WorldWideScience

Sample records for parameter measuring sensor

  1. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo [Pusan National University, Busan (Korea, Republic of); Bae, Byoung Uhn; Kim, Kyoung Doo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  2. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo; Bae, Byoung Uhn; Kim, Kyoung Doo

    2016-01-01

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  3. Measurement of drill grinding parameters using laser sensor

    Science.gov (United States)

    Yanping, Peng; Kumehara, Hiroyuki; Wei, Zhang; Nomura, Takashi

    2005-12-01

    To measure the grinding parameters and geometry parameters accurately for a drill point is essential to its design and reconditioning. In recent years, a number of non-contact coordinate measuring apparatuses, using CCD camera or laser sensors, are developed. But, a lot work is to be done for further improvement. This paper reports another kind of laser coordinate meter. As an example of its application, the method for geometry inspection of the drill flank surface is detailed. Measured data from laser scanning on the flank surface around some points with several 2-dimensional curves are analyzed with mathematical procedure. If one of these curves turns to be a straight line, it must be the generatrix of the grinding cone. Thus, the grinding parameters are determined by a set of three generatrices. Then, the measurement method and data processing procedure are proposed. Its validity is assessed by measuring a sample with given parameters. The point geometry measured agrees well with the known values. In comparison with other methods in the published literature, it is simpler in computation and more accurate in results.

  4. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  5. Measurement of agricultural parameters using wireless sensor network (WSN)

    Science.gov (United States)

    Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson

    2018-04-01

    The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.

  6. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  7. Sensor Placement for Modal Parameter Subset Estimation

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2016-01-01

    The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...

  8. Autonomous sensor particle for parameter tracking in large vessels

    International Nuclear Information System (INIS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-01-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes

  9. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.

    Science.gov (United States)

    Park, Yu Sun; Chang, Soon Heung

    2011-04-04

    A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  10. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2015-04-01

    Full Text Available Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  11. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  12. Event-Based Variance-Constrained ${\\mathcal {H}}_{\\infty }$ Filtering for Stochastic Parameter Systems Over Sensor Networks With Successive Missing Measurements.

    Science.gov (United States)

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2018-03-01

    This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.

  13. Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2014-02-01

    Full Text Available Using the finite element method (FEM and particle swarm optimization (PSO, a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters’ effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°.

  14. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  15. Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Directory of Open Access Journals (Sweden)

    V. Jenik

    2012-06-01

    Full Text Available Active defense represents an innovative way of protecting military vehicles. It is based on the employment of a set of radar sensors which detect an approaching threat missile and activate a suitable counter-measure. Since the radar sensors are supposed to detect flying missiles very fast and, at the same time, distinguish them from stationary or slow-moving objects, CW Doppler radar sensors can be employed with a benefit. The submitted article deals with a complex noise analysis of this type of sensors. The analysis considers the noise of linear and quasi-linear RF components, phase-noise of the local oscillator as well as the noise of low-frequency circuits. Since the incidence of the phase-noise depends strongly upon the time delay between the reference and the cross-talked signals, a new method of measuring noise parameters utilizing a reflecting wall has been developed and verified. The achieved results confirm potentially high influence of the phase-noise on the noise parameters of the mentioned type of radar sensors. Obtained results can be used for the analysis of noise parameters of the similar but even more complex sensors.

  16. Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.

    Science.gov (United States)

    Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo

    2016-01-01

    In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of measurement noise on modal parameter identification

    International Nuclear Information System (INIS)

    Dorvash, S; Pakzad, S N

    2012-01-01

    In the past decade, much research has been conducted on data-driven structural health monitoring (SHM) algorithms with use of sensor measurements. A fundamental step in this SHM application is to identify the dynamic characteristics of structures. Despite the significant efforts devoted to development and enhancement of the modal parameter identification algorithms, there are still substantial uncertainties in the results obtained in real-life deployments. One of the sources of uncertainties in the results is the existence of noise in the measurement data. Depending on the subsequent application of the system identification, the level of uncertainty in the results and, consequently, the level of noise contamination can be very important. As an effort towards understanding the effect of measurement noise on the modal identification, this paper presents parameters that quantify the effects of measurement noise on the modal identification process and determine their influence on the accuracy of results. The performance of these parameters is validated by a numerically simulated example. They are then used to investigate the accuracy of identified modal properties of the Golden Gate Bridge using ambient data collected by wireless sensors. The vibration monitoring tests of the Golden Gate Bridge provided two synchronized data sets collected by two different sensor types. The influence of the sensor noise level on the accuracy of results is investigated throughout this work and it is shown that high quality sensors provide more accurate results as the physical contribution of response in their measured data is significantly higher. Additionally, higher purity and consistency of modal parameters, identified by higher quality sensors, is observed in the results. (paper)

  18. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  19. Concept for a solid-state multi-parameter sensor system for cell-culture monitoring

    International Nuclear Information System (INIS)

    Baecker, M.; Beging, S.; Biselli, M.; Poghossian, A.; Wang, J.; Zang, W.; Wagner, P.; Schoening, M.J.

    2009-01-01

    In this study, a concept for a silicon-based modular solid-state sensor system for inline multi-parameter monitoring of cell-culture fermentation processes is presented. The envisaged multi-parameter sensor system consists of two identical sensor modules and is intended for continuous quantification of up to five (bio-)chemical and physical parameters, namely, glucose and glutamine concentration, pH value, electrolyte conductivity and temperature by applying different transducer principles and/or different operation modes. Experimental results for the field-effect electrolyte-insulator-semiconductor (EIS) sterilisable pH sensor and electrolyte conductivity sensor based on interdigitated electrodes are presented. The ongoing autoclaving does not have any significant impact on the pH-sensitive properties of a Ta 2 O 5 -gate EIS sensor. Even after 30 autoclaving cycles, the pH sensors show a clear pH response and nearly linear calibration curve with a slope of 57 ± 1 mV/pH. Additional scanning electron microscopy and ellipsometric investigations do not show any visible surface degradation or changes in the thickness of the pH-sensitive Ta 2 O 5 layer. The preliminary results demonstrate the suitability of the developed EIS sensor for an inline pH measurement during a fermentation process. In addition, interdigitated electrodes of different geometries serving as electrolyte conductivity sensor have been tested for measurements in relatively high ionic-strength solutions.

  20. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  1. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  2. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  3. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  6. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  7. METHODOLOGY FOR DETERMINING OPTIMAL EXPOSURE PARAMETERS OF A HYPERSPECTRAL SCANNING SENSOR

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value and flight parameters (i.e. altitude, velocity. A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera’s movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance – GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.

  8. Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor

    Directory of Open Access Journals (Sweden)

    Taikyeong Jeong

    2011-09-01

    Full Text Available In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS. A laser-vision sensor (LVS, consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality.

  9. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-02-23

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.

  10. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  11. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  12. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  13. Extraction of bowing parameters from violin performance combining motion capture and sensors.

    Science.gov (United States)

    Schoonderwaldt, E; Demoucron, M

    2009-11-01

    A method is described for measurement of a complete set of bowing parameters in violin performance. Optical motion capture was combined with sensors for accurate measurement of the main bowing parameters (bow position, bow velocity, bow acceleration, bow-bridge distance, and bow force) as well as secondary control parameters (skewness, inclination, and tilt of the bow). In addition, other performance features (moments of on/off in bow-string contact, string played, and bowing direction) were extracted. Detailed descriptions of the calculations of the bowing parameters, features, and calibrations are given. The described system is capable of measuring all bowing parameters without disturbing the player, allowing for detailed studies of musically relevant aspects of bow control and coordination of bowing parameters in bowed-string instrument performance.

  14. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Vedran Budinski

    2017-02-01

    Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper

  15. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  16. Multi-Parameter Aerosol Scattering Sensor

    Science.gov (United States)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  17. Optimal allocation of sensors for state estimation of distributed parameter systems

    International Nuclear Information System (INIS)

    Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.

    1978-01-01

    The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)

  18. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    Science.gov (United States)

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  19. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-01-01

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510

  20. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  1. Biomedical sensor for transcutaneous oxygen measurements using thick film technology

    OpenAIRE

    Lam, Yu-Zhi (Liza)

    2003-01-01

    The measurement of the partial pressure of oxygen in arterial blood is essential for the analysis of a patient's respiratory condition. There are several commercially available methods and systems to measure this parameter transcutaneously. However, they tend to be cumbersome and costly. To overcome the disadvantages presented, a new type of sensor for transcutaneous blood gas measurement was investigated, employing thick film technology, which is an excellent technique to produce sensors in ...

  2. Simple mechanical parameters identification of induction machine using voltage sensor only

    International Nuclear Information System (INIS)

    Horen, Yoram; Strajnikov, Pavel; Kuperman, Alon

    2015-01-01

    Highlights: • A simple low cost algorithm for induction motor mechanical parameters estimation is proposed. • Voltage sensing only is performed; speed sensor is not required. • The method is suitable for both wound rotor and squirrel cage motors. - Abstract: A simple low cost algorithm for induction motor mechanical parameters estimation without speed sensor is presented in this paper. Estimation is carried out by recording stator terminal voltage during natural braking and subsequent offline curve fitting. The algorithm allows accurately reconstructing mechanical time constant as well as loading torque speed dependency. Although the mathematical basis of the presented method is developed for wound rotor motors, it is shown to be suitable for squirrel cage motors as well. The algorithm is first tested by reconstruction of simulation model parameters and then by processing measurement results of several motors. Simulation and experimental results support the validity of the proposed algorithm

  3. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  4. Photon small-field measurements with a CMOS active pixel sensor.

    Science.gov (United States)

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  5. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-12-01

    Full Text Available Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.

  6. Numerical study of on-fiber metal film geometry on behavior of dual parameter SFBG sensors

    International Nuclear Information System (INIS)

    Goodarzy, Behnam; Foroozmehr, Ehsan; Alemohammad, Hamidreza

    2016-01-01

    In this paper, a numerical model for simulating a dual parameter super-structure FBG (SFBG) with on-fiber deposited thin films is developed. A periodic on-fiber thin coating of silver on FBG sensors provides the ability of measuring two parameters of strain and temperature simultaneously. The model consists of a mechanical model to determine the strain of the sensor caused by different loading conditions, coupled with an optical model to calculate the reflected spectrum of the SFBG sensor. A guideline is introduced for designing a SFBG by studying the effect of coating period, coating duty cycle, and coating thickness. The results show that the sideband spacing in such SFBGs is only affected by the coating period while the Bragg peak sensitivity does not depend on coating period. Also the coating duty cycle and the coating thickness can affect both sensitivity of the Bragg peak and the measuring range of a sensor. The validity of the results was studied by comparing with previously reported data. (paper)

  7. Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test

    Science.gov (United States)

    Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.

    2017-11-01

    Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical

  8. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  9. Design and theoretical analysis of a resonant sensor for liquid density measurement.

    Science.gov (United States)

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.

  10. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...... of redox properties. As genetically encoded sensors they can be expressed in living cells and used for analysis of intracellular redox conditions; however, which parameters are measured depends on how the sensors interact with various cellular redox components. Results of both biochemical and cell...

  11. Sensor set-up for wireless measurement of automotive rim and wheel parameters in laboratory conditions

    Science.gov (United States)

    Borecki, M.; Prus, P.; Korwin-Pawlowski, M. L.; Rychlik, A.; Kozubel, W.

    2017-08-01

    Modern rims and wheels are tested at the design and production stages. Tests can be performed in laboratory conditions and on the ride. In the laboratory, complex and costly equipment is used, as for example wheel balancers and impact testers. Modern wheel balancers are equipped with electronic and electro-mechanical units that enable touch-less measurement of dimensions, including precision measurement of radial and lateral wheel run-out, automatic positioning and application of the counterweights, and vehicle wheel set monitoring - tread wear, drift angles and run-out unbalance. Those tests are performed by on-wheel axis measurements with laser distance meters. The impact tester enables dropping of weights from a defined height onto a wheel. Test criteria are the loss of pressure of the tire and generation of cracks in the wheel without direct impact of the falling weights. In the present paper, a set up composed of three accelerometers, a temperature sensor and a pressure sensor is examined as the base of a wheel tester. The sensor set-up configuration, on-line diagnostic and signal transmission are discussed.

  12. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    Science.gov (United States)

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  13. A Smart Multi-parameter Sensor with Online Monitoring for the Aquaculture in China

    OpenAIRE

    Peng , Fa; Wang , Jinxing; Liu , Shuangxi; Li , Daoliang; Xu , Dan; Wang , Yang

    2013-01-01

    International audience; PH, DO,ORP, EC and water-level are important parameters of the aquaculture monitoring. But the high cost of foreign sensors and high-energy consumption of Chinese sensors make it impossible for wide use in China. This paper uses MCU STM8L152 to realize the ultralow power design. With simple hardware structure design, the cost of the multi-parameter sensor can be reduced .The experiment data of the multi-parameter sensor contrasting with the results obtained by Hach mul...

  14. Q-Learning Multi-Objective Sequential Optimal Sensor Parameter Weights

    Directory of Open Access Journals (Sweden)

    Raquel Cohen

    2016-04-01

    Full Text Available The goal of our solution is to deliver trustworthy decision making analysis tools which evaluate situations and potential impacts of such decisions through acquired information and add efficiency for continuing mission operations and analyst information.We discuss the use of cooperation in modeling and simulation and show quantitative results for design choices to resource allocation. The key contribution of our paper is to combine remote sensing decision making with Nash Equilibrium for sensor parameter weighting optimization. By calculating all Nash Equilibrium possibilities per period, optimization of sensor allocation is achieved for overall higher system efficiency. Our tool provides insight into what are the most important or optimal weights for sensor parameters and can be used to efficiently tune those weights.

  15. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    Science.gov (United States)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  16. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    Science.gov (United States)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could

  17. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  18. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  19. Research progress of on-the-go soil parameter sensors based on NIRS

    Science.gov (United States)

    An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua

    2014-11-01

    Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.

  20. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  1. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  2. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya

    2016-10-16

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  3. Improving wellbore position accuracy of horizontal wells by using a continuous inclination measurement from a near bit inclination MWD sensor

    Energy Technology Data Exchange (ETDEWEB)

    Berger, P. E.; Sele, R. [Baker Hughes INTEQ (United States)

    1998-12-31

    Wellbore position calculations are typically performed by measuring azimuth and inclination at 10 to 30 meter intervals and using interpolation techniques to determine the borehole position between survey stations. The input parameters are measured depth (MD), azimuth and inclination, where the two parameters are measured with an MWD tool. Output parameters are the geometric coordinates; true value depth (TVD), north and east. By improving the accuracy of the inclination measurement reduces the uncertainty of the calculated TVD value, resulting in increased confidence in wellbore position. Significant improvements in quality control can be achieved by using multiple sensors. This paper describes a set of quality control parameters that can be used to verify individual sensor performance and a method for calculating TVD uncertainty in horizontal wells, using a single sensor or a combination of sensors. 6 refs., 5 figs.

  4. Development of planar electromagnetic sensors for measurement and monitoring of environmental parameters

    International Nuclear Information System (INIS)

    Yunus, M A Md; Mukhopadhyay, S C

    2011-01-01

    Novel planar electromagnetic sensors designed, fabricated and tested for environmental monitoring are reported in this paper. Intensive modelling of the sensors is also discussed. Experiments were conducted to obtain the impedance characterization for each sensor and the results were compared with the simulation results. The sensors have been tested to detect nitrate contamination in distilled water from two sets of experiments. First, two nitrate forms, namely sodium nitrate (NaNO 3 ) and ammonium nitrate (NH 4 NO 3 ), each of different concentration between 5 and 20 mg dissolved in 1 litre of distilled water, were used to observe the sensor response. Second, NaNO 3 and NH 4 NO 3 were mixed in several different ratios in 1 litre of distilled water and the responses of the sensors were observed. The best sensor has been determined based on the interpretation from both nitrates' experimental results. Preliminary results show that the best sensor can very well detect the presence of nitrate added in distilled water and can distinguish the concentration level. The work and improvement for future consideration are also discussed in this paper

  5. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range

    International Nuclear Information System (INIS)

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David

    2013-01-01

    Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers

  6. Psychoacoustic parameters and its measuring system; Onshitsu hyoka wo hyokasuru tame no parameter to keisoku system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M.; Imaizumi, H.; Ono, T. [Ono Sokki Co. Ltd., Tokyo (Japan)

    1998-05-01

    Human auditory sensation has both extremely excellent performance and general versatility as sound analyzer. At present, it is impossible to make equipment with the same functions as human being, and describe an auditory sensation function as acoustic sensor even by any physical analysis techniques. However, extraction of auditory sensation parameters is becoming possible by using psychoacoustics and binaural signal processing. This paper mainly explains the calculation method of sound quality evaluation parameters derived from psychoacoustic results based on a sound quality evaluation system under development by the authors. This system is based on binaural measurement by dummy head, and calculates psychoacoustic parameters such as loudness, sharpness, roughness, fluctuation strength and tonality through frequency analysis of the measured stereo signals. The system also calculates 2-D parameters such as sensory pleasantness and unbiased annoyance based on the above parameters. 12 refs., 4 figs.

  7. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    Directory of Open Access Journals (Sweden)

    Zhixu Dong

    2018-04-01

    Full Text Available The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS. Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability, and hence the accuracy and efficiency of measurement are both improved.

