiotics against Trypanosoma brucei.

    Science.gov (United States)

    Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S

    1998-01-01

    The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.

  15. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Ana Brennand

    Full Text Available We have previously identified homologs for nearly half of the approximately 30 known yeast Atg's in the genome database of the human sleeping sickness parasite Trypanosoma brucei. So far, only a few of these homologs have their role in autophagy experimentally confirmed. Among the candidates was the ortholog of Atg24 that is involved in pexophagy in yeast. In T. brucei, the peroxisome-like organelles named glycosomes harbor core metabolic processes, especially glycolysis. In the autotrophic yeast, autophagy is essential for adaptation to different nutritional environments by participating in the renewal of the peroxisome population. We hypothesized that autophagic turnover of the parasite's glycosomes plays a role in differentiation during its life cycle, which demands adaptation to different host environments and associated dramatic changes in nutritional conditions. We therefore characterized T. brucei ATG24, the T. brucei ortholog of yeast Atg24 and mammalian SNX4, and found it to have a regulatory role in autophagy and differentiation as well as endocytic trafficking. ATG24 partially localized on endocytic membranes where it was recruited via PI3-kinase III/VPS34. ATG24 silencing severely impaired receptor-mediated endocytosis of transferrin, but not adsorptive uptake of a lectin, and caused a major enlargement of the flagellar pocket. ATG24 silencing approximately doubled the number of autophagosomes, suggesting a role in repressing autophagy, and strongly accelerated differentiation, in accordance with a role of autophagy in parasite differentiation. Overexpression of the two isoforms of T. brucei ATG8 fused to GFP slowed down differentiation, possibly by a dominant-negative effect. This was overcome by ATG24 depletion, further supporting its regulatory role.

  16. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  17. No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Barend Mark de Clare Bronsvoort

    2010-01-01

    Full Text Available African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1=0.760 had a higher sensitivity than the ITS-PCR (Se2=0.640; both have high specificity (Sp1=0.998; Sp2=0.997. The true prevalences for livestock populations were estimated (pcattle=0.091, ppigs=0.066, pgoats=0.005, psheep=0.006, taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes and may thus be, overall, a better

  18. Trypanosoma brucei TbIF1 inhibits the essential Finf1/inf-ATPase in the infectious form of the parasite

    Czech Academy of Sciences Publication Activity Database

    Panicucci, Brian; Gahura, Ondřej; Zíková, Alena

    2017-01-01

    Roč. 11, č. 4 (2017), č. článku e0005552. ISSN 1935-2735 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA17-22248S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : mt * TblF1 * Trypanosoma brucei Subject RIV: EE - Microbiology, Virology OBOR OECD: Infectious Diseases Impact factor: 3.834, year: 2016

  19. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Eduard J Kerkhoven

    Full Text Available Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak" must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i including additional enzymatic reactions in the glycosome, or (ii adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.

  20. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Lai, D.-H.; Bontempi, E. J.; Lukeš, Julius

    2012-01-01

    Roč. 183, č. 2 (2012), s. 189-192 ISSN 0166-6851 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Sleeping sickness * Ubiquinone * Solanesyl-diphosphate synthase * Digitonin permeabilization * In situ tagging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112000539

  1. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  2. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  3. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei*

    Science.gov (United States)

    Oberholzer, Michael; Langousis, Gerasimos; Nguyen, HoangKim T.; Saada, Edwin A.; Shimogawa, Michelle M.; Jonsson, Zophonias O.; Nguyen, Steven M.; Wohlschlegel, James A.; Hill, Kent L.

    2011-01-01

    The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. PMID:21685506

  4. Studies on the glycosome of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Aman, R.A.

    1985-01-01

    Glycosomes (microbodies) have been purified from bloodstream form Trypanosoma brucei by an improved procedure involving freezing and thawing live organisms in 15% glycerol prior to cell disruption. Highly purified organelles of bloodstream form T. brucei contain 11 major proteins of which 8 tentatively identified glycolytic enzymes make up about 90% of the total glycosomal protein. Treatment of these intact isolated organelles with the bisimidoester dimethylsuberimidate (DMSI) resulted in crosslinking of all glycosomal proteins into a large complex suggestive of juxtapositioning of the glycosomal proteins. The crosslinked complex was capable of catalyzing the multienzyme conversion of glucose to glycerol-3-phosphate but did not possess any special kinetic features different from those of the unaggregated enzymes represented by solubilized glycosomes. The multienzyme reaction had a lab phase associated with it and [ 14 C]-glucose label incorporation into sugar phosphate intermediates was effectively competed by unlabeled intermediates. Glycosomes were also purified from culture form T. brucei by several different procedures. Comparison of highly purified organelles from the two different life stages of the organism showed reduced specific activities and contents of the early glycolytic enzymes in organelles from the culture form with a decrease from 87% to 35% of the contribution of glycolytic enzymes to the total glycosomal protein

  5. Peptide-targeted delivery of a pH sensor for quantitative measurements of intraglycosomal pH in live Trypanosoma brucei.

    Science.gov (United States)

    Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A

    2013-05-28

    Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.

  6. Effect of experimental single Ancylostoma caninum and mixed infections of Trypanosoma brucei and Trypanosoma congolense on the humoural immune response to anti-rabies vaccination in dogs

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-06-01

    Full Text Available Objective: To determine the effect of Ancylostoma caninum (A. caninum and trypanosome parasites on the immune response to vaccination in dogs in endemic environments. Methods: Sixteen dogs for the experiment were grouped into 4 of 4 members each. Group I was the uninfected control one, and GPII was infected with A. caninum; GPIII was infected with A. caninum/Trypanosoma congolense (T. congolense, and GPIV was infected with Trypanosoma brucei (T. brucei/A. caninum. The dogs were first vaccinated with antirabies vaccine before infecting GPII, GPIII and GPIV with A. caninum which were done 4 weeks after vaccination. By 2-week post-vaccination, trypanosome parasites were superimposed on both GPIII and GPIV. A secondary vaccination was given to GPI, GPII, GPIII, and GPIV by Week 12 of the experiment (4 weeks post treatment. Results: The prepatent period was (3.00 ± 1.40 days, in the conjunct infection of T. brucei/ A. caninum. It was (9.00 ± 1.10 days, in conjunct T. congolense/A. caninum. The prepatent period of A. caninum was (14.0 ± 2.0 days in the single A. caninum group and (13.0 ± 1.0 days in the conjunct trypanosome/A. caninum. At the 1st week after vaccination, the antibody titer in all the vaccinated groups (GPI, GPII, GPIII, and GPIV significantly increased (P < 0.05 and peaked at the 3rd week after vaccination. Following infections, there were marked significant decreases (P < 0.05 in the antibody production against rabies in GPII, GPIII and GPIV. The significant decrease (P < 0.05 in antibody titer was highest in the conjunct groups (GPIII and GPIV compared to the single infection (GPII. Treatment with diminazene aceturate and mebendazole did not significantly improve antibody response in the dogs. A secondary vaccination administered at the 12th week after the primary vaccination significantly increased (P < 0.05 the antibody titer with a peak at the 3rd week after the secondary vaccination. Conclusions: It was therefore concluded

  7. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Jason Carnes

    Full Text Available Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes that catalyze RNA editing but the relative roles of each protein are not known.The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity.KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.

  8. Zoonotic trypanosomes in South East Asia : attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs

    OpenAIRE

    Desquesnes, M.; Yangtara, S.; Kunphukhieo, P.; Jittapalapong, S.; Herder, Stéphane

    2016-01-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to ...

  9. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase.

    Science.gov (United States)

    Herrmann, Fabian C; Lenz, Mairin; Jose, Joachim; Kaiser, Marcel; Brun, Reto; Schmidt, Thomas J

    2015-09-03

    As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP) databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany), against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH), a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9%) were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69%) showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  10. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  11. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.

    2012-10-26

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite\\'s ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, biochemical analyses of the T. brucei RNA pol I transcription machinery have elucidated the subunit structure of the enzyme and identified the class I transcription factor A (CITFA). CITFA binds to RNA pol I promoters, and its CITFA-2 subunit was shown to be absolutely essential for RNA pol I transcription in the parasite. Tandem affinity purification (TAP) of CITFA revealed the subunits CITFA-1 to -6, which are conserved only among kinetoplastid organisms, plus the dynein light chain DYNLL1. Here, by tagging CITFA-6 instead of CITFA-2, a complex was purified that contained all known CITFA subunits, as well as a novel proline-rich protein. Functional studies carried out in vivo and in vitro, as well as a colocalization study, unequivocally demonstrated that this protein is a bona fide CITFA subunit, essential for parasite viability and indispensable for RNA pol I transcription of ribosomal gene units and the active VSG expression site in the mammalian-infective life cycle stage of the parasite. Interestingly, CITFA-7 function appears to be species specific, because expression of an RNA interference (RNAi)-resistant CITFA-7 transgene from Trypanosoma cruzi could not rescue the lethal phenotype of silencing endogenous CITFA-7.

  12. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Kuan Yoow Chan

    2010-08-01

    Full Text Available Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1 has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.

  13. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form

    Czech Academy of Sciences Publication Activity Database

    Acestor, N.; Zíková, Alena; Dalley, R. A.; Anupama, A.; Panigrahi, A. K.; Stuart, K. D.

    2011-01-01

    Roč. 10, č. 9 (2011), s. 1-14 ISSN 1535-9476 R&D Projects: GA ČR GP204/09/P563 Institutional research plan: CEZ:AV0Z60220518 Keywords : SUCCINATE DEHYDROGENASE * EDITED MESSENGER-RNA * COMPLEX-I * TRYPANOSOMA-BRUCEI * UBIQUINONE OXIDOREDUCTASE * TAP-TAG * PROTEIN INTERACTION * ALTERNATIVE OXIDASE * STATISTICAL-MODEL * MASS-SPECTROMETRY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.398, year: 2011

  14. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  15. Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

    Directory of Open Access Journals (Sweden)

    Craig W Duffy

    2013-11-01

    Full Text Available African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda and Southern (Malawi Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.

  16. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  17. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase

    Directory of Open Access Journals (Sweden)

    Fabian C. Herrmann

    2015-09-01

    Full Text Available As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany, against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH, a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9% were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69% showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  18. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography.

    Science.gov (United States)

    Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2011-10-13

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.

  19. Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei

    Science.gov (United States)

    Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita

    2018-01-01

    ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this

  20. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids

  1. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Tanja Wenzler

    Full Text Available Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

  2. Response of Tripanosoma brucei brucei –induced anaemia to a ...

    African Journals Online (AJOL)

    A study was therefore carried out to determine the effect of the preparation on packed cell volume (PCV) and haemoglobin (Hb) concentrations in anaemic rabbits. The PCV and Hb concentrations of healthy rabbits infected with Trypanosoma brucei brucei were monitored for 49 days. T. b. brucei produced a significant ...

  3. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gunasekera Kapila

    2012-10-01

    Full Text Available Abstract Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS, short stumpy (SS mammalian bloodstream form stages relative to the procyclic (PC insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.

  5. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-02-02

    Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  6. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sonja Krstin

    2018-02-01

    Full Text Available Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of “wild garlics” Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak—in most cases comparable—antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  7. Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach

    Directory of Open Access Journals (Sweden)

    Amine Ghozlane

    2012-01-01

    Full Text Available Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s (bloodstream form and the insect vector (procyclic form, with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps.

  8. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1 in Trypanosoma brucei is an immunogenic self-assembling molecule.

    Directory of Open Access Journals (Sweden)

    Helen P Price

    Full Text Available Primary Sjögren's Syndrome (PSS is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14 is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13 and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.

  9. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  10. Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates

    Directory of Open Access Journals (Sweden)

    Fabrice E. Graf

    2015-08-01

    Full Text Available Aquaglyceroporin-2 is a known determinant of melarsoprol–pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2–AQP3 tandem locus was described from melarsoprol–pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2–aqp3 null T. b. brucei does not. This proves that AQP2–AQP3 chimerization is the cause of melarsoprol–pentamidine cross-resistance in the T. b. gambiense isolates.

  11. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Alkhaldi, A.A.M.; Martínek, Jan; Panicucci, Brian; Dardonville, C.; Zíková, Alena; de Koning, H.P.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 23-34 ISSN 2211-3207 R&D Projects: GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * mitochondrion * FoF1 ATPase * succinate dehydrogenase * phosphonium salt * SDH complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.809, year: 2016

  12. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda.

    Science.gov (United States)

    Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P

    2017-10-27

    Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.

  13. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    Science.gov (United States)

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  15. Comparative Genomics of Glossina palpalis gambiensis and G. morsitans morsitans to Reveal Gene Orthologs Involved in Infection by Trypanosoma brucei gambiense.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Tchicaya, Bernadette; Rialle, Stéphanie; Parrinello, Hugues; Geiger, Anne

    2017-01-01

    Blood-feeding Glossina palpalis gambiense (Gpg) fly transmits the single-celled eukaryotic parasite Trypanosoma brucei gambiense (Tbg), the second Glossina fly African trypanosome pair being Glossina morsitans / T .brucei rhodesiense. Whatever the T. brucei subspecies, whereas the onset of their developmental program in the zoo-anthropophilic blood feeding flies does unfold in the fly midgut, its completion is taking place in the fly salivary gland where does emerge a low size metacyclic trypomastigote population displaying features that account for its establishment in mammals-human individuals included. Considering that the two Glossina - T. brucei pairs introduced above share similarity with respect to the developmental program of this African parasite, we were curious to map on the Glossina morsitans morsitans (Gmm), the Differentially Expressed Genes (DEGs) we listed in a previous study. Briefly, using the gut samples collected at days 3, 10, and 20 from Gpg that were fed or not at day 0 on Tbg-hosting mice, these DGE lists were obtained from RNA seq-based approaches. Here, post the mapping on the quality controlled DEGs on the Gmm genome, the identified ortholog genes were further annotated, the resulting datasets being compared. Around 50% of the Gpg DEGs were shown to have orthologs in the Gmm genome. Under one of the three Glossina midgut sampling conditions, the number of DEGs was even higher when mapping on the Gmm genome than initially recorded. Many Gmm genes annotated as "Hypothetical" were mapped and annotated on many distinct databases allowing some of them to be properly identified. We identify Glossina fly candidate genes encoding (a) a broad panel of proteases as well as (b) chitin-binding proteins, (c) antimicrobial peptide production-Pro3 protein, transferrin, mucin, atttacin, cecropin, etc-to further select in functional studies, the objectives being to probe and validated fly genome manipulation that prevents the onset of the developmental

  16. Antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger on Trypanosoma brucei brucei-infected Wistar mice

    Directory of Open Access Journals (Sweden)

    P. I. Kobo

    2014-10-01

    Full Text Available Aim: The study was carried out to determine the in vivo antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger in Trypanosoma brucei brucei-infected mice. Materials and Methods: Twenty-five mice were randomly allocated into five groups of five animals each. Group I and II were given Tween 80 (1 ml/kg and diminazene aceturate (3.5 mg/kg to serve as untreated and treated controls, respectively. Groups III-V received the extract at 200, 400 and 800 mg/kg body weight, respectively. All treatments were given for 6 consecutive days and through the oral route. The mean body weight, mean survival period and daily level of parasitaemia were evaluated. Results: Acute toxicity showed the extract to be relatively safe. There was an insignificant increase in body weight and survival rate of mice treated with the extract. The level of parasitaemia in the extract treated groups was decreased. Conclusion: This study shows the in vivo potential of methanolic extract of Z. officinale in the treatment of trypanosomiasis.

  17. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei.

    Science.gov (United States)

    Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G

    2016-01-01

    A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Sleep and rhythm changes at the time of Trypanosoma brucei invasion of the brain parenchyma in the rat.

    Science.gov (United States)

    Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe

    2012-05-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.

  19. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Melisa Gualdron-López

    Full Text Available BACKGROUND: Glycosomes are a specialized form of peroxisomes (microbodies present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte. All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+/P(Cl-∼0.31, while the other two types of channels are slightly selective for cations (P(K+/P(Cl- ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively. The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE: These results indicate that the membrane of glycosomes

  20. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit.

    Science.gov (United States)

    Gahura, Ondřej; Šubrtová, Karolína; Váchová, Hana; Panicucci, Brian; Fearnley, Ian M; Harbour, Michael E; Walker, John E; Zíková, Alena

    2018-02-01

    The F-ATPases (also called the F 1 F o -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F 1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F 1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F 1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F 1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F 1 domain. These unique features of the F 1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F 1 -ATPase complex is not strictly conserved in eukaryotes. © 2017 Federation of European Biochemical Societies.

  1. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  2. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-01-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M r of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M r of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and 35 S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed

  3. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrón-López, Melisa [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium); Michels, Paul A.M., E-mail: paul.michels@uclouvain.be [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium)

    2013-02-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  4. Multiple evolutionary origins of Trypanosoma evansi in Kenya.

    Directory of Open Access Journals (Sweden)

    Christine M Kamidi

    2017-09-01

    Full Text Available Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51 and T. b. rhodesiense (n = 15, including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.

  5. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J

    2013-02-15

    Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms

  6. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  7. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  8. Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2009-09-01

    Full Text Available Abstract Background Mating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei. Results We investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest

  9. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents

    Directory of Open Access Journals (Sweden)

    Louis Papageorgiou

    2017-03-01

    Full Text Available Trypanosoma brucei brucei (TBB belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All

  10. Rab23 is a flagellar protein in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Field Mark C

    2011-06-01

    Full Text Available Abstract Background Rab small GTPases are important mediators of membrane transport, and orthologues frequently retain similar locations and functions, even between highly divergent taxa. In metazoan organisms Rab23 is an important negative regulator of Sonic hedgehog signaling and is crucial for correct development and differentiation of cellular lineages by virtue of an involvement in ciliary recycling. Previously, we reported that Trypanosoma brucei Rab23 localized to the nuclear envelope 1, which is clearly inconsistent with the mammalian location and function. As T. brucei is unicellular the potential that Rab23 has no role in cell signaling was possible. Here we sought to further investigate the role(s of Rab23 in T. brucei to determine if Rab23 was an example of a Rab protein with divergent function in distinct taxa. Methods/major findings The taxonomic distribution of Rab23 was examined and compared with the presence of flagella/cilia in representative taxa. Despite evidence for considerable secondary loss, we found a clear correlation between a conventional flagellar structure and the presence of a Rab23 orthologue in the genome. By epitope-tagging, Rab23 was localized and found to be present at the flagellum throughout the cell cycle. However, RNAi knockdown did not result in a flagellar defect, suggesting that Rab23 is not required for construction or maintenance of the flagellum. Conclusions The location of Rab23 at the flagellum is conserved between mammals and trypanosomes and the Rab23 gene is restricted to flagellated organisms. These data may suggest the presence of a Rab23-mediated signaling mechanism in trypanosomes.

  11. Secondary Metabolites from Vietnamese Marine Invertebrates with Activity against Trypanosoma brucei and T. cruzi

    Directory of Open Access Journals (Sweden)

    Nguyen Phuong Thao

    2014-06-01

    Full Text Available Marine-derived natural products from invertebrates comprise an extremely diverse and promising source of the compounds from a wide variety of structural classes. This study describes the discovery of five marine natural products with activity against Trypanosoma species by natural product library screening using whole cell in vitro assays. We investigated the anti-trypanosomal activity of the extracts from the soft corals and echinoderms living in Vietnamese seas. Of the samples screened, the methanolic extracts of several marine organisms exhibited potent activities against cultures of Trypanosoma brucei and T. cruzi (EC50 < 5.0 μg/mL. Among the compounds isolated from these extracts, laevigatol B (1 from Lobophytum crassum and L. laevigatum, (24S-ergost-4-ene-3-one (2 from Sinularia dissecta, astropectenol A (3 from Astropecten polyacanthus, and cholest-8-ene-3β,5α,6β,7α-tetraol (4 from Diadema savignyi showed inhibitory activity against T. brucei with EC50 values ranging from 1.57 ± 0.14 to 14.6 ± 1.36 μM, relative to the positive control, pentamidine (EC50 = 0.015 ± 0.003 μM. Laevigatol B (1 and 5α-cholest-8(14-ene-3β,7α-diol (5 exhibited also significant inhibitory effects on T. cruzi. The cytotoxic activity of the pure compounds on mammalian cells was also assessed and found to be insignificant in all cases. This is the first report on the inhibitory effects of marine organisms collected in Vietnamese seas against Trypanosoma species responsible for neglected tropical diseases.

  12. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    Science.gov (United States)

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  13. THE CYTOSOLIC AND GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM TRYPANOSOMA-BRUCEI - KINETIC-PROPERTIES AND COMPARISON WITH HOMOLOGOUS ENZYMES

    NARCIS (Netherlands)

    LAMBEIR, AM; LOISEAU, AM; KUNTZ, DA; VELLIEUX, FM; MICHELS, PAM; OPPERDOES, FR

    1991-01-01

    The protozoan haemoflagellate Trypanosoma brucei has two NAD-dependent glyceraldehyde-3-phosphate dehydrogenase isoenzymes, each with a different localization within the cell. One isoenzyme is found in the cytosol, as in other eukaryotes, while the other is found in the glycosome, a microbody-like

  14. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei.

    Science.gov (United States)

    McDermott, Suzanne M; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-10-09

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Adaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from Tsetse flies and during differentiation of bloodstream forms.

    NARCIS (Netherlands)

    van Grinsven, K.W.A.; van den Abbeele, J.; van den Bossche, P.; van Hellemond, J.J.; Tielens, A.G.M.

    2009-01-01

    Procyclic forms of Trypanosoma brucei isolated from the midguts of infected tsetse flies, or freshly transformed from a strain that is close to field isolates, do not use a complete Krebs cycle. Furthermore, short stumpy bloodstream forms produce acetate and are apparently metabolically preadapted

  16. Central Nervous System Parasitosis and Neuroinflammation Ameliorated by Systemic IL-10 Administration in Trypanosoma brucei-Infected Mice.

    Directory of Open Access Journals (Sweden)

    Jean Rodgers

    Full Text Available Invasion of the central nervous system (CNS by African trypanosomes represents a critical step in the development of human African trypanosomiasis. In both clinical cases and experimental mouse infections it has been demonstrated that predisposition to CNS invasion is associated with a type 1 systemic inflammatory response. Using the Trypanosoma brucei brucei GVR35 experimental infection model, we demonstrate that systemic delivery of the counter-inflammatory cytokine IL-10 lowers plasma IFN-γ and TNF-α concentrations, CNS parasitosis and ameliorates neuro-inflammatory pathology and clinical symptoms of disease. The results provide evidence that CNS invasion may be susceptible to immunological attenuation.

  17. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.

    Science.gov (United States)

    Naguleswaran, Arunasalam; Doiron, Nicholas; Roditi, Isabel

    2018-04-02

    Trypanosoma brucei brucei, the parasite causing Nagana in domestic animals, is closely related to the parasites causing sleeping sickness, but does not infect humans. In addition to its importance as a pathogen, the relative ease of genetic manipulation and an innate capacity for RNAi extend its use as a model organism in cell and infection biology. During its development in its mammalian and insect (tsetse fly) hosts, T. b. brucei passes through several different life-cycle stages. There are currently four life-cycle stages that can be cultured: slender forms and stumpy forms, which are equivalent to forms found in the mammal, and early and late procyclic forms, which are equivalent to forms in the tsetse midgut. Early procyclic forms show coordinated group movement (social motility) on semi-solid surfaces, whereas late procyclic forms do not. RNA-Seq was performed on biological replicates of each life-cycle stage. These constitute the first datasets for culture-derived slender and stumpy bloodstream forms and early and late procyclic forms. Expression profiles confirmed that genes known to be stage-regulated in the animal and insect hosts were also regulated in culture. Sequence reads of 100-125 bases provided sufficient precision to uncover differential expression of closely related genes. More than 100 transcripts showed peak expression in stumpy forms, including adenylate cyclases and several components of inositol metabolism. Early and late procyclic forms showed differential expression of 73 transcripts, a number of which encoded proteins that were previously shown to be stage-regulated. Moreover, two adenylate cyclases previously shown to reduce social motility are up-regulated in late procyclic forms. This study validates the use of cultured bloodstream forms as alternatives to animal-derived parasites and yields new markers for all four stages. In addition to underpinning recent findings that early and late procyclic forms are distinct life-cycle stages

  18. Changes in blood sugar levels of rats experimentally infected with Trypanosoma brucei and treated with imidocarb dipropionate and diminazene aceturate

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2016-01-01

    Full Text Available Objective: To determine the effect of Trypanosoma brucei (T. brucei on blood sugar level of infected rats. Methods: The experiment was done with 42 albino rats grouped into 3 groups of 14 members each. Group A was uninfected (control group, Group B was infected with T. brucei and treated with diminazene aceturate, and Group C was infected with T. brucei and treated with imidocarb dipropionate. Blood samples were collected from the media canthus of the experimental rats on Days 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 for the assessment of change in blood sugar levels. The blood sugar levels were determined with a glucometer (Accu-chek active serial No. GN: 10023338. Results: By 4 to 5 days post infection, there was a significant increase (P 0.05 was observed in the groups when compared with the control group till Day 12 of the experiment. Conclusions: T. brucei caused a significant increase in blood sugar of infected rats.

  19. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function

    Czech Academy of Sciences Publication Activity Database

    Cristodero, M.; Mani, J.; Oeljeklaus, S.; Aeberhard, L.; Hashimi, Hassan; Ramrath, D.J.F.; Lukeš, Julius; Warscheid, B.; Schneider, A.

    2013-01-01

    Roč. 90, č. 4 (2013), s. 744-755 ISSN 0950-382X R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : mitochondrial translation * Trypanosoma brucei * EF-Tu Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.026, year: 2013

  20. Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways

    Directory of Open Access Journals (Sweden)

    Arnaud Machelart

    2017-07-01

    Full Text Available This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.

  1. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting

  2. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  3. Dynamics of Mitochondrial RNA-Binding Protein Complex in Trypanosoma brucei and Its Petite Mutant under Optimized Immobilization Conditions

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Kaltenbrunner, S.; Šimková, Eva; Staněk, David; Lukeš, Julius; Hashimi, Hassan

    2014-01-01

    Roč. 13, č. 9 (2014), s. 1232-1240 ISSN 1535-9778 R&D Projects: GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 ; RVO:68378050 Keywords : mitochondrion * Trypanosoma brucei * YFP Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 2.820, year: 2014

  4. Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity

    NARCIS (Netherlands)

    Vanhamme, L.; Perez-Morga, D.; Marchal, C.; Speijer, D.; Lambert, L.; Geuskens, M.; Alexandre, S.; Ismaïli, N.; Göringer, U.; Benne, R.; Pays, E.

    1998-01-01

    We report the characterization of a Trypanosoma brucei 75-kDa protein of the RGG (Arg-Gly-Gly) type, termed TBRGG1. Dicistronic and monocistronic transcripts of the TBRGG1 gene were produced by both alternative splicing and polyadenylation. TBRGG1 was found in two or three forms that differ in their

  5. The miRNA and mRNA Signatures of Peripheral Blood Cells in Humans Infected with Trypanosoma brucei gambiense.

    Directory of Open Access Journals (Sweden)

    Smiths Lueong

    Full Text Available Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II and without (stage I brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II, 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.

  6. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities.

    Science.gov (United States)

    Jinnelov, Anders; Ali, Liaqat; Tinti, Michele; Güther, Maria Lucia S; Ferguson, Michael A J

    2017-12-08

    Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, Tb STT3A and Tb STT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N -glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the Tb STT3A and Tb STT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide: N -glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N -glycosylation sites by endoglycosidase H-resistant N -glycans originating from Man 5 GlcNAc 2 -PP-dolichol transferred by Tb STT3A, and endoglycosidase H-sensitive N -glycans originating from Man 9 GlcNAc 2 -PP-dolichol transferred by Tb STT3B. Using machine learning, we assessed the features that best define Tb STT3A and Tb STT3B substrates in vivo and built an algorithm to predict the types of N -glycan most likely to predominate at all the putative N -glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why Tb STT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N -glycosylation to provide protein sequence-specific N -glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267

  7. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  8. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    Science.gov (United States)

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  9. The Aurora Kinase in Trypanosoma brucei plays distinctive roles in metaphase-anaphase transition and cytokinetic initiation.

    Directory of Open Access Journals (Sweden)

    Ziyin Li

    2009-09-01

    Full Text Available Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC, consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and

  10. The 2’-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zamudio, J. R.; Mittra, B.; Foldynová-Trantírková, Silvie; Zeiner, G. M.; Lukeš, Julius; Bujnicki, J. M.; Sturm, N. R.; Campbell, D. A.

    2007-01-01

    Roč. 27, č. 17 (2007), s. 6084-6092 ISSN 0270-7306 R&D Projects: GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : methylation * Trypanosoma brucei * methyltransferase * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.420, year: 2007

  11. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    Full Text Available We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51" that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  12. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Science.gov (United States)

    Mashiyama, Susan T; Koupparis, Kyriacos; Caffrey, Conor R; McKerrow, James H; Babbitt, Patricia C

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51") that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  13. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    Dawn Nyawira Maranga

    2013-01-01

    Full Text Available The management of human African trypanosomiasis (HAT is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P<0.05 elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.

  14. Studies on the localization of Trypanosoma brucei in the female reproductive tract of bka mice and hooded lister rats

    International Nuclear Information System (INIS)

    Chipepa, J.A.S.; Brown, H.; Holmes, P.

    1991-01-01

    A study was conducted to establish whether Trypanosoma brucei migrated preferentially to the reproductive tracts of female BKA mice, or Hooded Lister rats and lodged there as the site of choice compared to other organs. Blood flow to the reproductive tracts, the liver and spleen was measured using red blood cells labelled with chromium- 51. The distribution of trypanosomes labelled with 75 Se-methionine. The average percentage of the blood flow to the reproductive tract was 0.21Plus or minus0.08 in mice, while the mean concentration of trypanosomes there was 0.30% in both mice and rats. Blood flow to the liver was lower than the percentage distribution of Se-labelled T.Brucei(5.17Plus or minus1.34 versus 8.1Plus or Minus1.2). There were, on the contrary, less labelled trypanosomes as compared to the mean blood flow to the spleen (0.54% plus or minus0.18 versus 2.10%pPlus or minus0.88). After 24 hours there were adequate numbers of T. brucei in the reproductive tract to cause parasitaemia in recipient mice. From these preliminary data it was concluded that T. brucei did not lodge in the reproductive organ system a site of choice. (author). 9 refs., 3 tabs

  15. Molecular Evidence of a Trypanosoma brucei gambiense Sylvatic Cycle in the Human African Trypanosomiasis Foci of Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Carlos eCordon-Obras

    2015-07-01

    Full Text Available Gambiense trypanosomiasis is considered an anthroponotic disease. Consequently, control programs are generally aimed at stopping transmission of Trypanosoma brucei gambiense (T. b. gambiense by detecting and treating human cases. However, the persistence of numerous foci despite efforts to eliminate this disease questions this strategy as unique tool to pursue the eradication. The role of animals as a reservoir of T. b. gambiense is still controversial, but could partly explain maintenance of the infection at hypo-endemic levels. In the present study, we evaluated the presence of T. b. gambiense in wild animals in Equatorial Guinea. The infection rate ranged from 0.8% in the insular focus of Luba to more than 12% in Mbini, a focus with a constant trickle of human cases. The parasite was detected in a wide range of animal species including four species never described previously as putative reservoirs. Our study comes to reinforce the hypothesis that animals may play a role in the persistence of T. b. gambiense transmission, being particularly relevant in low transmission settings. Under these conditions the integration of sustained vector control and medical interventions should be considered to achieve the elimination of Gambiense trypanosomiasis.

  16. Targeting channels and transporters in protozoan parasite infections

    Science.gov (United States)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  17. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  18. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei.

    Science.gov (United States)

    Omar, Ruwida; Igoli, John O; Zhang, Tong; Gray, Alexander I; Ebiloma, Godwin U; Clements, Carol J; Fearnley, James; Edrada Ebel, RuAngeli; Paget, Tim; de Koning, Harry P; Watson, David G

    2017-04-19

    Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS 2 data, could be correlated to denticulatain isomers in the extracts.

  19. Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Tyler Kevin M

    2008-09-01

    Full Text Available Abstract The disinfectants TriGene, bleach, ethanol and liquid hand soap, and water and temperature were tested for their ability to kill bloodstream forms of Trypanosoma brucei, epimastigotes of Trypanosoma rangeli and promastigotes of Leishmania major. A 5-min exposure to 0.2% TriGene, 0.1% liquid hand soap and 0.05% bleach (0.05% NaOCl killed all three trypanosomatids. Ethanol and water destroyed the parasites within 5 min at concentrations of 15–17.5% and 80–90%, respectively. All three organisms were also killed when treated for 5 min at 50°C. The results indicate that the disinfectants, water and temperature treatment (i.e. autoclaving are suitable laboratory hygiene measures against trypanosomatid parasites.

  20. Transcriptome and proteome analyses and the role of atypical calpain protein and autophagy in the spliced leader silencing pathway in Trypanosoma brucei.

    Science.gov (United States)

    Hope, Ronen; Egarmina, Katarina; Voloshin, Konstantin; Waldman Ben-Asher, Hiba; Carmi, Shai; Eliaz, Dror; Drori, Yaron; Michaeli, Shulamit

    2016-10-01

    Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD. © 2016 John Wiley & Sons Ltd.

  1. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  2. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  3. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  4. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  5. Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stefan Allmann

    Full Text Available Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.

  6. Isolation of Trypanosoma brucei gambiense from cured and relapsed sleeping sickness patients and adaptation to laboratory mice.

    Directory of Open Access Journals (Sweden)

    Patient Pati Pyana

    Full Text Available BACKGROUND: Sleeping sickness due to Trypanosoma brucei (T.b. gambiense is still a major public health problem in some central African countries. Historically, relapse rates around 5% have been observed for treatment with melarsoprol, widely used to treat second stage patients. Later, relapse rates of up to 50% have been recorded in some isolated foci in Angola, Sudan, Uganda and Democratic Republic of the Congo (DRC. Previous investigations are not conclusive on whether decreased sensitivity to melarsoprol is responsible for these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as from relapsed patients for downstream comparative drug sensitivity profiling. A major constraint for this type of investigation is that T.b. gambiense is particularly difficult to isolate and adapt to classical laboratory rodents. METHODOLOGY/PRINCIPAL FINDINGS: From 360 patients treated in Dipumba hospital, Mbuji-Mayi, D.R. Congo, blood and cerebrospinal fluid (CSF was collected before treatment. From patients relapsing during the 24 months follow-up, the same specimens were collected. Specimens with confirmed parasite presence were frozen in liquid nitrogen in a mixture of Triladyl, egg yolk and phosphate buffered glucose solution. Isolation was achieved by inoculation of the cryopreserved specimens in Grammomys surdaster, Mastomys natalensis and SCID mice. Thus, 85 strains were isolated from blood and CSF of 55 patients. Isolation success was highest in Grammomys surdaster. Forty strains were adapted to mice. From 12 patients, matched strains were isolated before treatment and after relapse. All strains belong to T.b. gambiense type I. CONCLUSIONS AND SIGNIFICANCE: We established a unique collection of T.b. gambiense from cured and relapsed patients, isolated in the same disease focus and within a limited period. This collection is available for genotypic and phenotypic characterisation to investigate the

  7. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Amy F Savage

    Full Text Available African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals, have a complex digenetic life cycle between a mammalian host and an insect vector, the blood-feeding tsetse fly. Although the importance of the insect vector to transmit the disease was first realized over a century ago, many aspects of trypanosome development in tsetse have not progressed beyond a morphological analysis, mainly due to considerable challenges to obtain sufficient material for molecular studies. Here, we used high-throughput RNA-Sequencing (RNA-Seq to profile Trypanosoma brucei transcript levels in three distinct tissues of the tsetse fly, namely the midgut, proventriculus and salivary glands. Consistent with current knowledge and providing a proof of principle, transcripts coding for procyclin isoforms and several components of the cytochrome oxidase complex were highly up-regulated in the midgut transcriptome, whereas transcripts encoding metacyclic VSGs (mVSGs and the surface coat protein brucei alanine rich protein or BARP were extremely up-regulated in the salivary gland transcriptome. Gene ontology analysis also supported the up-regulation of biological processes such as DNA metabolism and DNA replication in the proventriculus transcriptome and major changes in signal transduction and cyclic nucleotide metabolism in the salivary gland transcriptome. Our data highlight a small repertoire of expressed mVSGs and potential signaling pathways involving receptor-type adenylate cyclases and members of a surface carboxylate transporter family, called PADs (Proteins Associated with Differentiation, to cope with the changing environment, as well as RNA-binding proteins as a possible global regulators of gene expression.

  8. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei.

    Science.gov (United States)

    Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria

    2018-06-01

    The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.

  9. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  10. Antiparasitic activity of diallyl trisulfide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro.

    Science.gov (United States)

    Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R

    1994-03-01

    Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.

  11. Interaction between Trypanosoma brucei and Haemonchus ...

    African Journals Online (AJOL)

    In order to investigate the immunomodulatory influence of concurrent T. brucei and H. contortus infection in West African Dwarf (WAD) goats, 28 infected and 7 uninfected (control) of 8-9 months old male WAD goats were studied. The infected goats were separated into resistant (Class 1) and susceptible (Class 2) Faecal ...

  12. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion.

    Science.gov (United States)

    McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P

    2016-11-29

    The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.

  13. Malleable Mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Basu, Somsuvro; Benz, C.; Dixit, S.; Dobáková, Eva; Faktorová, Drahomíra; Hashimi, Hassan; Horáková, Eva; Huang, Zhenqiu; Paris, Zdeněk; Peña-Diaz, Priscila; Ridlon, L.; Týč, Jiří; Wildridge, David; Zíková, Alena; Lukeš, Julius

    2015-01-01

    Roč. 315, 2015 Feb 07 (2015), s. 73-151 ISSN 1937-6448 R&D Projects: GA ČR GAP302/12/2513; GA MŠk LL1205; GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104; GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Kinetoplast * Metabolism * Mitochondrial transport * Mitochondrion * RNA import * T. brucei * Trypanosome * kDNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.752, year: 2015

  14. Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    A. Aremu

    2018-04-01

    Full Text Available Trypanosomosis is a major disease of Man and animals. This study investigated the effect of Moringa oleifera leaf extract on the survivability rate, weight gain and histopathological changes of Wister rats experimentally infected with Trypanosoma brucei. A total of thirty (30 rats randomly divided into six groups (A-F. Rats in group A remain untreated and uninfected while rates in group F were infected and untreated. Rats in groups B and C were treated with Moringa oleifera leave extract orally at 200 mg/kg for 14 days pre-infection and the treatment continued in B but not in C. Rats in groups D and E were treated with the extract orally for ninety days at 200 mg/kg (pre-infection and the treatment continued in D but not in E. The weight changes in all rats were monitored weekly. Rats in B-F groups were infected with 3 × 106 of Trypanosoma brucei per mL of blood. The results showed that all the infected rats died but the treated group survived extra two days when compared with the untreated group. The percentage weight gain of rats in groups B and C was high (23.9% and 21.1% respectively as against negative control (17.2%. The groups with chronic administration of the extract (D and E had a lower percentage weight gains (64.3% and 60.3% respectively when compared with negative control (71.8%. The histopathology results showed that the extract was a potent ameliorative agent that reduced neuronal degeneration and congestion in the brain and the spleen of the infected rats respectively. In conclusion, Moringa Oleifera leave extract has mitigative effects on the pathogenesis of trypanosomosis. Keywords: Histopathology, Moringa, Survivability, Trypanosoma, Weight, Wister rats

  15. Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme

    Directory of Open Access Journals (Sweden)

    Alcione Silva de Carvalho

    2014-06-01

    Full Text Available Megazol (7 is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8 in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7 for nitrogen (in the triazole in 8, the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.

  16. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  17. Wild chimpanzees are infected by Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Milan Jirků

    2015-12-01

    Finally, we demonstrated that the mandrill serum was able to efficiently lyse T. b. brucei and T. b. rhodesiense, and to some extent T. b. gambiense, while the chimpanzee serum failed to lyse any of these subspecies.

  18. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-01-01

    The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545

  19. Gastrointestinal parasites and Trypanosoma evansi in buffaloes

    International Nuclear Information System (INIS)

    Sani, R.A.; Chandrawathani, P.; Rosli, M.

    1990-01-01

    Gastrointestinal parasitism is common in buffalo calves. The effect of helminths on growth was studied by administration of an anthelmintic to buffalo calves following natural infections with gastrointestinal parasites. In studies conducted on calves belonging to an institute and a smallholder farmer, the treated calves showed improved weight gains. Serial parasitic examinations showed these animals had moderate to high faecal counts with Strongyloides, Toxocara vitulorum and Haemonchus eggs and Eimeria oocytes. In another study, there was no live weight advantage in treated over untreated calves. Few animals in this study had evidence of parasites and even those which were infested had low faecal egg counts. Hence, in general, helminths at certain levels of infection do affect the live weight gains of young buffalo calves. The prevalence of Trypanosoma evansi, as assessed parasitologically using the haematocrit centrifugation technique and mice inoculation, was 2.7 and 1%, respectively, in cattle and buffaloes. The serological prevalence using the enzyme linked immunosorbent assay was 35 and 2% for cattle and buffaloes, respectively. (author). 6 refs, 5 figs, 2 tabs

  20. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Netsanet Worku

    Full Text Available Human African Trypanosomiasis (HAT also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM. The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross

  1. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  2. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Anna Albisetti

    2017-11-01

    Full Text Available Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP but remains attached to the cell body via the flagellum attachment zone (FAZ. The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC circumvents the flagellum. Overlapping the FPC is the hook complex (HC (a sub-structure of the previously named bilobe that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

  3. AcSDKP is down-regulated in anaemia induced by Trypanosoma ...

    African Journals Online (AJOL)

    We studied the responses of a tetrapeptide, AcSDKP, and IL-10, and their association with bone marrow nucleated cells in a Trypanosoma brucei brucei GVR35 experimental infection model. Methods Mouse infection was done intraperitoneally with 1 × 103 trypanosomes/mL. Mice were either infected or left uninfected (N ...

  4. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  5. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Trypanosoma brucei gambiense glycerol kinase

    International Nuclear Information System (INIS)

    Balogun, Emmanuel Oluwadare; Inaoka, Daniel Ken; Kido, Yasutoshi; Shiba, Tomoo; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Michels, Paul A. M.; Harada, Shigeharu; Kita, Kiyoshi

    2010-01-01

    Glycerol kinase from human African trypanosomes has been purified and crystallized for X-ray structure analysis. In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His 6 tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 Å resolution indicated that the crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 Å. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 , corresponding to 50% solvent content

  6. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  7. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  8. Trypanosoma brucei gambiense: HMI-9 medium containing methylcellulose and human serum supports the continuous axenic in vitro propagation of the bloodstream form.

    Science.gov (United States)

    Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F

    2011-07-01

    Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Trypanosoma brucei gambiense trypanosomiasis in Terego county, northern Uganda, 1996: a lot quality assurance sampling survey.

    Science.gov (United States)

    Hutin, Yvan J F; Legros, Dominique; Owini, Vincent; Brown, Vincent; Lee, Evan; Mbulamberi, Dawson; Paquet, Christophe

    2004-04-01

    We estimated the pre-intervention prevalence of Trypanosoma brucei gambiense (Tbg) trypanosomiasis using the lot quality assurance sampling (LQAS) methods in 14 parishes of Terego County in northern Uganda. A total of 826 participants were included in the survey sample in 1996. The prevalence of laboratory confirmed Tbg trypanosomiasis adjusted for parish population sizes was 2.2% (95% confidence interval =1.1-3.2). This estimate was consistent with the 1.1% period prevalence calculated on the basis of cases identified through passive and active screening in 1996-1999. Ranking of parishes in four categories according to LQAS analysis of the 1996 survey predicted the prevalences observed during the first round of active screening in the population in 1997-1998 (P LQAS were validated by the results of the population screening, suggesting that these survey methods may be useful in the pre-intervention phase of sleeping sickness control programs.

  10. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-12-01

    Trypanosma brucei (T. Brucei) is an important pathogen agent of African trypanosomiasis. The flagellum is an essential and multifunctional organelle of T. Brucei, thus it is very important to recognize the flagellar proteins from T. Brucei proteins for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference of probability functions of flagella protein and the non-flagellar protein for the purpose of flagella protein recognition. We propose to learn a multi-kernel classification function to approximate this optimal decision function, by minimizing the information loss of such approximation which is measured by the Kull back-Leibler (KL) divergence. An iterative multi-kernel classifier learning algorithm is developed to minimize the KL divergence for the problem of T. Brucei flagella protein recognition, experiments show its advantage over other T. Brucei flagellar protein recognition and multi-kernel learning methods. © 2014 IEEE.

  11. Human parasitic protozoan infection to infertility: a systematic review.

    Science.gov (United States)

    Shiadeh, Malihe Nourollahpour; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali

    2016-02-01

    Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic

  12. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  14. Origins of amino acid transporter loci in trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Jackson Andrew P

    2007-02-01

    Full Text Available Abstract Background Large amino acid transporter gene families were identified from the genome sequences of three parasitic protists, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. These genes encode molecular sensors of the external host environment for trypanosomatid cells and are crucial to modulation of gene expression as the parasite passes through different life stages. This study provides a comprehensive phylogenetic account of the origins of these genes, redefining each locus according to a positional criterion, through the integration of phyletic identity with comparative gene order information. Results Each locus was individually specified by its surrounding gene order and associated with homologs showing the same position ('homoeologs' in other species, where available. Bayesian and maximum likelihood phylogenies were in general agreement on systematic relationships and confirmed several 'orthology sets' of genes retained since divergence from the common ancestor. Reconciliation analysis quantified the scale of duplication and gene loss, as well as identifying further apparent orthology sets, which lacked conservation of genomic position. These instances suggested substantial genomic restructuring or transposition. Other analyses identified clear instances of evolutionary rate changes post-duplication, the effects of concerted evolution within tandem gene arrays and gene conversion events between syntenic loci. Conclusion Despite their importance to cell function and parasite development, the repertoires of AAT loci in trypanosomatid parasites are relatively fluid in both complement and gene dosage. Some loci are ubiquitous and, after an ancient origin through transposition, originated through descent from the ancestral trypanosomatid. However, reconciliation analysis demonstrated that unilateral expansions of gene number through tandem gene duplication, transposition of gene duplicates to otherwise well conserved genomic

  15. Molecular characterization and classification of Trypanosoma spp. Venezuelan isolates based on microsatellite markers and kinetoplast maxicircle genes.

    Science.gov (United States)

    Sánchez, E; Perrone, T; Recchimuzzi, G; Cardozo, I; Biteau, N; Aso, P M; Mijares, A; Baltz, T; Berthier, D; Balzano-Nogueira, L; Gonzatti, M I

    2015-10-15

    Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum is widely distributed throughout the world and constitutes an important limitation for the production of animal protein. T. evansi and T. equiperdum are morphologically indistinguishable parasites that evolved from a common ancestor but acquired important biological differences, including host range, mode of transmission, distribution, clinical symptoms and pathogenicity. At a molecular level, T. evansi is characterized by the complete loss of the maxicircles of the kinetoplastic DNA, while T. equiperdum has retained maxicircle fragments similar to those present in T. brucei. T. evansi causes the disease known as Surra, Derrengadera or "mal de cadeiras", while T. equiperdum is the etiological agent of dourine or "mal du coit", characterized by venereal transmission and white patches in the genitalia. Nine Venezuelan Trypanosoma spp. isolates, from horse, donkey or capybara were genotyped and classified using microsatellite analyses and maxicircle genes. The variables from the microsatellite data and the Procyclin PE repeats matrices were combined using the Hill-Smith method and compared to a group of T. evansi, T. equiperdum and T. brucei reference strains from South America, Asia and Africa using Coinertia analysis. Four maxicircle genes (cytb, cox1, a6 and nd8) were amplified by PCRfrom TeAp-N/D1 and TeGu-N/D1, the two Venezuelan isolates that grouped with the T. equiperdum STIB841/OVI strain. These maxicircle sequences were analyzed by nucleotide BLAST and aligned toorthologous genes from the Trypanozoon subgenus by MUSCLE tools. Phylogenetic trees were constructed using Maximum Parsimony (MP) and Maximum Likelihood (ML) with the MEGA5.1® software. We characterized microsatellite markers and Procyclin PE repeats of nine Venezuelan Trypanosoma spp. isolates with various degrees of virulence in a mouse model, and compared them to a

  16. Hemoglobin is a co-factor of human trypanosome lytic factor

    DEFF Research Database (Denmark)

    Widener, Justin; Nielsen, Marianne Jensby; Shiflett, April

    2007-01-01

    Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have be...

  17. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.

    Science.gov (United States)

    Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-06-01

    Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Parasites in motion: flagellum-driven cell motility in African trypanosomes

    Science.gov (United States)

    Hill, Kent L.

    2011-01-01

    SUMMARY Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9 + 2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions. PMID:20591724

  19. Kinetoplast adaptations in American strains from Trypanosoma vivax

    International Nuclear Information System (INIS)

    Greif, Gonzalo; Rodriguez, Matías; Reyna-Bello, Armando; Robello, Carlos; Alvarez-Valin, Fernando

    2015-01-01

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  20. Kinetoplast adaptations in American strains from Trypanosoma vivax

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Gonzalo [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Rodriguez, Matías [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay); Reyna-Bello, Armando [Departamento de Ciencias de la Vida, Carrera en Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas (Ecuador); Centro de Estudios Biomédicos y Veterinarios, Universidad Nacional Experimental Simón Rodríguez-IDECYT, Caracas (Venezuela, Bolivarian Republic of); Robello, Carlos [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Departamento de Bioquímica, Facultad de Medicina, Universidad de la República Uruguay (Uruguay); Alvarez-Valin, Fernando, E-mail: falvarez@fcien.edu.uy [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay)

    2015-03-15

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  1. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance.

    Directory of Open Access Journals (Sweden)

    Rebecca E Symula

    Full Text Available Trypanosoma brucei rhodesiense (Tbr and T. b. gambiense (Tbg, causative agents of Human African Trypanosomiasis (sleeping sickness in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs, components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR. HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb, a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1 and not found in related taxa, which are either human serum susceptible (Tbb or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2. We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.

  2. Serum total protein, albumin and globulin levels in Trypanosoma ...

    African Journals Online (AJOL)

    The effect of orally administered Scoparia dulcis on Trypanosoma brucei-induced changes in serum total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. Results obtained show that infection resulted in hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia. However ...

  3. Comparative antitrypanosomal screening of methanolic extracts of ...

    African Journals Online (AJOL)

    The in vitro and in vivo activities of methanolic extracts of defatted leaves and stems of Khaya senegalensis and Moringa oleifera on Trypanosoma brucei brucei were investigated and compared. The in vitro assessment involved incubating the parasite (in triplicate) in the presence of various extract concentrations in a ...

  4. Arterial blood pressure changes in acute T. brucei infection of dogs ...

    African Journals Online (AJOL)

    The aim of this study is to find out the usefulness of serial arterial blood pressure measurements in predicting severity and outcome of acute Trypanosoma brucei infection in dogs. Twenty adult dogs of mixed sexes and aged between 2 and 5 years were used for this study. The dogs were of good cardiac health and were ...

  5. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  6. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  7. Activity of D-carnitine and its derivatives on Trypanosoma infections in rats and mice

    Directory of Open Access Journals (Sweden)

    Manganaro M.

    2003-06-01

    Full Text Available Little progress has been made in the treatment of African trypanosomiasis over the past decades. L-carnitine has a major role in glycolysis-based energy supply of blood trypanosomes for it stimulates constant ATP production. To investigate whether administration of the isomer D-carnitine could exert a competitive inhibition on the metabolic pathway of the L-form, possibily resulting in parasite replication inhibition, several formulations of this compound were tested on Trypanosoma lewisi and T. brucei rhodesiense in rodent models. High oral dosages of D-carnitine inner salt and proprionyl-D-carnitine were not toxic to animals and induced about 50 % parasite growth inhibition in reversible, i.e. competitive, fashion. A putative mechanism could be an interference in pyruvate kinase activity and hence ATP production. Considering both, lack of toxicity and inhibitory activity, D-carnitine may have a role in the treatment of African trypanosomiasis, in association with available trypanocidal drugs.

  8. Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys

    DEFF Research Database (Denmark)

    Ngotho, Maina; Kagira, J.M.; Jensen, Henrik Michael Elvang

    2009-01-01

    and 140 days post-infection (dpi) respectively. Matched serum and CSF samples were obtained at regular intervals and immunospecific IgM, immunoglobulin G (IgG) and IL-10 were quantified by ELISA. RESULTS: There was no detectable immunospecific IgM and IgG in the CSF before 49 dpi. CSF IgM and Ig......OBJECTIVE: To determine the usefulness of IL-10 and immunoglobulin M (IgM) as biomarkers for staging HAT in vervet monkeys, a useful pathogenesis model for humans. METHODS: Vervet monkeys were infected with Trypanosoma brucei rhodesiense and subsequently given sub-curative and curative treatment 28...... curative treatment was given. After curative treatment, there was rapid and significant drop in serum IgM and IL-10 concentration as well as CSF WCC. However, the CSF IgM and IgG remained detectable to the end of the study. CONCLUSIONS: Serum and CSF concentrations of immunospecific IgM and CSF IgG changes...

  9. Iron-associated biology of Trypanosoma brucei.

    Czech Academy of Sciences Publication Activity Database

    Basu, Somsuvro; Horáková, Eva; Lukeš, Julius

    2016-01-01

    Roč. 1860, č. 2 (2016), s. 363-370 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GA14-23986S; GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) COST Action CM1307; European Commission(XE) 316304 - MODBIOLIN Grant - others:AV ČR(CZ) M200961204 Institutional support: RVO:60077344 Keywords : iron * Fe/S cluster * heme * Trypanosoma * TAO Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.702, year: 2016

  10. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    Science.gov (United States)

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  11. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs.We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  12. Design and Synthesis of Brain Penetrant Trypanocidal N-Myristoyltransferase Inhibitors.

    Science.gov (United States)

    Bayliss, Tracy; Robinson, David A; Smith, Victoria C; Brand, Stephen; McElroy, Stuart P; Torrie, Leah S; Mpamhanga, Chido; Norval, Suzanne; Stojanovski, Laste; Brenk, Ruth; Frearson, Julie A; Read, Kevin D; Gilbert, Ian H; Wyatt, Paul G

    2017-12-14

    N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.

  13. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Lia Carolina Soares Medeiros

    2017-11-01

    Full Text Available Trypanosomatids (order Kinetoplastida, including the human pathogens Trypanosoma cruzi (agent of Chagas disease, Trypanosoma brucei, (African sleeping sickness, and Leishmania (leishmaniasis, affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9 technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9, but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9, and in vitro-transcribed single guide RNAs (sgRNAs results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.

  14. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    OpenAIRE

    Franzén, Oscar

    2012-01-01

    Trypanosoma cruzi and Giardia intestinalis are two human pathogens and protozoan parasites responsible for the diseases Chagas disease and giardiasis, respectively. Both diseases cause su ering and illness in several million individuals. The former disease occurs primarily in South America and Central America, and the latter disease occurs worldwide. Current therapeutics are toxic and lack e cacy, and potential vaccines are far from the market. Increased knowledge about the bio...

  15. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  16. Molecular Confirmation of Trypanosoma evansi and Babesia bigemina in Cattle from Lower Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Elhaig, Abdelfattah Selim, Mohamed M. Mahmoud and Eman K El-Gayar

    2016-11-01

    Full Text Available Trypanosomosis and babesiosis are economically important vector-borne diseases for animal health and productivity in developing countries. In Egypt, molecular epidemiological surveys on such diseases are scarce. In the present study, we examined 475 healthy and 25 clinically diagnosed cattle from three provinces in Lower Egypt, for Trypanosoma (T. and Babesia (B. infections using an ITS1 PCR assay that confirmed Trypanosoma species presence and an 18S rRNA assay that detected B. bigemina. Results confirmed Trypanosoma spp. and B. bigemina presence in 30.4% and 11% individuals, respectively, with eight animals (1.6% being co-infected with both hemoparasites. Subsequent type-specific PCRs revealed that all Trypanosoma PCR positive samples corresponded to T. evansi and that none of the animals harboured T. brucei gambiense or T. brucei rhodesiense. Nucleotide sequencing of the variable surface glycoprotein revealed the T. evansi cattle strain to be most closely related (99% nucleotide sequence identity to strains previously detected in dromedary camels in Egypt, while the 18S rRNA gene phylogeny confirmed the presence of a unique B. bigemina haplotype closely related to strains from Turkey and Brazil. Statistically significant differences in PCR prevalence were noted with respect to gender, clinical status and locality. These results confirm the presence of high numbers of carrier animals and signal the need for expanded surveillance and control efforts.

  17. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components.

    Science.gov (United States)

    Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria

    2018-07-01

    Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50  oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  19. Excreted/Secreted Proteins from Trypanosome Procyclic Strains

    Directory of Open Access Journals (Sweden)

    Celestine Michelle Atyame Nten

    2010-01-01

    Full Text Available Trypanosoma secretome was shown to be involved in parasite virulence and is suspected of interfering in parasite life-cycle steps such as establishment in the Glossina midgut, metacyclogenesis. Therefore, we attempted to identify the proteins secreted by procyclic strains of T. brucei gambiense and T. brucei brucei, responsible for human and animal trypanosomiasis, respectively. Using mass spectrometry, 427 and 483 nonredundant proteins were characterized in T. brucei brucei and T. brucei gambiense secretomes, respectively; 35% and 42% of the corresponding secretome proteins were specifically secreted by T. brucei brucei and T. brucei gambiense, respectively, while 279 proteins were common to both subspecies. The proteins were assigned to 12 functional classes. Special attention was paid to the most abundant proteases (14 families because of their potential implication in the infection process and nutrient supply. The presence of proteins usually secreted via an exosome pathway suggests that this type of process is involved in trypanosome ESP secretion. The overall results provide leads for further research to develop novel tools for blocking trypanosome transmission.