  8. Distributed Multi-Sensor Real-Time Building Environmental Parameters Monitoring System with Remote Data Access

    Directory of Open Access Journals (Sweden)

    Beinarts Ivars

    2014-12-01

    Full Text Available In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.

  9. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  10. Study on the Energetic Parameters in a Photothermic Sensor with ...

    African Journals Online (AJOL)

    Study on the Energetic Parameters in a Photothermic Sensor with Black Polymeric Film. ... The evolution of incidental solar illumination on the horizontal plan of sensor and the temperature distribution are studied. Results showed that the ... Keywords: film, solar energy, greenhouse effect, design, radiation, illumination.

  11. Pressure Measurement Sensor

    Science.gov (United States)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  12. Design and implementation of atmospheric multi-parameter sensor for UAVs

    Science.gov (United States)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (<20%) and PM10 (<20%). Vertical profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric

  13. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  14. Development of the interfacial area concentration measurement method using a five sensor conductivity probe

    International Nuclear Information System (INIS)

    Euh, Dong Jin; Yun, Byong Jo; Song, Chul Hwa; Kwon, Tae Soon; Chung, Moon Ki; Lee, Un Chul

    2000-01-01

    The interfacial area concentration(IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAE can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly than the four sensor prober. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator

  15. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  16. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Science.gov (United States)

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  17. Multidimensional measurement by using 3-D PMD sensors

    Directory of Open Access Journals (Sweden)

    T. Ringbeck

    2007-06-01

    Full Text Available Optical Time-of-Flight measurement gives the possibility to enhance 2-D sensors by adding a third dimension using the PMD principle. Various applications in the automotive (e.g. pedestrian safety, industrial, robotics and multimedia fields require robust three-dimensional data (Schwarte et al., 2000. These applications, however, all have different requirements in terms of resolution, speed, distance and target characteristics. PMDTechnologies has developed 3-D sensors based on standard CMOS processes that can provide an optimized solution for a wide field of applications combined with high integration and cost-effective production. These sensors are realized in various layout formats from single pixel solutions for basic applications to low, middle and high resolution matrices for applications requiring more detailed data. Pixel pitches ranging from 10 micrometer up to a 300 micrometer or larger can be realized and give the opportunity to optimize the sensor chip depending on the application.

    One aspect of all optical sensors based on a time-of-flight principle is the necessity of handling background illumination. This can be achieved by various techniques, such as optical filters and active circuits on chip. The sensors' usage of the in-pixel so-called SBI-circuitry (suppression of background illumination makes it even possible to overcome the effects of bright ambient light. This paper focuses on this technical requirement. In Sect. 2 we will roughly describe the basic operation principle of PMD sensors. The technical challenges related to the system characteristics of an active optical ranging technique are described in Sect. 3, technical solutions and measurement results are then presented in Sect. 4. We finish this work with an overview of actual PMD sensors and their key parameters (Sect. 5 and some concluding remarks in Sect. 6.

  18. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    Science.gov (United States)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  19. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  20. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    Science.gov (United States)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  1. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  2. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    The design of a measured program devoted to parameter identification of structural dynamic systems is considered, the design problem is formulated as an optimization problem due to minimize the total expected cost of the measurement program. All the calculations are based on a priori knowledge...... and engineering judgement. One of the contribution of the approach is that the optimal nmber of sensors can be estimated. This is sown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program for estimating the modal damping parameters...

  3. ISFET sensor evaluation and modification for seawater pH measurement

    Science.gov (United States)

    Martz, T. R.; Johnson, K. S.; Jannasch, H.; Coletti, L.; Barry, J.; Lovera, C.

    2008-12-01

    In the future, short-term cycles (daily to subannual) and long-term trends (annual and greater) in the carbonate system will be observed by autonomous sensors operating from a variety of platforms (e.g., moorings, profiling floats, AUVs, etc.). Of the four carbonate parameters, pH measurement has the longest history of development - yet robust autonomous sensing techniques remain elusive due to a catalog of technical challenges. Existing commercial sensor technologies generally do not meet the stringent demands of accuracy, long-term stability, low power, pressure tolerance, resistance to biofouling, and ease of use required by the oceanographic community. We report here on some recent advances in Ion Sensitive Field Effect Transistor (ISFET) technology that may open the door for more widespread autonomous seawater pH measurements. Much of our work has focused on applications of the Honeywell Durafet pH sensor, a product designed for industrial process control. Initial results from laboratory testing and deployments in the MBARI test tank and near shore moorings will be presented. Sensor calibration techniques will be addressed. Applications of now-available off-the-shelf sensors including shipboard underway measurement, shallow water mooring deployment, and a gas controlled seawater aquarium for pH perturbation experiments will be discussed. We hope that an ongoing collaboration between MBARI and Honeywell will result in a commercially available product, designed specifically for oceanographic applications, within the next several years.

  4. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, Kirk [Univ. of Florida, Gainesville, FL (United States)

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  5. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  6. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  7. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  8. Numerical evaluation for a five-sensor probe method to measure the interfacial area concentration under the bubble fluctuation condition

    International Nuclear Information System (INIS)

    Euh, D. J.; Yun, B. J.; Song, C. H.

    2003-01-01

    Interfacial area concentration is an important parameter in the two phase flow models. Currently, two types of probe methods, double-sensor and four-sensor, are widely used to measure the interfacial area concentration. In this study, a configuration of five-sensor probe sensor tips and a measuring method for the interfacial area concentration by using the probe are proposed to improve the performance of the previous probe methods. The five-sensor probe method proposed in this study is essentially based on the four-sensor probe method but improves it by adapting one more sensor. The passing types of the interfaces through the sensors are categorized into four and independent methods are applied to the interfaces belonging to each category. This method has an advantage such that a more systematic approach for missing bubbles can be made when compared with the classical four sensor probe method. To verify the applicability of the five-sensor probe method, numerical tests are performed with consideration of the bubble lateral movement. The effects of bubble size and intensity of the bubble lateral motion on the measurement of the interfacial area concentration are also investigated. The bubble parameters related to the bubble fluctuation and interface geometry are determined by the Monte Carlo approach

  9. Analysis and optimal design of moisture sensor for rice grain moisture measurement

    Science.gov (United States)

    Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas

    2018-04-01

    The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.

  10. Sensor for viscosity and shear strength measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  11. Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration

    Directory of Open Access Journals (Sweden)

    Shifei Yuan

    2015-07-01

    Full Text Available Accurate estimation of model parameters and state of charge (SoC is crucial for the lithium-ion battery management system (BMS. In this paper, the stability of the model parameters and SoC estimation under measurement uncertainty is evaluated by three different factors: (i sampling periods of 1/0.5/0.1 s; (ii current sensor precisions of ±5/±50/±500 mA; and (iii voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the numerical model stability analysis and parametric sensitivity analysis for battery model parameters are conducted under sampling frequency of 1–50 Hz. The perturbation analysis is theoretically performed of current/voltage measurement uncertainty on model parameter variation. Secondly, the impact of three different factors on the model parameters and SoC estimation was evaluated with the federal urban driving sequence (FUDS profile. The bias correction recursive least square (CRLS and adaptive extended Kalman filter (AEKF algorithm were adopted to estimate the model parameters and SoC jointly. Finally, the simulation results were compared and some insightful findings were concluded. For the given battery model and parameter estimation algorithm, the sampling period, and current/voltage sampling accuracy presented a non-negligible effect on the estimation results of model parameters. This research revealed the influence of the measurement uncertainty on the model parameter estimation, which will provide the guidelines to select a reasonable sampling period and the current/voltage sensor sampling precisions in engineering applications.

  12. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  13. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  14. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    Science.gov (United States)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  15. Estimating spacecraft attitude based on in-orbit sensor measurements

    DEFF Research Database (Denmark)

    Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias

    2014-01-01

    of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...

  16. Sensorized toys for measuring manipulation capabilities of infants at home.

    Science.gov (United States)

    Passetti, Giovanni; Cecchi, Francesca; Baldoli, Ilaria; Sgandurra, Giuseppina; Beani, Elena; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo

    2015-01-01

    Preterm infants, i.e. babies born after a gestation period shorter than 37 weeks, spend less time exploring objects. The quantitative measurement of grasping actions and forces in infants can give insights on their typical or atypical motor development. The aim of this work was to test a new tool, a kit of sensorized toys, to longitudinally measure, monitor and promote preterm infants manipulation capabilities with a purposive training in an ecological environment. This study presents preliminary analysis of grasping activity. Three preterm infants performed 4 weeks of daily training at home. Sensorized toys with embedded pressure sensors were used as part of the training to allow quantitative analysis of grasping (pressure and acceleration applied to toys while playing). Each toy was placed on the midline, while the infant was in supine position. Preliminary data show differences in the grasping parameters in relation to infants age and the performed daily training. Ongoing clinical trial will allow a full validation of this new tool for promoting object exploration in preterm infants.

  17. Range-Measuring Video Sensors

    Science.gov (United States)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  18. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    Science.gov (United States)

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  19. Research On The Measure Method Of Oblique Pinhole Parameters

    Directory of Open Access Journals (Sweden)

    Ma Yu-Zhen

    2016-01-01

    Full Text Available There are many special advantages in measuring the diameter of blind and deep holes with a capacitive probe, there are still some challenges for the measurement of a oblique pinhole parameters because the measuring device is inconvenient to stretch into the oblique pinhole exactly. A five-dimensional measurement system was adopted in the paper which included a capacitive sensor probe and a three-coordinate measuring machine to accomplish the measurement for oblique pinholes. With the help of the three-dimensional coordinates measured from the pinhole axis, we put forward a comprehensive method of combining the projection method and the least squares method together for fitting spatial straight line to obtain the optimal equation of the spacial axis. Finally, a reliable and entire measurement system was set up.

  20. Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor

    Science.gov (United States)

    Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.

    2001-02-01

    An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.

  1. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2012-08-01

    Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  2. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    Science.gov (United States)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement

  3. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in South Kalimantan, indonesia

    International Nuclear Information System (INIS)

    Sugriwan, I; Soesanto, O

    2017-01-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm 3 . TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation V RL = 0.561 ln n – 2.2641 volt, with n is a various concentrations and V RL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the

  4. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  5. A comparison of oxygen saturation measurements obtained from a 'blue sensor' with a standard sensor.

    Science.gov (United States)

    Mawson, Isabel E; Dawson, Jennifer A; Donath, Susan M; Davis, Peter G

    2011-10-01

    The study aims to investigate pulse oximetry measurements from a 'blue' pulse oximeter sensor against measurements from a 'standard' pulse oximeter sensor in newly born infants. Immediately after birth, both sensors were attached to the infant, one to each foot. SpO₂ measurements were recorded simultaneously from each sensor for 10 min. Agreement between pairs of SpO₂ measurements were calculated using Bland-Altman analysis. Thirty-one infants were studied. There was good correlation between simultaneous SpO₂ measurements from both sensors (r² = 0.75). However, the mean difference between 'blue' and 'standard' sensors was -1.6%, with wide 95% limits of agreement +18.4 to -21.6%. The range of mean difference between sensors from each infant ranged from -20 to +20. The mean difference between the blue and standard sensor SpO₂ measurements is not clinically important. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  6. Lightning Current Measurement with Fiber-Optic Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  7. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  8. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  9. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  10. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  11. Design Parameter Optimization of a Silicon-Based Grating Waveguide for Performance Improvement in Biochemical Sensor Application.

    Science.gov (United States)

    Hong, Yoo-Seung; Cho, Chun-Hyung; Sung, Hyuk-Kee

    2018-03-05

    We performed numerical analysis and design parameter optimization of a silicon-based grating waveguide refractive index (RI) sensor. The performance of the grating waveguide RI sensor was determined by the full-width at half-maximum (FWHM) and the shift in the resonance wavelength in the transmission spectrum. The transmission extinction, a major figure-of-merit of an RI sensor that reflects both FWHM and resonance shift performance, could be significantly improved by the proper determination of three major grating waveguide parameters: duty ratio, grating period, and etching depth. We analyzed the transmission characteristics of the grating waveguide under various design parameter conditions using a finite-difference time domain method. We achieved a transmission extinction improvement of >26 dB under a given bioenvironmental target change by the proper choice of the design procedure and parameters. This design procedure and choice of appropriate parameters would enable the widespread application of silicon-based grating waveguide in high-performance RI biochemical sensor.

  12. Survey of the future concrete structures lifetime measuring the water content: 4 types of embedded sensor under checking

    International Nuclear Information System (INIS)

    Moreau, G.; Salin, J.; Masson, B.; Dubois, J.P.; Agostini, F.; Skoczylas, F.

    2011-01-01

    Today thermal and mechanical properties are well-measured with common sensors like respectively PT100 sensors and vibrating wire sensors or new sensors like optical fiber sensors. On the other hand there is no reference sensor for the measurement of the concrete moisture. In this paper, we present our laboratory evaluation's protocol and first result for four different technologies of concrete moisture sensor based on our owner requirement. Specimens of porous mortar (E/C ∼ 0.8) with embedded sensor are placed into a temperature and humidity controlled climatic chamber. Then, different air relative humidity steps are enforced. Before each relative humidity change, stabilization of the mass of specimens is expected. The four technologies are based on: 1) capacity between two electrodes. The sensor is embedded in a porous Teflon cap. The sensor measures the humidity of air at equilibrium with concrete. Today it is the most common moisture sensor; 2) Elongation measurement of a calibrated nano porous material with a vibrating wire sensor. The sensor measures the hygroscopic volume change related to the humidity of the surrounding concrete. This sensor called Hydravib has been developed by Cementys S.A.S.; 3) Time Domain Reflectometry (TDR). The sensor measures an Electro Magnetic Wave time propagation in the concrete and this one is a function of the concrete permittivity; 4) gas permeability measurement of the ambient concrete. The sensor measures a pressure drop through a porous stainless filter. This study evaluates the capacities of four sensor technologies to indirectly measure one key parameter of concrete structure: the moisture concrete. Capacitive sensor does not seem to fulfill our requirements. Hydravib presents sensitivity to the moisture concrete evolution but it needs more development and a nano porous material calibration. Finally TDR and Pulse sensors present very promising results

  13. Electric current sensors: a review

    International Nuclear Information System (INIS)

    Ripka, Pavel

    2010-01-01

    The review makes a brief overview of traditional methods of measurement of electric current and shows in more detail relatively new types of current sensors. These include Hall sensors with field concentrators, AMR current sensors, magneto-optical and superconducting current sensors. The influence of the magnetic core properties on the error of the current transformer shows why nanocrystalline materials are so advantageous for this application. Built-in CMOS current sensors are important tools for monitoring the health of integrated circuits. Of special industrial value are current clamps which can be installed without breaking the measured conductor. Parameters of current sensors are also discussed, including geometrical selectivity. This parameter specific for current sensors means the ability to suppress the influence of currents external to the sensor (including the position of the return conductor) and also suppress the influence on the position of the measured conductor with respect to the current. (topical review)

  14. Acoustic sensor for in-pile fuel rod fission gas release measurement

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Ferrandis, J. Y.; Augereau, F.; Rosenkrantz, E.; Dierckx, M.

    2009-01-01

    We have developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in materials testing reactors. In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: - fuel temperature with a centre-line thermocouple type C, - internal pressure with a specific counter-pressure sensor, - fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced online from this measurement. The principle of this acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in materials testing reactors conditions. For this purpose some technical points have been studied in details: - fixing of the piezoelectric sample in a reliable way with a suitable signal transmission, - size of the gas cavity to avoid any perturbation of the acoustic waves, - miniaturization of the sensor because of narrow in-pile experimental devices

  15. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  16. Noninvasive Sensor for Measuring Muscle Metabolism During Exercise

    Science.gov (United States)

    Soller, B. R.; Yang, Y.; Lee, S. M. C.; Soyemi, O. O.; Wilson, C.; Hagan, R. D.

    2007-01-01

    The measurement of oxygen uptake (VO2) and lactate threshold (LT) are utilized to assess changes in aerobic capacity and the efficacy of exercise countermeasures in astronauts. During extravehicular activity (EVA), real-time knowledge of VO2 and relative work intensity can be used to monitor crew activity levels and organize tasks to reduce the cumulative effects of fatigue. Currently VO2 and LT are determined with complicated measurement techniques that require sampling of expired ventilatory gases, which may not be accurate in enclosed, oxygen-rich environments such as the EVA suit. The UMMS team has developed a novel near infrared spectroscopic (NIRS) system which noninvasively, simultaneously and continuously measures muscle oxygen tension, oxygen saturation, pH (pHm), and hematocrit from a small sensor placed on the leg. This system is unique in that it allows accurate, absolute measurement of these parameters in the thigh muscle by correcting spectra for the interference from skin pigment and fat. These parameters can be used to estimate VO2 and LT. A preliminary evaluation of the system s capabilities was performed in the NASA JSC Exercise Physiology Lab.

  17. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  18. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  19. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  20. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    Science.gov (United States)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  1. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor

    Science.gov (United States)

    Abdelbarr, Mohamed; Chen, Yulu Luke; Jahanshahi, Mohammad R.; Masri, Sami F.; Shen, Wei-Men; Qidwai, Uvais A.