  20. Zoonotic trypanosomes in South East Asia: Attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs.

    Science.gov (United States)

    Desquesnes, Marc; Yangtara, Sarawut; Kunphukhieo, Pawinee; Jittapalapong, Sathaporn; Herder, Stéphane

    2016-10-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to determine the efficacy of trypanocidal drugs for the treatment in humans. In a recent study, pentamidine and fexinidazole were shown to have the best efficacy against one stock of T. lewisi in rats. In the present study suramin, pentamidine, eflornitine, nifurtimox, benznidazole and fexinidazole, were evaluated at low and high doses, in single day administration to normal rats experimentally infected with a stock of T. lewisi recently isolated in Thailand. Because none of these treatments was efficient, a trial was made with the most promising trypanocide identified in a previous study, fexinidazole 100mg/kg, in 5 daily administrations. Results observed were unclear. To confirm the efficacy of fexinidazole, a mixed infection protocol was set up in cyclophosphamide immunosuppressed rats. Animals were infected successively by T. lewisi and T. evansi, and received 10 daily PO administrations of 200mg/kg fexinidazole. Drastic effects were observed against T. evansi which was cleared from the rat's blood within 24 to 48h; however, the treatment did not affect T. lewisi which remained in high number in the blood until the end of the experiment. This mixed infection/treatment protocol clearly demonstrated the efficacy of fexinidazole against T. evansi and its inefficacy against T. lewisi. Since animal trypanocides were also recently shown to be inefficient, other protocols as well as other T. lewisi stocks should be investigated in further studies. Copyright © 2016. Published by

  1. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    Science.gov (United States)

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P 1 . In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys 55 and Lys 268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys 55 and Lys 268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Katherine Woods

    Full Text Available Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.

  3. Diversity and spation distribution of vectors and hosts of T. brucei gambiense in forest zones of Southern Cameroon: Epidemiological implications

    NARCIS (Netherlands)

    Massussi, J.A.; Mbida Mbida, J.A.; Djieto-Lordon, C.; Njiokou, F.; Laveissière, C.; Ploeg, van der J.D.

    2010-01-01

    Host and vector distribution of Trypanosoma brucei gambiense was studied in relation to habitat types and seasons. Six (19.35%) of the 31 mammal species recorded in Bipindi were reservoir hosts. Cercopithecus nictitans was confined to the undisturbed forest and the low intensive shifting cultivation

  4. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Cho Yeow Koh

    2014-04-01

    Full Text Available Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general 'ATP-engaging' binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen.

  5. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  6. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  7. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies.

    Directory of Open Access Journals (Sweden)

    Vitor Sueth-Santiago

    Full Text Available Curcumin (CUR is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes. Demethoxycurcumin (DMC was equipotent to CUR (IC50 11.07 μM, but bisdemethoxycurcumin (BDMC was less active (IC50 45.33 μM and cyclocurcumin (CC was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

  8. New Class of Antitrypanosomal Agents Based on Imidazopyridines.

    Science.gov (United States)

    Silva, Daniel G; Gillespie, J Robert; Ranade, Ranae M; Herbst, Zackary M; Nguyen, Uyen T T; Buckner, Frederick S; Montanari, Carlos A; Gelb, Michael H

    2017-07-13

    The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC 50 ≤ 1 μM against Trypanosoma cruzi ( T. cruzi ) and Trypanosoma brucei ( T. brucei ) parasites, respectively. Based on promising results of in vitro activity (EC 50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi ( Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.

  9. Novel 1,2-dihydroquinazolin-2-ones: Design, synthesis, and biological evaluation against Trypanosoma brucei.

    Science.gov (United States)

    Pham, ThanhTruc; Walden, Madeline; Butler, Christopher; Diaz-Gonzalez, Rosario; Pérez-Moreno, Guiomar; Ceballos-Pérez, Gloria; Gomez-Pérez, Veronica; García-Hernández, Raquel; Zecca, Henry; Krakoff, Emma; Kopec, Brian; Ichire, Ogar; Mackenzie, Caden; Pitot, Marika; Ruiz, Luis Miguel; Gamarro, Francisco; González-Pacanowska, Dolores; Navarro, Miguel; Dounay, Amy B

    2017-08-15

    In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  11. Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa

    Directory of Open Access Journals (Sweden)

    Deniz Tasdemir

    2010-01-01

    Full Text Available In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1, furospinulosin-2 (2, furospongin-1 (3, furospongin-4 (4, and demethylfurospongin-4 (5; four linear meroterpenes: 2-(hexaprenylmethyl-2-methylchromenol (6, 4-hydroxy-3-octaprenylbenzoic acid (7, 4-hydroxy-3-tetraprenyl-phenylacetic acid (8, and heptaprenyl-p-quinol (9; a linear triterpene, squalene (10; two spongian-type diterpenes dorisenone D (11 and 11β-acetoxyspongi-12-en-16-one (12; a scalarane-type sesterterpene; 12-epi-deoxoscalarin (13, as well as an indole alkaloid, tryptophol (14 were screened for their in vitro activity against four parasitic protozoa; Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Cytotoxic potential of the compounds on mammalian cells was also assessed. All compounds were active against T. brucei rhodesiense, with compound 8 being the most potent (IC50 0.60 μg/mL, whereas 9 and 12 were the most active compounds against T. cruzi, with IC50 values around 4 μg/mL. Compound 12 showed the strongest leishmanicidal activity (IC50 0.75 µg/mL, which was comparable to that of miltefosine (IC50 0.20 µg/mL. The best antiplasmodial effect was exerted by compound 11 (IC50 0.43 µg/mL, followed by compounds 7, 10, and 12 with IC50 values around 1 µg/mL. Compounds 9, 11 and 12 exhibited, besides their antiprotozoal activity, also some cytotoxicity, whereas all other compounds had low or no cytotoxicity towards the mammalian cell line. This is the first report of antiprotozoal activity of marine metabolites 1–14, and points out the potential of marine sponges in discovery of new antiprotozoal lead compounds.

  12. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    Science.gov (United States)

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  13. Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese sleeping sickness focus of the Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Simo Gustave

    2012-09-01

    Full Text Available Abstract Background The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Methods Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. Results About 949 Glossina palpalis palpalis were trapped; 296 (31.2% of which were dissected, 60 (20.3% blood meals collected and 57 (19.3% trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively. Conclusion The presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined

  14. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference

  15. Studies on the Leucocytic Response to Experimental Infection with ...

    African Journals Online (AJOL)

    Also, neutrophil numbers declined significantly (P < 0.05) in red fronted gazelles infected either singly with Trypanosoma brucei or concurrently with both parasites while those infected singly with Haemonchus contortus experienced a significant (P <0.05) rise in neutrophil counts which became evident from day 30 post ...

  16. On the tissular parasitism of Trypanosoma cruzi y strain in swiss mice Sobre o parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1984-12-01

    Full Text Available A review of the tissular parasitism of Trypanosoma cruzi Y strain in Swiss mice was carried out. This strain parasitized preferentially smooth, skeletal and cardiac muscle fibers, with low transitory spleen and liver parasitism, as previously found by some Authors, although differing from other reports. These results can be related to the host genetical constitution and/or the degree of the strain virulence at the time of this study. Furthermore, we discuss that the high macrophagotropism reported for this strain in some instances could be an artificially induced condition resulting from its serial maintenance in mice, either for a longer time and/or by using young animals. The heavy parasitism and inflammation observed in the bladder, pancreas and spermatic duct of some inoculated mice, as well as the testis parasitization, were also noteworthy findings.Através deste trabalho fizemos uma revisão do parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster. Esta cepa parasitou preferencialmente as fibras musculares lisas, esqueléticas e cardíacas, sendo baixo e transitório seu parasitismo do baço e fígado, conforme já observado por alguns Autores, embora diferindo de outros achados. Estes resultados podem estar relacionados com o padrão genético do hospedeiro e/ou com o grau de virulência da cepa por ocasião deste estudo. Além do mais, discutimos a possibilidade de que o intenso macrofagotropismo descrito para esta cepa em algumas ocasiões possa ser uma condição artificialmente induzida através de sua manutenção seriada em camundongos por tempo prolongado e/ou pelo uso de animais jovens. Também são dignos de nota, o intenso parasitismo e inflamação da bexiga, pâncreas e canal espermático de alguns animais inoculados, assim como, o encontro de ninhos de amastigotas no testículo.

  17. Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting

    NARCIS (Netherlands)

    Agbo, E.E.C.; Majiwa, P.A.O.; Claassen, H.J.H.M.; Pas, te M.F.W.

    2002-01-01

    Genetic analysis of Trypanosoma spp. depends on the detection of variation between strains. We have used the amplified fragment length polymorphism (AFLP) technique to develop a convenient and reliable method for genetic characterization of Trypanosome (sub)species. AFLP accesses multiple

  18. Trypanosoma cruzi: blood parasitism kinetics and their correlation with heart parasitism intensity during long-term infection of Beagle dogs

    Directory of Open Access Journals (Sweden)

    Vanja M Veloso

    2008-09-01

    Full Text Available The goals of the present study were to evaluate the kinetics of blood parasitism by examination of fresh blood, blood culture (BC and PCR assays and their correlation with heart parasitism during two years of infection in Beagle dogs inoculated with the Be-78, Y and ABC Trypanosoma cruzi strains. Our results showed that the parasite or its kDNA is easily detected during the acute phase in all infected animals. On the other hand, a reduced number of positive tests were verified during the chronic phase of the infection. The frequency of positive tests was correlated with T. cruzi strain. The percentage of positive BC and blood PCR performed in samples from animals inoculated with Be-78 and ABC strains were similar and significantly larger in relation to animals infected with the Y strain.Comparison of the positivity of PCR tests performed using blood and heart tissue samples obtained two years after infection showed two different patterns associated with the inoculated T. cruzi strain: (1 high PCR positivity for both blood and tissue was observed in animals infected with Be-78 or ABC strains; (2 lower and higher PCR positivity for the blood and tissue, respectively, was detected in animals infected with Y strains. These data suggest that the sensitivity of BC and blood PCR was T. cruzi strain dependent and, in contrast, the heart tissue PCR revealed higher sensitivity regardless of the parasite stock.

  19. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.

    Science.gov (United States)

    Vallejo, G A; Guhl, F; Schaub, G A

    2009-01-01

    Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only

  20. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C

    2014-01-01

    Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective trypomastigo......Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective...

  1. The role of domestic animals in the epidemiology of human African trypanosomiasis in Ngorongoro conservation area, Tanzania.

    Science.gov (United States)

    Ruiz, Juan P; Nyingilili, Hamisi S; Mbata, Geofrey H; Malele, Imna I

    2015-10-06

    Trypanosomiasis is a neglected tropical disease caused by the trypanosome parasite and transmitted by the tsetse fly vector. In Sub-saharan Africa, both the human and animal variants of the disease are a great obstacle towards agriculture, development, and health. In order to better understand and therefore combat Trypanosomiasis, characterizing disease hotspots across species is critical. In this study, 193 samples from cattle, sheep, and goats were collected from eight sites. Samples were taken from animals belonging mostly to Maasai herdsmen in the Ngorongoro Crater Conservation Area (NCA) and analysed for the presence of trypanosomiasis infection using PCR techniques. Those that tested positive for T. brucei parasite were further tested using SRA LAMP technique to check for T. brucei rhodesiense, the human infective subspecies of parasite. Our study found a high incidence of Trypanosoma brucei infections across species. Of animals tested, 47 % of cattle, 91.7 % of sheep, and 60.8 % of goats were infected. Most of the infections were of the T. brucei species. We also identified sheep and goats as carriers of the T. brucei rhodesiense subspecies, which causes acute human trypanosomiasis. Together, these results point toward the need for stricter control strategies in the area to prevent disease outbreak.

  2. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis

    Czech Academy of Sciences Publication Activity Database

    Uzlíková, M.; Fulnečková, Jana; Weisz, F.; Sýkorová, Eva; Nohýnková, E.; Tůmová, P.

    2017-01-01

    Roč. 211, JAN 2017 (2017), s. 31-38 ISSN 0166-6851 Grant - others:Grantová agentura ČR - GA ČR(CZ) GAP305/12/1248 Institutional support: RVO:68081707 Keywords : trypanosoma-brucei * parasitic protozoa * 2 nuclei * lamblia * evolution * rna * organization Subject RIV: BO - Biophysics Impact factor: 2.536, year: 2016

  3. Controlled chaos of polymorphic mucins in a metazoan parasite (Schistosoma mansoni interacting with its invertebrate host (Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Emmanuel Roger

    Full Text Available Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata. Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism-a "controlled chaos"-based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also

  4. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    Science.gov (United States)

    Roger, Emmanuel; Grunau, Christoph; Pierce, Raymond J.; Hirai, Hirohisa; Gourbal, Benjamin; Galinier, Richard; Emans, Rémi; Cesari, Italo M.; Cosseau, Céline; Mitta, Guillaume

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on

  5. Haematological indices in Trypanosoma brucei brucei (Federe isolate infected Nigerian donkeys (Equus asinus treated with homidium and isometamidium chloride of ciprofloxacin in broiler chickens after single intravenous and intraingluvial administration

    Directory of Open Access Journals (Sweden)

    Queen Nneka Oparah

    2017-03-01

    Full Text Available The efficacy of intramuscular administration of Homidium chloride (Novidium® and Isometamidium chloride (Sécuridium® in Nigerian donkeys (Equus asinus experimentally infected with T. b. brucei (Federe isolate was investigated. Changes in haematological and serum biochemical indices were evaluated using clinical haematology and biochemistry methods. Red blood cell (RBC count for the negative control group was significantly higher than for the positive control, Novidium® and Sécuridium®-treatment groups. Haemoglobin (Hb concentration significantly reduced in the infected untreated group compared with other groups. Packed cell volume (PCV was significantly different between negative and positive controls, and also between the infected untreated and treatment groups. There was significant reduction in platelet counts post-infection and post-treatment. Mean corpuscular volume (MCV increased significantly in the treatment groups while mean corpuscular haemoglobin concentration (MCHC significantly reduced only in the Sécuridium®-treatment group. Lymphocyte count for infected untreated was non-significantly higher than for the uninfected controls, but treatment with both trypanocides recorded further increases, which were higher compared with that of the uninfected group. Post infection and treatment, aspartate aminotransferase (AST levels increased significantly. There were non-significant differences in electrolyte ion concentrations across the groups except for chloride ion which recorded a significant reduction in the Novidium®-treatment group. This experiment revealed that Nigerian donkeys infected with T. brucei brucei (Federe isolate developed symptoms of trypanosomosis; anaemia, lymphocytosis and thrombocytopenia. Treatment with the trypanocides ameliorated effects of the infection, and results suggest that immunosuppression may not be a substantial clinical manifestation of T. brucei brucei (Federe isolate trypanosomosis in Nigerian

  6. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2008-02-01

    Full Text Available Abstract Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP or Red Fluorescent Protein (RFP. Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids

  7. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.

    Science.gov (United States)

    Balcazar, Darío E; Vanrell, María Cristina; Romano, Patricia S; Pereira, Claudio A; Goldbaum, Fernando A; Bonomi, Hernán R; Carrillo, Carolina

    2017-04-01

    Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT

  8. Transferrin coupled azanthraquinone enhances the killing effect on trypanosomes. The role of lysosomal mannosidase

    Directory of Open Access Journals (Sweden)

    Nok A.J.

    2002-12-01

    Full Text Available Partially purified azanthraquinone (AQ extract from Mitracarpus scaber was coupled to bovine transferrin (Tf using azidophenyl glyoxal (APG. The AQ-APG-Tf conjugate was found to possess an enhanced in vitro trypanocidal activity against Trypanosoma congolense and T. brucei brucei. At low concentrations of 0.39-90 mg/ml, the conjugate diminished the growth of T. congolense and T. b. brucei dose dependently at the logarithmic phase. Both parasites were more sensitive to AQ-APG-Tf than to the free (AQ extract. Growth inhibition on the parasites by the free extract was observed at 20-200 mg/ml. The total activity of the lysosomal enzyme a-mannosidase was reduced in the T. congolense cells treated with AQ-APG-Tf in a dose related pattern. However, the activity of the mannosidase in the T. b. brucei treated cells is less affected. The AQ-APG-Tf is more effective on a mannosidase than free AQ, eight and four fold for T. congolense and T. b. brucei respectively. The results are discussed as regards the potency of using transferrin as suitable drug carrier in the chemotherapy of Human sleeping sickness.

  9. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae.

    Directory of Open Access Journals (Sweden)

    Charles Runckel

    Full Text Available Since 2006, honey bee colonies in North America and Europe have experienced increased annual mortality. These losses correlate with increased pathogen incidence and abundance, though no single etiologic agent has been identified. Crithidia mellificae is a unicellular eukaryotic honey bee parasite that has been associated with colony losses in the USA and Belgium. C. mellificae is a member of the family Trypanosomatidae, which primarily includes other insect-infecting species (e.g., the bumble bee pathogen Crithidia bombi, as well as species that infect both invertebrate and vertebrate hosts including human pathogens (e.g.,Trypanosoma cruzi, T. brucei, and Leishmania spp.. To better characterize C. mellificae, we sequenced the genome and transcriptome of strain SF, which was isolated and cultured in 2010. The 32 megabase draft genome, presented herein, shares a high degree of conservation with the related species Leishmania major. We estimate that C. mellificae encodes over 8,300 genes, the majority of which are orthologs of genes encoded by L. major and other Leishmania or Trypanosoma species. Genes unique to C. mellificae, including those of possible bacterial origin, were annotated based on function and include genes putatively involved in carbohydrate metabolism. This draft genome will facilitate additional investigations of the impact of C. mellificae infection on honey bee health and provide insight into the evolution of this unique family.

  10. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  11. THE USE OF MULTIPLE DISPLACEMENT AMPLIFICATION TO INCREASE THE DETECTION AND GENOTYPING OF TRYPANOSOMA SPECIES SAMPLES IMMOBILISED ON FTA FILTERS

    Science.gov (United States)

    MORRISON, LIAM J.; McCORMACK, GILLIAN; SWEENEY, LINDSAY; LIKEUFACK, ANNE C. L.; TRUC, PHILIPPE; TURNER, C. MICHAEL; TAIT, ANDY; MacLEOD, ANNETTE

    2007-01-01

    Whole genome amplification methods are a recently developed tool for amplifying DNA from limited template. We report its application in trypanosome infections, characterised by low parasitaemias. Multiple Displacement Amplification (MDA) amplifies DNA with a simple in vitro step, and was evaluated on mouse blood samples on FTA filter cards with known numbers of Trypanosoma brucei parasites. The data showed a twenty-fold increase in the number of PCRs possible per sample, using primers diagnostic for the multi-copy ribosomal ITS region or 177 bp repeats, and a twenty-fold increase in sensitivity over nested PCR against a single copy microsatellite. Using MDA for microsatellite genotyping caused allele dropout at low DNA concentrations, which was overcome by pooling multiple MDA reactions. The validity of using MDA was established with samples from Human African Trypanosomiasis patients. The use of MDA allows maximal use of finite DNA samples and may prove a valuable tool in studies where multiple reactions are necessary, such as population genetic analyses. PMID:17556624

  12. Partial nucleotide sequence analysis of 18S ribosomal RNA gene of the four genotypes of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanya, A.; Majiwa, P.A.O.; Kinyanjui, P.W.

    2006-01-01

    Specific oligonucleotide primers based on conserved nucleotide sequences of 18s ribisomal RNA (18s rRNA) gene of Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum have been designed and used in the ploymerase chain reaction (PCR) to amplify genomic DNA from four different clones each representing a different genotypic group of T. congolence. PCR products of approximately 1Kb were generated using as template DNA from each of the trypanosomes. The PCR products cross-hybridized with genomic DNA from T.brucei, T. simiae and the four genotypes of T.congolense implying significant sequence homology of 18S rRNA gene among trypanosomes. The nucleotide sequence of a segment of the PCR products were determined by direct sequencing to provide partial nucleotide sequence of the 18s rRNA gene in each T.congolense genotypic group. The sequences obtained together with those that have been published for T.brucei reveals that although most regions show inter and intra species nucleotide identity, there are several sites where deletions, insertions and base changes have occured in nucleotide sequence of of T.brucei and the four genotypes of T.congolense.(author)

  13. Trypanosoma sp. diversity in Amazonian bats (Chiroptera; Mammalia) from Acre State, Brazil.

    Science.gov (United States)

    Dos Santos, Francisco C B; Lisboa, Cristiane V; Xavier, Samanta C C; Dario, Maria A; Verde, Rair de S; Calouro, Armando M; Roque, André Luiz R; Jansen, Ana M

    2017-11-16

    Bats are ancient hosts of Trypanosoma species and their flying ability, longevity and adaptability to distinct environments indicate that they are efficient dispersers of parasites. Bats from Acre state (Amazon Biome) were collected in four expeditions conducted in an urban forest (Parque Zoobotânico) and one relatively more preserved area (Seringal Cahoeira) in Rio Branco and Xapuri municipalities. Trypanosoma sp. infection was detected by hemoculture and fresh blood examination. Isolated parasite species were identified by the similarity of the obtained DNA sequence from 18S rDNA polymerase chain reaction and reference strains. Overall, 367 bats from 23 genera and 32 species were examined. Chiropterofauna composition was specific to each municipality, although Artibeus sp. and Carollia sp. prevailed throughout. Trypanosoma sp. infection was detected in 85 bats (23·2%). The most widely distributed and prevalent genotypes were (in order) Trypanosoma cruzi TcI, T. cruzi marinkellei, Trypanosoma dionisii, T. cruzi TcIV and Trypanosoma rangeli. At least one still-undescribed Trypanosoma species was also detected in this study. The detection of T. cruzi TcI and TcIV (the ones associated with Chagas disease in Amazon biome) demonstrates the putative importance of these mammal hosts in the epidemiology of the disease in the Acre State.

  14. Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal.

    Directory of Open Access Journals (Sweden)

    Anne J N Kazibwe

    Full Text Available BACKGROUND: The development of arsenical and diamidine resistance in Trypanosoma brucei is associated with loss of drug uptake by the P2 purine transporter as a result of alterations in the corresponding T. brucei adenosine transporter 1 gene (TbAT1. Previously, specific TbAT1 mutant type alleles linked to melarsoprol treatment failure were significantly more prevalent in T. b. gambiense from relapse patients at Omugo health centre in Arua district. Relapse rates of up to 30% prompted a shift from melarsoprol to eflornithine (alpha-difluoromethylornithine, DFMO as first-line treatment at this centre. The aim of this study was to determine the status of TbAT1 in recent isolates collected from T. b. gambiense sleeping sickness patients from Arua and Moyo districts in Northwestern Uganda after this shift in first-line drug choice. METHODOLOGY AND RESULTS: Blood and cerebrospinal fluids of consenting patients were collected for DNA preparation and subsequent amplification. All of the 105 isolates from Omugo that we successfully analysed by PCR-RFLP possessed the TbAT1 wild type allele. In addition, PCR/RFLP analysis was performed for 74 samples from Moyo, where melarsoprol is still the first line drug; 61 samples displayed the wild genotype while six were mutant and seven had a mixed pattern of both mutant and wild-type TbAT1. The melarsoprol treatment failure rate at Moyo over the same period was nine out of 101 stage II cases that were followed up at least once. Five of the relapse cases harboured mutant TbAT1, one had the wild type, while no amplification was achieved from the remaining three samples. CONCLUSIONS/SIGNIFICANCE: The apparent disappearance of mutant alleles at Omugo may correlate with melarsoprol withdrawal as first-line treatment. Our results suggest that melarsoprol could successfully be reintroduced following a time lag subsequent to its replacement. A field-applicable test to predict melarsoprol treatment outcome and identify

  15. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts

    Czech Academy of Sciences Publication Activity Database

    Ishemgulova, A.; Kraeva, N.; Hlaváčová, J.; Zimmer, S.L.; Butenko, A.; Podešvová, L.; Leštinová, T.; Lukeš, Julius; Kostygov, A.; Votýpka, Jan; Volf, P.; Yurchenko, V.

    2017-01-01

    Roč. 11, č. 7 (2017), č. článku e0005782. ISSN 1935-2735 R&D Projects: GA MŠk LL1601 Institutional support: RVO:60077344 Keywords : multiple sequence alignment * sand flies * trypanosoma-brucei * expression system * p-loop * transmission * evolution * parasites * resource * kinases Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.834, year: 2016

  16. LR1: a candidate RNA virus of Leishmania.

    OpenAIRE

    Tarr, P I; Aline, R F; Smiley, B L; Scholler, J; Keithly, J; Stuart, K

    1988-01-01

    Although viruses are important biological agents and useful molecular tools, little is known about the viruses of parasites. We report here the discovery of a candidate for an RNA virus in a kinetoplastid parasite. This potential virus, which we term LR1, is present in the promastigote form of the human pathogen Leishmania braziliensis guyanensis CUMC1-1A but not in 11 other stocks of Leishmania that were examined nor in Trypanosoma brucei. The candidate viral RNA has a size of approximately ...

  17. First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs (Anura, Leptodactylidae).

    Science.gov (United States)

    Lemos, M; Morais, D H; Carvalho, V T; D'Agosto, M

    2008-02-01

    The present study provides the first record of Trypanosoma chattoni Mathis and Leger, 1911, in a new host, Leptodactylus fuscus Schneider, 1799 (Anura, Leptodactylidae), and the occurrence of Trypanosoma rotatorium-like species in Leptodactylus chaquensis Cei, 1950. The anurans were captured in the State of Mato Grosso, Brazil. Blood samples were obtained by cardiac puncture, and blood smears were examined for the presence of hemoparasites. The Trypanosoma rotatorium-like species in this study refers to a short-bodied trypomastigote that has a conspicuous undulating membrane but lacks a free flagellum; T. chattoni refers to a monomorphic parasite that has a rounded body, a kinetoplast adjacent to the nucleus, and a short flagellum.

  18. DEAD-box RNA helicase is dispensable for mitochondrial translation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Richterová, Lenka; Vávrová, Zuzana; Lukeš, Julius

    2011-01-01

    Roč. 127, č. 1 (2011), 300-303 ISSN 0014-4894 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Mitochondrial translation * RNA helicase * Cytochrome c oxidase * Mitochondrion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2011

  19. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    Science.gov (United States)

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The

  20. Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis

    Science.gov (United States)

    Tatipaka, Hari Babu; Gillespie, J. Robert; Chatterjee, Arnab K.; Norcross, Neil R.; Hulverson, Matthew A.; Ranade, Ranae M.; Nagendar, Pendem; Creason, Sharon A.; McQueen, Joshua; Duster, Nicole A.; Nagle, Advait; Supek, Frantisek; Molteni, Valentina; Wenzler, Tanja; Brun, Reto; Glynne, Richard; Buckner, Frederick S.; Gelb, Michael H.

    2014-01-01

    A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl) oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl) imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable drug-like properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent anti-parasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis. PMID:24354316

  1. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; RUBIO, M. A. T.; Lukeš, Julius; Alfonzo, J. D.

    2009-01-01

    Roč. 15, č. 7 (2009), s. 1398-1406 ISSN 1355-8382 R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : T. brucei * tRNA import * 2-thiolation * RIC * Rieske * Fe-S cluster Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  2. Characterisation of the wildlife reservoir community for human and animal trypanosomiasis in the Luangwa Valley, Zambia.

    Directory of Open Access Journals (Sweden)

    Neil E Anderson

    2011-06-01

    Full Text Available Animal and human trypanosomiasis are constraints to both animal and human health in Sub-Saharan Africa, but there is little recent evidence as to how these parasites circulate in wild hosts in natural ecosystems. The Luangwa Valley in Zambia supports high densities of tsetse flies (Glossina species and is recognised as an historical sleeping sickness focus. The objective of this study was to characterise the nature of the reservoir community for trypanosomiasis in the absence of influence from domesticated hosts.A cross-sectional survey of trypanosome prevalence in wildlife hosts was conducted in the Luangwa Valley from 2005 to 2007. Samples were collected from 418 animals and were examined for the presence of Trypanosoma brucei s.l., T. b. rhodesiense, Trypanosoma congolense and Trypanosoma vivax using molecular diagnostic techniques. The overall prevalence of infection in all species was 13.9% (95% confidence interval [CI]: 10.71-17.57%. Infection was significantly more likely to be detected in waterbuck (Kobus ellipsiprymnus (Odds ratio [OR]=10.5, 95% CI: 2.36-46.71, lion (Panthera leo (OR=5.3, 95% CI: 1.40-19.69, greater kudu (Tragelaphus strepsiceros (OR=4.7, 95% CI: 1.41-15.41 and bushbuck (Tragelaphus scriptus (OR=4.5, 95% CI: 1.51-13.56. Bushbucks are important hosts for T. brucei s.l. while the Bovidae appear the most important for T. congolense. The epidemiology of T. vivax was less clear, but parasites were detected most frequently in waterbuck. Human infective T. b. rhodesiense were identified for the first time in African buffalo (Syncerus caffer and T. brucei s.l. in leopard (Panthera pardus. Variation in infection rates was demonstrated at species level rather than at family or sub-family level. A number of significant risk factors interact to influence infection rates in wildlife including taxonomy, habitat and blood meal preference.Trypanosoma parasites circulate within a wide and diverse host community in this bio

  3. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    Science.gov (United States)

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  4. Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Poliak, Pavel; Van Hoewyk, D.; Oborník, Miroslav; Zíková, Alena; Stuart, K. D.; Tachezy, J.; Pilon, M.; Lukeš, Julius

    2010-01-01

    Roč. 277, č. 2 (2010), s. 383-393 ISSN 1742-464X R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Fe–S cluster * mitochondrion * RNAi * selenoprotein * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.129, year: 2010

  5. Natural infection of the sand fly Phlebotomus kazeruni by Trypanosoma species in Pakistan

    Directory of Open Access Journals (Sweden)

    Iwata Hiroyuki

    2010-02-01

    Full Text Available Abstract The natural infection of phlebotomine sand flies by Leishmania parasites was surveyed in a desert area of Pakistan where cutaneous leishmaniasis is endemic. Out of 220 female sand flies dissected, one sand fly, Phlebotomus kazeruni, was positive for flagellates in the hindgut. Analyses of cytochrome b (cyt b, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH and small subunit ribosomal RNA (SSU rRNA gene sequences identified the parasite as a Trypanosoma species of probably a reptile or amphibian. This is the first report of phlebotomine sand flies naturally infected with a Trypanosoma species in Pakistan. The possible infection of sand flies with Trypanosoma species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniasis is endemic.

  6. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  7. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  8. Fluorine walk: The impact of fluorine in quinolone amides on their activity against African sleeping sickness.

    Science.gov (United States)

    Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike

    2018-05-25

    Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Effects of a novel β–lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis

    Directory of Open Access Journals (Sweden)

    Danielle Oliveira dos Anjos

    2016-12-01

    Full Text Available Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β–lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β–lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β–lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.

  10. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus).

    Science.gov (United States)

    Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo

    2017-07-06

    Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  11. Autophagy in Trypanosomatids

    Directory of Open Access Journals (Sweden)

    Paul A. M. Michels

    2012-07-01

    Full Text Available Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. Autophagy plays a major role during these transformations. Since inhibition of autophagy affects the transformation, survival and/or virulence of the parasites, the ATGs offer promise for development of drugs against tropical diseases. Furthermore, various trypanocidal drugs have been shown to trigger autophagy-like processes in the parasites. It is inferred that autophagy is used by the parasites in an—not always successful—attempt to cope with the stress caused by the toxic compounds.

  12. Trypanosoma (megatrypanum) melophagium in the sheep ked, Melophagus ovinus. A scanning electron microscope (SEM) study of the parasites and the insect gut wall surfaces.

    Science.gov (United States)

    Molyneux, D H; Selkirk, M; Lavin, D

    1978-12-01

    A description of the different stages of Trypanosoma (M.) melophagium in different regions of the gut of the sheep ked (Melophagus ovinus) as observed by the SEM is presented. The extensive pile carpet or palisade colonization of the midgut and pylorus is described. The method of attachment and the relationship of the parasites to the microvilli in the midgut and the cuticle of the pylorus and ileum observed by other methods are confirmed. The micro-structure of the surfaces themselves in the regions of the gut to which parasites attach are described. The use of the technique for the study of other similar systems is discussed.

  13. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    International Nuclear Information System (INIS)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida; Oliveira, Pedro Lagerblad de; Nepomuceno-Silva, José Luciano

    2015-01-01

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  14. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    Energy Technology Data Exchange (ETDEWEB)

    Reis Monteiro dos-Santos, Guilherme Rodrigo [Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro (Brazil); Fontenele, Marcio Ribeiro [Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, CCS, UFRJ, Rio de Janeiro (Brazil); Dias, Felipe de Almeida [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Oliveira, Pedro Lagerblad de [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM) (Brazil); Nepomuceno-Silva, José Luciano [Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM/UFRJ, Pólo Barreto, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé (Brazil); and others

    2015-11-06

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  15. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.

  16. Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle.

    Science.gov (United States)

    Cox, Andrew P; Tosas, Olga; Tilley, Aimee; Picozzi, Kim; Coleman, Paul; Hide, Geoff; Welburn, Susan C

    2010-09-06

    In East Africa, animal trypanosomiasis is caused by many tsetse transmitted protozoan parasites including Trypanosoma vivax, T. congolense and subspecies of T. brucei s.l. (T. b. brucei and zoonotic human infective T. b. rhodesiense) that may co-circulate in domestic and wild animals. Accurate species-specific prevalence measurements of these parasites in animal populations are complicated by mixed infections of trypanosomes within individual hosts, low parasite densities and difficulties in conducting field studies. Many Polymerase Chain Reaction (PCR) based diagnostic tools are available to characterise and quantify infection in animals. These are important for assessing the contribution of infections in animal reservoirs and the risk posed to humans from zoonotic trypanosome species. New matrices for DNA capture have simplified large scale field PCR analyses but few studies have examined the impact of these techniques on prevalence estimations. The Whatman FTA matrix has been evaluated using a random sample of 35 village zebu cattle from a population naturally exposed to trypanosome infection. Using a generic trypanosome-specific PCR, prevalence was systematically evaluated. Multiple PCR samples taken from single FTA cards demonstrated that a single punch from an FTA card is not sufficient to confirm the infectivity status of an individual animal as parasite DNA is unevenly distributed across the card. At low parasite densities in the host, this stochastic sampling effect results in underestimation of prevalence based on single punch PCR testing. Repeated testing increased the estimated prevalence of all Trypanosoma spp. from 9.7% to 86%. Using repeat testing, a very high prevalence of pathogenic trypanosomes was detected in these local village cattle: T. brucei (34.3%), T. congolense (42.9%) and T. vivax (22.9%). These results show that, despite the convenience of Whatman FTA cards and specific PCR based detection tools, the chronically low parasitaemias in

  17. Complementation of essential yeast GPI mannosyltransferase mutations suggests a novel specificity for certain Trypanosoma and Plasmodium PigB proteins.

    Directory of Open Access Journals (Sweden)

    Leslie K Cortes

    Full Text Available The glycosylphosphatidylinositol (GPI anchor is an essential glycolipid that tethers certain eukaryotic proteins to the cell surface. The core structure of the GPI anchor is remarkably well conserved across evolution and consists of NH2-CH2-CH2-PO4-6Manα1,2Manα1,6Manα1,4-GlcNα1,6-myo-inositol-PO4-lipid. The glycan portion of this structure may be modified with various side-branching sugars or other compounds that are heterogeneous and differ from organism to organism. One such modification is an α(1,2-linked fourth mannose (Man-IV that is side-branched to the third mannose (Man-III of the trimannosyl core. In fungi and mammals, addition of Man-III and Man-IV occurs by two distinct Family 22 α(1,2-mannosyltransferases, Gpi10/PigB and Smp3/PigZ, respectively. However, in the five protozoan parasite genomes we examined, no genes encoding Smp3/PigZ proteins were observed, despite reports of tetramannosyl-GPI structures (Man4-GPIs being produced by some parasites. In this study, we tested the hypothesis that the Gpi10/PigB proteins produced by protozoan parasites have the ability to add both Man-III and Man-IV to GPI precursors. We used yeast genetics to test the in vivo specificity of Gpi10/PigB proteins from several Plasmodium and Trypanosoma species by examining their ability to restore viability to Saccharomyces cerevisiae strains harboring lethal defects in Man-III (gpi10Δ or Man-IV (smp3Δ addition to GPI precursor lipids. We demonstrate that genes encoding PigB enzymes from T. cruzi, T. congolense and P. falciparum are each capable of separately complementing essential gpi10Δ and smp3Δ mutations, while PIGB genes from T. vivax and T. brucei only complement gpi10Δ. Additionally, we show the ability of T. cruzi PIGB to robustly complement a gpi10Δ/smp3Δ double mutant. Our data suggest that certain Plasmodium and Trypanosoma PigB mannosyltransferases can transfer more than one mannose to GPI precursors in vivo, and suggest a novel

  18. Benznidazole induces in vitro anaerobic metabolism in Trypanosoma cruzi epimastigotes

    Directory of Open Access Journals (Sweden)

    Marina Clare Vinaud

    2017-11-01

    Full Text Available Objective: To determine the biochemical alterations of the energetic metabolism of Trypanosoma cruzi epimastigotes in vitro exposed to different concentrations of benzinidazole. Methods: Biochemical analyses were performed at 3, 6 (log phase, 9 and 12 (stationary phase days of culture. Parasites were exposed to five concentrations of benzinidazole. Glycolysis, tricarboxilic acid cycle and fatty acids oxidation pathways were quantified through chromatography. Glucose, urea and creatinine were quantified through spectrophotometric analysis. Results: Anaerobic fermentation and fatty acids oxidation were increased in the stationary phase of the culture. Benzinidazole at high concentrations induced anaerobic metabolism in the log phase of the culture while the parasites exposed to the lower concentrations preferred the citric acid cycle as energy production pathway. Benzinidazole did not influence on the proteins catabolism. Conclusions: It is possible to conclude that there are metabolic differences between evolutive forms of Trypanosoma cruzi and the main drug used for its treatment induces the anaerobic metabolism in the parasite, possibly impairing the mitochondrial pathways.

  19. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  20. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics.

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-07-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. © 2014 by The

  1. Futile import of tRNAs and proteins into the mitochondrion of Trypanosoma brucei evansi

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; Hashimi, Hassan; Lun, Sijia; Alfonzo, J. D.; Lukeš, Julius

    2011-01-01

    Roč. 176, č. 2 (2011), 116-120 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * tRNA * Protein import * Mitochondrion * Kinetoplast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.551, year: 2011

  2. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine.

    Science.gov (United States)

    Basombrio, M A

    1990-07-01

    Guinea pigs are natural reservoirs of Chagas' disease. Domestic breeding and local trade of these animals are common practices among andean communities in South America. Infection by Trypanosoma cruzi occurs when the animals live in triatomine-infested houses or yards. The preventive effect of a vaccine consisting of cultured T. cruzi killed by freezing and thawing plus saponin was tested both in mice and in the guinea pig ecosystem. Resistance against T. cruzi challenge in mice was improved by increasing the trypomastigote/epimastigote ratio in live attenuated vaccines but not in killed parasite vaccines. Although the killing of attenuated parasites sharply reduced their immunogenicity for mice, a protective effect against natural T. cruzi infection was detected in guinea pigs. A total of 88 guinea pigs were vaccinated in four intradermal sites on three occasions. Eighty controls received similar inoculations of culture medium plus saponin. All animals were kept in a triatomine-infested yard. Parasitemia was studied with the capillary microhematocrit method. After an exposure time averaging 4 months, natural T. cruzi infection occurred in 55% (44/80) of the controls and in 33% (29/88) of the vaccinated group (P less than 0.01). The number of highly parasitemic guinea pigs was also significantly decreased (6/80 vs 0/88, P less than 0.01). Thus, immunizing protocols which are only partially protective against artificial callenge with T. cruzi may nevertheless constrain the exchange of parasites between natural hosts and vectors.

  3. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    Science.gov (United States)

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  4. Marker discovery in Trypanosoma vivax through GSS and comparative analysis. Preliminary data and perspectives

    International Nuclear Information System (INIS)

    Davila, A.M.R.; Guerreiro, L.T.A.; Souza, S.S.

    2005-01-01

    Trypanosoma vivax is a haemoparasite affecting the livestock industry in South America and Africa. Despite the high economic relevance of the disease caused by T. vivax, little work has been done on its molecular characterization, in contrast with human trypanosomes, such as T. brucei and T. cruzi. The present study reports the construction of a semi-normalized genomic library and the sequencing of 160 Genome Sequence Survey (GSS) ends of T. vivax. The analyses of this preliminary data show that this simple and rapid approach worked well to generate some potential new markers for this species. (author)

  5. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors.

    Directory of Open Access Journals (Sweden)

    Alyssa C Meyers

    2017-08-01

    Full Text Available Chagas disease, caused by the vector-borne protozoan Trypanosoma cruzi, is increasingly recognized in the southern U.S. Government-owned working dogs along the Texas-Mexico border could be at heightened risk due to prolonged exposure outdoors in habitats with high densities of vectors. We quantified working dog exposure to T. cruzi, characterized parasite strains, and analyzed associated triatomine vectors along the Texas-Mexico border.In 2015-2016, we sampled government working dogs in five management areas plus a training center in Texas and collected triatomine vectors from canine environments. Canine serum was tested for anti-T. cruzi antibodies with up to three serological tests including two immunochromatographic assays (Stat-Pak and Trypanosoma Detect and indirect fluorescent antibody (IFA test. The buffy coat fraction of blood and vector hindguts were tested for T. cruzi DNA and parasite discrete typing unit was determined. Overall seroprevalence was 7.4 and 18.9% (n = 528 in a conservative versus inclusive analysis, respectively, based on classifying weakly reactive samples as negative versus positive. Canines in two western management areas had 2.6-2.8 (95% CI: 1.0-6.8 p = 0.02-0.04 times greater odds of seropositivity compared to the training center. Parasite DNA was detected in three dogs (0.6%, including TcI and TcI/TcIV mix. Nine of 20 (45% T. gerstaeckeri and T. rubida were infected with TcI and TcIV; insects analyzed for bloodmeals (n = 11 fed primarily on canine (54.5%.Government working dogs have widespread exposure to T. cruzi across the Texas-Mexico border. Interpretation of sample serostatus was challenged by discordant results across testing platforms and very faint serological bands. In the absence of gold standard methodologies, epidemiological studies will benefit from presenting a range of results based on different tests/interpretation criteria to encompass uncertainty. Working dogs are highly trained in security

  6. In vitro trypanocidal effect of methanolic extract of some Nigerian ...

    African Journals Online (AJOL)

    Methanol extracts from twenty three plants harvested from the Savannah vegetation belt of Nigeria were analyzed in vitro for trypanocidal activity against Trypanosoma brucei brucei and Trypanosoma congolense at concentrations of 4 mg/ml, 0.4 mg/ml and 0.04 mg/ml. Extracts of Khaya senegalensis, Piliostigma ...

  7. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  8. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits

    Czech Academy of Sciences Publication Activity Database

    Gnipová, Anna; Panicucci, Brian; Paris, Zdeněk; Verner, Zdeněk; Horváth, A.; Lukeš, Julius; Zíková, Alena

    2012-01-01

    Roč. 184, č. 2 (2012), s. 90-98 ISSN 0166-6851 R&D Projects: GA AV ČR KJB500960901; GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * RNA interference * Mitochondrion * Respiratory complexes * Cytochrome c oxidase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112001065#

  9. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei

    NARCIS (Netherlands)

    Haanstra, Jurgen R.; Bakker, Barbara M.; Michels, Paul A. M.

    Trypanosomatids sequester large parts of glucose metabolism inside specialised peroxisomes, called glycosomes. Many studies have shown that correct glycosomal compartmentalization of glycolytic enzymes is essential for bloodstream-form Trypanosoma brucel. The recent finding of pore-forming

  10. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  11. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools.

    Directory of Open Access Journals (Sweden)

    Virginie Coustou

    Full Text Available BACKGROUND: Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii in vitro differentiation techniques lasted several months, (iii absence of long-term bloodstream forms (BSF in vitro culture prevented genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life

  12. YCF45 protein, usually associated with plastids, is targeted into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Týč, Jiří; Long, Shaojun; Jirků, Milan; Lukeš, Julius

    2010-01-01

    Roč. 173, č. 1 (2010), s. 43-47 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Plastid * Mitochondrion * Targeting * YCF45 * Horizontal gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.875, year: 2010

  13. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  14. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite

  15. Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids

    International Nuclear Information System (INIS)

    Mayor, S.; Menon, A.K.; Cross, G.A.

    1990-01-01

    A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors

  16. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa: Myxosporea) blood stages in fish

    Czech Academy of Sciences Publication Activity Database

    Hartigan, Ashlie; Estensoro, Itziar; Vancová, Marie; Bílý, Tomáš; Patra, Sneha; Eszterbauer, E.; Holzer, Astrid S.

    2016-01-01

    Roč. 6, DEC 16 (2016), č. článku 39093. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP505/12/G112 EU Projects: European Commission(XE) 634429 - ParaFishControl; European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Enteromyxum leei * Sparus aurata * Myxobolus cerebralis * immune response * actin cytoskeleton * Trypanosoma brucei * gilthead seabream * evolution * host Subject RIV: EG - Zoology Impact factor: 4.259, year: 2016

  17. Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle

    Directory of Open Access Journals (Sweden)

    Cox Andrew P

    2010-09-01

    Full Text Available Abstract Background In East Africa, animal trypanosomiasis is caused by many tsetse transmitted protozoan parasites including Trypanosoma vivax, T. congolense and subspecies of T. brucei s.l. (T. b. brucei and zoonotic human infective T. b. rhodesiense that may co-circulate in domestic and wild animals. Accurate species-specific prevalence measurements of these parasites in animal populations are complicated by mixed infections of trypanosomes within individual hosts, low parasite densities and difficulties in conducting field studies. Many Polymerase Chain Reaction (PCR based diagnostic tools are available to characterise and quantify infection in animals. These are important for assessing the contribution of infections in animal reservoirs and the risk posed to humans from zoonotic trypanosome species. New matrices for DNA capture have simplified large scale field PCR analyses but few studies have examined the impact of these techniques on prevalence estimations. Results The Whatman FTA matrix has been evaluated using a random sample of 35 village zebu cattle from a population naturally exposed to trypanosome infection. Using a generic trypanosome-specific PCR, prevalence was systematically evaluated. Multiple PCR samples taken from single FTA cards demonstrated that a single punch from an FTA card is not sufficient to confirm the infectivity status of an individual animal as parasite DNA is unevenly distributed across the card. At low parasite densities in the host, this stochastic sampling effect results in underestimation of prevalence based on single punch PCR testing. Repeated testing increased the estimated prevalence of all Trypanosoma spp. from 9.7% to 86%. Using repeat testing, a very high prevalence of pathogenic trypanosomes was detected in these local village cattle: T. brucei (34.3%, T. congolense (42.9% and T. vivax (22.9%. Conclusions These results show that, despite the convenience of Whatman FTA cards and specific PCR based

  18. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    Science.gov (United States)

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  19. Blood parasites of amphibians from Sichuan Province, People's Republic of China.

    Science.gov (United States)

    Werner, J K

    1993-06-01

    Two hundred forty-six amphibians from Sichuan Province, People's Republic of China, were examined for blood parasites between April and June 1990. Six trypanosome species were found, 2 of which were not identified because of poor material. Trypanosoma rotatorium (sensu Mayer, 1843) was found in Rana limnocharis and Rana nigromaculata. Trypanosoma chattoni and a T. rotatorium-like species were found in Bufo gargarizans. A sphaeromastigote similar to Trypanosoma tsunezomiyatai was seen in R. limnocharis. The relationship of this parasite to T. chattoni is unclear. Dactylosoma ranarum, Lankesterella minima, and Aegyptianella bacterifera were identified in ranids. Frog erythrocytic virus (FEV) was found in 2 ranids and a bufonid. Differences in shape of FEV and its assumed effect on the host-cell nucleus suggest that different kinds of viruses may be involved.

  20. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Čermáková, P.; Škodová, Ingrid; Kriegová, Eva; Horváth, A.; Lukeš, Julius

    2011-01-01

    Roč. 175, č. 2 (2011), s. 196-200 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667; GA ČR GD206/09/H026; GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Mitochondrion * Respiration * Complex I Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.551, year: 2011

  1. The import and function of diatom and plant frataxins in the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Vávrová, Zuzana; Lukeš, Julius

    2008-01-01

    Roč. 162, č. 1 (2008), s. 100-104 ISSN 0166-6851 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * diatom * evolutionary conservativeness * import Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.951, year: 2008

  2. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  3. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  4. Bloodstream form pre-adaptation to the tsetse fly inTrypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Eva eRico

    2013-11-01

    Full Text Available African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimise transmission and to prevent uncontrolled parasite multiplication overwhelming the host.In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signalling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.

  5. Sexual reproduction and the evolution of microbial pathogens.

    Science.gov (United States)

    Heitman, Joseph

    2006-09-05

    Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.

  6. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Guler, J. L.; Kriegová, Eva; Smith, T. K.; Lukeš, Julius; Englund, P. T.

    2008-01-01

    Roč. 67, č. 5 (2008), s. 1125-1142 ISSN 0950-382X R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Grant - others:NIH(US) AI21334; Wellcome Trust(GB) 067441 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * mitochondrion * fatty acid * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.213, year: 2008

  7. A novel component of the mitochondrial genome segregation machinery in trypanosomes

    Directory of Open Access Journals (Sweden)

    Anneliese Hoffmann

    2016-07-01

    Full Text Available We recently described a new component (TAC102 of the mitochondrial genome segregation machinery (mtGSM in the protozoan parasite Trypanosoma brucei. T. brucei belongs to a group of organisms that contain a single mitochondrial organelle with a single mitochondrial genome (mt-genome per cell. The mt-genome consists of 5000 minicircles (1 kb and 25 maxicircles (23 kb that are catenated into a large network. After replication of the network its segregation is driven by the separating basal bodies, which are homologous structures to the centrioles organizing the spindle apparatus in many eukaryotes. The structure connecting the basal body to the mt-genome was named the Tripartite Attachment Complex (TAC owing its name to the distribution across three areas in the cell including the two mitochondrial membranes.

  8. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    Science.gov (United States)

    Pennington, Pamela M; Messenger, Louisa Alexandra; Reina, Jeffrey; Juárez, José G; Lawrence, Gena G; Dotson, Ellen M; Llewellyn, Martin S; Cordón-Rosales, Celia

    2015-11-01

    Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments

  9. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses.

    Science.gov (United States)

    Carlier, Yves; Truyens, Carine

    2015-11-01

    The aim of this paper is to discuss the main ecological interactions between the parasite Trypanosoma cruzi and its hosts, the mother and the fetus, leading to the transmission and development of congenital Chagas disease. One or several infecting strains of T. cruzi (with specific features) interact with: (i) the immune system of a pregnant woman whom responses depend on genetic and environmental factors, (ii) the placenta harboring its own defenses, and, finally, (iii) the fetal immune system displaying responses also susceptible to be modulated by maternal and environmental factors, as well as his own genetic background which is different from her mother. The severity of congenital Chagas disease depends on the magnitude of such final responses. The paper is mainly based on human data, but integrates also complementary observations obtained in experimental infections. It also focuses on important gaps in our knowledge of this congenital infection, such as the role of parasite diversity vs host genetic factors, as well as that of the maternal and placental microbiomes and the microbiome acquisition by infant in the control of infection. Investigations on these topics are needed in order to improve the programs aiming to diagnose, manage and control congenital Chagas disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals

    Directory of Open Access Journals (Sweden)

    Basombrío Miguel Ángel

    2000-01-01

    Full Text Available Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL. The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

  11. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra

    Directory of Open Access Journals (Sweden)

    Louis Maes

    2012-12-01

    Full Text Available Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC50 2.2 µg/mL while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC50 < 10 µg/mL. Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC50 3.5 and 8.4 µg/mL. Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.

  12. Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates

    Directory of Open Access Journals (Sweden)

    Lincoln Lima Corrêa

    Full Text Available Abstract Among Kinetoplastida, the Trypanosoma is the genus with the highest occurrence infecting populations of marine fish and freshwater in the world, with high levels of prevalence, causing influences fish health and consequent economic losses, mainly for fish populations in situation stress. This study investigated infections of Hypostomus spp. by Trypanosoma spp. and leeches, as well as blood parameters of this host in the network of tributaries of the Tapajós River in the state of Pará, in the eastern Amazon region in Brazil. Of the 47 hosts examined, 89.4% were parasitized by Trypanosoma spp. and 55.4% also had leeches attached around the mouth. The intensity of Trypanosoma spp. increased with the size of the host, but the body conditions were not influenced by the parasitism. The number of red blood cells, and hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin concentration (MCHC, mean corpuscular hemoglobin (MCH, total number of leukocytes and thrombocytes showed variations and negative correlation with the intensity of Trypanosoma spp. in the blood of the hosts. The results suggest that the leeches were vectors of Trypanosoma spp. in Hypostomus spp.

  13. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.

    Science.gov (United States)

    Martin, Donald S; Wright, André-Denis G; Barta, John R; Desser, Sherwin S

    2002-06-01

    Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.

  14. Experiências sôbre a transmissão do Trypanosoma cruzi por sanguessugas e de tripanosomas de vertebrados de sangue frio por triatomíneos Experiments of the transmission of Trypanosoma cruzi by leechs and cold blooded vertebrate trypanosomas by triatominae

    Directory of Open Access Journals (Sweden)

    Samuel B. Pessôa

    1969-06-01

    Full Text Available Observou-se que o Trypanosoma cruzi não se multiplica na sanguessuga (Haementeria lutzi Pinto; os tripanosomas sugados degeneram após algum tempo; outros permanecem aparentemente normais, porém 48 horas após a ingestão infectante acabam morrendo. Observou-se ainda que os tripanosomas parasitas da rã (T. rotatorium e T. leptodactyli bem como o T. hogei, parasita da serpente Rachidelus brazili, não se multiplicam no intestino dos triatomíneos. O mais resistente (o T. leptodactyli, permanece vivo até 72 horas após a ingestão infectante, porém as outras duas espécies (T. rotatorium e T. hogei não resistem mais de 24 horas após serem sugadas pelos triatomíneos.Trypanosoma cruzi does not reproduce itself in the leech (Haementerm lutzi Pinto; the ingested trypanosomes degenerate after some time; other organisms remain apparently normal, however dying 48 hours after the feeding of the leechs. The parasite trypanosomas of the frog (T. rotatorium and T. leptodactyli as well as those parasiting the ophidian Rachidelus brazili (T. hogei do not multiply in the intestine of the triatominae. The most resistent species (T. leptocbactyli remains alive 72 hours after the feeding of the triatominae; the other two, however, do not survive more than 24 hours.

  15. SHORT COMMUNICATION

    African Journals Online (AJOL)

    2007-05-02

    May 2, 2007 ... caused by morphologically indistinguishable subspecies of Trypanosoma brucei. The two forms are West African sleeping sickness, caused by. T. brucei gambiense and East African sleeping sickness, caused by T. brucei rhodesiense. In Tanzania HAT is one of the major public health problems and was ...

  16. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.

    Science.gov (United States)

    Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2017-01-01

    Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.

  17. Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and ...

    African Journals Online (AJOL)

    Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and organ damage in Trypanosoma brucei brucei infected rats. IA Umar, E Daikwo, NG Maryoms, A Gidado, LB Buratai, FS Saka, MA Ibrahim ...

  18. Use of Zymography in Trypanosomiasis Studies.

    Science.gov (United States)

    Monte, Jéssyka Fernanda Santiago; Moreno, Cláudia Jassica Gonçalves; Monteiro, Joana Patrícia Molato Figueiredo Lopes; de Oliveira Rocha, Hugo Alexandre; Ribeiro, Aline Rimoldi; Silva, Marcelo Sousa

    2017-01-01

    Zymography assay is a semiquantitative technique, very sensitive, and commonly used to determine metalloproteinase levels in different types of biological samples, including tissues, cells, and extracts of protein. Samples containing metalloproteinases are loaded onto a polyacrylamide gel containing sodium dodecyl sulphate (SDS) and a specific substrate (gelatin, casein, collagen, etc.). Then proteins are allowed to migrate under an electric current and the distance of migration is inversely correlated with the molecular weight. After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary structure, necessary for enzymatic activity (metalloproteinase activity). In the context of infections caused by trypanosomatids (Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei), the characterization of metalloproteinase by zymography can contribute to the comprehension of the pathogenesis mechanisms and host-parasite interaction.

  19. Sensitivity and Specificity of a Prototype Rapid Diagnostic Test for the Detection of Trypanosoma brucei gambiense Infection: A Multi-centric Prospective Study.