    2017-12-01

    The advent of inexpensive digital cameras with depth sensing capabilities (RGB-D cameras) has opened the door to numerous useful applications that need quantitative measures of dynamic fields whose simultaneous time history quantification (at many points as dictated by the resolution of the camera) provides capabilities that were previously accessible only through expensive sensors (e.g., laser scanners). This paper presents a comprehensive experimental and computational study to evaluate the performance envelope of a representative RGB-D sensor (the first generation of Kinect sensor) with the aim of assessing its suitability for the class of problems encountered in the structural dynamics field, where reasonably accurate information of evolving displacement fields (as opposed to few discrete locations) that have simultaneous dynamic planar translational motion with significant rotational (torsional) components. This study investigated the influence of key system parameters of concern in selecting an appropriate sensor for such structural dynamic applications, such as amplitude range, spectral content of the dynamic displacements, location and orientation of sensors relative to target structure, fusing of measurements from multiple sensors, sensor noise effects, rolling-shutter effects, etc. The calibration results show that if the observed displacement field generates discrete (pixel) sensor measurements with sufficient resolution (observed displacements more than 10 mm) beyond the sensor noise floor, then the subject sensors can typically provide reasonable accuracy for transnational motion (about 5%) when the frequency range of the evolving field is within about 10 Hz. However, the expected error for torsional measurements is around 6% for static motion and 10% for dynamic rotation for measurements greater than 5°.

  2. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  3. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  4. Development of sensors for in-situ monitoring of corrosion and water chemistry parameters for the electric power utility industry

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Pang, J.; Liu, C.; Medina, E.; Villa, J.; Bueno, J.

    1993-01-01

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved, new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensors for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from ∼250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly

  5. Validity and repeatability of inertial measurement units for measuring gait parameters.

    Science.gov (United States)

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Numerical evaluation of the five sensor probe method for measurement of local interfacial area concentration of cap bubbles

    International Nuclear Information System (INIS)

    Euh, D.J.; Yun, B.J.; Song, C.H.; Kwon, T.S.; Chung, M.K.; Lee, U.C.

    2000-01-01

    The interfacial area concentration (IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAC can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator. (author)

  7. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  8. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    Science.gov (United States)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  9. A novel capacitance sensor for fireside corrosion measurement

    Science.gov (United States)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  10. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  11. Sensors for on-line monitoring of water chemistry parameters for NPP's

    International Nuclear Information System (INIS)

    Alltonen, P.; Maekelae, K.

    1997-01-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs

  12. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  13. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  14. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Huanqing Cui

    2017-03-01

    Full Text Available Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  15. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    The design of measurement programs devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program...

  16. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost, i.e. the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contributions of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...

  17. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    Science.gov (United States)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  18. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  19. Phase difference statistics related to sensor and forest parameters

    Science.gov (United States)

    Lopes, A.; Mougin, E.; Beaudoin, A.; Goze, S.; Nezry, E.; Touzi, R.; Karam, M. A.; Fung, A. K.

    1992-01-01

    The information content of ordinary synthetic aperture radar (SAR) data is principally contained in the radiometric polarization channels, i.e., the four Ihh, Ivv, Ihv and Ivh backscattered intensities. In the case of clutter, polarimetric information is given by the four complex degrees of coherence, from which the mean polarization phase differences (PPD), correlation coefficients or degrees of polarization can be deduced. For radiometric features, the polarimetric parameters are corrupted by multiplicative speckle noise and by some sensor effects. The PPD distribution is related to the sensor, speckle and terrain properties. Experimental results are given for the variation of the terrain hh/vv mean phase difference and magnitude of the degree of coherence observed on bare soil and on different pine forest stands.

  20. Fluxgate Magnetic Sensor and Its Application for Current Measurement

    International Nuclear Information System (INIS)

    Mitra-Djamal

    2007-01-01

    Conventionally electric current can be measured by connecting the instrument serially on the circuit. This method has disadvantage because its disturb the measured current flow. By using a magnetic sensor, current can be measured without disturbing the current flow, because it just measures the magnetic field of the measured current. This paper shows the use of fluxgate magnetic sensor for current measurement. It is shown that the sensor can measure widely range of current with resolution ≤ 2 %. (author)

  1. Hydrogel-based sensor for CO2 measurements

    NARCIS (Netherlands)

    Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    A hydrogel-based sensor is presented for CO2 measurements. The sensor consists of a pressure sensor and porous silicon cover. A pH-sensitive hydrogel is confined between the two parts. Furthermore the porous cover contains a bicarbonate solution and a gaspermeable membrane. CO2 reacts with the

  2. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  3. Laser sensor with Bragg gratings of fiber optics to physics parameter measuring

    International Nuclear Information System (INIS)

    Vazquez, R.; Garcia, C.; May, M.; Camas, J.

    2009-01-01

    We present the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980nm, an 4.23 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength increases their temperature which can be used as a sensor element. The laser generation thus shows that the Bragg grating is increasing their temperature. We used a Peltier cell for to change gradually the temperature. (Author)

  4. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  5. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  6. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults.

    Science.gov (United States)

    Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko

    2017-09-01

    The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optical sensor for measuring American Lobster vitality

    International Nuclear Information System (INIS)

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-01-01

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  8. Optical Sensor for Measuring American Lobster Vitality

    Science.gov (United States)

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-06-01

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  9. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  10. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  11. Parameter Estimation of Multiple Frequency-Hopping Signals with Two Sensors

    Directory of Open Access Journals (Sweden)

    Le Zuo

    2018-04-01

    Full Text Available This paper essentially focuses on parameter estimation of multiple wideband emitting sources with time-varying frequencies, such as two-dimensional (2-D direction of arrival (DOA and signal sorting, with a low-cost circular synthetic array (CSA consisting of only two rotating sensors. Our basic idea is to decompose the received data, which is a superimposition of phase measurements from multiple sources into separated groups and separately estimate the DOA associated with each source. Motivated by joint parameter estimation, we propose to adopt the expectation maximization (EM algorithm in this paper; our method involves two steps, namely, the expectation-step (E-step and the maximization (M-step. In the E-step, the correspondence of each signal with its emitting source is found. Then, in the M-step, the maximum-likelihood (ML estimates of the DOA parameters are obtained. These two steps are iteratively and alternatively executed to jointly determine the DOAs and sort multiple signals. Closed-form DOA estimation formulae are developed by ML estimation based on phase data, which also realize an optimal estimation. Directional ambiguity is also addressed by another ML estimation method based on received complex responses. The Cramer-Rao lower bound is derived for understanding the estimation accuracy and performance comparison. The verification of the proposed method is demonstrated with simulations.

  12. Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air

    Science.gov (United States)

    Martos, Borja; Morelli, Eugene A.

    2012-01-01

    The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.

  13. Investigation of metrological parameters of measuring system for small temperature changes

    Directory of Open Access Journals (Sweden)

    Samynina M. G.

    2014-02-01

    Full Text Available Metrological parameters of the non-standard contact device were investigated to characterize its performance in temperature change measurements in the specified temperature range. Several series thermistors with a negative temperature coefficient of resistance connected into a linearization circuit were used as the sensing element of the semiconductor device. Increasing the number of thermistors leads to improved circuitry resolving power and reduced dispersion of this parameter. However, there is the question of optimal ratio of the number of thermistors and implemented temperature resolution, due to the nonlinear resolution dependence of the number of series-connected thermoelements. An example of scheme of four similar thermistors as the primary sensor and of a standard measuring instrument, which is working in ohmmeter mode, shows the ability to measure temperature changes at the level of hundredth of a Celsius degree. In this case, a quantization error, which is determined by a resolution of the measuring system, and the ohmmeter accuracy make the main contribution to the overall accuracy of measuring small temperature changes.

  14. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  15. Measuring the electron-ion ring parameters by bremsstrahlung

    International Nuclear Information System (INIS)

    Inkin, V.D.; Mozelev, A.A.; Sarantsev, V.P.

    1982-01-01

    A system is described for measuring the number of electrons and ions in the electron-ion rings of a collective heavy ion accelerator. The system operation is based on detecting gamma quanta of bremsstrahlung following the ring electron interaction with the nuclei of neutral atoms and ions at different stages of filling the ring with ions. The radiation detector is a scintillation block - a photomultiplier operating for counting with NaI(Tl) crystal sized 30x30 mm and ensuring the detection efficiency close to unity. The system apparatus is made in the CAMAC standard and rems on-line with the TRA/i miniature computer. The block-diagrams of the system and algorithm of data processing are presented. A conclusion is drawn that the results of measuring the ring parameters with the use of the diagnostics system described are in good agreement within the range of measuring errors with those obtained by means of the diagnostics system employing synchrotron radiation and induction sensors

  16. The parameters of a sensor

    International Nuclear Information System (INIS)

    Neacsu, A.; Ciucu, C.

    2004-01-01

    The development of electronics and technology led to the development of high precision sensors. Generally all sensors are based on the inertia of a suspended mass which remains stationary with respect to the ground's movement. In the case of electromagnetic instruments, a coil is linked to the mass of a pendulum that moves in a magnetic field, creating an electric tension. In the case of this sensor, there is no need for a damper mechanism due to the fact that the damping force is produced by the currents induced in a copper plate oscillating in a strong magnetic field. In the experiment we determined the inner oscillating frequency and the damping factor of a sensor based on a mobile coil. (authors)

  17. Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-12-01

    Prostate cancer is the most common type of cancer in men in Europe and the US. The methods to detect prostate cancer are still precarious and new techniques are needed. A piezoelectric transducer element in a feedback system is set to vibrate with its resonance frequency. When the sensor element contacts an object a change in the resonance frequency is observed, and this feature has been utilized in sensor systems to describe physical properties of different objects. For medical applications it has been used to measure stiffness variations due to various patho-physiological conditions. In this study the sensor's ability to measure the stiffness of prostate tissue, from two excised prostatectomy specimens in vitro, was analysed. The specimens were also subjected to morphometric measurements, and the sensor parameter was compared with the morphology of the tissue with linear regression. In the probe impression interval 0.5-1.7 mm, the maximum R(2) > or = 0.60 (p sensor was pressed, the greater, i.e., deeper, volume it sensed. Tissue sections deeper in the tissue were assigned a lower mathematical weighting than sections closer to the sensor probe. It is concluded that cancer increases the measured stiffness as compared with healthy glandular tissue, but areas with predominantly stroma or many stones could be more difficult to differ from cancer.

  18. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  19. Micro packaged MEMS pressure sensor for intracranial pressure measurement

    International Nuclear Information System (INIS)

    Liu Xiong; Yao Yan; Ma Jiahao; Zhang Zhaohua; Zhang Yanhang; Wang Qian; Ren Tianling

    2015-01-01

    This paper presents a micro packaged MEMS pressure sensor for intracranial pressure measurement which belongs to BioMEMS. It can be used in lumbar puncture surgery to measure intracranial pressure. Miniaturization is key for lumbar puncture surgery because the sensor must be small enough to allow it be placed in the reagent chamber of the lumbar puncture needle. The size of the sensor is decided by the size of the sensor chip and package. Our sensor chip is based on silicon piezoresistive effect and the size is 400 × 400 μm 2 . It is much smaller than the reported polymer intracranial pressure sensors such as liquid crystal polymer sensors. In terms of package, the traditional dual in-line package obviously could not match the size need, the minimal size of recently reported MEMS-based intracranial pressure sensors after packaging is 10 × 10 mm 2 . In this work, we are the first to introduce a quad flat no-lead package as the package form of piezoresistive intracranial pressure sensors, the whole size of the sensor is minimized to only 3 × 3 mm 2 . Considering the liquid measurement environment, the sensor is gummed and waterproof performance is tested; the sensitivity of the sensor is 0.9 × 10 −2 mV/kPa. (paper)

  20. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  1. Sensors for on-line monitoring of water chemistry parameters for NPP`s

    Energy Technology Data Exchange (ETDEWEB)

    Alltonen, P; Maekelae, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs.

  2. Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration

    Directory of Open Access Journals (Sweden)

    Moh. Budiyanto

    2017-11-01

    Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors

  3. A new fiber optic sensor for inner surface roughness measurement

    Science.gov (United States)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  4. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  5. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  6. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2017-06-01

    Full Text Available A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  7. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements.

    Science.gov (United States)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-06-26

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  8. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  9. A Vision-Based Sensor for Noncontact Structural Displacement Measurement

    Science.gov (United States)

    Feng, Dongming; Feng, Maria Q.; Ozer, Ekin; Fukuda, Yoshio

    2015-01-01

    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement. PMID:26184197

  10. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  11. Electric field measurements with electro-optical sensor

    International Nuclear Information System (INIS)

    Brambilla, R.

    1992-03-01

    When electric field calculations on the surface of electrodes and electrical insulation present difficulties due to complex geometries and diverse dielectric properties, it is sometimes very useful to resort to direct measurements. However, conventional probes, based on the capacitive effect, are not quite suitable for this purpose due to strong perturbations introduced by probes themselves and to difficulties in isolating the sensors from the instrumentation at points of measurement with a high potential. To avoid these difficulties, a measurement system was developed which incorporates a Pockels effect crystal sensor, a moveable HeNe laser beam for signal transmission and beam polarization modulation, and a laser beam analyzer which detects variations in polarization induced by the sensor. This paper describes the key design, operation and performance characteristics of this device

  12. Near DC force measurement using PVDF sensors

    Science.gov (United States)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  13. Measuring pH variability using an experimental sensor on an underwater glider

    Science.gov (United States)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian

  14. Measuring pH variability using an experimental sensor on an underwater glider

    Directory of Open Access Journals (Sweden)

    M. P. Hemming

    2017-05-01

    Full Text Available Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m, but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ, and dissolved oxygen concentrations (c(O2 measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2 values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m−3 highlighted the variability of

  15. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  16. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Sun, Honghao; Henriksen, Jonas Rosager

    2011-01-01

    Particle-based nanosensors have over the last decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors is challenging...... and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle...... quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pKa to each sensor, seem to be a solution...

  17. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  18. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  19. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  20. Fiber optic sensors for environmental applications: A brief review

    International Nuclear Information System (INIS)

    Rossabi, J.

    1992-04-01

    Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface

  1. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  2. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  3. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2015-10-01

    Full Text Available The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection and modal parameter estimation techniques (Peak-Picking, some of the modes were not successfully identified.

  4. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Science.gov (United States)

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  5. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  6. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  7. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    Directory of Open Access Journals (Sweden)

    Yong Ren

    2014-05-01

    Full Text Available This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  8. A measuring system for well logging attitude and a method of sensor calibration.

    Science.gov (United States)

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  9. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings.

    Science.gov (United States)

    Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm

    2012-09-07

    We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure

  10. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings

    Directory of Open Access Journals (Sweden)

    Eide Per

    2012-09-01

    Full Text Available Abstract Background We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP; whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Materials and Methods: During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT. Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Results Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%, despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Conclusions Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity

  11. Field and Laboratory Investigation of USS3 Ultrasonic Sensors Capability for Non-contact Measurement of Pistachio Canopy Structure

    Directory of Open Access Journals (Sweden)

    H Maghsoudi

    2015-03-01

    Full Text Available Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  12. In-core program for on line measurements of neutron, photon and nuclear heating parameters inside Jules Horowitz MTR reactor

    International Nuclear Information System (INIS)

    Lyoussi, A.; Reynard-Carette, C.

    2014-01-01

    Accurate on-line measurements of key parameters inside experimental channels of Material Testing Reactor are necessary to dimension the irradiation devices and consequently to conduct smart experiments on fuels and materials under suitable conditions. In particular the quantification of nuclear heating, a relevant parameter to reach adapted thermal conditions, has to be improved. These works focus on an important collaborative program between CEA and Aix-Marseille University called INCORE (Instrumentation for Nuclear radiations and Calorimetry On-line in Reactor) dedicated to the development of a new measurement methodology to quantify both nuclear heating and accurate radiation flux levels (neutrons and photons). The methodology, which is based on experiments carried out under irradiation conditions with a multi-sensor device (ionization chamber, fission chamber, gamma thermometer, calorimeter, SPND, SPGD) as well as works performed out-of nuclear/radiative environment on a reference sensor used to measure nuclear heating (calorimeter), is presented (authors)

  13. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  14. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Directory of Open Access Journals (Sweden)

    Anton Kos

    2016-04-01

    Full Text Available Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models.

  15. Analysis of a ferrofluid core differential transformer tilt measurement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.

    2017-04-15

    In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range. - Highlights: • A ferrofluid core differential transformer can be used to measure tilt. • The theoretical description of two different type of the sensor is introduced. • The measuring range, and the sensitivity depends on the dimensions of the sensor.

  16. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  17. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  18. Influence of newly designed monorail pressure sensor catheter on coronary diagnostic parameters: an in vitro study.