    Science.gov (United States)

    Bisser, Sylvie; Lumbala, Crispin; Nguertoum, Etienne; Kande, Victor; Flevaud, Laurence; Vatunga, Gedeao; Boelaert, Marleen; Büscher, Philippe; Josenando, Theophile; Bessell, Paul R; Biéler, Sylvain; Ndung'u, Joseph M

    2016-04-01

    A major challenge in the control of human African trypanosomiasis (HAT) is lack of reliable diagnostic tests that are rapid and easy to use in remote areas where the disease occurs. In Trypanosoma brucei gambiense HAT, the Card Agglutination Test for Trypanosomiasis (CATT) has been the reference screening test since 1978, usually on whole blood, but also in a 1/8 dilution (CATT 1/8) to enhance specificity. However, the CATT is not available in a single format, requires a cold chain for storage, and uses equipment that requires electricity. A solution to these challenges has been provided by rapid diagnostic tests (RDT), which have recently become available. A prototype immunochromatographic test, the SD BIOLINE HAT, based on two native trypanosomal antigens (VSG LiTat 1.3 and VSG LiTat 1.5) has been developed. We carried out a non-inferiority study comparing this prototype to the CATT 1/8 in field settings. The prototype SD BIOLINE HAT, the CATT Whole Blood and CATT 1/8 were systematically applied on fresh blood samples obtained from 14,818 subjects, who were prospectively enrolled through active and passive screening in clinical studies in three endemic countries of central Africa: Angola, the Democratic Republic of the Congo and the Central African Republic. One hundred and forty nine HAT cases were confirmed by parasitology. The sensitivity and specificity of the prototype SD BIOLINE HAT was 89.26% (95% confidence interval (CI) = 83.27-93.28) and 94.58% (95% CI = 94.20-94.94) respectively. The sensitivity and specificity of the CATT on whole blood were 93.96% (95% CI = 88.92-96.79) and 95.91% (95% CI = 95.58-96.22), and of the CATT 1/8 were 89.26% (95% CI = 83.27-93.28) and 98.88% (95% CI = 98.70-99.04) respectively. After further optimization, the prototype SD BIOLINE HAT could become an alternative to current screening methods in primary healthcare settings in remote, resource-limited regions where HAT typically occurs.

  20. Melarsoprol sensitivity profile of Trypanosoma brucei gambiense isolates from cured and relapsed sleeping sickness patients from the Democratic Republic of the Congo.

    Directory of Open Access Journals (Sweden)

    Patient Pyana Pati

    2014-10-01

    Full Text Available Sleeping sickness caused by Trypanosoma brucei (T.b. gambiense constitutes a serious health problem in sub-Sahara Africa. In some foci, alarmingly high relapse rates were observed in patients treated with melarsoprol, which used to be the first line treatment for patients in the neurological disease stage. Particularly problematic was the situation in Mbuji-Mayi, East Kasai Province in the Democratic Republic of the Congo with a 57% relapse rate compared to a 5% relapse rate in Masi-Manimba, Bandundu Province. The present study aimed at investigating the mechanisms underlying the high relapse rate in Mbuji-Mayi using an extended collection of recently isolated T.b. gambiense strains from Mbuji-Mayi and from Masi-Manimba.Forty five T.b. gambiense strains were used. Forty one were isolated from patients that were cured or relapsed after melarsoprol treatment in Mbuji-Mayi. In vivo drug sensitivity tests provide evidence of reduced melarsoprol sensitivity in these strains. This reduced melarsoprol sensitivity was not attributable to mutations in TbAT1. However, in all these strains, irrespective of the patient treatment outcome, the two aquaglyceroporin (AQP 2 and 3 genes are replaced by chimeric AQP2/3 genes that may be associated with resistance to pentamidine and melarsoprol. The 4 T.b. gambiense strains isolated in Masi-Manimba contain both wild-type AQP2 and a different chimeric AQP2/3. These findings suggest that the reduced in vivo melarsoprol sensitivity of the Mbuji-Mayi strains and the high relapse rates in that sleeping sickness focus are caused by mutations in the AQP2/AQP3 locus and not by mutations in TbAT1.We conclude that mutations in the TbAQP2/3 locus of the local T.b. gambiense strains may explain the high melarsoprol relapse rates in the Mbuji-Mayi focus but other factors must also be involved in the treatment outcome of individual patients.

  1. Trypanosoma cruzi: avirulence of the PF strain to Callithrix marmosets

    Directory of Open Access Journals (Sweden)

    Humberto Menezes

    1981-06-01

    Full Text Available Callithrix jacchus geoffroy marmosets (HumBol. 1812 were injected once subcutaneously with 10.000 parasites/g body weight and followed for a period of six months. The PF strain of Trypanosoma cruzi was used. Follow-up was done through blood cultures, xenodiagnosis, serological tests, and ECG. A small number of normaI animais served as control.

  2. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Science.gov (United States)

    Mello, Debora B; Ramos, Isalira P; Mesquita, Fernanda C P; Brasil, Guilherme V; Rocha, Nazareth N; Takiya, Christina M; Lima, Ana Paula C A; Campos de Carvalho, Antonio C; Goldenberg, Regina S; Carvalho, Adriana B

    2015-01-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  3. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Directory of Open Access Journals (Sweden)

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  4. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834

    Directory of Open Access Journals (Sweden)

    Achariya Sailasuta

    2011-01-01

    Full Text Available One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834, were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140 were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia.

  5. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834)

    Science.gov (United States)

    Sailasuta, Achariya; Satetasit, Jetjun; Chutmongkonkul, Malinee

    2011-01-01

    One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834), were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140) were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs) surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia. PMID:21918731

  6. Semisolid liver infusion tryptose supplemented with human urine allows growth and isolation of Trypanosoma cruzi and Trypanosoma rangeli clonal lineages

    Directory of Open Access Journals (Sweden)

    Emanuella Francisco Fajardo

    2016-06-01

    Full Text Available Abstract: INTRODUCTION This work shows that 3% (v/v human urine (HU in semisolid Liver Infusion Tryptose (SSL medium favors the growth of Trypanosoma cruzi and T. rangeli. METHODS Parasites were plated as individual or mixed strains on SSL medium and on SSL medium with 3% human urine (SSL-HU. Isolate DNA was analyzed using polymerase chain reaction (PCR and pulsed-field gel electrophoresis (PFGE. RESULTS SSL-HU medium improved clone isolation. PCR revealed that T. cruzi strains predominate on mixed-strain plates. PFGE confirmed that isolated parasites share the same molecular karyotype as parental cell lines. CONCLUSIONS SSL-HU medium constitutes a novel tool for obtaining T. cruzi and T. rangeli clonal lineages.

  7. An outbreak of bovine trypanosomiasis in the Blue Nile State, Sudan

    Directory of Open Access Journals (Sweden)

    Nakamura Ichiro

    2011-05-01

    Full Text Available Abstract Background In this paper, we report an outbreak of bovine trypanosomiasis in Kurmuk District, Blue Nile State, Sudan that involved an infection with four Trypanosoma species in cattle. The outbreak occurred in June 2010 when indigenous cattle, mainly Kenana and Fulani breed types, crossed the national Sudanese border to Ethiopia and returned. A veterinarian was notified of massive deaths in the cattle populations that recently came from Ethiopia. All animals involved in the outbreak were from the nomadic Fulani group and resident local cattle were not infected and no death has been reported among them. A total of 210 blood samples were collected from the ear vein of cattle. A few samples were also collected from other domestic animals species. Parasitological examinations including hematocrit centrifugation techniques (HCT and Giemsa-stained thin blood films were carried out. ITS1-PCR, which provides a multi-species-specific diagnosis in a single PCR, was performed. Findings Parasitological examinations revealed that 43% (91/210 of the affected cattle population was infected with two morphologically distinct trypanosomes. Seventy animals (33.3% were infected with T. vivax and twenty one (10% with T. congolense. In contrast, ITS1-PCR was able to identify four Trypanosoma species namely T. vivax, T. congolense, T. simiae and T. brucei in 56.7% (80/141. T. brucei showed the highest prevalence of 36.9% (52/141 and the lowest 19% (27/141 was displayed by T. congolense. Furthermore, and because ITS1-PCR could not differentiate between T. brucei subspecies, serum resistance-associated (SRA gene based PCR was used to detect the human T. brucei rhodesiense in T. brucei positive samples. None of the samples was shown positive for T. b. rhodesiense. The identity of the 400 bp PCR product originating from T. simiae, was further confirmed by sequencing and subsequent phylogenetic analysis. Conclusions The outbreak of bovine trypanosomiasis occurred

  8. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    Science.gov (United States)

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Evolution of Trypanosomes Infecting Humans and Primates

    Directory of Open Access Journals (Sweden)

    Stevens Jamie

    1998-01-01

    Full Text Available Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.

  10. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region

    Directory of Open Access Journals (Sweden)

    Al-Musayeib Nawal M

    2012-04-01

    Full Text Available Abstract Background Worldwide particularly in developing countries, a large proportion of the population is at risk for tropical parasitic diseases. Several medicinal plants are still used traditionally against protozoal infections in Yemen and Saudi Arabia. Thus the present study investigated the in vitro antiprotozoal activity of twenty-five plants collected from the Arabian Peninsula. Methods Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC50 T. brucei and selectivity index of >4. Results Antiplasmodial activity was found in the extracts of Chrozophora oblongifolia, Ficus ingens, Lavandula dentata and Plectranthus barbatus. Amastigotes of T. cruzi were affected by Grewia erythraea, L. dentata, Tagetes minuta and Vernonia leopoldii. Activity against T. brucei was obtained in G. erythraea, L. dentata, P. barbatus and T. minuta. No relevant activity was found against L. infantum. High levels of cytotoxicity (MRC-5 IC50 Cupressus sempervirens, Kanahia laniflora and Kniphofia sumarae. Conclusion The results endorse that medicinal plants can be promising sources of natural products with antiprotozoal activity potential. The results support to some extent the traditional uses of some plants for the treatment of parasitic protozoal diseases.

  11. 25 original article hematological derangement patterns in nigerian

    African Journals Online (AJOL)

    boaz

    backdrop of emerging new trypanosome strains, is not well known. ..... (1, 26) had been associated with events leading to anemia in .... Trypanosoma brucei brucei infected mice. International .... Procedures, Mosby , New York, 1995 pp 23-. 68.

  12. Prevalence and Significance of Parasites of Horses in Some States of Northern Nigeria

    Science.gov (United States)

    EHIZIBOLO, David O.; KAMANI, Joshua; EHIZIBOLO, Peter O.; EGWU, Kinsley O.; DOGO, Goni I.; SALAMI-SHINABA, Josiah O.

    2012-01-01

    This study was conducted to determine the prevalence and significance of parasites of horses in northern Nigeria. Blood and faecal samples were randomly collected from 243 horses from different stables in some states of northern Nigeria for laboratory analyses. Fifty-seven horses (23.5%) were found infected with parasites. The hemoparasites detected, 21 (8.6%), include Theileria equi, Babesia caballi, Trypanosoma vivax and Trypanosoma evansi. The endoparasites encountered, 29 (11.9%) were Strongylus spp., Strongyloides spp., Oxyuris equi, Parascaris equorum, Paragonimus spp. and Dicrocoelium spp., 3 (1.2%) was Eimeria spp. Four horses (1.6%) had mixed infection of hemo- and endoparasites. This preliminary finding shows that parasitism is a problem in the horse stables examined, and calls for proper stable hygiene, routine tick control and regular deworming programme. PMID:24833991

  13. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax.

    Science.gov (United States)

    Camargo, Rocío; Izquier, Adriana; Uzcanga, Graciela L; Perrone, Trina; Acosta-Serrano, Alvaro; Carrasquel, Liomary; Arias, Laura P; Escalona, José L; Cardozo, Vanessa; Bubis, José

    2015-01-15

    Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48-67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence, the

  14. PCR detection and genetic diversity of bovine hemoprotozoan parasites in Vietnam.

    Science.gov (United States)

    Sivakumar, Thillaiampalam; Lan, Dinh Thi Bich; Long, Phung Thang; Yoshinari, Takeshi; Tattiyapong, Muncharee; Guswanto, Azirwan; Okubo, Kazuhiro; Igarashi, Ikuo; Inoue, Noboru; Xuan, Xuenan; Yokoyama, Naoaki

    2013-11-01

    Hemoprotozoan infections often cause serious production losses in livestock. In the present study, we conducted a PCR-based survey of Babesia bovis, Babesia bigemina, Theileria annulata, Theileria orientalis, Trypanosoma evansi and Trypanosoma theileri, using 423 DNA samples extracted from blood samples of cattle (n=202), water buffaloes (n=43), sheep (n=51) and goats (n=127) bred in the Hue and Hanoi provinces of Vietnam. With the exception of T. annulata and T. evansi, all other parasite species (B. bovis, B. bigemina, T. orientalis and T. theileri) were detected in the cattle populations with B. bovis being the most common among them. Additionally, four water buffaloes and a single goat were infected with B. bovis and B. bigemina, respectively. The Hue province had more hemoprotozoan-positive animals than those from the Hanoi region. In the phylogenetic analyses, B. bovis-MSA-2b, B. bigemina-AMA-1 and T. theileri-CATL gene sequences were dispersed across four, one and three different clades in the respective phylograms. This is the first study in which the presence of Babesia, Theileria and Trypanosoma parasites was simultaneously investigated by PCR in Vietnam. The findings suggest that hemoprotozoan parasites, some of which are genetically diverse, continue to be a threat to the livestock industry in this country.

  15. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal.

    Science.gov (United States)

    Messenger, Louisa A; Garcia, Lineth; Vanhove, Mathieu; Huaranca, Carlos; Bustamante, Marinely; Torrico, Marycruz; Torrico, Faustino; Miles, Michael A; Llewellyn, Martin S

    2015-05-01

    An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in

  16. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy...

  17. The Double-Edged Sword in Pathogenic Trypanosomatids: The Pivotal Role of Mitochondria in Oxidative Stress and Bioenergetics

    Directory of Open Access Journals (Sweden)

    Rubem Figueiredo Sadok Menna-Barreto

    2014-01-01

    Full Text Available The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA. Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids’ life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.

  18. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  19. Blood parasites of penguins: a critical review.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Braga, Érika Martins; Catão-Dias, José Luiz

    2016-07-01

    Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.

  20. Epidemiology of human African trypanosomiasis

    Directory of Open Access Journals (Sweden)

    Franco JR

    2014-08-01

    Full Text Available Jose R Franco,1 Pere P Simarro,1 Abdoulaye Diarra,2 Jean G Jannin1 1World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland; 2World Health Organization, Inter Country Support Team for Central Africa, Regional Office for Africa, Libreville, Gabon Abstract: Human African trypanosomiasis (HAT, or sleeping sickness, is caused by Trypanosoma brucei gambiense, which is a chronic form of the disease present in western and central Africa, and by Trypanosoma brucei rhodesiense, which is an acute disease located in eastern and southern Africa. The rhodesiense form is a zoonosis, with the occasional infection of humans, but in the gambiense form, the human being is regarded as the main reservoir that plays a key role in the transmission cycle of the disease. The gambiense form currently assumes that 98% of the cases are declared; the Democratic Republic of the Congo is the most affected country, with more than 75% of the gambiense cases declared. The epidemiology of the disease is mediated by the interaction of the parasite (trypanosome with the vectors (tsetse flies, as well as with the human and animal hosts within a particular environment. Related to these interactions, the disease is confined in spatially limited areas called “foci”, which are located in Sub-Saharan Africa, mainly in remote rural areas. The risk of contracting HAT is, therefore, determined by the possibility of contact of a human being with an infected tsetse fly. Epidemics of HAT were described at the beginning of the 20th century; intensive activities have been set up to confront the disease, and it was under control in the 1960s, with fewer than 5,000 cases reported in the whole continent. The disease resurged at the end of the 1990s, but renewed efforts from endemic countries, cooperation agencies, and nongovernmental organizations led by the World Health Organization succeeded to raise awareness and

  1. Insight into the exoproteome of the tissue-derived trypomastigote form of trypanosoma cruzi

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Ricart, Carlos A O; Machado, Mara O

    2016-01-01

    The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions...

  2. Protozoan parasites of four species of wild anurans from a local zoo in Malaysia.

    Science.gov (United States)

    Mohammad, K N; Badrul, M M; Mohamad, N; Zainal-Abidin, A H

    2013-12-01

    The parasitic protozoan fauna in sixty-six anurans comprising of Duttaphrynus melanostictus, Phrynoidis juxtaspera, Hylarana erythraea and Polypedates leucomystax collected from Zoo Negara Malaysia was investigated. The distribution and prevalence rate of parasitic species in the digestive tract and blood were examined. Seven species of intestinal protozoa (Opalina ranarum, Cepedea dimidiata, Nycthetorus cordiformis, Entamoeba ranarum, Iodamoeba butschlii, Endamoeba blattae, and Tritrichomonas sp.) and two species of blood protozoa (Lankesterella sp. and Trypanosoma sp.) were recorded. Opalina ranarum was the most common protozoan found in the rectum and intestine (prevalence rate: 34.8%) infecting all host species, with P. juxtaspera heavily infected with the parasite, whereas Tritrichomonas sp. was the least prevalent intestinal species infecting only D. melanostictus. Both Lankesterella sp. and Trypanosoma sp. were found in the blood of H. erythraea.

  3. Post eclosion age predicts the prevalence of midgut trypanosome infections in Glossina.

    Directory of Open Access Journals (Sweden)

    Deirdre P Walshe

    Full Text Available The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium of the fly when it takes the first (infective bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon brucei brucei and Trypanosoma (Nannomonas congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e. are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed.

  4. The TriTryp Phosphatome: analysis of the protein phosphatase catalytic domains

    Directory of Open Access Journals (Sweden)

    Huxley-Jones Julie

    2007-11-01

    Full Text Available Abstract Background The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome of the three parasites. Results An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. Conclusion The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent

  5. The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Benkovičová, V.; Čermáková, P.; Lai, De Hua; Horváth, A.; Lukeš, Julius

    2010-01-01

    Roč. 40, č. 1 (2010), s. 45-54 ISSN 0020-7519 R&D Projects: GA ČR GA204/06/1558; GA AV ČR IAA500960705 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * ATP synthase * mitochondrion * Trypanosoma * respiratory complex * membrane potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.822, year: 2010

  6. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei

    NARCIS (Netherlands)

    ten Asbroek, A. L.; Ouellette, M.; Borst, P.

    1990-01-01

    Kinetoplastids are unicellular eukaryotes that include important parasites of man, such as trypanosomes and leishmanias. The study of these organisms received a recent boost from the development of transient transformation allowing the short-term expression of genes reintroduced into parasites like

  7. Browse Title Index

    African Journals Online (AJOL)

    Items 1 - 50 of 272 ... Vol 12, No 2 (2014), Cryptosporidium infection in cattle in Ogun state, ... Vol 7, No 1 (2008), An overview of mastitis in Sokoto red goat, Nigeria ... trypanosoma brucei brucei infection, treatment and re-infection, Abstract PDF.

  8. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites*

    Science.gov (United States)

    Hall, Belinda S.; Bot, Christopher; Wilkinson, Shane R.

    2011-01-01

    The prodrug nifurtimox has been used for more than 40 years to treat Chagas disease and forms part of a recently approved combinational therapy that targets West African trypanosomiasis. Despite this, its mode of action is poorly understood. Detection of reactive oxygen and nitrogen intermediates in nifurtimox-treated extracts led to the proposal that this drug induces oxidative stress in the target cell. Here, we outline an alternative mechanism involving reductive activation by a eukaryotic type I nitroreductase. Several enzymes proposed to metabolize nifurtimox, including prostaglandin F2α synthase and cytochrome P450 reductase, were overexpressed in bloodstream-form Trypanosoma brucei. Only cells with elevated levels of the nitroreductase displayed altered susceptibility to this nitrofuran, implying a key role in drug action. Reduction of nifurtimox by this enzyme was shown to be insensitive to oxygen and yields a product characterized by LC/MS as an unsaturated open-chain nitrile. This metabolite was shown to inhibit both parasite and mammalian cell growth at equivalent concentrations, in marked contrast to the parental prodrug. These experiments indicate that the basis for the selectivity of nifurtimox against T. brucei lies in the expression of a parasite-encoded type I nitroreductase. PMID:21345801

  9. The effect of the diterpene 5-epi-icetexone on the cell cycle of Trypanosoma cruzi.

    NARCIS (Netherlands)

    Lozano, E.; Barrera, P.; Tonn, C.; Nieto, M.; Sartor, T.; Sosa, M.A.

    2012-01-01

    Numerous natural compounds have been used against Trypanosoma cruzi, the causative agent of Chagas' disease. Here, we studied the effect of the diterpene 5-epi-icetexone on growth and morphology of parasites synchronized with hydroxyurea, at different periods of time after removal of the nucleotide.

  10. Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Škodová, Ingrid; Poláková, S.; Ďurišová-Benkovičková, V.; Horváth, A.; Lukeš, Julius

    2013-01-01

    Roč. 140, č. 3 (2013), s. 328-337 ISSN 0031-1820 R&D Projects: GA MŠk LC07032; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : Trypanosoma * mitochondrion * dehydrogenase * respiration * NDH2 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.350, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8838254

  11. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Directory of Open Access Journals (Sweden)

    Mário A. C. Silva-Neto

    2012-01-01

    Full Text Available Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.

  12. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Science.gov (United States)

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  13. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control.

    Directory of Open Access Journals (Sweden)

    Santiago Chávez

    Full Text Available Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01, coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of

  14. Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae) isolated from Didelphis aurita (Mammalia: Didelphidae) in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade.

    Science.gov (United States)

    Lopes, Camila Madeira Tavares; Menna-Barreto, Rubem Figueiredo Sadok; Pavan, Márcio Galvão; Pereira, Mirian Cláudia De Souza; Roque, André Luiz R

    2018-01-01

    Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp. We characterise a new species (Trypanosoma janseni n. sp.) isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil. The parasites were isolated and a growth curve was performed in NNN and Schneider's media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp) of the small subunit (18S) ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred. In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent. This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently know about the T. cruzi clade.

  15. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Science.gov (United States)

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  16. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2017-08-01

    Full Text Available Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease.The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi, but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness.The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African

  17. A proline racemase based PCR for identification of Trypanosoma vivax in cattle blood.

    Directory of Open Access Journals (Sweden)

    Regassa Fikru

    Full Text Available A study was conducted to develop a Trypanosoma vivax (T. vivax specific PCR based on the T. vivax proline racemase (TvPRAC gene. Forward and reverse primers were designed that bind at 764-783 bp and 983-1002 bp of the gene. To assess its specificity, TvPRAC PCR was conducted on DNA extracted from different haemotropic pathogens: T. vivax from Nigeria, Ethiopia and Venezuela, T. congolense Savannah type, T. brucei brucei, T. evansi, T. equiperdum, T. theileri, Theileria parva, Anaplasma marginale, Babesia bovis and Babesia bigemina and from bovine, goat, mouse, camel and human blood. The analytical sensitivity of the TvPRAC PCR was compared with that of the ITS-1 PCR and the 18S PCR-RFLP on a dilution series of T. vivax DNA in water. The diagnostic performance of the three PCRs was compared on 411 Ethiopian bovine blood specimens collected in a former study. TvPRAC PCR proved to be fully specific for T. vivax, irrespective of its geographical origin. Its analytical sensitivity was lower than that of ITS-1 PCR. On these bovine specimens, TvPRAC PCR detected 8.3% T. vivax infections while ITS-1 PCR and 18S PCR-RFLP detected respectively 22.6 and 6.1% T. vivax infections. The study demonstrates that a proline racemase based PCR could be used, preferably in combination with ITS-1 PCR, as a species-specific diagnostic test for T. vivax infections worldwide.

  18. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    Directory of Open Access Journals (Sweden)

    Ricardo E. Fretes

    2012-01-01

    Full Text Available Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms.

  19. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Jirků, Milan; Ayala, F. J.; Lukeš, Julius

    2008-01-01

    Roč. 105, č. 36 (2008), s. 13468-13473 ISSN 0027-8424 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * Kinetoplastida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.380, year: 2008

  20. Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring.

    Directory of Open Access Journals (Sweden)

    Louise C Hughes

    Full Text Available Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR, but the three-dimensional (3D arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57 nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.

  1. Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals.

    Science.gov (United States)

    Ebiloma, Godwin Unekwuojo; Igoli, John Ogbaji; Katsoulis, Evangelos; Donachie, Anne-Marie; Eze, Anthonius; Gray, Alexander Ian; de Koning, Harry P

    2017-04-18

    Leaves from the plant species studied herein are traditionally used in northern Nigeria against various protozoan infections. However, none of these herbal preparations have been standardized, nor have their toxicity to mammalian cells been investigated. In search of improved and non-toxic active antiprotozoal principles that are not cross-resistant with current anti-parasitics, we here report the results of the in vitro screening of extracts from seven selected medicinal plant species (Centrosema pubescens, Moringa oleifera, Tridax procumbens, Polyalthia longifolia, Newbouldia laevis, Eucalyptus maculate, Jathropha tanjorensis), used traditionally to treat kinetoplastid infections in Nigeria, and the isolation of their bioactive principles. To investigate the efficacies of medicinal plant extracts, and of compounds isolated therefrom, against kinetoplastid parasites, assess cross-resistance to existing chemotherapy, and assay their toxicity against mammalian cells in vitro. Plants were extracted with hexane, ethyl acetate and methanol. Active principles were isolated by bioassay-led fractionation, testing for trypanocidal activity, and identified using NMR and mass spectrometry. EC 50 values for their activity against wild-type and multi-drug resistant Trypanosoma brucei were obtained using the viability indicator dye resazurin. Seven medicinal plants were evaluated for activity against selected kinetoplastid parasites. The result shows that crude extracts and isolated active compounds from Polyalthia longifolia and Eucalyptus maculata, in particular, display promising activity against drug-sensitive and multi-drug resistant Trypanosoma brucei. The EC 50 value of a clerodane (16α-hydroxy-cleroda-3,13(14)-Z-dien-15,16-olide) isolated from Polyalthia longifolia was as low as 0.38µg/mL, while a triterpenoid (3β,13β-dihydroxy-urs-11-en-28-oic acid) isolated from Eucalyptus maculata displayed an EC 50 of 1.58µg/mL. None of the isolated compounds displayed toxicity

  2. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  3. 836 IJBCS-Article-Anthony Dawet

    African Journals Online (AJOL)

    KODJIO NORBERT

    et al. (2001) reported that Cassia occidentalis,. Morinda morindoides and Phyllanthus niruri significantly reduced parasitaemia in. Plasmodium berghei infected mice. A study conducted by Bala et al. (2006) showed that Aloe vera and Coriandrum sativum were not generally effective in eliminating Trypanosoma brucei brucei.

  4. Effects on haematological parameters and pathology of internal ...

    African Journals Online (AJOL)

    Effects on haematological parameters and pathology of internal organs of Trypanosoma brucei brucei infected albino rats. ... Group A served as the control (uninfected). ... The gross pathological effects on the internal organs showed significant enlargement of the spleen (splenomegaly) and slight enlargement of the liver ...

  5. Contribución al conocimiento de los reservorios del Trypanosoma cruzi (Chagas,1909 en la Provincia de Corrientes, Argentina Contribution to knowledge of reservoirs of Trypanosoma cruzi (Chagas, 1909 in Corrientes Province, Argentina

    Directory of Open Access Journals (Sweden)

    María Esther Bar

    1999-06-01

    Full Text Available Con el propósito de identificar a reservorios del Trypanosoma cruzi se investigaron 60 mamíferos en los Departamentos Capital y San Luis del Palmar. Se examinaron: primates, roedores, marsupiales, carnívoros y edentados; 40 vivían en cautiverio y 20 fueron capturados mediante trampas en una comunidad rural forestal. Los mamíferos fueron analizados por xenodiagnóstico, empleándose ninfas de 3o o 4o estadío de Triatoma infestans ayunadas durante 2 semanas. Las heces de los triatominos fueron observadas al microscopio (400x a los 30, 60 y 90 días post-alimentación. En 2 Saimiri sciureus y en 1 Cebus apella se constató infección por tripanosomas cruziformes. Se concluye que la parasitemia detectada fue baja. La presencia de Didelphis albiventris, reservorio potencial del Trypanosoma cruzi , en una zona de transmisión activa del parásito representa un factor de riesgo, por lo que son necesarias futuras investigaciones epidemiológicas para determinar la real diagnosis de esta parasitosis en la provincia de Corrientes, Argentina.In order to identify Trypanosoma cruzi reservoirs in transmission areas, 60 mammals in Capital and San Luis del Palmar Departments, Corrientes, Argentina were studied. Primates, rodents, carnivores, marsupials and edentates were investigated, 40 of them living in captivity and 20 caught with traps in a rural area. The mammals were examined by xenodiagnosis and third or fourth instars nymphs of Triatoma infestans starved for 2 weeks were used. The feces were microscopically observed (400x for Trypanosoma cruzi infection at 30, 60 and 90 days after feeding. Trypanosoma cruzi-like parasites were identified in 2 Saimiri sciureus and 1 Cebus apella analyzed by xenodiagnosis. It was concluded that parasitemia was low. Howewer, the presence in a forest area of Didelphis albiventris, potential reservoir of the parasite, indicates a risk factor and deserves further epidemiological study for a true diagnosis of this

  6. Trypanocidal activity of the aqueous leave extract of Holarrhena ...

    African Journals Online (AJOL)

    This study evaluated the trypanocidal activity of aqueous extracts of leaves of young Holarrhena africana. The trypanocidal activity was evaluated by treatment of mice infected with Trypanosoma brucei brucei at the peak of infection. The aqueous extract was administered intraperitoneally for 5 consecutive days with varied ...

  7. Anti-Trypanosomal Potential Of Momordica Balsamina Linn Fruit ...

    African Journals Online (AJOL)

    The search for new trypanocides has not been keenly pursued due to high cost of design and development with no promise of financial returns. Momordica balsamina fruit pulp extract was screened for antitrypanosomal activity in experimental Trypanosoma brucei brucei infection in rabbits. The extract was administered ...

  8. Anti-trypanosomal effect of Malva sylvestris (Malvaceae) extract on a ...

    African Journals Online (AJOL)

    Methods: Sleeping sickness was induced by the intraperitoneal injection of ... count in the blood and CSF of mice with Trypanosoma brucei brucei-induced sleeping sickness compared ... The whole plant of Malva sylvestris was collected ... The animals were anesthetized by ... significantly (p < 0.01) improved the weight of.

  9. Epidemiology of bovine hemoprotozoa parasites in cattle and water buffalo in Vietnam

    OpenAIRE

    WEERASOORIYA, Gayani; SIVAKUMAR, Thillaiampalam; LAN, Dinh Thi Bich; LONG, Phung Thang; TAKEMAE, Hitoshi; IGARASHI, Ikuo; INOUE, Noboru; YOKOYAMA, Naoaki

    2016-01-01

    A PCR-based survey of hemoprotozoa parasites detected Babesia bigemina, Theileria orientalis and Trypanosoma theileri among cattle and water buffalo in Vietnam, and a new Babesia sp. closely related to Babesia ovata was detected in cattle only. In addition, Theileria annulata and Trypanosoma evansi were not detected in both cattle and water buffalo. Phylogenetic analysis detected T. orientalis MPSP genotypes 3, 5, 7 and N3 in cattle and 5, 7, N1 and N2 in water buffalo. Additionally, water bu...

  10. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  11. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    Science.gov (United States)

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A case of Trypanosoma congolense savannah type infection and its management in a dog

    Directory of Open Access Journals (Sweden)

    Peter Kimeli

    2014-12-01

    Full Text Available A case of Trypanosoma congolense savannah type infection in a 4-year old German shepherd dog weighing 26-kg was presented to the Small Animal Clinic, University of Nairobi, Kenya, with the history of anorexia and difficulty in breathing. The clinical manifestations were fever, pale mucous membrane, dyspnea and wasting. Blood examination revealed the existence of trypanosome parasites, and showed mild anemia. Internal Transcribed Spacer (ITS based polymerase chain reaction confirmed the presence of Trypanosoma congolense savannah type. Along with supporting therapy, the case was successfully managed using diminazene aceturate injection (dosed at 3.5 mg/kg body weight through intramuscular route. Complete recovery of the case was observed on day 6 of post-treatment.

  13. Methods to determine the transcriptomes of trypanosomes in mixtures with mammalian cells: the effects of parasite purification and selective cDNA amplification.

    Directory of Open Access Journals (Sweden)

    Julius Mulindwa

    2014-04-01

    Full Text Available Patterns of gene expression in cultured Trypanosoma brucei bloodstream and procyclic forms have been extensively characterized, and some comparisons have been made with trypanosomes grown to high parasitaemias in laboratory rodents. We do not know, however, to what extent these transcriptomes resemble those in infected Tsetse flies - or in humans or cattle, where parasitaemias are substantially lower. For clinical and field samples it is difficult to characterize parasite gene expression because of the large excess of host cell RNA. We have here examined two potential solutions to this problem for bloodstream form trypanosomes, assaying transcriptomes by high throughput cDNA sequencing (RNASeq. We first purified the parasites from blood of infected rats. We found that a red blood cell lysis procedure affected the transcriptome substantially more than purification using a DEAE cellulose column, but that too introduced significant distortions and variability. As an alternative, we specifically amplified parasite sequences from a mixture containing a 1000-fold excess of human RNA. We first purified polyadenylated RNA, then made trypanosome-specific cDNA by priming with a spliced leader primer. Finally, the cDNA was amplified using nested primers. The amplification procedure was able to produce samples in which 20% of sequence reads mapped to the trypanosome genome. Synthesis of the second cDNA strand with a spliced leader primer, followed by amplification, is sufficiently reproducible to allow comparison of different samples so long as they are all treated in the same way. However, SL priming distorted the abundances of the cDNA products and definitely cannot be used, by itself, to measure absolute mRNA levels. The amplification method might be suitable for clinical samples with low parasitaemias, and could also be adapted for other Kinetoplastids and to samples from infected vectors.

  14. Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1 neg plasma cells which mainly provide non-parasite-specific antibodies.

    Science.gov (United States)

    Merino, Maria C; Montes, Carolina L; Acosta-Rodriguez, Eva V; Bermejo, Daniela A; Amezcua-Vesely, Maria C; Gruppi, Adriana

    2010-05-01

    Humoral immunity during experimental Chagas disease has been considered a double-edge sword, critical to control Trypanosoma cruzi spreading but also associated to tissue damage. Peritoneal B-1 cells have been linked to the pathogenesis of Chagas disease; however, they may also help to control the infection by providing a fast wave of antibodies. In the present work, we determined that peritoneal B-cell response to T. cruzi is characterized by a marked reduction of CD19(+) B cells due to plasma cell differentiation rather than to cell death. Both peritoneal B-2 and B-1 cells decrease after parasite infection, but with different kinetics. Thus, the reduction in B-2 cell number can be detected from day 4 postinfection while the number of B-1 cells decreases only after 15 days of infection. Differentiation of peritoneal B-1 and B-2 cells into IgM-secreting cells was triggered by parasites but not by cytokines produced by peritoneal cells. Electron microscopy studies showed that peritoneum of infected mice lodges plasma cells with typical morphology as well as atypical plasma cells named 'Mott-like cells' containing high number of cytoplasmatic Ig(+) granules. The plasma cells induced during the infection showed a phenotype that may allow their persistence in peritoneum and they may contribute to the high levels of antibodies exhibited at the chronic phase of infection. We also showed that the peritoneal B-cell response is scarcely specific for the invading pathogen and rather constitute an important source of non-parasite-specific IgM and IgG in the infected host.

  15. Bio-Research - Vol 3, No 1 (2005)

    African Journals Online (AJOL)

    Preliminary studies on the efficacy of aloe vera (Aloe barbadensis) extracts on experimental Trypanosoma brucei brucei infection of mice · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. N Ivoke, 21-25. http://dx.doi.org/10.4314/br.v3i1.28565 ...

  16. Targeting cattle-borne zoonoses and cattle pathogens using a novel trypanosomatid-based delivery system.

    Directory of Open Access Journals (Sweden)

    G Adam Mott

    2011-10-01

    Full Text Available Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis.

  17. Trypanosoma (Megatrypanum saloboense n. sp. (Kinetoplastida: Trypanosomatidae parasite of Monodelphis emiliae (Marsupiala: Didelphidae from Amazonian Brazil

    Directory of Open Access Journals (Sweden)

    Lainson R.

    2008-06-01

    Full Text Available Trypanosoma (Megatrypanum saloboense n. sp., is described in the Brazilian opossum Monodelphis emiliae (Thomas, 1912 from primary forest in the Salobo area of the Serra dos Carajás (6° S, 50° 18′ W Pará State, North Brazil. Two morphologically different trypomastigotes were noted. Slender forms, regarded as immature parasites, have a poorly developed undulating membrane adhering closely to the body: large, broad forms with a well developed membrane are considered to be the mature trypomastigotes and have a mean total length of 71.2 μm (62.4-76.2 and a width of 6.1 (5.0-8.0. Infections studied in two opossums were of very low parasitaemia. The large size of T. (M. saloboense readily distinguishes it from the two previously described members of the subgenus Megatrypanum of neotropical marsupials, T. (M. freitasi Régo et al., 1957 of Didelphis azarae and D. marsupialis, and T. (M. samueli Mello, 1977 of Monodelphis domesticus, which measure only 49.0-51.5 μm and 42.4 μm respectively. No infections were obtained in hamsters inoculated with triturated liver and spleen from one infected M. emiliae, or in laboratory mice inoculated with epimastigotes from a blood-agar culture. No division stages could be detected in the internal organs or the peripheral blood.

  18. Social motility in african trypanosomes.

    Directory of Open Access Journals (Sweden)

    Michael Oberholzer

    2010-01-01

    Full Text Available African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions.

  19. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  20. Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae isolated from Didelphis aurita (Mammalia: Didelphidae in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade

    Directory of Open Access Journals (Sweden)

    Camila Madeira Tavares Lopes

    Full Text Available BACKGROUND Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp. OBJECTIVES We characterise a new species (Trypanosoma janseni n. sp. isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil. METHODS The parasites were isolated and a growth curve was performed in NNN and Schneider's media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp of the small subunit (18S ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred. FINDINGS In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent. CONCLUSIONS This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently

  1. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects

    Directory of Open Access Journals (Sweden)

    Marc Desquesnes

    2013-01-01

    Full Text Available Trypanosoma evansi, the agent of “surra,” is a salivarian trypanosome, originating from Africa. It is thought to derive from Trypanosoma brucei by deletion of the maxicircle kinetoplastic DNA (genetic material required for cyclical development in tsetse flies. It is mostly mechanically transmitted by tabanids and stomoxes, initially to camels, in sub-Saharan area. The disease spread from North Africa towards the Middle East, Turkey, India, up to 53° North in Russia, across all South-East Asia, down to Indonesia and the Philippines, and it was also introduced by the conquistadores into Latin America. It can affect a very large range of domestic and wild hosts including camelids, equines, cattle, buffaloes, sheep, goats, pigs, dogs and other carnivores, deer, gazelles, and elephants. It found a new large range of wild and domestic hosts in Latin America, including reservoirs (capybaras and biological vectors (vampire bats. Surra is a major disease in camels, equines, and dogs, in which it can often be fatal in the absence of treatment, and exhibits nonspecific clinical signs (anaemia, loss of weight, abortion, and death, which are variable from one host and one place to another; however, its immunosuppressive effects interfering with intercurrent diseases or vaccination campaigns might be its most significant and questionable aspect.

  2. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr

    Czech Academy of Sciences Publication Activity Database

    Lopes, R.R.S.; Silveira, G. de O.; Eitler, R.; Vidal, R.S.; Kessler, A.; Hinger, S.; Paris, Zdeněk; Alfonzo, J. D.; Polycarpo, C.

    2016-01-01

    Roč. 22, č. 8 (2016), s. 1190-1199 ISSN 1355-8382 R&D Projects: GA ČR GJ15-21450Y Institutional support: RVO:60077344 Keywords : Trypanosoma * tRNA * tRNA editing * splicing * intron Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.605, year: 2016

  3. Role of interferon in resistance and immunity to protozoa

    Science.gov (United States)

    Sonnenfeld, G.; Degee, A. L. W.; Mansfield, J. M.; Newsome, A. L.; Arnold, R. R.

    1985-01-01

    Production of interferon (I) in response to protozoan infection, and the interferon-mediated inhibition of parasite replication were studied in order to determine if these effects may be related to immunologic-mediated resistance of the hosts. Two extracellular parasites-Trypanosoma brucei rhodesiense and Naegleria fowlei were used. Upon infection with the trypanosome, only resistant strains of mice produced I. An early peak of alpha/beta I is followed by appearance of gamma I, which coincided with antibody production and a drop in parasitemia. In case of the amoeba, pretreatment of its suspension with alpha/beta I inhibits its replication in vitro, and appears to protect mice from the infection and the disease. It is proposed that production of interferon, with its regulatory effect on the immune responses, may play a major role in regulating the processes of protozoan-caused diseases.

  4. Diminazene aceturate-sodium oleate complex for the treatment of ...

    African Journals Online (AJOL)

    The aim of this study is to improve the efficacy of diminazene aceturate via complex formation with sodium oleate. The complex was subjected to various in vitro and in vivo tests to assess its properties, toxicity and efficacy against Trypanosoma brucei brucei infections in comparison to pure drug. Results revealed that the ...

  5. Effect of Tetracycline on Late-stage African trypanosomiasis in Rats ...

    African Journals Online (AJOL)

    Effect of Tetracycline on Late-stage African trypanosomiasis in Rats. T.O. Johnson, J.T. Ekanem. Abstract. The effect of tetracycline on late stage African trypanosomiasis was examined in an in vivo experiment using rats infected with Trypanosoma brucei brucei. Infected rats were treated on the 5th day of infection with ...

  6. Therapeutic Efficacy Of Cotecxin (R) alone and Its Combination with ...

    African Journals Online (AJOL)

    The therapeutic efficacy of Cotecxin(R) (Dihydroartemisinin) alone and its combination with diminazene aceturate (Berenil(R)) was studied in rats infected with Federe strain of Trypanosoma brucei brucei. Fifty healthy adult albino rats of both sexes weighing between 100-180g used were divided into five groups (A-E) of 10 ...

  7. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  8. Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections.

    Science.gov (United States)

    Ramírez-Iglesias, J R; Eleizalde, M C; Reyna-Bello, A; Mendoza, M

    2017-06-01

    In South America Trypanosoma evansi has been determined by molecular methods in cattle from Bolivia, Brazil, Colombia and Peru, reason for which the presence of this parasite is not excluded in Venezuelan livestock. Therefore, the aim of this study was to perform parasitological and molecular diagnosis of cattle trypanosomosis in small livestock units from two regions in this country. The parasitological diagnosis was carried out by MHCT and the molecular by PCR using genus-specific ITS1 primers that differentiate T. vivax and T. evansi infections. 47 cattle were evaluated in the "Laguneta de la Montaña" sector, Miranda State, where 3 animals were diagnosed as positive (6.4 %) by MHCT and 14 (30 %) by PCR as Trypanosoma spp., out of which 9 animals resulted positive for T. vivax , 3 for T. evansi and 2 with double infections. Whilst in the "San Casimiro" sector, State of Aragua, out of the 38 cattle evaluated 7 animals were diagnosed as positive (18.4 %) by MHCT and 19 (50 %) by PCR, determining only the presence of T. evansi in this locality. The molecular diagnosis by PCR using ITS1 primers allowed T. evansi detection in cattle field populations, which suggests the possible role of these animals as reservoirs in the epidemiology of the disease caused by T. evansi in Venezuela.

  9. The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe-S cluster assembly and operates alone

    Czech Academy of Sciences Publication Activity Database

    Haindrich, Alexander C.; Boudova, M.; Vancová, Marie; Peña-Diaz, Priscila; Horáková, Eva; Lukeš, Julius

    2017-01-01

    Roč. 214, JUN (2017), s. 47-51 ISSN 0166-6851 R&D Projects: GA ČR GA15-21974S; GA ČR(CZ) GA16-18699S Institutional support: RVO:60077344 Keywords : Trypanosoma * Erv1 * Fe-S cluster assembly * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.536, year: 2016

  10. Blood protozoan parasites of rodents in Jos, Plateau State, Nigerai ...

    African Journals Online (AJOL)

    One hundred and thirty rodents, comprising nine different species caught from seven different locations in Jos, Nigeria, were examined for blood protozoan parasites, and 82(63.08%) were positive, with Plasmodium 63(48.46%), Trypanosoma 4(3.08%), Toxoplasma 6(4.62%), Babesia 7(5.38%) and Anaplasma 2(1.54%).

  11. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Alves, Maria Julia Manso; Kawahara, Rebeca; Viner, Rosa

    2017-01-01

    Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host...... the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected...... disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host...

  12. Trypanosoma cruzi Detection in Colombian Patients with a Diagnosis of Esophageal Achalasia.

    Science.gov (United States)

    Panesso-Gómez, Santiago; Pavia, Paula; Rodríguez-Mantilla, Iván Enrique; Lasso, Paola; Orozco, Luis A; Cuellar, Adriana; Puerta, Concepción J; Mendoza de Molano, Belén; González, John M

    2018-03-01

    Achalasia is a motility disorder of the esophagus that might be secondary to a chronic Trypanosoma cruzi infection. Several studies have investigated esophageal achalasia in patients with Chagas disease (CD) in Latin America, but no related studies have been performed in Colombia. The goals of the present study were to determine the presence of anti- T. cruzi antibodies in patients with esophageal achalasia who visited a referral hospital in Bogotá, Colombia, and to detect the presence of the parasite and its discrete typing units (DTUs). This cross-sectional study was conducted in adult patients (18-65 years old) who were previously diagnosed with esophageal achalasia and from whom blood was drawn to assess antibodies against T. cruzi using four different serological tests. Trypanosoma cruzi DNA was detected by conventional polymerase chain reaction (cPCR) and quantitative polymerase chain reaction (qPCR). In total, 38 patients, with an average age of 46.6 years (standard deviation of ±16.2) and comprising 16 men and 22 women, were enrolled. Five (13.15%) patients were found to be positive for anti- T. cruzi antibodies by indirect immunofluorescence assay (IFA), and two patients who were negative according to IFA were reactive by both enzyme-linked immunosorbent assay and immunoblot (5.3%). Parasite DNA was detected in two of these seven patients by cPCR and in one of these by qPCR. The parasite DTU obtained was TcI. In summary, this study identified T. cruzi in Colombian patients with esophageal achalasia, indicating that digestive compromise could also be present in patients with chronic CD.

  13. Acerca del ciclo evolutivo del Trypanosoma (Schizotrypanum cruzi Chagas 1909, en sus fases tisular y hematica

    Directory of Open Access Journals (Sweden)

    Cecilio Romaña

    1956-06-01

    Full Text Available El autor pasa en revista los trabajos publicados sobre el ciclo evolutivo del Trypanosoma (S. cruzi en el huésped vertebrado, desde el descubrimiento de la enfermedad hasta nuestros días. Luego analiza las ideas de los autores modernos, fundadas en gran parte en las observaciones que ya en 1914 realizaron MAYER y ROCHA LIMA de las cuales participan actualmente ROMAÑA y MEYER, ELKELES y WOOD. Finalmente expressa que a partir de los tripanosomas infectantes los parásitos que penetram en el protoplasma celular pueden seguir dos mecanismos en su evolución hacia cuerpos leishmanioides: 1.º Por "regresión fusiforme" y 2.º por "regresión orbicular"; llegados a la forma leishmanioide los parásitos se multiplican por división binaria, una vez lleno el protoplasma celular, siguen un processo inverso de transformación hacia tripanosoma que puede seguir igualmente dos mecanismos diversos: 1. "progresión fusiforme" y 2.º "progresión orbicular". Estos diversos mecanismos de transformación están esquematizados en la fig. N.º 1 del trabajo.The author reviews published works about the evolutive cycle of the Trypanosoma cruzi in the vertebrate host, from the discovery of the disease to our days. Then, he analyzes the ideas of the modern authors who based themselves on the observations made formerly, in 1914, by MAYER & ROCHA LIMA, ideas that ROMAÑA and MEYER, ELKELES and WOOD agree at the present time. Last, he states that, from the infective trypanosomas, the parasites which enter the cellular protoplasma may follow two systems to perform their evolution up to leishmanioid bodies: 1.] by fusiform regression, 2.º by an orbicular regression. Once the parasites reach the leishmanioid forms, they multiply by binary division. When the celular protoplasm is filled up with the parasites, these follow an inverted transformation up to trypanosoma state, following also two systems; similar to the repression 1.º a fusiform progression, 2.º an

  14. Blood parasites of frogs from an equatorial African montane forest in western Uganda.

    Science.gov (United States)

    Readel, Anne M; Goldberg, Tony L

    2010-04-01

    In a survey of blood parasites in Ugandan frogs, 30 (17%) of 180 frogs were infected with at least 1 species of Hepatozoon or Trypanosoma, or with microfilariae. There were significant differences in the prevalence of parasitism among species, with parasitemia detected in only 3 of 9 species. The intensity of blood parasite infection ranged from 1 to 1,080 infected cells per 5,000 cells examined. Seasonal changes in the prevalence and intensity of parasitemia were not observed, nor was there any association between parasitemia and infection with the pandemic fungus Batrachochytrium dendrobatidis.

  15. Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism

    Czech Academy of Sciences Publication Activity Database

    Teixeira, A.R.L.; Gomes, C.; Nitz, N.; Sousa, A.O.; Alvez, R.M.; Guimaro, M.C.; Cordeiro, C.; Bernal, F.M.; Rosa, A.C.; Hejnar, Jiří; Leonardecz, E.; Hecht, M.M.

    2011-01-01

    Roč. 5, č. 3 (2011), e1000 ISSN 1935-2735 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chagas disease * Trypanosoma cruzi * kDNA minicircles * inbred chicken Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  16. Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi

    Czech Academy of Sciences Publication Activity Database

    Hanel, J.; Doležalová, J.; Stehlíková, Š.; Modrý, David; Chudoba, J.; Synek, P.; Votýpka, Jan

    2016-01-01

    Roč. 115, č. 1 (2016), s. 263-270 ISSN 0932-0113 Institutional support: RVO:60077344 Keywords : avian blood parasites * Haemosporida * Trypanosoma * PCR detection * birds of prey * raptors * mixed infection Subject RIV: EG - Zoology Impact factor: 2.329, year: 2016

  17. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  18. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  19. Trypanosoma cruzi: Transporte de metabolitos esenciales obtenidos del hospedador Trypanosoma cruzi: Transport of essential metabolites acquired from the host

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2008-10-01

    Full Text Available El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases, because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.

  20. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.

    Science.gov (United States)

    Ouaissi, Ali; Ouaissi, Mehdi

    2005-01-01

    A number of features occurring during host-parasite interactions in Chagas disease caused by the protozoan parasite, Trypanosoma cruzi, and Leishmaniasis, caused by a group of kinetoplastid protozoan parasites are reminiscent of those observed in cancer diseases. In fact,although the cancer is not a single disease, and that T.cruzi and Leishmania are sophisticated eukaryotic parasites presenting a high level of genotypic variability the growth of the parasites in their host and that of cancer cells share at least one common feature, that is their mutual capacity for rapid cell division. Surprisingly, the parasitic diseases and cancers share some immune evasion strategies. Consideration of these immunological alterations must be added to the evaluation of the pathogenic processes. The molecular and functional characterization of virulence factors and the study of their effect on the arms of the immune system have greatly improved understanding of the regulation of immune effectors functions. The purpose of this review is to analyze some of the current data related to the regulatory components or processes originating from the parasite that control or interfere with host cell physiology. Attempts are also made to delineate some similarities between the immune evasion strategies that parasites and tumors employ. The elucidation of the mode of action of parasite virulence factors toward the host cell allow not only provide us with a more comprehensive view of the host-parasite relationships but may also represent a step forward in efforts aimed to identify new target molecules for therapeutic intervention.

  1. In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    Science.gov (United States)

    Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017

  2. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    International Nuclear Information System (INIS)

    Hashimoto, Muneaki; Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu; Tanaka, Akiko; Aoki, Takashi; Nara, Takeshi

    2012-01-01

    Highlights: ► We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. ► Disruption of the cpsII gene significantly reduced the growth of epimastigotes. ► In particular, the CPSII-null mutant severely retarded intracellular growth. ► The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes—an insect form—possess both activities, amastigotes—an intracellular replicating form of T. cruzi—are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  3. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    Science.gov (United States)

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  4. New heterocyclic compounds: Synthesis and antitrypanosomal properties.

    Science.gov (United States)

    Pomel, S; Dubar, F; Forge, D; Loiseau, P M; Biot, C

    2015-08-15

    Three new series of quinoline, quinolone, and benzimidazole derivatives were synthesized and evaluated in vitro against Trypanosoma brucei gambiense. In the quinoline series, the metallo antimalarial drug candidate (ferroquine, FQ) and its ruthenium analogue (ruthenoquine, RQ, compound 13) showed the highest in vitro activities with IC50 values around 0.1 μM. Unfortunately, both compounds failed to cure Trypanosoma brucei brucei infected mice in vivo. The other heterocyclic compounds were active in vitro with IC50 values varying from 0.8 to 34 μM. One of the most interesting results was a fluoroquinolone derivative (compound 2) that was able to offer a survival time of 8 days after a treatment at the single dose of 100 μmol/kg by intraperitoneal route. Although no clear-cut structure-activity relationships emerged, further pharmacomodulations are worth to be developed in this series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    Science.gov (United States)

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  6. The haemoculture of Trypanosoma minasense chagas, 1908

    Directory of Open Access Journals (Sweden)

    Mariangela Ziccardi

    1996-08-01

    Full Text Available Trypanosoma minasense was isolated for the first time in blood axenic culture from a naturally infected marmoset, Callithrix penicillata, from Brazil. The parasite grew profusely in an overlay of Roswell Park Memorial Institute medium plus 20% foetal bovine serum, on Novy, McNeal and Nicolle medium (NNN , at 27°C, with a peak around 168 hr. The morphometry of cultural forms of T. minasense, estimates of cell population size and comparative growth in four different media overlays always with NNN, were studied. The infectivity of cultural forms to marmosets (C. penicillata and C. jacchus and transformation of epimastigotes into metacyclic-like forms in axenic culture in the presence of chitin derivates (chitosan were evaluated.

  7. Sirtuins of parasitic protozoa: In search of function(s)

    Science.gov (United States)

    Religa, Agnieszka A.; Waters, Andrew P.

    2012-01-01

    The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies. PMID:22906508

  8. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids

    Czech Academy of Sciences Publication Activity Database

    Opperdoes, F. R.; Butenko, A.; Flegontov, P.; Yurchenko, V.; Lukeš, Julius

    2016-01-01

    Roč. 63, č. 5 (2016), s. 657-678 ISSN 1066-5234 R&D Projects: GA ČR(CZ) GA14-23986S Grant - others:EU COST Action CM1307 Institutional support: RVO:60077344 Keywords : adaptation * Leishmania * Leptomonas * lateral gene transfer * parasitism * Phytomonas * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2016

  9. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites.

    Science.gov (United States)

    Osinaga, Eduardo

    2007-01-01

    Simple mucin-type O-glycan structures, such as Tn, TF, sialyl-Tn and Tk antigens, are among of the most specific human cancer-associated structures. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. In the last few years several simple mucin-type O-glycan antigens were identified in different species belonging to the main two helminth parasite phyla, and sialyl-Tn bearing glycoproteins were detected in Trypanosoma cruzi. These results are of interest to understand new aspects in parasite glycoimmunology and may help identify new biological characteristics of parasites as well of the host-parasite relationship. Considering that different groups reported a negative correlation between certain parasite infections and cancer development, we could hypothesize that simple mucin-type O-glycosylated antigens obtained from parasites could be good potential targets for cancer immunotherapy.

  10. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Čermáková, P.; Škodová, Ingrid; Kováčová, B.; Lukeš, Julius; Horváth, A.

    2014-01-01

    Roč. 193, č. 1 (2014), s. 55-65 ISSN 0166-6851 R&D Projects: GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : mitochondrion * oxidative phosphorylation * Trypanosoma * Leishmania * Phytomonas * Crithidia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  11. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies.

    Science.gov (United States)

    Bermejo, Daniela A; Amezcua Vesely, María C; Khan, Mahmood; Acosta Rodríguez, Eva V; Montes, Carolina L; Merino, Maria C; Toellner, Kai Michael; Mohr, Elodie; Taylor, Dale; Cunningham, Adam F; Gruppi, Adriana

    2011-01-01

    Acute infection with Trypanosoma cruzi, the aetiological agent of Chagas' disease, results in parasitaemia and polyclonal lymphocyte activation. It has been reported that polyclonal B-cell activation is associated with hypergammaglobulinaemia and delayed parasite-specific antibody response. In the present study we analysed the development of a B-cell response within the different microenvironments of the spleen during acute T. cruzi infection. We observed massive germinal centre (GC) and extrafollicular (EF) responses at the peak of infection. However, the EF foci were evident since day 3 post-infection (p.i.), and, early in the infection, they mainly provided IgM. The EF foci response reached its peak at 11 days p.i. and extended from the red pulp into the periarteriolar lymphatic sheath. The GCs were detected from day 8 p.i. At the peak of parasitaemia, CD138(+) B220(+) plasma cells in EF foci, red pulp and T-cell zone expressed IgM and all the IgG isotypes. Instead of the substantial B-cell response, most of the antibodies produced by splenic cells did not target the parasite, and parasite-specific IgG isotypes could be detected in sera only after 18 days p.i. We also observed that the bone marrow of infected mice presented a strong reduction in CD138(+) B220(+) cells compared with that of normal mice. Hence, in acute infection with T. cruzi, the spleen appears to be the most important lymphoid organ that lodges plasma cells and the main producer of antibodies. The development of a B-cell response during T. cruzi infection shows features that are particular to T. cruzi and other protozoan infection but different to other infections or immunization with model antigens.