    Science.gov (United States)

    Banerjee, Rupak K; Peelukhana, Srikara V; Goswami, Ishan

    2014-02-07

    The decision to perform intervention on a patient with coronary stenosis is often based on functional diagnostic parameters obtained from pressure and flow measurements using sensor-tipped guidewire at maximal vasodilation (hyperemia). Recently, a rapid exchange Monorail Pressure Sensor catheter of 0.022″ diameter (MPS22), with pressure sensor at distal end has been developed for improved assessment of stenosis severity. The hollow shaft of the MPS22 is designed to slide over any standard 0.014″ guidewire (G14). Hence, influence of MPS22 diameter on coronary diagnostic parameters needs investigation. An in vitro experiment was conducted to replicate physiologic flows in three representative area stenosis (AS): mild (64% AS), intermediate (80% AS), and severe (90% AS), for two arterial diameters, 3mm (N2; more common) and 2.5mm (N1). Influence of MPS22 on diagnostic parameters: fractional flow reserve (FFR) and pressure drop coefficient (CDP) was evaluated both at hyperemic and basal conditions, while comparing it with G14. The FFR values decreased for the MPS22 in comparison to G14, (Mild: 0.87 vs 0.88, Intermediate: 0.68 vs 0.73, Severe: 0.48 vs 0.56) and CDP values increased (Mild: 16 vs 14, Intermediate: 75 vs 56, Severe: 370 vs 182) for N2. Similar trend was observed in the case of N1. The FFR values were found to be well above (mild) and below (intermediate and severe) the diagnostic cut-off of 0.75. Therefore, MPS22 catheter can be used as a possible alternative to G14. Further, irrespective of the MPS22 or G14, basal FFR (FFRb) had overlapping ranges in close proximity for clinically relevant mild and intermediate stenoses that will lead to diagnostic uncertainty under both N1 and N2. However, CDPb had distinct ranges for different stenosis severities and could be a potential diagnostic parameter under basal conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Low-cost photonic sensors for carbon dioxide exchange rate measurement

    Science.gov (United States)

    Bieda, Marcin S.; Sobotka, Piotr; Lesiak, Piotr; Woliński, Tomasz R.

    2017-10-01

    Carbon dioxide (CO2) measurement has an important role in atmosphere monitoring. Usually, two types of measurements are carried out. The first one is based on gas concentration measurement while the second involves gas exchange rate measurement between earth surface and atmosphere [1]. There are several methods which allow gas concentration measurement. However, most of them require expensive instrumentation or large devices (i.e. gas chambers). In order to precisely measure either CO2 concentration or CO2 exchange rate, preferably a sensors network should be used. These sensors must have small dimensions, low power consumption, and they should be cost-effective. Therefore, this creates a great demand for a robust low-power and low-cost CO2 sensor [2,3]. As a solution, we propose a photonic sensor that can measure CO2 concentration and also can be used to measure gas exchange by using the Eddy covariance method [1].

  20. Development and characterization of a multilayer matrix textile sensor for interface pressure measurements

    Science.gov (United States)

    Baldoli, Ilaria; Maselli, Martina; Cecchi, Francesca; Laschi, Cecilia

    2017-10-01

    Matrix textile sensors hold great potential for measuring pressure distribution in applications of modern daily lives, mainly regarding the biomedical field, but also robotics, automotive systems, and wearable and consumer electronics. However, an experimental analysis of their metrological properties is lacking in the literature, thus compromising their widespread acceptance. In the present work, we report the characterization of an 8 × 8 textile sensor assembled by sandwiching a piezoresistive fabric sheet between two outer fabric layers embedding conductive rows and columns. The location of the applied pressure can be identified by detecting the position where the change of resistances occurs between the external conductive paths. The sensor structure, its electrical circuit and characteristics are described in detail, after studying both the integration levels of the hierarchical structure and the composition of the piezoresistive fabric sheet. The pressure measurement range and the calibration curve were studied by tuning circuital parameters. Repeatability, time drift, temperature dependence, signal-to-noise ratio and dynamic response were analyzed. Novel tests were employed to consider the sensor sensitivity to stretch, shear force and surface curvature. A special analysis was taken over hysteresis and dynamic accuracy, focusing on a possible compensating solution. Results indicated that the system provides overall good quality performances with the main drawback of a limited dynamic accuracy, typical of piezoresistive sensing elements. Nevertheless, the use of textiles allows the realization of lightweight, wearable, washable, thin and stretchable sensors. In addition fabric sensors are robust, cheap, easy-to-use and employable to cover large area three dimensional surfaces. The wide characterization reported here could provide precious insights and guidelines to help researchers and users in taking advantages from all of these benefits, supporting them in

  1. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  2. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  3. A new sensor for stress measurement based on blood flow fluctuations

    Science.gov (United States)

    Fine, I.; Kaminsky, A. V.; Shenkman, L.

    2016-03-01

    It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.

  4. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    International Nuclear Information System (INIS)

    Li Chen; Tan Qiu-Lin; Xue Chen-Yang; Zhang Wen-Dong; Li Yun-Zhi; Xiong Ji-Jun

    2015-01-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. (paper)

  5. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement.

    Science.gov (United States)

    Twa, Michael D; Roberts, Cynthia J; Karol, Huikai J; Mahmoud, Ashraf M; Weber, Paul A; Small, Robert H

    2010-08-01

    To evaluate a novel contact lens-embedded pressure sensor for continuous measurement of intraocular pressure (IOP). Repeated measurements of IOP and ocular pulse amplitude (OPA) were recorded in 12 eyes of 12 subjects in sitting and supine positions using 3 configurations of the dynamic contour tonometer: slit-lamp mounted (DCT), hand-held (HH), and contact lens-embedded sensor (CL). The IOP and OPA for each condition were compared using repeated measures ANOVA and the 95% limits of agreement were calculated. The sitting IOP (mean and 95% CI) for each configuration was DCT: 16.3 mm Hg (15.6 to 17.1 mm Hg), HH: 16.6 mm Hg (15.6 to 17.6 mm Hg), and CL: 15.7 mm Hg (15 to 16.3 mm Hg). The sitting OPA for each configuration was DCT: 2.4 mm Hg (2.1 to 2.6 mm Hg), HH: 2.4 mm Hg (2.1 to 2.7 mm Hg), and CL: 2.1 mm Hg (1.8 to 2.3 mm Hg). Supine IOP and OPA measurements with the CL and HH sensors were both greater than their corresponding sitting measurements, but were significantly less with the CL sensor than the HH sensor. The mean difference and 95% Limits of Agreement were smallest for the DCT and CL sensor comparisons (0.7+/-3.9 mm Hg) and widest for the CL and HH sensors (-1.9+/-7.25 mm Hg); these wider limits were attributed to greater HH measurement variability. The CL sensor was comparable to HH and DCT sensors with sitting subjects and is a viable method for measuring IOP and OPA. Supine measurements of IOP and OPA were greater than sitting conditions and were comparatively lower with the CL sensor. HH measurements were more variable than CL measurements and this influenced the Limits of Agreement for both sitting and supine conditions.

  6. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  7. Advanced haptic sensor for measuring human skin conditions

    Science.gov (United States)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  8. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  9. Microparticle impact sensor measures energy directly

    Science.gov (United States)

    Alexander, W. M.; Berg, O. E.

    1965-01-01

    Construction of a capacitor sensor consisting of a dielectric layer between two conductive surface layers and connected across a potential source through a sensing resistor permits measurement of energy of impinging particles without degradation of sensitivity. A measurable response is produced without penetration of the dielectric layer.

  10. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    Science.gov (United States)

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  11. Reliability Measure Model for Assistive Care Loop Framework Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Venki Balasubramanian

    2010-01-01

    Full Text Available Body area wireless sensor networks (BAWSNs are time-critical systems that rely on the collective data of a group of sensor nodes. Reliable data received at the sink is based on the collective data provided by all the source sensor nodes and not on individual data. Unlike conventional reliability, the definition of retransmission is inapplicable in a BAWSN and would only lead to an elapsed data arrival that is not acceptable for time-critical application. Time-driven applications require high data reliability to maintain detection and responses. Hence, the transmission reliability for the BAWSN should be based on the critical time. In this paper, we develop a theoretical model to measure a BAWSN's transmission reliability, based on the critical time. The proposed model is evaluated through simulation and then compared with the experimental results conducted in our existing Active Care Loop Framework (ACLF. We further show the effect of the sink buffer in transmission reliability after a detailed study of various other co-existing parameters.

  12. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  13. Fiber optic micro sensor for the measurement of tendon forces.

    Science.gov (United States)

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  14. Piezo-sensor self-diagnostics using electrical impedance measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H. (Gyu Hae); Farrar, C. R. (Charles R.); Rutherford, A. C. (Amanda C.); Robertson, A. N. (Amy N.)

    2004-01-01

    This paper present the piezoelectric sensor self-diagnostic procedure that performs in-situ monitoring of the operational status of piezoelectric materials (PZT) used for sensors and actuators in structural health monitoring (SHM) applications. The use of active-sensing piezoelectric materials has received considerable attention in the SHM community. A critical aspect of the piezoelectric active-sensing technologies is that usually large numbers of distributed sensors and actuators are needed to perform the required monitoring process. The sensor/actuator self-diagnostic procedure, where the sensors/actuators are confirmed to be functioning properly during operation, is therefore a critical component to successfully complete the SHM process and to minimize the false indication regarding the structural health. The basis of this procedure is to track the changes in the capacitive value of piezoelectric materials resulting from the sensor failure, which is manifested in the imaginary part of the measured electrical admittances. Furthermore, through the analytical and experimental investigation, it is confirmed that the bonding layer between the PZT and a host structure significantly contributes to the measured capacitive values. Therefore, by monitoring the imaginary part of the admittances, one can quantitatively assess the degradation of the mechanical/electrical properties of the PZT and its attachment to a host structure. This paper concludes with an experimental example to demonstrate the feasibility of the proposed sensor-diagnostic procedure.

  15. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  16. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  17. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  18. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  19. Sensor Data Acquisition and Processing Parameters for Human Activity Classification

    Directory of Open Access Journals (Sweden)

    Sebastian D. Bersch

    2014-03-01

    Full Text Available It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes has an impact on the classification accuracy. For Ambient Assisted Living (AAL, no clear information to select these parameters exists, hence a wide variety and inconsistency across today’s literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS, Mean, Signal Magnitude Area (SMA, Signal Vector Magnitude (here SMV, Energy, Entropy, FFTPeak, Standard Deviation (STD. The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve.

  20. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  1. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    Directory of Open Access Journals (Sweden)

    Mauro Serpelloni

    2009-02-01

    Full Text Available Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  2. Passive and self-powered autonomous sensors for remote measurements.

    Science.gov (United States)

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  3. Monitoring Animals and Herd Behavioral Parameters Using a Wireless Sensor Network

    DEFF Research Database (Denmark)

    Sharak Nadimi, Esmaeil; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    The length of time that a herd of cows spent in an area covered by new grass that was provided for them has been measured using wireless sensor networks and calculated based on Bayesian probability functions. This time was also recorded by a camera. The results that were obtained by employing...... wireless sensor networks have been confirmed by the data registered by the camera....

  4. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, J; Zhang, Qi; Fitzek, F H P

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...

  5. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  6. Using microcantilever sensors to measure poly(lactic-co-glycolic acid) plasticization by moisture uptake

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    Polymeric materials absorb water when exposed to humidity or in contact with aqueous solutions. The polymer and water molecules interact, changing the physicochemical parameters of the material; the most noticeable effect is a decreased glass transition temperature (Tg), known as plasticization. We...... used microcantilever sensors to measure the Tg versus moisture content in poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer used in implants and as a drug carrier. We demonstrate a concomitant measurement of the mass absorption and Tg using nanograms of material and an inexpensive setup...

  7. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  8. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  9. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  10. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  11. A real-time measurement system for parameters of live biology metabolism process with fiber optics

    Science.gov (United States)

    Tao, Wei; Zhao, Hui; Liu, Zemin; Cheng, Jinke; Cai, Rong

    2010-08-01

    Energy metabolism is one of the basic life activities of cellular in which lactate, O2 and CO2 will be released into the extracellular environment. By monitoring the quantity of these parameters, the mitochondrial performance will be got. A continuous measurement system for the concentration of O2, CO2 and PH value is introduced in this paper. The system is made up of several small-sized fiber optics biosensors corresponding to the container. The setup of the system and the principle of measurement of several parameters are explained. The setup of the fiber PH sensor based on principle of light absorption is also introduced in detail and some experimental results are given. From the results we can see that the system can measure the PH value precisely suitable for cell cultivation. The linear and repeatable accuracies are 3.6% and 6.7% respectively, which can fulfill the measurement task.

  12. An Inexpensive, Implantable Electronic Sensor for Autonomous Measurement of Snow Pack Parameters

    Science.gov (United States)

    De Roo, R. D.; Haengel, E.; Rogacki, S.

    2015-12-01

    Snow accumulations on the ground are an important source of water in many parts of the world. Mapping the accumulation, usually represented as the snow water equivalent (SWE), is valuable for water resource management. The longest record of regional and global maps of SWE are from orbiting microwave radiometers, which do not directly measure SWE but rather measure the scatter darkening from the snow pack. Robustly linking the scatter darkening to SWE eludes us to this day, in part because the snow pack is highly variable in both time and space. The data needed is currently collected by hand in "snow pits," and the labor-intensive process limits the size of the data sets that can be obtained. In particular, time series measurements are only a one or two samples per day at best, and come at the expense of spatial sampling. We report on the development of a low-power wireless device that can be embedded within a snow pack to report on some of the critical parameters needed to understand scatter darkening. The device autonomously logs temperature, the microwave dielectric constant and infrared backscatter local to the device. The microwave dielectric constant reveals the snow density and the presence of liquid water, while the infrared backscatter measurement, together with the density measurement, reveals a characteristic grain size of the snow pack. The devices are made to be inexpensive (less than $200 in parts each) and easily replicated, so that many can be deployed to monitor variations vertically and horizontally in the snow pack. The low-power operation is important both for longevity of observations as well as insuring minimal anomalous metamorphism of the snow pack. The hardware required for the microwave measurement is intended for wireless communications, and this feature will soon be implemented for near real-time monitoring of snow conditions. We will report on the design, construction and initial deployment of about 30 of these devices in northern lower

  13. NATURAL USER INTERFACE SENSORS FOR HUMAN BODY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    J. Boehm

    2012-08-01

    Full Text Available The recent push for natural user interfaces (NUI in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  14. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  15. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    Science.gov (United States)

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago

  16. A Novel Approach to Calibrating Multifunctional Binocular Stereovision Sensor

    International Nuclear Information System (INIS)

    Xue, T; Zhu, J G; Wu, B; Ye, S H

    2006-01-01

    We present a novel multifunctional binocular stereovision sensor for various threedimensional (3D) inspection tasks. It not only avoids the so-called correspondence problem of passive stereo vision, but also possesses the uniform mathematical model. We also propose a novel approach to estimating all the sensor parameters with free-position planar reference object. In this technique, the planar pattern can be moved freely by hand. All the camera intrinsic and extrinsic parameters with coefficient of lens radial and tangential distortion are estimated, and sensor parameters are calibrated based on the 3D measurement model and optimized with the feature point constraint algorithm using the same views in the camera calibration stage. The proposed approach greatly reduces the cost of the calibration equipment, and it is flexible and practical for the vision measurement. It shows that this method has high precision by experiment, and the sensor measured relative error of space length excels 0.3%

  17. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jida Xing

    2015-06-01

    Full Text Available In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared

  18. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  19. Covariance estimation in Terms of Stokes Parameters with Application to Vector Sensor Imaging

    Science.gov (United States)

    2016-12-15

    surements. A vector sensor (example shown in Figure 1) measures the electromagnetic field at a single point using three orthogonal dipole elements and...Secretary of Defense for Research and Engineering . Figure 1. Atom antenna [1], an electromagnetic vector sensor. The antenna is composed of three...orthogonal loop and dipole elements with a common phase center, measuring the complete electromagnetic field in a six-element vector . rounding sphere as

  20. A family of fiber-optic based pressure sensors for intracochlear measurements

    Science.gov (United States)

    Olson, Elizabeth S.; Nakajima, Hideko H.

    2015-02-01

    Fiber-optic pressure sensors have been developed for measurements of intracochlear pressure. The present family of transducers includes an 81 μm diameter sensor employing a SLED light source and single-mode optic fiber, and LED/multi-mode sensors with 126 and 202 μm diameter. The 126 μm diameter pressure sensor also has been constructed with an electrode adhered to its side, for coincident pressure and voltage measurements. These sensors have been used for quantifying cochlear mechanical impedances, informing our understanding of conductive hearing loss and its remediation, and probing the operation of the cochlear amplifier.

  1. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm

    International Nuclear Information System (INIS)

    Zhao, X; Rosen, D W

    2017-01-01

    As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM and M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM and M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM and M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM and M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process. (paper)

  2. Coaxial Sensors For Broad-Band Complex Permittivity Measurements of Petroleum Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Folgeroe, K.

    1996-12-31

    This doctoral thesis verifies that dielectric spectroscopy and microwave permittivity measurements can be used to characterize petroleum liquids. It concentrates on developing sensors for three potential industrial applications: quality characterization of crude oil and petroleum fractions, monitoring of gas-hydrate formation in water-in-oil emulsions, and determination of water-content in thin liquid layers. The development of a permittivity measurement system for crude oil and petroleum fractions is described. As black oils have low dielectric constant and loss, the system must be very sensitive in order to measure the dielectric spectra and to distinguish oils of different permittivity. Such a system was achieved by combining impedance and scattering parameter measurements with appropriate permittivity calculation methods. The frequency range from 10 kHz to 6 GHz was found convenient for observing the main dispersion of the oils. All the oils had dielectric constants between 2.1 and 2.9 and dielectric loss below 0.01. The oils studied were samples of the feedstock for the cracker and coke processes at a petroleum refinery. This verifies that dielectric spectroscopy is a potential technique for on-line quality monitoring of the feedstock at petroleum refineries. Gas hydrates may cause major problems like clogging of pipelines. Dielectric spectroscopy is proposed as a means of monitoring the formation of gas hydrates in emulsions. It is found that open-ended coaxial probes fulfill the sensitivity requirements for such sensors. 312 refs., 87 figs., 20 tabs.