  12. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    Science.gov (United States)

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  13. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  14. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Chagas Parasite Detection in Blood Images Using AdaBoost

    Directory of Open Access Journals (Sweden)

    Víctor Uc-Cetina

    2015-01-01

    Full Text Available The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most commonly used for the detection of malaria parasites based on support vector machines (SVM is also provided. Our experimental work shows mainly two things: (1 Chagas parasites can be detected automatically using machine learning methods with high accuracy and (2 AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning, computer vision, and image processing methods.

  16. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    International Nuclear Information System (INIS)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.; Laranja, G.A.T.; Silva-Neto, M.A.C.; Costa, S.C. Goncalves da; Paes, M.C.

    2009-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  17. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  18. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  19. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.

    Science.gov (United States)

    Fügi, Matthias A; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R; Mäser, Pascal

    2014-05-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

  20. The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal

    Czech Academy of Sciences Publication Activity Database

    Trantírková, Silvie; Paris, Zdeněk; Sturm, N. R.; Campbell, D. A.; Lukeš, Julius

    2005-01-01

    Roč. 35, č. 4 (2005), s. 359-366 ISSN 0020-7519 R&D Projects: GA AV ČR IAA5022302 Grant - others:NIH(US) AI34536; NIH(US) AI056034 Institutional research plan: CEZ:AV0Z60220518 Keywords : splicing * Trypanosoma * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.346, year: 2005

  1. Early invasion of brain parenchyma by African trypanosomes.

    Directory of Open Access Journals (Sweden)

    Ute Frevert

    Full Text Available Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.

  2. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  3. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    Science.gov (United States)

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  4. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Valeria P Sülsen

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin

  5. Study on the prevalence of blood parasites in camels of Zabol in 2008

    Directory of Open Access Journals (Sweden)

    Sh Ranjbar Bahadori

    2009-08-01

    30.09% of studied camels were infected by blood parasites with the greatest infection rate of 19.47% belonging Trypanosoma evansi and then infection rates of 6.20% by Theileria sp., 3.54% by bacteria sp. and 88% by blood microfilaria were also observed. Statistical analysis did not show significant relationship between infection to blood parasites and age and sex of the studied camels. With regard to presence of blood parasites in the camels of the region and the importance of arthropods in their transmission, apart from treatment of infected animals, arthropod control measures should also be conducted in other to control these infections.

  6. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosoma cruzi and Chagas Disease.

    Directory of Open Access Journals (Sweden)

    C Miguel Pinto

    Full Text Available The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA and cytochrome b (cytb genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.

  7. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosoma cruzi and Chagas Disease.

    Science.gov (United States)

    Pinto, C Miguel; Ocaña-Mayorga, Sofía; Tapia, Elicio E; Lobos, Simón E; Zurita, Alejandra P; Aguirre-Villacís, Fernanda; MacDonald, Amber; Villacís, Anita G; Lima, Luciana; Teixeira, Marta M G; Grijalva, Mario J; Perkins, Susan L

    2015-01-01

    The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.

  8. Comparative Antitrypanosomal Screening Of Methanolic Extracts

    African Journals Online (AJOL)

    activities with per cent drop in parasite population of. 43.76 and 29.46 ... Intraperitoneal treatment of T. brucei brucei-infected mice using these stem extracts at ... brucei brucei, Traditional medicine. ..... Journal of Biological Chemistry. 214:839-.

  9. Prevalence of antibodies to Trypanosoma cruzi, Toxoplasma gondii, Encephalitozonn cuniculi, Sarcocystis neurona, Besnoitia darlingi, and Neospora caninum in North American opossum, Didelphis virginiana, from Southern Louisian

    Science.gov (United States)

    We examined the prevalence of antibodies to zoonotic protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii, and Encephalitozoon cuniculi) and protozoan’s of veterinary importance (Neospora caninum, Sarcocystis neurona and Besnoitia darlingi) in a population of North American opossums (Didelphis...

  10. Caracterización molecular de los genes histona H2A y ARNsno-Cl de Trypanosoma rangeli: aplicación en pruebas diagnósticas Molecular characterization of histone H2A and snoRNA-Cl genes of Trypanosoma rangeli: application in diagnostic tests

    Directory of Open Access Journals (Sweden)

    Paula Ximena Pavía

    2009-03-01

    Full Text Available La aplicación de la reacción en cadena de la polimerasa (PCR para detectar e identificar Trypanosoma rangeli y Trypanosoma rangeli presenta a menudo dificultades de interpretación. Así, algunas pruebas generan la amplificación de bandas similares provenientes de uno de los dos parásitos, fragmentos polimórficos de un mismo parásito, o la prevalencia en la detección de T. cruzi en infecciones mixtas. En este estudio se presentan y analizan los trabajos de investigación básica realizados con el objeto de diseñar y estandarizar pruebas de PCR específicas de cada parásito. Los iniciadores TcH2AF/R se diseñaron sobre la base de la región diferencial observada entre las unidades génicas que contienen los genes h2a en estos tripanosomas. Esta pareja de iniciadores amplifican un fragmento de 234 pb específico para T. cruzi (cepas I y II. Los iniciadores TrF/R2 anillan en las regiones intergénicas del fragmento génico de 801 pb codificante para seis transcritos que forman la agrupación ARNsno-Cl en T. rangeli. Estos iniciadores amplifican un fragmento de 620 pb exclusivo de las cepas KP1(- y KP1(+ de este parásito. La aplicación de estas PCR en vectores infectados y en pacientes con enfermedad de Chagas muestra que ambas pruebas constituyen herramientas útiles para el diagnóstico y la identificación diferencial de estos tripanosomátidos.The application of polymerase chain reaction (PCR to detect Trypanosoma rangeli and Trypanosoma rangeli often presents interpretation challenges. For example, some tests yield the amplification of similar bands from either parasite, polymorphic fragments of the same parasite, or present deviation towards T. cruzi in mixed infections. In this study, the basic researching needed for designing and standardizating specific PCR tests for each parasite species PCR are shown and analyzed. The TcH2AF/R primers were designed on the basis of the differential gene region observed between the histone h2a

  11. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  12. African trypanosomiasis with special reference to Egyptian Trypanosoma evansi: is it a neglected zoonosis?

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M M; Khater, Mai Kh A; Morsy, Tosson A

    2014-12-01

    Trypanosomes (including humans) are blood and sometimes tissue parasites of the order Kinetoplastida, family Trypanosomatidae, genus Trypanosoma, principally transmitted by biting insects where most of them undergo a biological cycle. They are divided into Stercoraria with the posterior station inoculation, including T. cruzi, both an extra- and intracellular parasite that causes Chagas disease, a major human disease affecting 15 million people and threatening 100 million people in Latin America, and the Salivaria with the anterior station inoculation, mainly African livestock pathogenic trypanosomes, including the agents of sleeping sickness, a major human disease affecting around half a million people and threatening 60 million people in Africa. Now, T. evansi was reported in man is it required to investigate its zoonotic potential?

  13. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, D.; Lukeš, Julius

    2015-01-01

    Roč. 282, č. 21 (2015), s. 4157-4175 ISSN 1742-464X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GJ15-21450Y; GA MŠk LH12104 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Atm * Fe-S cluster * heme * Mdl * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.237, year: 2015

  14. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    Science.gov (United States)

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  15. The capybara (Hydrochoerus hydrochaeris) as a reservoir host for Trypanosoma evansi.

    Science.gov (United States)

    Morales, G A; Wells, E A; Angel, D

    1976-10-01

    Discovery of two ill horses and three dogs naturally infected with Trypanosoma evansi near an experimental station in the Eastern Plains of Colombia led to a search for reservoir hosts of the parasite. Infection was detected in 8/33 healthy capybaras (Hydrochoerus hydrochaeris), none of the remaining 14 horses, and none of 32 Zebu cattle (Bos indicus), 18 paca (Cuniculus paca) and 20 spiny rats (Proechimys sp.). Contrary to common opinion, the results indicated a carrier state in the capybara. Diagnosis was based on morphology, behaviour in albino rats, and pathogenicity and host range in domestic animals.

  16. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2014-09-01

    Full Text Available This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.

  17. Serodiagnosis of bovine trypanosomosis caused by non-tsetse transmitted Trypanosoma (Duttonella) vivax parasites using the soluble form of a Trypanozoon variant surface glycoprotein antigen.

    Science.gov (United States)

    Uzcanga, Graciela L; Pérez-Rojas, Yenis; Camargo, Rocío; Izquier, Adriana; Noda, José A; Chacín, Ronny; Parra, Nereida; Ron, Lenin; Rodríguez-Hidalgo, Richar; Bubis, José

    2016-03-15

    Previous studies have shown that a 64-kDa antigen (p64) that was purified from the Venezuelan TeAp-N/D1 isolate of Trypanosoma (Trypanozoon) equiperdum corresponds to the soluble form of its predominant variant surface glycoprotein (VSG), and exhibited cross-reactivity with Trypanosoma (Duttonella) vivax. The course of experimental acute infections of bovines with T. vivax were followed by measuring whole anti-p64 antibodies and specific anti-p64 IgG and IgM antibodies in animal sera by indirect enzyme-linked immunosorbent assay (ELISA). The value of p64 to diagnose bovine trypanosomosis was also examined using 350 sera from healthy and T. vivax-infected cows living in a trypanosomosis-endemic and enzootic stable area, and 48 sera obtained during a trypanosomosis outbreak. Serological assays showed that ∼ 70-80% of the infected sera contained anti-p64 antibodies, based on the comparative immunodetection of the T. equiperdum clarified antigenic fraction used as a reference test. In the absence of a gold standard, Bayesian analysis for multiple testing estimated a sensitivity and specificity of 71.6% and 98.8%, respectively, for the indirect ELISA using p64 as antigen. An apparent prevalence of 37.7% for bovine trypanosomosis infection was also estimated with a Bayesian approach when the p64 ELISA test was used. Employing blood from acute infected cows, the indirect ELISA response against p64 was contrasted with the microhematocrit centrifuge method and analyses by polymerase chain reaction (PCR) using specific primers targeting the inter-specific length variation of the internal transcribed spacer 1 region of the 18S ribosomal gene. The efficiency of p64 for the detection of anti-trypanosome antibodies in acute infected bovines was also corroborated serologically by comparing its response to that of the Indonesian Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2 VSG, which possesses high specificity and sensitivity. As expected, PCR was the best

  18. Estudo do comportamento biológico de três amostras de trypanosoma cruzi isoladas de pacientes do instituto "dante pazzanese" de cardiologia

    OpenAIRE

    Pereira,Vera Lúcia; Zamorano,Mabel M. B.; Boainain,Elias

    1987-01-01

    Foram estudadas três amostras de Trypanosoma cruzi isoladas de pacientes. As amostras foram observadas sob os seguintes parâmetros: níveis parasitêmicos, morfologia das formas sanguíneas, alterações histopatológicas, virulência e mortalidade em camundongos. A amostra IDPC-1 foi isolada de um paciente naturalmente infectado e tratado com benzonidazol. Provocou baixos índices parasitêmicos e mostrou baixa virulência, sendo que 83,4% dos animais evoluiram para a fase crônica. Os tripomastigotas ...

  19. Relationship between some serum electrolytes and ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-02-03

    Feb 3, 2014 ... The effect of Trypanosoma brucei infection on changes in concentration of some serum electrolytes and the ... the modulatory responses of the autonomic nervous system ..... Concurrent hyponatremia and hypocalcemia have.

  20. Observations on placentome diameters in gestating West African ...

    African Journals Online (AJOL)

    ADEYEYE

    2015-09-09

    /10.4314/sokjvs.v13i3.4. Observations on placentome diameters in gestating West. African dwarf does experimentally infected with Trypanosoma brucei. OO Leigh. Department of Veterinary Surgery and Reproduction, ...

  1. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Votýpka, J.; Rádrová, J.; Skalický, T.; Jirků, M.; Jirsová, D.; Mihalca, A. D.; D'Amico, G.; Petrželková, Klára Judita; Modrý, D.; Lukeš, J.

    2015-01-01

    Roč. 45, č. 12 (2015), s. 741-748 ISSN 0020-7519 Institutional support: RVO:68081766 Keywords : Trypanosoma * Tsetse * Tabanids * African great apes * Gorillas * Transmission * Bloodmeal * Feeding preference Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 4.242, year: 2015

  2. Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei.

    Science.gov (United States)

    Crozier, Thomas W M; Tinti, Michele; Wheeler, Richard J; Ly, Tony; Ferguson, Michael A J; Lamond, Angus I

    2018-06-01

    We describe a single-step centrifugal elutriation method to produce synchronous Gap1 (G1)-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labeling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741 (https://www.ebi.ac.uk/pride/archive/). © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Blood parasites in reptiles imported to Germany.

    Science.gov (United States)

    Halla, Ursula; Ursula, Halla; Korbel, Rüdiger; Rüdiger, Korbel; Mutschmann, Frank; Frank, Mutschmann; Rinder, Monika; Monika, Rinder

    2014-12-01

    Though international trade is increasing, the significance of imported reptiles as carriers of pathogens with relevance to animal and human health is largely unknown. Reptiles imported to Germany were therefore investigated for blood parasites using light microscopy, and the detected parasites were morphologically characterized. Four hundred ten reptiles belonging to 17 species originating from 11 Asian, South American and African countries were included. Parasites were detected in 117 (29%) of individual reptiles and in 12 species. Haemococcidea (Haemogregarina, Hepatozoon, Schellackia) were found in 84% of snakes (Python regius, Corallus caninus), 20% of lizards (Acanthocercus atricollis, Agama agama, Kinyongia fischeri, Gekko gecko) and 50% of turtles (Pelusios castaneus). Infections with Hematozoea (Plasmodium, Sauroplasma) were detected in 14% of lizards (Acanthocercus atricollis, Agama agama, Agama mwanzae, K. fischeri, Furcifer pardalis, Xenagama batillifera, Acanthosaura capra, Physignathus cocincinus), while those with Kinetoplastea (Trypanosoma) were found in 9% of snakes (Python regius, Corallus caninus) and 25 % of lizards (K. fischeri, Acanthosaura capra, G. gecko). Nematoda including filarial larvae parasitized in 10% of lizards (Agama agama, Agama mwanzae, K. fischeri, Fu. pardalis, Physignathus cocincinus). Light microscopy mostly allowed diagnosis of the parasites' genus, while species identification was not possible because of limited morphological characteristics available for parasitic developmental stages. The investigation revealed a high percentage of imported reptiles being carriers of parasites while possible vectors and pathogenicity are largely unknown so far. The spreading of haemoparasites thus represents an incalculable risk for pet reptiles, native herpetofauna and even human beings.

  4. Tyrosol and hydroxytyrosol derivatives as antitrypanosomal and antileishmanial agents.

    Science.gov (United States)

    Belmonte-Reche, Efres; Martínez-García, Marta; Peñalver, Pablo; Gómez-Pérez, Verónica; Lucas, Ricardo; Gamarro, Francisco; Pérez-Victoria, José María; Morales, Juan Carlos

    2016-08-25

    Trypanosomiasis and leishmaniasis keep being a real challenge for health and development of African countries. Existing treatments have considerable side effects and increase resistance of the parasites. We have measured antitrypanosomal and antileishmanial activity of natural phenols, tyrosol (TYR) and hydroxytyrosol (HT) and several of their esters and metabolites. We found significant IC50 values against Trypanosoma brucei for HT decanoate ester and HT dodecanoate ester (0.6 and 0.36 μM, respectively). This represents a large increase in activity with respect to HT (79 and 132 fold, respectively). Moreover, both compounds displayed a high selectivity index against MRC-5, a non-tumoral human cell line (118 and 106, respectively). Then, we synthesized a focused library of compounds to explore structure-activity. We found the ether and thiourea analogs of HT decanoate ester and HT dodecanoate ester also showed IC50 values against T. brucei in the low micromolar range. In conclusion, the di-ortho phenolic ring and medium size alkyl chain are essential for activity whereas the nature of the chemical bond among them seems less important. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Epidemiology of bovine hemoprotozoa parasites in cattle and water buffalo in Vietnam.

    Science.gov (United States)

    Weerasooriya, Gayani; Sivakumar, Thillaiampalam; Lan, Dinh Thi Bich; Long, Phung Thang; Takemae, Hitoshi; Igarashi, Ikuo; Inoue, Noboru; Yokoyama, Naoaki

    2016-09-01

    A PCR-based survey of hemoprotozoa parasites detected Babesia bigemina, Theileria orientalis and Trypanosoma theileri among cattle and water buffalo in Vietnam, and a new Babesia sp. closely related to Babesia ovata was detected in cattle only. In addition, Theileria annulata and Trypanosoma evansi were not detected in both cattle and water buffalo. Phylogenetic analysis detected T. orientalis MPSP genotypes 3, 5, 7 and N3 in cattle and 5, 7, N1 and N2 in water buffalo. Additionally, water buffalo-derived T. theileri CATL sequences clustered together with a previously reported cattle-derived sequence from Vietnam. This is the first report of a new Babesia sp. in cattle, and T. orientalis MPSP genotype 7 and T. theileri in water buffalo in Vietnam.

  6. Untitled

    African Journals Online (AJOL)

    BW) ..... 2nd Edition. Leslie, H., Frank ... biochemical changes in human and animal ... (2001): Indigenous genetic resources: A Trypanosoma brucei and H. contortus infection sustainable ... Inventory and Management Limited 12 pp. SHAIB, B.

  7. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  8. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi.

    Science.gov (United States)

    Brand, Stephen; Ko, Eun Jung; Viayna, Elisabet; Thompson, Stephen; Spinks, Daniel; Thomas, Michael; Sandberg, Lars; Francisco, Amanda F; Jayawardhana, Shiromani; Smith, Victoria C; Jansen, Chimed; De Rycker, Manu; Thomas, John; MacLean, Lorna; Osuna-Cabello, Maria; Riley, Jennifer; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; Epemolu, Ola; Shishikura, Yoko; Crouch, Sabrinia D; Bakshi, Tania S; Nixon, Christopher J; Reid, Iain H; Hill, Alan P; Underwood, Tim Z; Hindley, Sean J; Robinson, Sharon A; Kelly, John M; Fiandor, Jose M; Wyatt, Paul G; Marco, Maria; Miles, Timothy J; Read, Kevin D; Gilbert, Ian H

    2017-09-14

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.

  9. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a novel immunogen for Chagas disease vaccine.

    Directory of Open Access Journals (Sweden)

    Augusto E Bivona

    2018-03-01

    Full Text Available Chagas disease, also known as American Trypanosomiasis, is a chronic parasitic disease caused by the flagellated protozoan Trypanosoma cruzi that affects about 8 million people around the world where more than 25 million are at risk of contracting the infection. Despite of being endemic on 21 Latin-American countries, Chagas disease has become a global concern due to migratory movements. Unfortunately, available drugs for the treatment have several limitations and they are generally administered during the chronic phase of the infection, when its efficacy is considered controversial. Thus, prophylactic and/or therapeutic vaccines are emerging as interesting control alternatives. In this work, we proposed Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a new antigen for vaccine development against Chagas disease.In a murine model, we analyzed the immune response triggered by different immunization protocols based on Tc80 and evaluated their ability to confer protection against a challenge with the parasite. Immunized mice developed Tc80-specific antibodies which were able to carry out different functions such as: enzymatic inhibition, neutralization of parasite infection and complement-mediated lysis of trypomastigotes. Furthermore, vaccinated mice elicited strong cell-mediated immunity. Spleen cells from immunized mice proliferated and secreted Th1 cytokines (IL-2, IFN-γ and TNF-α upon re-stimulation with rTc80. Moreover, we found Tc80-specific polyfunctional CD4 T cells, and cytotoxic T lymphocyte activity against one Tc80 MHC-I peptide. Immunization protocols conferred protection against a T. cruzi lethal challenge. Immunized groups showed a decreased parasitemia and higher survival rate compared with non-immunized control mice. Moreover, during the chronic phase of the infection, immunized mice presented: lower levels of myopathy-linked enzymes, parasite burden, electrocardiographic disorders and inflammatory cells.Considering that

  10. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Directory of Open Access Journals (Sweden)

    Nir Qvit

    2016-04-01

    Full Text Available Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase and TRACK (Trypanosoma receptor for activated C-kinase. We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase, may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. Keywords: Chagas disease, Leishmaniasis, Peptide, LACK, TRACK, Scaffold protein

  11. Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in Anurans of the São Paulo and Mato Grosso do Sul States - Brazil.

    Science.gov (United States)

    Leal, Denise D M; O'dwyer, Lucia H; Ribeiro, Vitor C; Silva, Reinaldo J; Ferreira, Vanda L; Rodrigues, Rozangela B

    2009-06-01

    Wild animals are exposed to numerous pathogens, including hemoparasites. The Trypanosoma and hemogregarinegroup are frequently reported as parasites in anurans (frogs, tree frogs and toads). The identification of these hemoparasites is usually made through stage observation of their morphology in the peripheral blood of the host. There areno studies, however, based on the biological cycle of these hemoparasites. The objective of the present study was toevaluate the presence of hemogregarines and Trypanosoma spp. in anurans captured in the States of São Paulo andMato Grosso do Sul- Brazil and to perform the morphological and morphometric characterization of these hemoparasites. The species of anurans examined were: Dendropsophus nanus, D. minutus, Leptodactylus chaquensis L. podicipinus, L. labyrinthicus, L. fuscus, Bufo granulosus, B. schneideri, Phyllomedusa hypocondrialis, Trachicephalus venulosus, Scinax fuscovarius and Hypsiboas albopunctatus. Of the total of 40 animals studied, four (10%)were positive for hemogregarines and eight (20%) were positive for Trypanosoma spp. Hemogregarine gamontsshowed variable morphology and, in addition to intraerythrocytic forms, extraerythrocytic forms were also observed.Extremely different forms of Trypanosoma were observed, as described in the literature, with the broad and oval forms being the most common.

  12. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  13. PCR-Based Detection of Trypanosoma evansi Infection in Semi-Captive Asiatic Black Bears (Ursus thibetanus

    Directory of Open Access Journals (Sweden)

    Maliha Shahid, Safia Janjua*, Fakhar-i-Abbas and Jan Schmidt Burbach1

    2013-11-01

    Full Text Available Clinical signs, viz lethargy, increased heart rate and reduced appetite, making trypanosomiasis a possible differential diagnosis, were found in five out of twenty semi-captive Asiatic black bears (Ursus thibetanus in a sanctuary, located in Kund, District Sawabi, KPK, Pakistan. Microscopic examination of blood samples of bears expressing clinical signs and symptoms revealed the presence of haemoflagellates, which was found to be trypanosomes. Subsequently, the PCR technique was exploited to screen for the presence of trypanosomal species in all bears’ blood samples. Blood samples from 20 individual bears were screened using three sets of primers specific to Trypanosoma evansi species. Three primer pairs used are equally effective in successful detection of the parasite. Two out of five, diseased bears died prior to any trypanosoma specific medication while the rest were given an administered dose of Melarsomine (Immiticide. The treated bears survived and were assured to be aparasitemic on post-treatment examination after six weeks.

  14. Hit-to-lead development of the chamigrane endoperoxide merulin A for the treatment of African sleeping sickness.

    Science.gov (United States)

    Navarro, Gabriel; Chokpaiboon, Supchar; De Muylder, Geraldine; Bray, Walter M; Nisam, Sean C; McKerrow, James H; Pudhom, Khanitha; Linington, Roger G

    2012-01-01

    Human African trypanosomiasis (HAT) is an infectious disease with a large global health burden occurring primarily in Central and Eastern Africa. Most current treatments have poor blood brain barrier (BBB) penetration, which prevent them from targeting the most lethal stage of the infection. In addition, current therapeutics suffer from a variety of limitations ranging from serious side effects to difficulties with treatment administration. Therefore it is of crucial importance to find new treatments that are safe, affordable, and effective against both sub-species of Trypanosoma brucei. Semi-synthetic derivatization of the fungally-derived natural product merulin A (1) has led to the discovery of new development candidates for the protozoan parasite T. brucei, the causative agent of HAT. Creation of an initial SAR library based around the merulin scaffold revealed several key features required for activity, including the endoperoxide bridge, as well as one position suitable for further derivatization. Subsequent synthesis of a 20-membered analogue library, guided by the addition of acyl groups that improve the drug-like properties of the merulin A core, resulted in the development of compound 12 with an IC(50) of 60 nM against T. brucei, and a selectivity index greater than 300-fold against HeLa and immortalized glial cells. We report the semi-synthetic optimization of the merulin class of endoperoxide natural products as development candidates against T. brucei. We have identified compounds with low nM antiparasitic activities and high selectivity indices against HeLa cells. These compounds can be produced economically in large quantities via a one step derivatization from the microbial fermentation broth isolate, making them encouraging lead candidates for further development.

  15. Hit-to-lead development of the chamigrane endoperoxide merulin A for the treatment of African sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Gabriel Navarro

    Full Text Available Human African trypanosomiasis (HAT is an infectious disease with a large global health burden occurring primarily in Central and Eastern Africa. Most current treatments have poor blood brain barrier (BBB penetration, which prevent them from targeting the most lethal stage of the infection. In addition, current therapeutics suffer from a variety of limitations ranging from serious side effects to difficulties with treatment administration. Therefore it is of crucial importance to find new treatments that are safe, affordable, and effective against both sub-species of Trypanosoma brucei.Semi-synthetic derivatization of the fungally-derived natural product merulin A (1 has led to the discovery of new development candidates for the protozoan parasite T. brucei, the causative agent of HAT. Creation of an initial SAR library based around the merulin scaffold revealed several key features required for activity, including the endoperoxide bridge, as well as one position suitable for further derivatization. Subsequent synthesis of a 20-membered analogue library, guided by the addition of acyl groups that improve the drug-like properties of the merulin A core, resulted in the development of compound 12 with an IC(50 of 60 nM against T. brucei, and a selectivity index greater than 300-fold against HeLa and immortalized glial cells.We report the semi-synthetic optimization of the merulin class of endoperoxide natural products as development candidates against T. brucei. We have identified compounds with low nM antiparasitic activities and high selectivity indices against HeLa cells. These compounds can be produced economically in large quantities via a one step derivatization from the microbial fermentation broth isolate, making them encouraging lead candidates for further development.

  16. First report of Trypanosoma vegrandis in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Barbosa, Amanda; Austen, Jill; Gillett, Amber; Warren, Kristin; Paparini, Andrea; Irwin, Peter; Ryan, Una

    2016-08-01

    The present study describes the first report of Trypanosoma vegrandis in koalas using morphology and sequence analysis of the 18S rRNA gene. The prevalence of T. vegrandis in koalas was 13.6% (6/44). It is likely that the small size of T. vegrandis (<10μm in length), coupled with the difficulties in amplifying DNA of this parasite in mixed infections using trypanosome generic primers, are the reason why this organism has not been identified in koalas until now. This study highlights the importance of further research comprising a larger sample size to determine the prevalence of T. vegrandis in koalas as well as its potential impacts upon this marsupial species' health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  19. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  20. Genome mining offers a new starting point for parasitology research.

    Science.gov (United States)

    Lv, Zhiyue; Wu, Zhongdao; Zhang, Limei; Ji, Pengyu; Cai, Yifeng; Luo, Shiqi; Wang, Hongxi; Li, Hao

    2015-02-01

    Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.

  1. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Gene fusion analysis in the battle against the African endemic sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Philip Trimpalis

    Full Text Available The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs, vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a statistical significance (BLAST e-value, domain length etc., (b their involvement in crucial metabolic pathways, and (c their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns.

  3. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Laura Jeacock

    2017-03-01

    Full Text Available Aquaglyceroporins (AQPs transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM, octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

  4. Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    João Carlos Araujo Carreira

    1996-10-01

    Full Text Available Didelphis marsupialis, the most important sylvatic reservoir of Trypanosoma cruzi, can also maintain in their anal scent glands the multiplicative forms only described in the intestinal tract of triatomine bugs. A study of 21 experimentally and 10 naturally infected opossums with T. cruzi was undertaken in order to establish the histopathological pattern under different conditions. Our results showed that the inflammation was predominantly lymphomacrophagic and more severe in the naturally infected animals but never as intense as those described in Chagas' disease or in other animal models. The parasitism in both groups was always mild with very scarce amastigote nests in the tissues. In the experimentally infected animals, the inflammation was directly related to the presence of amastigotes nests. Four 24 days-old animals, still in embryonic stage, showed multiple amastigotes nests and moderate inflammatory reactions, but even so they survived longer and presented less severe lesions than experimentally infected adult mice. Parasites were found in smooth, cardiac and/or predominantly striated muscles, as well as in nerve cells. Differing from the experimentally infected opossums parasitism in the naturally infected animals predominated in the heart, esophagus and stomach. Parasitism of the scent glands did not affect the histopathological pattern observed in extraglandular tissues.

  5. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.