  3. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  4. Optical fibre sensor for the measurement of ozone

    International Nuclear Information System (INIS)

    O'Keeffe, S; Dooly, G; Fitzpatrick, C; Lewis, E

    2005-01-01

    The use of optical fibres for the measurement of ozone based on the optical absorption of both UV light at 254nm and visible light at 600nm is investigated and tested. Calculations based on the Beer-Lambert Law are also presented to demonstrate the high resolution of the UV based sensor in determining the concentration of ozone in the range of 0 mg/litre to 1mg/litre and the ability of the visible based sensor to measure high concentrations over a wide range

  5. Sensor for thickness measurement of a liquid metal film

    International Nuclear Information System (INIS)

    Blanc, R.

    1984-04-01

    Description, calibration and measuring method of a sensor for the measure of thin liquid metal depths in a temperature range of 0-500 0 C and for shift frequencies from 0 to 100 Hz; these sensors are based on the principle of induction-coil impedance variation, as a function of the thickness of an electrical conductor matter placed in the coil magnetic field [fr

  6. The utility of sensor technology to support reproductive management on dairy farms

    NARCIS (Netherlands)

    Rutten, C.J.

    2017-01-01

    Since the 1980s, efforts have been made to develop sensors that measure a parameter from an individual cow. The development started with individual cow recognition and was followed by sensors that measure the electrical conductivity of milk and pedometers that measure activity. Some sensors like

  7. Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    R. Caballero-Águila

    2014-01-01

    Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.

  8. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  9. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  10. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  11. Empowering smartphone users with sensor node for air quality measurement

    International Nuclear Information System (INIS)

    Oletic, Dinko; Bilas, Vedran

    2013-01-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O 3 , NO 2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  12. Empowering smartphone users with sensor node for air quality measurement

    Science.gov (United States)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  13. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  14. A Unilateral Nuclear Magnetic Resonance Sensor for Nondestructive Wood Moisture Measurements

    Directory of Open Access Journals (Sweden)

    YU Deng-jie

    2017-12-01

    Full Text Available An unilateral nuclear magnetic resonance (UMR sensor was designed to measure wood moisture nondestructively. The sensor consisted of a unilateral magnet, an anti-eddy current module, a radiofrequency (RF coil and an impedance matching and tuning circuit. The sensor produced a static magnetic field of 71.1 mT (resonant frequency:3.027 MHz in a 50 mm×50 mm plane locating 75 mm above the sensor's surface. Preliminary nondestructive measurement of wood moisture was carried out with the sensor. The moisture distribution in the radical direction of a cylindrical wood sample was scanned. Variations in transverse relaxation time (T2 from the bark to core were obtained. Evaporation of moisture during wood drying was also measured with the UMR sensor. Experimental results showed that:the peak of long T2 component in the T2 spectrum moved to left and the peak integral area decreased gradually during drying. The integral area was proportional to the moisture content of the sample. The work presents a portable UMR device for wood research which may potentially be used for nondestructive moisture measurement on living trees in situ.

  15. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Cripton, Peter A

    2008-01-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm 2 , respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics

  16. Cardiac and Respiratory Parameter Estimation Using Head-mounted Motion-sensitive Sensors

    Directory of Open Access Journals (Sweden)

    J. Hernandez

    2015-05-01

    Full Text Available This work explores the feasibility of using motion-sensitive sensors embedded in Google Glass, a head-mounted wearable device, to robustly measure physiological signals of the wearer. In particular, we develop new methods to use Glass’s accelerometer, gyroscope, and camera to extract pulse and respiratory waves of 12 participants during a controlled experiment. We show it is possible to achieve a mean absolute error of 0.82 beats per minute (STD: 1.98 for heart rate and 0.6 breaths per minute (STD: 1.19 for respiration rate when considering different observation windows and combinations of sensors. Moreover, we show that a head-mounted gyroscope sensor shows improved performance versus more commonly explored sensors such as accelerometers and demonstrate that a head-mounted camera is a novel and promising method to capture the physiological responses of the wearer. These findings included testing across sitting, supine, and standing postures before and after physical exercise.

  17. A fiber-optic current sensor for lightning measurement applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  18. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  19. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

    Science.gov (United States)

    Cross, Eben S.; Williams, Leah R.; Lewis, David K.; Magoon, Gregory R.; Onasch, Timothy B.; Kaminsky, Michael L.; Worsnop, Douglas R.; Jayne, John T.

    2017-09-01

    The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO] = 231 ± 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 ± 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 ± 8.3 ppb (spanning 0-71 ppb), and [O3] = 23.2 ± 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature = 23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity = 50.1 ± 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root

  20. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  1. Small and Robust Antennas for Concrete Embedded Sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars; Jakobsen, Kaj Bjarne

    2009-01-01

    We study a small antenna for a structural health monitoring sensor. The sensor is cast into concrete. The sensor monitors the humidity and temperature of the concrete, which is a harsh environment. From measured material parameters of the concrete we estimate the signal loss and the antenna detun...

  2. Control systems using modal domain optical fiber sensors for smart structure applications

    Science.gov (United States)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  3. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  4. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2016-07-01

    Full Text Available Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the “gradient effect”. This results in a positive linear error with increasing surface temperature. Another is the “substrate effect”. This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an

  5. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Liu, Yi; Zhang, Jun

    2016-07-01

    Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor

  6. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  7. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    Science.gov (United States)

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  8. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  9. Propagation of measurement accuracy to biomass soft-sensor estimation and control quality.

    Science.gov (United States)

    Steinwandter, Valentin; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased.

  10. Approach for Self-Calibrating CO₂ Measurements with Linear Membrane-Based Gas Sensors.

    Science.gov (United States)

    Lazik, Detlef; Sood, Pramit

    2016-11-17

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO₂ in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO₂ analysis in dry air with tubular PDMS membranes for various CO₂ concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (sensor response, and comparable statistical uncertainty.

  11. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  12. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters.

    Science.gov (United States)

    Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M

    2016-06-01

    Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.

  13. Concept for a MEMS-type vacuum sensor based on electrical conductivity measurements

    Directory of Open Access Journals (Sweden)

    F. J. Giebel

    2017-11-01

    Full Text Available The concept of the micro-structured vacuum sensor presented in this article is the measurement of the electrical conductivity of thinned gases in order to develop a small, economical and quite a simple type of vacuum sensor. There are already some approaches for small vacuum sensors. Most of them are based on conservative measurement principles similar to those used in macroscopic vacuum gauges. Ionization gauges use additional sources of energy, like hot cathodes, ultraviolet radiation or high voltage for example, for ionizing gas molecules and thereby increasing the number of charge carriers for measuring low pressures. In contrast, the concept discussed here cannot be found in macroscopic sensor systems because it depends on the microscopic dimension of a gas volume defined by two electrodes. Here we present the concept and the production of a micro-structured vacuum sensor chip, followed by the electrical characterization. Reference measurements with electrodes at a distance of about 1 mm showed currents in the size of picoampere and a conductivity depending on ambient pressure. In comparison with these preliminary measurements, fundamental differences regarding pressure dependence of the conductivity are monitored in the electrical characterization of the micro-structured sensor chip. Finally the future perspectives of this sensor concept are discussed.

  14. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  15. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  16. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Science.gov (United States)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  17. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  18. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  19. Invited review: Sensors to support health management on dairy farms

    NARCIS (Netherlands)

    Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H.

    2013-01-01

    Since the 1980s, efforts have been made to develop sensors that measure a parameter from an individual cow. The development started with individual cow recognition and was followed by sensors that measure the electrical conductivity of milk and pedometers that measure activity. The aim of this

  20. A quartz crystal microbalance dew point sensor without frequency measurement

    Science.gov (United States)

    Wang, Guohua; Zhang, Weishuo; Wang, Shuo; Sun, Jinglin

    2014-11-01

    This work deals with the design of a dew point sensor based on Quartz Crystal Microbalance (QCM) without measuring the frequency. This idea is inspired by the fact that the Colpitts oscillation circuit will stop oscillating when the QCM works in the liquid media. The quartz crystal and the electrode are designed through the finite element simulation and the stop oscillating experiment is conducted to verify the sensibility. Moreover, the measurement result is calibrated to approach the true value. At last a series of dew points at the same temperature is measured with the designed sensor. Results show that the designed dew point sensor is able to detect the dew point with the proper accuracy.

  1. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.

    Science.gov (United States)

    Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama

    2018-02-26

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.

  2. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance.

    Science.gov (United States)

    Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga

    2017-10-20

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  3. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  4. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  5. Temperature measurement of geothermal wells by optical fiber sensor; Hikari fiber sensor wo mochiita chinetsusei no ondo bunpu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, N; Sakaguchi, K [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Experiments of temperature measurement were conducted in high temperature and high pressure geothermal wells using optical fiber sensor. A temperature measurement system using optical fiber sensor was applied to geothermal wells. Working availability was confirmed under the condition up to the depth of 1,750 m and the temperature of 240 centigrade. Observed values agreed well with those observed by the conventional temperature logging. Durability of the optical fiber sensor was also sufficient. The maximum standard deviations of measured values were 1.3 centigrade at the depth of 1,750 m at 195 centigrade for the loop-type sensor, and 3.7 centigrade at the depth of 365 m at about 200 centigrade for the single-end sensor. Although the accuracy was inferior to the conventional measurement using a thermo couple, it was enough to be applied to usual temperature logging. Furthermore, for this system, the temperature profile in the whole well can be monitored, simultaneously. Through the experiments, the detailed successive change of temperature profile accompanied with the water injection can be clearly illustrated. 3 refs., 7 figs.

  6. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  7. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Science.gov (United States)

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  8. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  9. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  10. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  11. Optical sensor for heat conduction measurement in biological tissue

    International Nuclear Information System (INIS)

    Gutierrez-Arroyo, A; Sanchez-Perez, C; Aleman-Garcia, N

    2013-01-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  12. Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor

    Science.gov (United States)

    Regitz, S.; Collings, N.

    2008-07-01

    A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.

  13. Kinematic measurements using an infrared sensor

    International Nuclear Information System (INIS)

    Marinho, F; Paulucci, L

    2016-01-01

    The use of an infrared sensor as a new alternative to measure position as a function of time in kinematic experiments was investigated using a microcontroller as the data acquisition and control device. These are versatile sensors that offer advantages over typical ultrasound devices. The setup described in this paper enables students to develop their own experiments, promoting opportunities for learning physical concepts such as the different types of forces that can act on a body (gravitational, elastic, drag, etc) and the resulting types of movements with good sensitivity within the 4–30 cm range. As a proof of concept we also present the application of a prototype designed to record the kinematics of mass-spring systems. (paper)

  14. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  15. Measuring Conductance of Phenylenediamine as a Molecular Sensor

    Directory of Open Access Journals (Sweden)

    Taekyeong Kim

    2015-01-01

    Full Text Available We report experimental measurements of molecular conductance as a single molecular sensor by using scanning tunneling microscope-based break-junction (STM-BJ technique. The gap was created after Au atomic point contact was ruptured, and the target molecule was inserted and bonded to the top and bottom electrodes. We successfully measured the conductance for a series of amine-terminated oligophenyl molecules by forming the molecular junctions with Au electrodes. The measured conductance decays exponentially with molecular backbone length, enabling us to detect the type of molecules as a molecular sensor. Furthermore, we demonstrated reversible binary switching in a molecular junction by mechanical control of the gap between the electrodes. Since our method allows us to measure the conductance of a single molecule in ambient conditions, it should open up various practical molecular sensing applications.

  16. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    Science.gov (United States)

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  17. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing

    International Nuclear Information System (INIS)

    Potyrailo, Radislav A; Surman, Cheryl; Monk, David; Morris, William G; Wortley, Timothy; Vincent, Mark; Diana, Rafael; Pizzi, Vincent; Carter, Jeffrey; Gach, Gerard; Klensmeden, Staffan; Ehring, Hanno

    2011-01-01

    The lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. Sensors based on the same detection platform for all critical parameters in single-use bioprocess components would be highly desirable to significantly simplify their installation, calibration and operation. We review here our approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implements ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with at least 16 bit resolution provided by a sensor reader. The developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. This general sensing approach provides an elegant solution for both analytical measurement and identification and documentation of the measured location. (topical review)

  18. Rainfall measurement based on in-situ storm drainage flow sensors

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup

    2017-01-01

    Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising these sen......Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising...... these sensors, it may be possible to improve the ground rainfall estimate, and thereby improve the quantitative precipitation estimation from weather radars for urban drainage applications. To test the hypothesis, this paper presents a rainfall measurement method based on flow rate measurements from well......-defined urban surfaces. This principle was used to design a runoff measurement system in a parking structure in Aalborg, Denmark, where it was evaluated against rain gauges. The measurements show that runoff measurements from well-defined urban surfaces perform just as well as rain gauges. This opens up...

  19. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  20. Statistical MOSFET Parameter Extraction with Parameter Selection for Minimal Point Measurement

    Directory of Open Access Journals (Sweden)

    Marga Alisjahbana

    2013-11-01

    Full Text Available A method to statistically extract MOSFET model parameters from a minimal number of transistor I(V characteristic curve measurements, taken during fabrication process monitoring. It includes a sensitivity analysis of the model, test/measurement point selection, and a parameter extraction experiment on the process data. The actual extraction is based on a linear error model, the sensitivity of the MOSFET model with respect to the parameters, and Newton-Raphson iterations. Simulated results showed good accuracy of parameter extraction and I(V curve fit for parameter deviations of up 20% from nominal values, including for a process shift of 10% from nominal.

  1. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  2. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Science.gov (United States)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the

  3. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  4. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  5. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    Science.gov (United States)

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Characterization of modulated time-of-flight range image sensors

    Science.gov (United States)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  7. Measuring Torque and Temperature in a Rotating Shaft Using Commercial SAW Sensors.

    Science.gov (United States)

    Silva, Diogo; Mendes, Joana C; Pereira, António B; Gégot, François; Alves, Luís N

    2017-07-02

    Real-time monitoring of torque in a rotating shaft is not easy to implement with technologies such as optic fiber sensors or strain gages. Surface acoustic wave (SAW) sensors are wireless and passive and can be used to monitor strain in moving parts. Commercial solutions (sensors, antennas and interrogation unit) can easily be purchased from some companies; however, they are not customized and may not meet the specificity of the measurements. In order to evaluate the adequacy of commercial off-the-shelf (COTS) solutions, temperature and strain sensors fabricated by SENSeOR (Besançon, France) were mounted on a load cell. The sensors were calibrated using a thermal chamber and a universal testing machine. The load cell was then assembled together with a steel shaft that rotated at different speeds inside an oven. The commercial antennas were replaced with an RF (radio frequency) coupler and the sensors were interrogated with the commercial interrogation unit. The influence of rotation in the accuracy on the measurements, as well as the adequacy of the sensors structure, was evaluated. It can be concluded that SAW sensors can be used to measure temperature or torque in a rotating environment; however, some customization of the components is required in order to overcome the limitations posed by COTS sensing solutions.

  8. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    Science.gov (United States)

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  9. Soft sensor design by multivariate fusion of image features and process measurements

    DEFF Research Database (Denmark)

    Lin, Bao; Jørgensen, Sten Bay

    2011-01-01

    This paper presents a multivariate data fusion procedure for design of dynamic soft sensors where suitably selected image features are combined with traditional process measurements to enhance the performance of data-driven soft sensors. A key issue of fusing multiple sensor data, i.e. to determine...... with a multivariate analysis technique from RGB pictures. The color information is also transformed to hue, saturation and intensity components. Both sets of image features are combined with traditional process measurements to obtain an inferential model by partial least squares (PLS) regression. A dynamic PLS model...... oxides (NOx) emission of cement kilns. On-site tests demonstrate improved performance over soft sensors based on conventional process measurements only....

  10. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2017-09-01

    Full Text Available The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ, measurements must be fast (real time, scalable, and reliable (with known accuracy, precision, and stability over time. Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ: [CO]  =  231 ± 116 ppb (spanning 84–1706 ppb, [NO]  =  6.1 ± 11.5 ppb (spanning 0–209 ppb, [NO2]  =  11.7 ± 8.3 ppb (spanning 0–71 ppb, and [O3]  =  23.2 ± 12.5 ppb (spanning 0–99 ppb. Through the use of high-dimensional model representation (HDMR, we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature  =  23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity  =  50.1 ± 15.3 %, spanning 9.8–79.9

  11. Measurement of reaction heats using a polysilicon-based microcalorimetric sensor

    NARCIS (Netherlands)

    Vereshchagina, E.; Wolters, Robertus A.M.; Gardeniers, Johannes G.E.