    Science.gov (United States)

    Waag, Thilo; Gelhaus, Christoph; Rath, Jennifer; Stich, August; Leippe, Matthias; Schirmeister, Tanja

    2010-09-15

    Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure-activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horváth, A.; Horáková, Eva; Dunajčíková, P.; Verner, Zdeněk; Pravdová, E.; Šlapetová, Iveta; Cuninková, Ľ.; Lukeš, Julius

    2005-01-01

    Roč. 58, č. 1 (2005), s. 116-130 ISSN 0950-382X R&D Projects: GA AV ČR IAA5022302 Grant - others:National Institutes of Health(US) 5R03TW6445-2 Institutional research plan: CEZ:AV0Z60220518 Keywords : respiratory complex * Trypanosoma * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.203, year: 2005

  7. Sierra Leone Journal of Biomedical Research 38 Original Article

    African Journals Online (AJOL)

    ). 38 ... Sleeping sickness or Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei .... end of the 1930th produced new social and .... use) resulted in the radical diminishing of the game ..... strains isolated from pigs in Liberia.

  8. Lipid Synthesis in Protozoan Parasites: a Comparison Between Kinetoplastids and Apicomplexans

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-01-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment. PMID:23827884

  9. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    Science.gov (United States)

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    Science.gov (United States)

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    Science.gov (United States)

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  12. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  13. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology

    Directory of Open Access Journals (Sweden)

    Jeremías José Barclay

    2011-01-01

    Full Text Available Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP and a heterologous ornithine decarboxylase (ODC, used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.

  14. Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents

    Directory of Open Access Journals (Sweden)

    Jean J. Vanden Eynde

    2016-04-01

    Full Text Available A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b. subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54 and a chloroquine-resistant strain (K1. The in vitro cytotoxicity was determined against rat myoblast cells (L6. Seven compounds (5, 6, 10, 11, 12, 14, 15 showed high potency against both strains of T. brucei and P. falciparum with the inhibitory concentrations for 50% (IC50 in the nanomolar range (IC50 = 1–96 nM. None of the tested derivatives was significantly active against T. cruzi or L. donovani. Three of the more potent compounds (5, 6, 11 were evaluated in vivo in mice infected with the drug-sensitive (Lab 110 EATRO and KETRI 2002 or drug-resistant (KETRI 2538 and KETRI 1992 clinical isolates of T. brucei. Compounds 5 and 6 were highly effective in curing mice infected with the drug-sensitive strains, including a drug-resistant strain KETRI 2538, but were ineffective against KETRI 1992. Thermal melting of DNA and molecular modeling studies indicate AT-rich DNA sequences as possible binding sites for these compounds. Several of the tested compounds are suitable leads for the development of improved antiparasitic agents.

  15. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  16. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  17. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  18. Ultrastructure of the fibrous matrix surrounding cells of Trypanosoma melophagium in the hind-gut of the sheep ked, Melophagus ovinus.

    Science.gov (United States)

    Heywood, P; Molyneux, D H

    1985-01-01

    A fibrous material surrounds cells of Trypanosoma (Megatrypanum) melophagium in the hind-gut of the sheep ked, Melophagus ovinus, and terminates just beyond the distal portions of the attached cells. The fibres of this extracellular matrix have a diameter of approximately 4 nm and are closely packed. Individual fibres have approximately the same orientation as adjacent fibres and usually lie parallel to the longitudinal axis of the parasite cells.

  19. Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone derivatives as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Caputto, María E; Ciccarelli, Alejandra; Frank, Fernanda; Moglioni, Albertina G; Moltrasio, Graciela Y; Vega, Daniel; Lombardo, Elisa; Finkielsztein, Liliana M

    2012-09-01

    A series of novel 4-arylthiazolylhydrazones (TZHs) derived from 1-indanones were synthesized in good yields (66-92%) in a simple procedure using microwave irradiation and then characterized by spectroscopy studies. The compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against the epimastigote, trypomastigote and amastigote forms of the parasite. Most TZHs displayed excellent activity, and were more potent and selective than the reference drug Benznidazole, used in the current chemotherapy. Analysis of the free sterols from parasite incubated with the compounds showed that inhibition of ergosterol biosynthesis is a possible target for the action of these new TZHs. In particular, TZH 9 emerged as a promising antichagasic compound to be evaluated in animal models. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Morphological and hematological studies of Trypanosoma spp. infecting ornamental armored catfish from Guamá River-PA, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Y. Fujimoto

    2013-09-01

    Full Text Available A total of 281 specimens of freshwater armored ornamental fish species (Leporacanthicus galaxias, Lasiancistrus saetiger, Cochliodon sp., Hypostomus sp., Pseudacanthicus spinosus, Ancistrus sp. and Rineloricaria cf. lanceolata were captured at the hydrological basin of Guamá River, Pará, Brazil. The infection by Trypanosoma spp. was inspected. The morphological and morphometric characterization of the parasites and the hematological parameters were determined. Leporacanthicus galaxias and Pseudacanthicus spinosus presented 100% infection prevalence, and the other species showed a variable prevalence of infection. The parasites showed clearly different morphotypes and dimensions, and probably belong to different species. The hematological response to the infection varied with the host. Cochliodon sp. showed no differences between infected and not infected fish. In other species several modifications on some hematological parameters were found, but apparently without causing disease. It is emphasized the possibility of introduction of the parasites in new environments due to the artificial movements of these ornamental fish.

  1. Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection

    Science.gov (United States)

    Yauri, Verónica; Castro-Sesquen, Yagahira E.; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M.; Gilman, Robert H.

    2016-01-01

    Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15–40 dpi). Anti-T.cruzi immunoglobulin M was detected during 15–75 dpi; high levels of anti-T.cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841

  2. Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease

    Directory of Open Access Journals (Sweden)

    Triana Omar

    2011-05-01

    Full Text Available Abstract Background Chagas disease is a health threat for many people, mostly those living in Latin America. One of the most important problems in treatment is the limitation of existing drugs. Prodigiosin, produced by Serratia marcescens (Rhodnius prolixus endosymbiont, belongs to the red-pigmented bacterial prodiginine family, which displays numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive, and anticancer properties. Here we describe its effects on Trypanosoma cruzi mitochondria belonging to Tc I and Tc II. Results Parasites exposed to prodigiosin altered the mitochondrial function and oxidative phosphorylation could not have a normal course, probably by inhibition of complex III. Prodigiosin did not produce cytotoxic effects in lymphocytes and Vero cells and has better effects than benznidazole. Our data suggest that the action of prodigiosin on the parasites is mediated by mitochondrial structural and functional disruptions that could lead the parasites to an apoptotic-like cell death process. Conclusions Here, we propose a potentially useful trypanocidal agent derived from knowledge of an important aspect of the natural life cycle of the parasite: the vector-parasite interaction. Our results indicate that prodigiosin could be a good candidate for the treatment of Chagas disease.

  3. In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi--Rhodnius prolixus interaction using confocal microscopy.

    Science.gov (United States)

    Feder, Denise; Gomes, Suzete A O; de Thomaz, André A; Almeida, Diogo B; Faustino, Wagner M; Fontes, Adriana; Stahl, Cecília V; Santos-Mallet, Jacenir R; Cesar, Carlos L

    2009-12-01

    Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals markers that allow long photobleaching and do not destroy the parasites. In this paper, we used fluorescent core shell quantum dots to perform studies of live parasite-vector interaction processes without any observable effect on the vitality of parasites. These nanocrystals were synthesized in aqueous medium and physiological pH, which is very important for monitoring live cells activities, and conjugated with molecules such as lectins to label specific carbohydrates involved on the parasite-vector interaction. These QDs were successfully used for the study of in vitro and in vivo interaction of Trypanosoma cruzi and the triatomine Rhodnius prolixus. These QDs allowed us to acquire real time confocal images sequences of live T. cruzi-R. prolixus interactions for an extended period, causing no damage to the cells. By zooming to the region of interest, we have been able to acquire confocal images at the three to four frames per second rate. Our results show that QDs are physiological fluorescent markers capable to label living parasites and insect vector cells. QDs can be functionalized with lectins to specifically mark surface carbohydrates on perimicrovillar membrane of R. prolixus to follow, visualize, and understand interaction between vectors and its parasites in real-time.

  4. In vitro activity of commercial formulation and active principle of ...

    African Journals Online (AJOL)

    The in vitro trypanocidal activities of 4 commercial formulations Ornidyl®, Pentamidine isethionate®, Germanin® and Lampit® and their corresponding active principles (Dl-difluoromethylornithine, pentamidine isethionate, suramine and 5-nitrofuran) were compared against Trypanosoma brucei gambiense. Differences of ...

  5. Detection of human-infective trypanosomes in acutely-infected Jack ...

    African Journals Online (AJOL)

    A diagnosis of acute canine African trypanosomosis was made by microscopic examination of blood smear. Loop-mediated isothermal amplification (LAMP) analysis, using primers specifically targeting the human serum resistanceassociated (SRA) gene, revealed a monolytic infection with Trypanosoma brucei rhodesiense ...

  6. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  7. Some liver function indices and blood parameters in T. brucei ...

    African Journals Online (AJOL)

    JTEkanem

    symptoms of African sleeping sickness9. Despite the prolific research ... is a disease for which both man and other animals whether ... on some symptoms caused by T. brucei infection. .... immune response is insufficient to clear infection21-23.

  8. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome.

    Directory of Open Access Journals (Sweden)

    Sabrina Cencig

    2011-06-01

    Full Text Available BACKGROUND: Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox are effective in humans when administered during months. AmBisome (liposomal amphotericin B, already shown efficient after administration for some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection. AIMS: This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several tissues. METHODOLOGY: Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment with cyclophosphamide was used to investigate residual infection in tissues. FINDINGS: Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias (microscopic examination were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in chronic infection. An earlier administration of AmBisome (one day after parasite inoculation had a better effect in reducing parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite amounts comparable to those observed in acutely infected and untreated mice. CONCLUSIONS: Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short

  9. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    Science.gov (United States)

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  10. Characterization of plasma menbrane polypeptides of trypanosoma from bats

    OpenAIRE

    Pinho,R. T.; Simone,Giovanni de

    1989-01-01

    Cell surface proteins of Trypanosoma dionisii, Trypanosoma vespertilionis and Trypanosoma sp. (M238) were radiodinated and their distribution both in the detergent-poor (DPP) and dertergent-enriched phase (DRP) was studied using a phase separation technique in Triton X-114 as well as polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE). Significant differences were observed in the proteins present in the DRP when the three species of trypanosoma were compared. Two major ba...

  11. Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut.

    Directory of Open Access Journals (Sweden)

    Cher-Pheng Ooi

    2015-01-01

    Full Text Available The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2-4 days. In this study, we identified four tsetse (Glossina morsitans morsitans serine protease inhibitors (serpins from a midgut expressed sequence tag (EST library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10 and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission.

  12. Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut.

    Science.gov (United States)

    Ooi, Cher-Pheng; Haines, Lee R; Southern, Daniel M; Lehane, Michael J; Acosta-Serrano, Alvaro

    2015-01-01

    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2-4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission.

  13. Diminazene aceturate modified nanocomposite for improved efficacy in acute trypanosome infection

    Directory of Open Access Journals (Sweden)

    Oluwatosin Kudirat Shittu

    2018-01-01

    Full Text Available Objective: To investigate the improved antitrypanocidal activity and toxicity of diminazene aceturate modified Nano drug in experimental rats.Methods: Aqueous leaf extract of Hyptis suaveolens was used to reduce gold tetrachloride to its nanoparticle size and this was characterized and formulates with naturally synthesized polyhydroxybutyrateas a Nano carrier. A total of thirty [30] albino rats were group into 6 (A-F of 5 rats each & infected intraperitoneally with 0.2 mL of the inoculum containing about 1x103 Trypanosoma brucei brucei parasites per 0.2 mL of blood. Groups A and B were treated with 3 and 6 minutes released orange PHB, Groups C and D were treated with 15 and 30 minutes released mango PHB formulated tablet while Groups E and F were negative (untreated and standard drug (Dininazene aceturare respectively.Results: The free drug and modified orange synthesized polyhydroxy butyrate shows antitrypanocidal activities by reducing the replicating rate of the parasite as compared to infect untreated. While the modified- mango synthesized shows increasing order of replication. There were significant increases in all the haematological parameter evaluated in the infected treated groups compared to infect untreated. But no significant difference (P<0.05 observed in the Catalase activity in the serum and liver of all the groups whereas, the modified orange synthesized shows significant decrease in other enzymes activities evaluated when compared with the free drug, mango synthesized and the infected untreated groups.Conclusion: Orange synthesized modified diminazene aceturate show efficacy as free drug with limited toxicity that can enhance the therapeutic.

  14. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  15. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cecilia Stahl Vieira

    2011-03-01

    Full Text Available Semiconductor nanoparticles, such as quantum dots (QDs, were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells, giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM is optimal for bioimaging, whereas a high concentration (200 μM CdTe could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.

  16. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.

    Directory of Open Access Journals (Sweden)

    Marcelo L Merli

    2016-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport, which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.

  17. Sex, subdivision, and domestic dispersal of Trypanosoma cruzi lineage I in southern Ecuador.

    Science.gov (United States)

    Ocaña-Mayorga, Sofía; Llewellyn, Martin S; Costales, Jaime A; Miles, Michael A; Grijalva, Mario J

    2010-12-14

    Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province). This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma. Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population. These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador.

  18. Sex, subdivision, and domestic dispersal of Trypanosoma cruzi lineage I in southern Ecuador.

    Directory of Open Access Journals (Sweden)

    Sofía Ocaña-Mayorga

    2010-12-01

    Full Text Available Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province. This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma.Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population.These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador.

  19. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    Science.gov (United States)

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. A TeGM6-4r antigen-based immunochromatographic test (ICT) for animal trypanosomosis.

    Science.gov (United States)

    Nguyen, Thu-Thuy; Ruttayaporn, Ngasaman; Goto, Yasuyuki; Kawazu, Shin-ichiro; Sakurai, Tatsuya; Inoue, Noboru

    2015-11-01

    Animal trypanosomosis is a disease that is distributed worldwide which results in huge economic losses due to reduced animal productivity. Endemic regions are often located in the countryside where laboratory diagnosis is costly or inaccessible. The establishment of simple, effective, and accurate field tests is therefore of great interest to the farming and veterinary sectors. Our study aimed to develop a simple, rapid, and sensitive immunochromatographic test (ICT) for animal trypanosomosis utilizing the recombinant tandem repeat antigen TeGM6-4r, which is conserved amongst salivarian trypanosome species. In the specificity analysis, TeGM6-4r/ICT detected all of Trypanosoma evansi-positive controls from experimentally infected water buffaloes. As expected, uninfected controls tested negative. All sera samples collected from Tanzanian and Ugandan cattle that were Trypanosoma congolense- and/or Trypanosoma vivax-positive by microscopic examination of the buffy coat were found to be positive by the newly developed TeGM6-4r/ICT, which was comparable to results from TeGM6-4r/ELISA (kappa coefficient [κ] = 0.78). TeGM6/ICT also showed substantial agreement with ELISA using Trypanosoma brucei brucei (κ = 0.64) and T. congolense (κ = 0.72) crude antigen, suggesting the high potential of TeGM6-4r/ICT as a field diagnostic test, both for research purposes and on-site diagnosis of animal trypanosomosis.

  1. [Entomological study of Trypanosoma cruzi vectors in the rural communities of Sucre state, Venezuela].

    Science.gov (United States)

    García-Jordán, Noris; Berrizbeitia, Mariolga; Concepción, Juan Luis; Aldana, Elis; Cáceres, Ana; Quiñones, Wilfredo

    2015-01-01

    The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliary vector. Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.

  2. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Votýpka, Jan; Rádrová, Jana; Skalický, Tomáš; Jirků, Milan; Jirsová, D.; Mihalca, A. D.; D'Amico, G.; Petrželková, Klára Judita; Modrý, David; Lukeš, Julius

    2015-01-01

    Roč. 45, OCT 2015 (2015), s. 741-748 ISSN 0020-7519 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 Grant - others:GA MŠk(CZ) EE2.3.20.0300 Institutional support: RVO:60077344 Keywords : Trypanosoma * Tsetse * Tabanids * African great apes * Gorillas * Transmission * Bloodmeal * Feeding preference Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.242, year: 2015

  3. Lineage Analysis of Circulating Trypanosoma cruzi Parasites and Their Association with Clinical Forms of Chagas Disease in Bolivia

    Science.gov (United States)

    del Puerto, Ramona; Nishizawa, Juan Eiki; Kikuchi, Mihoko; Iihoshi, Naomi; Roca, Yelin; Avilas, Cinthia; Gianella, Alberto; Lora, Javier; Gutierrez Velarde, Freddy Udalrico; Renjel, Luis Alberto; Miura, Sachio; Higo, Hiroo; Komiya, Norihiro; Maemura, Koji; Hirayama, Kenji

    2010-01-01

    Background The causative agent of Chagas disease, Trypanosoma cruzi, is divided into 6 Discrete Typing Units (DTU): Tc I, IIa, IIb, IIc, IId and IIe. In order to assess the relative pathogenicities of different DTUs, blood samples from three different clinical groups of chronic Chagas disease patients (indeterminate, cardiac, megacolon) from Bolivia were analyzed for their circulating parasites lineages using minicircle kinetoplast DNA polymorphism. Methods and Findings Between 2000 and 2007, patients sent to the Centro Nacional de Enfermedades Tropicales for diagnosis of Chagas from clinics and hospitals in Santa Cruz, Bolivia, were assessed by serology, cardiology and gastro-intestinal examinations. Additionally, patients who underwent colonectomies due to Chagasic magacolon at the Hospital Universitario Japonés were also included. A total of 306 chronic Chagas patients were defined by their clinical types (81 with cardiopathy, 150 without cardiopathy, 100 with megacolon, 144 without megacolon, 164 with cardiopathy or megacolon, 73 indeterminate and 17 cases with both cardiopathy and megacolon). DNA was extracted from 10 ml of peripheral venous blood for PCR analysis. The kinetoplast minicircle DNA (kDNA) was amplified from 196 out of 306 samples (64.1%), of which 104 (53.3%) were Tc IId, 4 (2.0%) Tc I, 7 (3.6%) Tc IIb, 1 (0.5%) Tc IIe, 26 (13.3%) Tc I/IId, 1 (0.5%) Tc I/IIb/IId, 2 (1.0%) Tc IIb/d and 51 (25.9%) were unidentified. Of the 133 Tc IId samples, three different kDNA hypervariable region patterns were detected; Mn (49.6%), TPK like (48.9%) and Bug-like (1.5%). There was no significant association between Tc types and clinical manifestations of disease. Conclusions None of the identified lineages or sublineages was significantly associated with any particular clinical manifestations in the chronic Chagas patients in Bolivia. PMID:20502516

  4. Highly diluted medication reduces tissue parasitism and inflammation in mice infected by Trypanosoma cruzi.

    Science.gov (United States)

    Lopes, Carina Ribeiro; Falkowski, Gislaine Janaina Sanchez; Brustolin, Camila Fernanda; Massini, Paula Fernanda; Ferreira, Érika Cristina; Moreira, Neide Martins; Aleixo, Denise Lessa; Kaneshima, Edilson Nobuyoshi; de Araújo, Silvana Marques

    2016-05-01

    To evaluate the effects of Kalium causticum, Conium maculatum, and Lycopodium clavatum 13cH in mice infected by Trypanosoma cruzi. In a blind, controlled, randomized study, 102 male Swiss mice, 8 weeks old, were inoculated with 1400 trypomastigotes of the Y strain of T. cruzi and distributed into the following groups: CI (treated with 7% hydroalcoholic solution), Ca (treated with Kalium causticum 13cH), Co (treated with Conium maculatum 13cH), and Ly (treated with Lycopodium clavatum 13cH). The treatments were performed 48 h before and 48, 96, and 144 h after infection. The medication was repertorized and prepared in 13cH, according to Brazilian Homeopathic Pharmacopoeia. The following parameters were evaluated: infectivity, prepatent period, parasitemia peak, total parasitemia, tissue tropism, inflammatory infiltrate, and survival. Statistical analysis was conduced considering 5% of significance. The prepatent period was greater in the Ly group than in the CI group (p = 0.02). The number of trypomastigotes on the 8th day after infection was lower in the Ca group than in the CI group (p < 0.05). Total parasitemia was significantly lower in the Ca, Co, and Ly groups than in the CI group. On the 12th day after infection, the Ca, Co, and Ly groups had fewer nests and amastigotes/nest in the heart than the CI group (p < 0.05). Decreases in the number of nests and amastigotes in the intestine were observed in the Ly group compared with the CI group (p < 0.05). In the liver (day 12), Ly significantly prevented the formation of inflammatory foci compared with the other groups. In skeletal muscle, Co and Ly decreased the formation of inflammatory foci compared with CI (p < 0.05). Ly afforded greater animal survival compared with CI, Ca, and Co (p < 0.05). The animals in the Co group died prematurely compared with the CI group (p = 0.03). Ly with 13cH potency had significantly more benefits in the treatment of mice infected with T. cruzi, reducing the number

  5. The importance of the opossum (Didelphis albiventris as a reservoir for Trypanosoma cruzi in Bambuí, Minas Gerais state

    Directory of Open Access Journals (Sweden)

    Alexandre José Fernandes

    1991-03-01

    Full Text Available In a survey realized on the sylvatic and peridomestic environment at Bambuí county, Minas Gerais State, 44 (37.9% out of 116 opossums (Didelphis albiventris captured were found to be naturally infected with Trypanosoma cruzi. One handred and forty three parasite samples were obtanied from 43 infected opossums using simultaneously hemoculture, xenodiagnosis (Triatoma infestans, Panstrongylus megistus and Rhodnius neglectus and examination of anal glands contents. The parasite samples were characterized according to six isoenzyme patterns. All samples, independently of the method of isolation, presented an isoenzyme pattern similar to the standard T. cruzi Z1, showing that either xenodiagnosis or hemoculture can used without selecting parasite subpopulation from naturally infected opossums. Preveous isoenzyme patterns reported for human T.cruzi isolates from same region were completely different. This isoenzyme dissimilarity between sylvatic and domiciliar environments suggests the existence of two independent T. cruzi transmission cycles in Bambuí. The epidemiological implicatinos of these results are discussed.

  6. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Science.gov (United States)

    Calvet, Claudia Magalhaes; Choi, Jun Yong; Thomas, Diane; Suzuki, Brian; Hirata, Ken; Lostracco-Johnson, Sharon; de Mesquita, Liliane Batista; Nogueira, Alanderson; Meuser-Batista, Marcelo; Silva, Tatiana Araujo; Siqueira-Neto, Jair Lage; Roush, William R; de Souza Pereira, Mirian Claudia; McKerrow, James H; Podust, Larissa M

    2017-12-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of

  7. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-09-01

    Full Text Available Homologous recombination (HR is a DNA double-strand break (DSB repair pathway that utilizes a homologous template to fully repair the damaged DNA. HR is critical to maintain genome stability and to ensure genetic diversity during meiosis. A specialized class of enzymes known as recombinases facilitate the exchange of genetic information between sister chromatids or homologous chromosomes with the help of numerous protein accessory factors. The majority of the HR machinery is highly conserved among eukaryotes. In many protozoan parasites, HR is an essential DSB repair pathway that allows these organisms to adapt to environmental conditions and evade host immune systems through genetic recombination. Therefore, small molecule inhibitors, capable of disrupting HR in protozoan parasites, represent potential therapeutic options. A number of small molecule inhibitors were identified that disrupt the activities of the human recombinase RAD51. Recent studies have examined the effect of two of these molecules on the Entamoeba recombinases. Here, we discuss the current understandings of HR in the protozoan parasites Trypanosoma, Leishmania, Plasmodium, and Entamoeba, and we review the small molecule inhibitors known to disrupt human RAD51 activity.

  8. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    Science.gov (United States)

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  9. Guide totheNomenclatureofKinetoplastidRNA Editing: AProposal

    Czech Academy of Sciences Publication Activity Database

    Simpson, L.; Aphasizhev, R.; Lukeš, Julius; Cruz-Reyes, J.

    2010-01-01

    Roč. 161, č. 1 (2010), s. 2-6 ISSN 1434-4610 Institutional research plan: CEZ:AV0Z60220518 Keywords : TRYPANOSOMA-BRUCEI MITOCHONDRIA * BINDING COMPLEX * EDITOSOME INTEGRITY * MESSENGER-RNA * U-DELETION * LEISHMANIA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.329, year: 2010

  10. Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in Anurans of the São Paulo and Mato Grosso do Sul States - Brazil

    OpenAIRE

    Leal, Denise D.M.; O'dwyer, Lucia H.; Ribeiro, Vitor C.; Silva, Reinaldo J.; Ferreira, Vanda L.; Rodrigues, Rozangela B.

    2009-01-01

    Wild animals are exposed to numerous pathogens, including hemoparasites. The Trypanosoma and hemogregarinegroup are frequently reported as parasites in anurans (frogs, tree frogs and toads). The identification of these hemoparasites is usually made through stage observation of their morphology in the peripheral blood of the host. There areno studies, however, based on the biological cycle of these hemoparasites. The objective of the present study was toevaluate the presence of hemogregarines ...

  11. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  12. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    Science.gov (United States)

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3870 Trypanosoma... consist of antigens and antisera used in serological tests to identify antibodies to Trypanosoma spp. in...

  14. Reinfections with strains of Trypanosoma cruzi, of different biodemes as a factor of aggravation of myocarditis and myositis in mice Reinfecções com cepas do Trypanosoma cruzi de diferentes biodemas como fator agravante da miocardite e miosite em camundongos

    Directory of Open Access Journals (Sweden)

    Sonia Gumes Andrade

    2006-02-01

    Full Text Available Reinfections with Trypanosoma cruzi in patients from endemic areas have been claimed to be an aggravation factor of cardiac manifestations in Chagas' disease. In the present study, the influence of triple infections with strains of different biodemes, on cardiac and skeletal muscle lesions was experimentally tested. Fifty eight mice chronically infected with the Colombian strain (Biodeme Type III were successively reinfected as follows: 1st group - reinfected with 21 SF strain (Type II followed by Y strain (Type I ; 2nd - group reinfections with Y strain followed by 21SF strain. Isoenzyme analysis of parasites from hemocultures obtained from triple infected mice, revealed the patterns of three distinct zymodemes in the same animal. Each Trypanosoma cruzi strain was reisolated after four passages in mice on either the 7th, 14th or 30th day after inoculation with the blood of triple infected mice. Histopathology results demonstrated a significant exacerbation of cardiac and skeletal muscle inflammatory lesions, confirmed by morphometric evaluation, in mice with triple infection. No aggravation of parasitism was detected. The possibility of an enhancement of cellular response in the triple infected mice is suggested.Reinfecções pelo Trypanosoma cruzi em pacientes de áreas endêmicas têm sido mencionadas como fator agravante das manifestações cardíacas na doença de Chagas. No presente estudo, a influência da tríplice infecção com cepas de diferentes biodemas, sobre as lesões do miocárdio e de músculo esquelético foi investigada experimentalmente. Cinqüenta e oito camundongos cronicamente infectados com a cepa Colombiana do Trypanosoma cruzi (Biodema Tipo III foram sucessivamente reinoculadas como a seguir: 1º grupo - reinfectados com a cepa 21 SF (Tipo II seguido pela cepa Y (Tipo I; 2º grupo - reinfecção com a cepa Y seguida pela cepa 21SF. A análise isoenzimática dos parasitas das hemoculturas obtidas dos animais com tr

  15. Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger.

    Science.gov (United States)

    Rossi, Jean-Pierre; Kadaouré, Ibrahima; Godefroid, Martin; Dobigny, Gauthier

    2017-10-05

    Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed the metrics around each data location using a set of circular buffers of increasing radii (20m, 40m, 60m, 80m and 100m). For each spatial resolution, we determined the optimal combination of feature class and regularization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey, which was transformed into a binary map implementing a threshold maximizing the sensitivity and the specificity. The resulting binary maps were combined to display the proportion of models that indicated a good environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics derived from buffers of 80m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas. Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical staff awareness or even

  16. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  17. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  18. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  19. Dicty_cDB: Contig-U12133-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available mplicated in... 40 1.0 2 ( AX683150 ) Sequence 124 from Patent EP1279744. 40 1.0 2 ( L27127 ) Drosophila melanogaster imitation...none) Trypanosoma brucei chromosome 2 cl... 122 5e-30 AF292095_1( AF292095 |pid:none) Xenopus laevis imitation

  20. Roles of the Nfu Fe–S targeting factors in the trypanosome mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Benz, C.; Kovářová, Julie; Králová-Hromadová, Ivica; Pierik, A. J.; Lukeš, Julius

    2016-01-01

    Roč. 46, č. 10 (2016), s. 641-651 ISSN 0020-7519 EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Nfu1 * iron–sulphur cluster * Fe–S Mitochondrion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2016