    2011-01-01

    In this work we present a low-cost, low-power, small sample volume microcalorimetric sensor for the measurement of reaction heats. The polysilicon-based microcalorimetric sensor combines several advantages: (i) complementary metal oxide semiconductor technology (CMOS) for future integration; (ii)

  12. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  13. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    Science.gov (United States)

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  14. Strain measurement in concrete using embedded carbon roving-based sensors

    International Nuclear Information System (INIS)

    Quadflieg, Till; Gries, Thomas; Stolyarov, Oleg

    2016-01-01

    This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

  15. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  16. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Hiroaki Murata

    2012-06-01

    Full Text Available Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  17. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  18. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Directory of Open Access Journals (Sweden)

    Lam Ghai Lim

    2016-07-01

    Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  19. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach.

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon

    2016-07-04

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  20. Routes for GMR-Sensor Design in Non-Destructive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2012-09-01

    Full Text Available GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  1. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    Science.gov (United States)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  2. Non-invasive technique to measure biogeochemical parameters (pH and O2) in a microenvironment: Design and applications

    Science.gov (United States)

    Li, Biting; Seliman, Ayman; Pales, Ashley; Liang, Weizhen; Sams, Allison; Darnault, Christophe; Devol, Timothy

    2017-04-01

    The primary objectives of this research are to do the pH and O2 sensor foils calibration and then to test them in applications. Potentially, this project can be utilized to monitor the fate and transport of radionuclides in porous media. The information for physical and chemical parameters (e.g. pH and O2) is crucial to know when determining contaminants' behavior and transport in the environment. As a non-invasive method, optical imaging technique using a DSLR camera could capture data on the foil when it fluoresces, and gives a high temporal and spatial resolution during the experimental period. The calibration procedures were done in cuvettes in a row. The preliminary experiments could measure pH value in the range from 4.5 to 7.5, and O2 concentration from 0 mg/L to 20.74 mg/L. Applications of sensor foils have involved nano zero valent and acid rain experiments in order to obtain a gradient of parameter changes.

  3. Measurement of fatigue crack growth using low-profile eddy-current sensors

    International Nuclear Information System (INIS)

    Ditchburn, R.J.; Ibrahim, M.E.; Burke, S.K.

    2011-01-01

    Conformable spiral coils show promise as permanently mounted eddy-current sensors for the detection and monitoring of surface-breaking cracks in electrically conductive structures. Flexibility and a low profile (typically less than 0.5 mm) are key advantages that allow the sensors to be unobtrusively mounted on curved surfaces and beneath surface coatings. Furthermore, these sensors can be permanently mounted in areas that would otherwise be difficult or impossible to reach without significant disassembly. The sensors can be activated and interrogated using the same well-established electromagnetic measurement principles in eddy-current nondestructive inspection. A material test machine was used to grow through-thickness fatigue crack in a compact-tension specimen made from the aerospace-grade aluminium alloy AA2014. The growth of the crack was examined by measuring the small impedance changes of planar spiral-coil sensors attached to the specimen. The results indicate that permanently attached conformable spiral coils can be used to detect a deep crack once it has grown beneath the sensor, and then to monitor subsequent crack growth.

  4. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  5. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  6. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2016-11-01

    Full Text Available Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1% of the non-calibrated sensor response, and comparable statistical uncertainty.

  7. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: ashish09@stanford.edu; Tarantino, P. M.; Lauben, D. S.; Close, S. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  8. Noise measurement on Preshower Si sensors

    CERN Document Server

    Evangelou, Ioannis; Barney, David; Bloch, Philippe; Elsha, Vladimir; Go, Apollo; Kloukinas, Kostas; Kokkas, Panagiotis; Manthos, Nikolaos; Peisert, Anna; Prouskas, C; Reynaud, Serge; Triantis, Frixos A; Tzoulis, Nikolaos; Zub, E

    2002-01-01

    Throughout the past couple of years when we were designing the Preshower silicon sensors we have noticed that some of them have strips with a noise higher than the average and not correlated to the leakage current. In order to investigate this effect we have developed a set-up for noise measurement on wafers and diced sensors that does not require bonding. The set-up is based on the DeltaStream chip coupled to a probe card with 32 pins at a pitch of 1.9 mm. All the digital electronics, including the analogue-to-digital converter and a microprocessor, is placed on a motherboard which communicates with a PC via an RS232 line. We have tested 45 sensors and found that some strips which have an above average noise, also have a higher relative current increase as a function of voltage, deltaI/(I deltaV), even though their leakage current is below 50 nA. We also observed that on these strips th e breakdown occurs within about 60 V from the onset of the noise. The source of this noise is not yet clear and the investi...

  9. The silicon sensors for the Inner Tracker of the Compact Muon Solenoid Experiment

    International Nuclear Information System (INIS)

    Krammer, M.

    2003-01-01

    Full text: The Inner Tracker of the Compact Muon Solenoid Experiment, at present under construction, will consist of more than 24000 silicon strip sensors arranged in 10 central concentric layers and 2 X 9 discs at both ends. The total sensitive silicon area will exceed 200 m 2 . The silicon sensors are produced in various thicknesses and geometries. Each sensor has 512 or 768 implanted strips which will allow to measure the position of traversing high energy charged particles. This paper a short overview of the CMS tracker system. Subsequently the design of the silicon sensors is explained with special emphasis on the radiation hardness and on the high voltage stability of the sensors. Two companies share the production of these sensors. The quality of the sensors is extensively checked by several laboratories associated with CMS. Important electrical parameters are measured on the sensors themselves. In addition, dedicated test structures were designed by CMS which allow the monitoring of many parameters sensitive to the production process. By May 2003 about 3000 sensors were delivered and a large fraction of these sensors and tests structures was measured. A summary of these measurements will be given and the main results will be discussed

  10. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Vilitis O.

    2014-02-01

    Full Text Available In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF, which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  11. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.

    Science.gov (United States)

    Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar

    2017-12-01

    Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.

  12. On the Optimal Location of Sensors for Parametric Identification of Linear Structural Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Brincker, Rune

    A survey of the field of optimal location of sensors for parametric identification of linear structural systems is presented. The survey shows that few papers are devoted to the case of optimal location sensors in which the measurements are modelled by a random field with non-trivial covariance...... function. Most often it is assumed that the results of the measurements are statistically independent variables. In an example the importance of considering the measurements as statistically dependent random variables is shown. The example is concerned with optimal location of sensors for parametric...... identification of modal parameters for a vibrating beam under random loading. The covariance of the modal parameters expected to be obtained is investigated to variations of number and location of sensors. Further, the influence of the noise on the optimal location of the sensors is investigated....

  13. Self-assembly of orthogonal three-axis sensors

    International Nuclear Information System (INIS)

    Cho, J. H.; Hu, S.; Gracias, D. H.

    2008-01-01

    Conventional planar microfabrication is widely utilized to construct sensors for the measurement of physical or chemical properties. However, in these devices, the information component measured is typically restricted to only one vectorial axis. Here, we describe a self-assembling strategy that can be utilized to construct three dimensional (3D) cubic devices that facilitate measurement along three axes. This 3D measurement is achieved by arranging sensing elements orthogonally; any sensing element that can be lithographically patterned can be utilized. The 3D arrangement of sensors allows for the measurement of angular and orientation parameters. As an example, we describe a three-axis cantilever based sensor and demonstrate measurement of an evaporated analyte using resonant frequency shifts of cantilevers in each of the x, y, and z axes

  14. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  15. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  16. Miniaturized multi-sensor for aquatic studies

    DEFF Research Database (Denmark)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis

    2011-01-01

    that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination...... of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10−7 Pa−1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74......We have developed and fabricated a multi-sensor chip for fisheries’ research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved...

  17. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Methods for measurement of durability parameters

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....

  19. Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement

    Science.gov (United States)

    Huang, Haiying

    2007-04-01

    Silica-based optical fiber sensors are widely used in structural health monitoring systems for strain and deflection measurement. One drawback of silica-based optical fiber sensors is their low strain toughness. In general, silica-based optical fiber sensors can only reliably measure strains up to 2%. Recently, polymer optical fiber sensors have been employed to measure large strain and deflection. Due to their high optical losses, the length of the polymer optical fibers is limited to 100 meters. In this paper, we present a novel economical technique to fabricate hybrid silica/polymer optical fiber strain sensors for large strain measurement. First, stress analysis of a surface-mounted optical fiber sensor is performed to understand the load distribution between the host structure and the optical fiber in relation to their mechanical properties. Next, the procedure of fabricating a polymer sensing element between two optical fibers is explained. The experimental set-up and the components used in the fabrication process are described in details. Mechanical testing results of the fabricated silica/polymer optical fiber strain sensor are presented.

  20. Miniature Sensor for Aerosol Mass Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  1. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    Science.gov (United States)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  2. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors

    International Nuclear Information System (INIS)

    Yuan Jipei; Guo Weiwei; Wang Erkang

    2008-01-01

    The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ. Dozens folds elevation of the quenching extents were observed with the increase of concentrations of H + and sodium citrate, and the quenching mechanisms were also fundamentally different with the changes of the surrounding buffer solutions. The quenching models were proposed and analyzed at different buffer conditions. Taking pH values for example, QDs quenching obeyed the sphere of effective quenching model with the sphere radii of 8.29 nm at pH 8.0, the linear Stern-Volmer equation with Stern-Volmer constant of 2.0 x 10 3 mol -1 L at pH 7.0, and the two binding site static quenching model at basic conditions. The elucidation of parameters for assay performance was important in the development of QDs-based optical sensors

  3. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  4. On-line plutonium measurement by alpha counting using a silica glass sensor

    International Nuclear Information System (INIS)

    Edeline, J.C.; Furgolle, B.

    1980-01-01

    Some cerium activated high purity silica glasses are good sensors for ionising particles counting. These sensors may be used for measuring plutonium concentrations in corrosive solutions which are typical in reprocessing operations. The thickness of the sensor has been reduced to minimize beta sensitivity. The thin sensor is hold by molecular adhesion to a thick glass mount which is soldered to the stainless steel sample cell [fr

  5. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  6. Temperature and strain measurements in concrete using micro-structure optical fiber sensors

    Energy Technology Data Exchange (ETDEWEB)

    Areias, Lou [EURIDICE/SCK - CEN, Mol (Belgium); Vrije Univ. Brussels (Belgium); Geernaert, Thomas; Sulejmani, Sanne [Vrije Univ. Brussels (Belgium); and others

    2015-07-01

    A recent test carried out to evaluate the construction feasibility of the Belgian supercontainer concept incorporated several types of state-of-the-art sensors and innovative monitoring techniques, including the use of different types of optical fiber sensors. One of these is a relatively new type of sensor developed by the Brussels Photonics Team (B-PHOT) of the Vrije Universiteit Brussel. The sensor uses highly birefringent microstructured optical fibers equipped with fiber Bragg gratings (MOFBGs) sensors. They were embedded in a carbon-fiber reinforced composite plate to provide protection against the concrete's highly alkaline environment, facilitate installation in the concrete mould and allow the transfer of strain onto the fiber. The double reflection spectrum of the MOFBGs allows monitoring strain and temperature simultaneously. This paper presents results of temperature and strain measurements obtained with MOFBG sensors during a {sup 1}/{sub 2}-scale test performed in 2013. The results compare well with similar measurements obtained using conventional thermocouples and vibrating wire strain gauges.

  7. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    Science.gov (United States)

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  8. Research experiments on pressure-difference sensors with ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ruican, Hao, E-mail: haoruican@163.com [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Huagang, Liu; Wen, Gong; Na, Zhang [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Ruixiao, Hao [Civil and Architectural Engineering Institute of CCCC-FHEB Co., Ltd., Beijing 101102 (China)

    2016-10-15

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  9. Research experiments on pressure-difference sensors with ferrofluid

    International Nuclear Information System (INIS)

    Ruican, Hao; Huagang, Liu; Wen, Gong; Na, Zhang; Ruixiao, Hao

    2016-01-01

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  10. An integrative framework for sensor-based measurement of teamwork in healthcare.

    Science.gov (United States)

    Rosen, Michael A; Dietz, Aaron S; Yang, Ting; Priebe, Carey E; Pronovost, Peter J

    2015-01-01

    There is a strong link between teamwork and patient safety. Emerging evidence supports the efficacy of teamwork improvement interventions. However, the availability of reliable, valid, and practical measurement tools and strategies is commonly cited as a barrier to long-term sustainment and spread of these teamwork interventions. This article describes the potential value of sensor-based technology as a methodology to measure and evaluate teamwork in healthcare. The article summarizes the teamwork literature within healthcare, including team improvement interventions and measurement. Current applications of sensor-based measurement of teamwork are reviewed to assess the feasibility of employing this approach in healthcare. The article concludes with a discussion highlighting current application needs and gaps and relevant analytical techniques to overcome the challenges to implementation. Compelling studies exist documenting the feasibility of capturing a broad array of team input, process, and output variables with sensor-based methods. Implications of this research are summarized in a framework for development of multi-method team performance measurement systems. Sensor-based measurement within healthcare can unobtrusively capture information related to social networks, conversational patterns, physical activity, and an array of other meaningful information without having to directly observe or periodically survey clinicians. However, trust and privacy concerns present challenges that need to be overcome through engagement of end users in healthcare. Initial evidence exists to support the feasibility of sensor-based measurement to drive feedback and learning across individual, team, unit, and organizational levels. Future research is needed to refine methods, technologies, theory, and analytical strategies. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions

  11. Noncontact ballistic motion measurement using a fiber-optic confocal sensor

    International Nuclear Information System (INIS)

    Shafir, E.; Berkovic, G.; Horovitz, Y.; Appelbaum, G.; Moshe, E.; Horovitz, E.; Skutelski, A.; Werdiger, M.; Perelmutter, L.; Sudai, M.

    2007-01-01

    A fiber-optic confocal sensor for noncontact ballistic measurements is described. Determination of motion at velocities of 1.7 km/s with an uncertainty as small as ±0.3% is demonstrated for both a projectile and a free-surface target. The fibers detect the passage of the object at their conjugate image points created by low F/ optics. This results in an output signal comprising a train of sharp pulses each precisely identifying when the ballistic object traverses an image point. Since the ballistic object does not contact the sensor at the time of imaging, the measurements do not perturb the motion, enabling multi-fragment measurement, as well as repetitive measurements of the same object point

  12. A novel measurement method for the thermal properties of liquids by utilizing a bridge-based micromachined sensor

    International Nuclear Information System (INIS)

    Beigelbeck, Roman; Nachtnebel, Herbert; Kohl, Franz; Jakoby, Bernhard

    2011-01-01

    In recent decades, the demands for online monitoring of liquids in various applications have increased significantly. In this context, the sensing of the thermal transport parameters of liquids (i.e. thermal conductivity and diffusivity) may be an interesting alternative to well-established monitoring parameters like permittivity, mass density or shear viscosity. We developed a micromachined thermal property sensor, applicable to non-flowing liquids, featuring three in parallel microbridges, which carry either a heater or one of in total two thermistors. Its active sensing region was designed to achieve almost negligible spurious thermal shunts between heater and thermistors. This enables the adoption of a simple two-dimensional model to describe the heat transfer from the heater to the thermistors, which is mainly governed by the thermal properties of the sample liquid. Founded on this theoretical model, a novel measurement method for the thermal parameters was devised that relies solely on the frequency response of the measured peak temperature and allows simultaneous extraction of the thermal conductivity and diffusivity of liquids. In this contribution, we describe the device prototype, the model, the deduced measurement method and the experimental verification by means of test measurements carried out on five sample liquids

  13. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  14. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  15. First experience with a novel luminescence-based optical sensor for measurement of oxygenation in tumors

    International Nuclear Information System (INIS)

    Jarm, T.; Miklavcic, D.; Lesnicar, H.; Sersa, G.

    2001-01-01

    Background. The purpose of this preliminary study was to evaluate a novel luminescence-based fiber-optic sensor (OxyLite system) for the measurement of partial pressure of oxygen (pO 2 ) in tumors and for the detection of changes in pO 2 as a function of time. The new method was used simultaneously with the laser Doppler flowmetry method for the measurement of relative tissue perfusion. Materials and methods. Blood perfusion and pO 2 were measured continuously via fiber-optic sensors inserted into SA-1 tumors in anesthetized A/J mice. The changes in blood flow and oxygenation of tumors were induced by transient changes of the parameters of anesthesia and by injection of a vasoactive drug hydralazine. Results. Both optical methods used in the study successfully detected the induced changes in blood flow and pO 2 . The measurements of pO 2 were well correlated with measurements of microcirculatory blood perfusion. In the majority of pO 2 measurements, we observed an unexpected behavior of the signal during the stabilization process immediately after the insertion of the probe into tumor. This behaviour of the pO 2 signal was most probably caused by local tissue damage induced by the insertion of the probe. Conclusion. The novel luminescence-based optical oximetry can reliably detect local pO 2 changes in tumors as a function of time but some aspects of prolonged pO 2 measurement by this method require further investigation. (author)

  16. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  17. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  18. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  19. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    International Nuclear Information System (INIS)

    Joshi, Abhay B.; Kalange, Ashok E.; Bodas, Dhananjay; Gangal, S.A.

    2010-01-01

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  20. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  1. A sensor element for direct radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bajons, P.; Wernhart, U.; Zeiler, H. [University of Vienna (Austria). Institut of Material Physics

    1998-08-01

    A combination of a photodiode with a nonimaging light concentrator is developed to perform measurements of the direct solar radiation component. A prototype composed of low price elements is taken as a starting point to discuss the problems which must be faced when calibrating such sensors. By this the influence of the angle of incidence and spectral distribution (caused by different air mass or varying degree of clearness) of the incident radiation on the behavior of the system is studied. The readings are compared to the calculated (global minus diffuse) readings obtained from two standard star pyranometers. Finally the possibilities for increasing the accuracy of the sensor element and for applying the device are discussed. (author)

  2. Development of an Optical Sensor Head for Current and Temperature Measurements in Power Systems

    Directory of Open Access Journals (Sweden)

    Fábio V. B. de Nazaré

    2013-01-01

    Full Text Available The development of a current and temperature monitoring optical device intended to be used in high-voltage environments, particularly transmission lines, is presented. The system is intended to offer not only measurement reliability, but to be also practical and light weighted. Fiber Bragg gratings (FBGs are employed in the measurement of both physical parameters: the current will be acquired using a hybrid sensor head setup—an FBG fixed on a magnetostrictive rod—while a single-point temperature information is provided by a dedicated grating. An inexpensive and outdoor-suitable demodulation method, such as the fixed filter technique, should be used in order to improve the instrumentation robustness, avoiding expensive and complex auxiliary electronics. The preliminary results for laboratory tests are also discussed.

  3. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  4. A method to measure the thermal-physical parameter of gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Diao, S.B.; Ye, Y.G.; Yue, Y.J.; Zhang, J.; Chen, Q.; Hu, G.W. [Qingdao Inst. of Marine Geology, Qingdao (China)

    2008-07-01

    It is important to explore and make good use of gas hydrates through the examination of the thermal-physical parameters of sediment. This paper presented a new type of simulation experiment using a device that was designed based on the theories of time domain reflection and transient hot wire method. A series of investigations were performed using this new device. The paper described the experiment, with reference to the experiment device and materials and method. It also presented the results of thermal physical properties; result of the thermal conductivity of water, dry sand and wet sand; and results of wet sand under various pressures. The time domain reflection (TDR) method was utilized to monitor the saturation of the hydrates. Both parallel hot-wire method and cross hot-wire method were utilized to measure the thermal conductivity of the gas hydrate in porous media. A TDR sensor which was equipped with both cross hot-wire probe and parallel hot-wire probe was developed in order to measure the cell temperature with these two methods at one time. It was concluded that the TDR probe could be taken as an online measurement skill in investigating the hydrate thermal physical property in porous media. The TDR sensor could monitor the hydrate formation process and the parallel hot-wire method and cross hot-wire method could effectively measure the thermal physical properties of the hydrates in porous media. 10 refs., 7 figs.

  5. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    Science.gov (United States)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  6. Internal Interface Diversification as a Security Measure in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sampsa Rauti

    2018-03-01

    Full Text Available More actuator and sensor devices are connected to the Internet of Things (IoT every day, and the network keeps growing, while software security of the devices is often incomplete. Sensor networks and the IoT in general currently cover a large number of devices with an identical internal interface structure. By diversifying the internal interfaces, the interfaces on each node of the network are made unique, and it is possible to break the software monoculture of easily exploitable identical systems. This paper proposes internal interface diversification as a security measure for sensor networks. We conduct a study on diversifiable internal interfaces in 20 IoT operating systems. We also present two proof-of-concept implementations and perform experiments to gauge the feasibility in the IoT environment. Internal interface diversification has practical limitations, and not all IoT operating systems have that many diversifiable interfaces. However, because of low resource requirements, compatibility with other security measures and wide applicability to several interfaces, we believe internal interface diversification is a promising and effective approach for securing nodes in sensor networks.

  7. MIMOSA-26 calibration and noise measurement based on the digital sensor output

    Energy Technology Data Exchange (ETDEWEB)

    Milanovic, Borislav [Goethe Uni Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2014-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are used for high-precision tracking in particle detectors. They are applied for the STAR detector and also considered for the future CBM and ALICE experiments. MAPS combine high detection efficiency (> 99 %), with ultra-low material budget (thinned to 50 μm) and low power consumption (ca. 250 mW/cm{sup 2}). Their main feature is an integrated digital readout circuit situated directly on-chip. MIMOSA-26, developed at the IPHC Strasbourg, represents the basis of a modern MAPS. The sensor allows programming and slow control via JTAG. Sensitivity to impinging particles can be easily modified by changing the internal JTAG registers. However, the sensors require a careful tuning of run-time parameters, e.g. thresholds for the on-chip discriminators to guarantee a high detection efficiency and a low fake hit occupancy, i,e, electronic noise. This contribution presents a systematic study of the sensor/pixel response to noise allowing for a sensor characterization, calibration and selection prior to integration.

  8. About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2008-01-01

    Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.

  9. Measurements with the PNNL Density Sensor aboard the Essayons, July 2009

    International Nuclear Information System (INIS)

    Greenwood, Margaret S.

    2009-01-01

    Report of the measurements and analysis of the density data. On July 9, 2009, the Pacific Northwest National Laboratory (PNNL) ultrasonic sensor obtained density data for the sand slurry dredged near the mouth of the Columbia River by the Essayons. The objective of these measurements was to compare the data from the ultrasonic sensor with that obtained by the radioactive sensor, currently in use. The U. S. Corps of Engineers is interested in a sensor technology capable of competing with the radioactive sensor to ease regulatory concerns. The average density obtained during the data acquisition was smaller than the expected value of 1.3 g/cm3. Further investigation showed that the radioactive sensor measured a density of 1.11 g/cm3 for the calibration liquid, but the code was set up with the density of seawater of 1.025 g/cm3. This mismatch partially explained the low density value. However, the conclusion was that, while the basic data is very good, the current interpretation of that data needed modification. A new model has been developed that describes how the ultrasound interacts with the sand particles in the slurry. The new model requires the evaluation of a constant ksurf from a laboratory experiment. This was carried out at PNNL using sand obtained from the Oregon coast during a previous visit to the Essayons. A value for ksurf was determined with an error of ±10%, which, of course, is too large. For future work, another design is proposed and a more accurate value is expected. Measurements with the refractometer showed the effects of tides. That is, in the morning the density of the seawater was very close to that for fresh water, while in the afternoon, the density was due to salt water. The results of the analysis showed that the average density of the sand slurry varies between 1.230 and 1.235 g/cm3. The last section of this report discusses in detail improvements for future development. The conclusion is that, once these improvements have been made

  10. Detailed studies of full-size ATLAS12 sensors

    Science.gov (United States)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  11. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    Science.gov (United States)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  12. Design of a fiber optical sensor for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Baghdasaryan, H.V.; Knyazyan, T.M.; Daryan, A.V.

    2016-01-01

    All-optical sensor for atmospheric electric field detection and measurement is suggested and numerically modelled. Thin electro- optical crystal sandwiched between two distributed Bragg reflectors (DBRs) forming multilayer Gires-Tournois (G-T) microresonator is used as a sensitive part of the electric field sensor. In the sensor device, an optical fiber delivers the wideband light spectrum to the sensing multilayer structure of G-T microresonator. The reflectance spectrum of the sensor contains information on the electric field strength and direction. The relevant reflectance peaks’ shift in the reflected spectrum can be observed by an optical spectrum analyzer (OSA). Numerical modelling has been done by the method of single expression that is a suitable tool for multi-boundary problems solution. The obtained results of modelling will be useful in a new type of non-distorting sensor’s elaboration for atmospheric electric field detection and measurement. (author)

  13. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  14. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  15. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  16. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    Science.gov (United States)

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  17. Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-01-01

    Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

  18. Modeling borehole microseismic and strain signals measured by a distributed fiber optic sensor

    Science.gov (United States)

    Mellors, R. J.; Sherman, C. S.; Ryerson, F. J.; Morris, J.; Allen, G. S.; Messerly, M. J.; Carr, T.; Kavousi, P.

    2017-12-01

    The advent of distributed fiber optic sensors installed in boreholes provides a new and data-rich perspective on the subsurface environment. This includes the long-term capability for vertical seismic profiles, monitoring of active borehole processes such as well stimulation, and measuring of microseismic signals. The distributed fiber sensor, which measures strain (or strain-rate), is an active sensor with highest sensitivity parallel to the fiber and subject to varying types of noise, both external and internal. We take a systems approach and include the response of the electronics, fiber/cable, and subsurface to improve interpretation of the signals. This aids in understanding noise sources, assessing error bounds on amplitudes, and developing appropriate algorithms for improving the image. Ultimately, a robust understanding will allow identification of areas for future improvement and possible optimization in fiber and cable design. The subsurface signals are simulated in two ways: 1) a massively parallel multi-physics code that is capable of modeling hydraulic stimulation of heterogeneous reservoir with a pre-existing discrete fracture network, and 2) a parallelized 3D finite difference code for high-frequency seismic signals. Geometry and parameters for the simulations are derived from fiber deployments, including the Marcellus Shale Energy and Environment Laboratory (MSEEL) project in West Virginia. The combination mimics both the low-frequency strain signals generated during the fracture process and high-frequency signals from microseismic and perforation shots. Results are compared with available fiber data and demonstrate that quantitative interpretation of the fiber data provides valuable constraints on the fracture geometry and microseismic activity. These constraints appear difficult, if not impossible, to obtain otherwise.

  19. An Intelligent Four-Electrode Conductivity Sensor for Aquaculture

    OpenAIRE

    Zhang , Jiaran; Li , Daoliang; Wang , Cong; Ding , Qisheng

    2012-01-01

    International audience; Conductivity is regard as a key technical parameter in modern intensive fish farming management. The water conductivity sensors are sophisticated devices used in the aquaculture monitoring field to understand the effects of climate changes on fish ponds. In this paper a new four-electrode smart sensor is proposed for water conductivity measurements of aquaculture monitoring.The main advantages of these sensors include a high precision, a good stability and an intrinsic...

  20. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    Science.gov (United States)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  1. Precision measurements of electroweak parameters

    CERN Document Server

    Savin, Alexander

    2017-01-01

    A set of selected precise measurements of the SM parameters from the LHC experiments is discussed. Results on W-mass measurement and forward-backward asymmetry in production of the Drell--Yan events in both dielectron and dimuon decay channels are presented together with results on the effective mixing angle measurements. Electroweak production of the vector bosons in association with two jets is discussed.

  2. Measuring the chargino parameters

    Indian Academy of Sciences (India)

    by measuring the cross-sections with polarized beams at e+e- collider ... is given by the fundamental SUSY parameters: the SU(2) gaugino mass Е¾, the higgsino .... two points in the plane which are symmetric under the interchange ¾Д ° ¾К.

  3. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  4. An ultra-fast fiber optic pressure sensor for blast event measurements

    International Nuclear Information System (INIS)

    Wu, Nan; Tian, Ye; Wang, Xingwei; Zou, Xiaotian; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie

    2012-01-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry–Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event. (paper)

  5. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  6. Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; QI Wen-Juan; DENG Zi-Li

    2014-01-01

    This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, two-level robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances. It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.

  7. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  8. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    Directory of Open Access Journals (Sweden)

    Michael Lippautz

    2010-12-01

    Full Text Available Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  9. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  10. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments

    Directory of Open Access Journals (Sweden)

    Ha-Duong Ngo

    2015-08-01

    Full Text Available In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load with an accuracy of 0.25% Full Scale Output (FSO. A push rod (mounted onto the steel membrane transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process. A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  11. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.

    Science.gov (United States)

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-08-18

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  12. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  13. Hybrid online sensor error detection and functional redundancy for systems with time-varying parameters.

    Science.gov (United States)

    Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali

    2017-12-01

    Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.

  14. Joint sensor location/power rating optimization for temporally-correlated source estimation

    KAUST Repository

    Bushnaq, Osama M.

    2017-12-22

    The optimal sensor selection for scalar state parameter estimation in wireless sensor networks is studied in the paper. A subset of N candidate sensing locations is selected to measure a state parameter and send the observation to a fusion center via wireless AWGN channel. In addition to selecting the optimal sensing location, the sensor type to be placed in these locations is selected from a pool of T sensor types such that different sensor types have different power ratings and costs. The sensor transmission power is limited based on the amount of energy harvested at the sensing location and the type of the sensor. The Kalman filter is used to efficiently obtain the MMSE estimator at the fusion center. Sensors are selected such that the MMSE estimator error is minimized subject to a prescribed system budget. This goal is achieved using convex relaxation and greedy algorithm approaches.

  15. Measurement of the two track separation capability of hybrid pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, F.J., E-mail: Francisca.MunozSanchez@manchester.ac.uk [University of Manchester (United Kingdom); Battaglia, M. [University of California, Santa Cruz, United States of America (United States); CERN, The European Organization for Nuclear Research (Switzerland); Da Vià, C. [University of Manchester (United Kingdom); La Rosa, A. [University of California, Santa Cruz, United States of America (United States); Dann, N. [University of Manchester (United Kingdom)

    2017-02-11

    Large Hadron Collider experiments face new challenges in Run-2 conditions due to the increased beam energy, the interest for searches of new physics signals with higher jet pT and the consequent longer decay length of heavy hadrons. In this new scenario, the capability of the innermost pixel sensors to distinguish tracks in very dense environment becomes crucial for efficient tracking and flavour tagging performance. In this work, we discuss the measurement in a test beam of the two track separation capability of hybrid pixel sensors using the interaction particles out of the collision of high energy pions on a thin copper target. With this method we are able to evaluate the effect of merged hits in the sensors under test due to tracks closer than the sensor spatial granularity in terms of collected charge, multiplicity and reconstruction efficiency. - Highlights: • Measurement of the two-track separation capability of hybrid pixel sensors. • Emulating track dense environment with a cooper target in a test beam. • Cooper target in between telescope arms to create vertices. • Validation of simulation and reconstruction algorithm for future vertex detectors. • New qualification method for pixel modules in track dense environments.

  16. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    to calculate independently the strain and temperature are presented in the article, together with a measurement resolution study. This multi-parameter measurement method was applied to an epoxy tensile specimen, tested in a unidirectional tensile test machine with a temperature controlled cabinet. A full......A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... of temperature, from 40 C to -10 C. The consistency of the expected theoretical results with the calibration procedure and the experimental validation shows that this proposed method is applicable to measure accurate strain and temperature in polymers during static or fatigue tensile testing. Two different...

  17. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  18. Parameter measurement of target

    International Nuclear Information System (INIS)

    Gao Dangzhong

    2001-01-01

    The progress of parameter measurement of target (ICF-15) in 1999 are presented, including the design and contract of the microsphere equator profiler, the precise air bearing manufacturing, high-resolution X-ray image of multi-layer shells and the X-ray photos processed with special image and data software, some plastic shells measured in precision of 0.3 μm, the high-resolution observation and photograph system of 'dew-point method', special fixture of target and its temperature distribution measuring, the dew-point temperature and fuel gas pressure of shells measuring with internal pressure of 5 - 15 (x10 5 ) Pa D 2 and wall thickness of 1.5∼3 μm

  19. Force sensor for measuring power transfer between the human body and the environment

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  20. Microfluidic sensor for ultra high redox cycling amplification for highly selective electrochemical measurements

    NARCIS (Netherlands)

    Odijk, Mathieu; Straver, Martin; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling (RC) effect. Using this sensor, a RC amplification of ~2000x is measured using the ferrocyanide redox couple, which is much

  1. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    Science.gov (United States)

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  2. Relative hardness measurement of soft objects by a new fiber optic sensor

    Science.gov (United States)

    Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran

    2010-06-01

    The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.

  3. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  4. Measurement of radiation induced transients in hybrid microcircuits by magnetic thin film sensor/recorders

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Vindelov, K.E.; Brown, T.G.; Miller, D.E.

    1976-01-01

    Magnetic thin film transient current sensor/recorders were modified to make two types of nuclear test measurements, transient currents in hybrid microcircuits and internal electromagnetic pulse (IEMP) fields. The measurements were made possible by the invention of split-domain sensor/recorders which can measure bilateral currents and can be reset and readout on location. The sensor/recorders were used in two underground nuclear tests and numerous calibration tests in radiation-simulation machines. The data showed that the nuclear environment had negligible effect on the sensor/recorder's operation and the recorded informations on the sensor/recorders were the signals intended to be monitored. Also, the experimental data agreed with the theoretical analysis in controlled experiments. The data were examined first by on location readout with a magnetic tape viewer and later by Kerr magneto-optic readout in the laboratory. To translate the data into current readings, we reconstructed facsimile data (on each of the sensor/recorders) in the laboratory by current pulses with the same pulse width as the radiation event. An additional check on the accuracy of the data was made by using both the sensor/recorder and the conventional pickup-oscilloscope-camera technique to monitor the same current lead in a simulated radiation environment. Over five runs were made, and the agreement among the two measurement methods was within 25%. The data collectively implied that the measurements were reliable and dependable

  5. Impact of stone content on soil moisture measurement with capacitive sensors 10HS (Decagon)

    Science.gov (United States)

    Deraedt, Deborah; Bernard, Julien; Bietlot, Louise; Clerbois, Laura; Rosière, Clément; Starren, Amandine; Colinet, Gilles; Mercatoris, Benoit; Degré, Aurore

    2015-04-01

    . The evolution of the soil sample height was monitored as well. As first result, the stone content is a parameter that seems to influence soil water content. The stone size is no important. Because soil moisture deserves to be measured accurately in every soil and to confirm the first results the experiment is going on with more samples, different stone proportions, other sensor positioning and a natural air drying.

  6. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  7. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  8. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  9. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  10. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Mohammad Haji Gholizadeh

    2016-08-01

    Full Text Available Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM, chlorophyll-a, and pollutants. A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc. of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a, colored dissolved organic matters (CDOM, Secchi disk depth (SDD, turbidity, total suspended sediments (TSS, water temperature (WT, total phosphorus (TP, sea surface salinity (SSS, dissolved oxygen (DO, biochemical oxygen demand (BOD and chemical oxygen demand (COD.

  11. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  12. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  13. DNA-Based Sensor for Real-Time Measurement of the Enzymatic Activity of Human Topoisomerase I

    DEFF Research Database (Denmark)

    Marcussen, Lærke Bay; Jepsen, Morten Leth; Kristoffersen, Emil Laust

    2013-01-01

    Sensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I....... The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair. The quencher moiety is released from the sensor upon reaction with human topoisomerase I thus enabling real-time optical measurement of enzymatic activity. The sensor....... The cytotoxic effect of camptothecins correlates directly with the intracellular topoisomerase I activity. We therefore envision that the presented sensor may find use for the prediction of cellular drug response. Moreover, inhibition of topoisomerase I by camptothecin is readily detectable using the presented...

  14. Miniaturized multi-sensor for aquatic studies

    International Nuclear Information System (INIS)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis; Thomsen, Erik V

    2011-01-01

    We have developed and fabricated a multi-sensor chip for fisheries' research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm 3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10 −7 Pa −1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74% in the range of visible light. The temperature sensor responds linearly with temperature and has a temperature coefficient of resistance of 2.9 × 10 −3 K −1 . The conductivity sensor can measure the salinity with an accuracy of ±0.1 psu. This is all together the smallest and best functioning fully integrated MEMS-based multi-sensor made to date for this specific application. However, each single-sensor performance can be optimized by introducing a considerably more complicated process sequence. In this paper, a new simpler process for integrating the four sensors on one single chip is presented in details for the first time. Further, an optimized performance of the individual sensors is presented

  15. Bluetooth-based distributed measurement system

    International Nuclear Information System (INIS)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng

    2007-01-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit

  16. Bluetooth-based distributed measurement system

    Science.gov (United States)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  17. Bluetooth-based distributed measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng [Department of Mechatronics, College of Mechanical Engineering, Chongqing University, Chongqing, 400030 (China)

    2007-07-15

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  18. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    Science.gov (United States)

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  19. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    Science.gov (United States)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  20. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  1. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale

  2. Probability Model for Data Redundancy Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2009-01-01

    Full Text Available Sensor networks are made of autonomous devices that are able to collect, store, process and share data with other devices. Large sensor networks are often redundant in the sense that the measurements of some nodes can be substituted by other nodes with a certain degree of confidence. This spatial correlation results in wastage of link bandwidth and energy. In this paper, a model for two associated Poisson processes, through which sensors are distributed in a plane, is derived. A probability condition is established for data redundancy among closely located sensor nodes. The model generates a spatial bivariate Poisson process whose parameters depend on the parameters of the two individual Poisson processes and on the distance between the associated points. The proposed model helps in building efficient algorithms for data dissemination in the sensor network. A numerical example is provided investigating the advantage of this model.

  3. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  4. Footprint parameters as a measure of arch height.

    Science.gov (United States)

    Hawes, M R; Nachbauer, W; Sovak, D; Nigg, B M

    1992-01-01

    The human foot has frequently been categorized into arch height groups based upon analysis of footprint parameters. This study investigates the relationship between directly measured arch height and many of the footprint parameters that have been assumed to represent arch height. A total of 115 male subjects were measured and footprint parameters were calculated from digitized outlines. Correlation and regression analyses were used to determine the relationship between footprint measures and arch height. It may be concluded from the results that footprint parameters proposed in the literature (arch angle, footprint index, and arch index) and two further parameters suggested in this study (arch length index and truncated arch index) are invalid as a basis for prediction or categorization of arch height. The categorization of the human foot according to the footprint measures evaluated in this paper represent no more than indices and angles of the plantar surface of the foot itself.

  5. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  6. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  7. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    Science.gov (United States)

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available

  8. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Directory of Open Access Journals (Sweden)

    Saroj P Mathupala

    Full Text Available Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup.With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135 consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions.We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to

  9. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Science.gov (United States)

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and

  10. Multi-Functional Measurement Using a Single FBG Sensor

    NARCIS (Netherlands)

    Mizutani, Y.; Groves, R.M.

    2011-01-01

    This paper describes the measurement of average strain, strain distribution and vibration of a cantilever beam made of Carbon Fiber Reinforced Plastics (CFRP), using a single Fibre Bragg Grating (FBG) sensor mounted on the beam surface. Average strain is determined from the displacement of the peak

  11. Simultaneous pressure-volume measurements using optical sensors and MRI for left ventricle function assessment during animal experiment.

    Science.gov (United States)

    Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie

    2015-01-01

    Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Validation of Leaf Area Index measurements based on the Wireless Sensor Network platform

    Science.gov (United States)

    Song, Q.; Li, X.; Liu, Q.

    2017-12-01

    The leaf area index (LAI) is one of the important parameters for estimating plant canopy function, which has significance for agricultural analysis such as crop yield estimation and disease evaluation. The quick and accurate access to acquire crop LAI is particularly vital. In the study, LAI measurement of corn crops is mainly through three kinds of methods: the leaf length and width method (LAILLW), the instruments indirect measurement method (LAII) and the leaf area index sensor method(LAIS). Among them, LAI value obtained from LAILLW can be regarded as approximate true value. LAI-2200,the current widespread LAI canopy analyzer,is used in LAII. LAIS based on wireless sensor network can realize the automatic acquisition of crop images,simplifying the data collection work,while the other two methods need person to carry out field measurements.Through the comparison of LAIS and other two methods, the validity and reliability of LAIS observation system is verified. It is found that LAI trend changes are similar in three methods, and the rate of change of LAI has an increase with time in the first two months of corn growth when LAIS costs less manpower, energy and time. LAI derived from LAIS is more accurate than LAII in the early growth stage,due to the small blade especially under the strong light. Besides, LAI processed from a false color image with near infrared information is much closer to the true value than true color picture after the corn growth period up to one and half months.

  13. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems

    DEFF Research Database (Denmark)

    Chipman, Lindsay; Huettel, Markus; Berg, Peter

    2012-01-01

    The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors...... that combine the advantages of noninvasive measurements and integration of fluxes over a large footprint area, using a relatively rugged and less expensive sensor....

  14. A micro-force sensor with slotted-quad-beam structure for measuring the friction in MEMS bearings.

    Science.gov (United States)

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-09-30

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  15. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-09-01

    Full Text Available Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  16. Dynamical Capillary Rise Photonic Sensor for Testing of Diesel and Biodiesel Fuel

    Directory of Open Access Journals (Sweden)

    Michal BORECKI

    2015-10-01

    Full Text Available There are many fuel quality standards introduced by national organizations and fuel producers. Usual techniques for measuring fuel parameters like cetane number, cetane index, fraction composition, viscosity, density, and flash point, require relatively complex and expensive laboratory equipment. On the fuel user side, fast and low cost sensing of useful state of biodiesel fuel is important. The main parameters of diesel fuel compatibility are: density, viscosity and surface tension. These three parameters define indirectly the quality of the fuel atomization process and the injected portion of energy that affect the quality of the fuel. In the presented paper the purposefulness of fuel testing using measurements of separable parameters is discussed. On this base, a sensor which enables the examination of relation of the mentioned parameters in one arrangement is proposed, analyzed and tested. The sensor uses the dynamic capillary rise method with photonic multichannel data reading in an inclined capillary. The principle of the sensor’s operation, the construction of the sensor head, and the experimental results are presented. The capillary is a disposable element. The sensor testing was performed with freshly prepared biodiesel fuels, and fuels stored for 2 years. We conclude that the proposed construction may be in future the base of low cost commercially marketable instruments for basic fuel classification: fit for use or not. That classification includes initial fuel composition and fuel parameters change during storage. Therefore, the proposed sensor is intended to use in fuel buying/selling point rather than used as part of a diesel engine automated system.

  17. A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2017-10-01

    Full Text Available In this paper, a beam-membrane (BM sensor for measuring friction torque in micro-electro-mechanical system (MEMS gas bearings is presented. The proposed sensor measures the force-arm-transformed force using a detecting probe and the piezoresistive effect. This solution incorporates a membrane into a conventional four-beam structure to meet the range requirements for the measurement of both the maximum static friction torque and the kinetic friction torque in rotating MEMS machines, as well as eliminate the problem of low sensitivity with neat membrane structure. A glass wafer is bonded onto the bottom of the sensor chip with a certain gap to protect the sensor when overloaded. The comparisons between the performances of beam-based sensor, membrane-based sensor and BM sensor are conducted by finite element method (FEM, and the final sensor dimensions are also determined. Calibration of the fabricated and packaged device is experimentally performed. The practical verification is also reported in the paper for estimating the friction torque in micro gas bearings by assembling the proposed sensor into a rotary table-based measurement system. The results demonstrate that the proposed force sensor has a potential application in measuring micro friction or force in MEMS machines.

  18. Development of concentration measurement system in a mini-channel using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki

    2008-01-01

    A local NMR sensor to measure methanol concentration of fluid flowing in a mini-channel was developed. The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 0.60 mm inside diameter. Using the sensors, local methanol concentration of water-methanol mixture in the mini-channel of 3.0 mm width and 1.5 mm depth was measured. The effects of flow velocity in the channel and the gravity direction on the methanol concentration distribution in the channel were investigated experimentally. (author)

  19. Biofouling protection for marine environmental sensors

    Directory of Open Access Journals (Sweden)

    L. Delauney

    2010-05-01

    Full Text Available These days, many marine autonomous environment monitoring networks are set up in the world. These systems take advantage of existing superstructures such as offshore platforms, lightships, piers, breakwaters or are placed on specially designed buoys or underwater oceanographic structures. These systems commonly use various sensors to measure parameters such as dissolved oxygen, turbidity, conductivity, pH or fluorescence. Emphasis has to be put on the long term quality of measurements, yet sensors may face very short-term biofouling effects. Biofouling can disrupt the quality of the measurements, sometimes in less than a week.

    Many techniques to prevent biofouling on instrumentation are listed and studied by researchers and manufacturers. Very few of them are implemented on instruments and of those very few have been tested in situ on oceanographic sensors for deployment of at least one or two months.

    This paper presents a review of techniques used to protect against biofouling of in situ sensors and gives a short list and description of promising techniques.

  20. Chemical sensors for space applications

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  1. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  2. Fibre Bragg Grating as a Multi-Stage Structure Health Monitoring Sensor

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    2016-01-01

    . At the manufacturing stage, where the sensors can measure several parameters of infusion and curing, sensor feedback can help control the process, avoid residual strain, and contribute to the product certification; and then in operation where cracks can be detected and monitored. Experimental mechanical testing...

  3. A wireless, compact, and scalable bioimpedance measurement system for energy-efficient multichannel body sensor solutions

    International Nuclear Information System (INIS)

    Ramos, J; Ausín, J L; Lorido, A M; Redondo, F; Duque-Carrillo, J F

    2013-01-01

    In this paper, we present the design, realization and evaluation of a multichannel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz, and a low-cost commercially available radio frequency transceiver device, which provides reliable wireless communication. The resulting on-chip spectrometer provides high measuring EBI capabilities and constitutes the basic node to built EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multichannel EBI spectrometer where the number of nodes, i.e., number of channels, is completely scalable to satisfy specific requirements of body sensor networks. One of its main advantages is its versatility, since each EBI node is independently configurable and capable of working simultaneously. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm 2 including chip-antenna, which can operate several years on one 3-V coin cell battery. A specifically tailored graphical user interface (GUI) for EBI-WSN has been also designed and implemented in order to configure the operation of EBI nodes and the network topology. EBI analysis parameters, e.g., single-frequency or spectroscopy, time interval, analysis by EBI events, frequency and amplitude ranges of the excitation current, etc., are defined by the GUI.

  4. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2012-04-01

    Full Text Available This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen’s test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG’s length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  5. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  6. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  7. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  8. Multi-parameter brain tissue microsensor and interface systems: calibration, reliability and user experiences of pressure and temperature sensors in the setting of neurointensive care.

    Science.gov (United States)

    Childs, Charmaine; Wang, Li; Neoh, Boon Kwee; Goh, Hok Liok; Zu, Mya Myint; Aung, Phyo Wai; Yeo, Tseng Tsai

    2014-10-01

    The objective was to investigate sensor measurement uncertainty for intracerebral probes inserted during neurosurgery and remaining in situ during neurocritical care. This describes a prospective observational study of two sensor types and including performance of the complete sensor-bedside monitoring and readout system. Sensors from 16 patients with severe traumatic brain injury (TBI) were obtained at the time of removal from the brain. When tested, 40% of sensors achieved the manufacturer temperature specification of 0.1 °C. Pressure sensors calibration differed from the manufacturers at all test pressures in 8/20 sensors. The largest pressure measurement error was in the intraparenchymal triple sensor. Measurement uncertainty is not influenced by duration in situ. User experiences reveal problems with sensor 'handling', alarms and firmware. Rigorous investigation of the performance of intracerebral sensors in the laboratory and at the bedside has established measurement uncertainty in the 'real world' setting of neurocritical care.

  9. Finger and foot tapping sensor system for objective motor assessment

    Directory of Open Access Journals (Sweden)

    Đurić-Jovičić Milica

    2018-01-01

    Full Text Available Background/Aim. Finger tapping test is commonly used in neurological examinations as a test of motor performance. The new system comprising inertial and force sensors and custom proprietary software was developed for quantitative estimation and assessment of finger and foot tapping tests. The aim of this system was to provide diagnosis support and objective assessment of motor function. Methods. Miniature inertial sensors were placed on fingertips and used for measuring finger movements. A force sensor was placed on the fingertip of one finger, in order to measure the force during tapping. For foot tapping assessment, an inertial sensor was mounted on the subject’s foot, which was placed above a force platform. By using this system, various parameters such as a number of taps, tapping duration, rhythm, open and close speed, the applied force and tapping angle, can be extracted for detailed analysis of a patient’s motor performance. The system was tested on 13 patients with Parkinson’s disease and 14 healthy controls. Results. The system allowed easy measurement of listed parameters, and additional graphical representation showed quantitative differences in these parameters between neurological patient and healthy subjects. Conclusion. The novel system for finger and foot tapping test is compact, simple to use and efficiently collects patient data. Parameters measured in patients can be compared to those measured in healthy subjects, or among groups of patients, or used to monitor progress of the disease, or therapy effects. Created data and scores could be used together with the scores from clinical tests, providing the possibility for better insight into the diagnosis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 175090 and Grant no. 175016

  10. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  11. Human speech articulator measurements using low power, 2GHz Homodyne sensors

    International Nuclear Information System (INIS)

    Barnes, T; Burnett, G C; Holzrichter, J F

    1999-01-01

    Very low power, short-range microwave ''radar-like'' sensors can measure the motions and vibrations of internal human speech articulators as speech is produced. In these animate (and also in inanimate acoustic systems) microwave sensors can measure vibration information associated with excitation sources and other interfaces. These data, together with the corresponding acoustic data, enable the calculation of system transfer functions. This information appears to be useful for a surprisingly wide range of applications such as speech coding and recognition, speaker or object identification, speech and musical instrument synthesis, noise cancellation, and other applications

  12. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  13. The Magnetically-Tuned Transition-Edge Sensor

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2014-01-01

    We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.

  14. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  15. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  16. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  17. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement-The Promise and the Current Reality.

    Science.gov (United States)

    Broday, David M

    2017-10-02

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  18. The Linearity of Optical Tomography: Sensor Model and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Siti Zarina MOHD. MUJI

    2011-09-01

    Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.

  19. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  20. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-09-01

    Full Text Available The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  1. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  2. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Laura Ruotsalainen

    2018-02-01

    Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is

  3. Direct and indirect measures of speech articulator motions using low power EM sensors

    International Nuclear Information System (INIS)

    Barnes, T; Burnett, G; Gable, T; Holzrichter, J F; Ng, L

    1999-01-01

    Low power Electromagnetic (EM) Wave sensors can measure general properties of human speech articulator motions, as speech is produced. See Holzrichter, Burnett, Ng, and Lea, J.Acoust.Soc.Am. 103 (1) 622 (1998). Experiments have demonstrated extremely accurate pitch measurements ( and lt; 1 Hz per pitch cycle) and accurate onset of voiced speech. Recent measurements of pressure-induced tracheal motions enable very good spectra and amplitude estimates of a voiced excitation function. The use of the measured excitation functions and pitch synchronous processing enable the determination of each pitch cycle of an accurate transfer function and, indirectly, of the corresponding articulator motions. In addition, direct measurements have been made of EM wave reflections from articulator interfaces, including jaw, tongue, and palate, simultaneously with acoustic and glottal open/close signals. While several types of EM sensors are suitable for speech articulator measurements, the homodyne sensor has been found to provide good spatial and temporal resolution for several applications

  4. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  5. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  6. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  7. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    2016-01-01

    Full Text Available The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV and scala tympani (ST is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures.

  8. Image sensors for radiometric measurements in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.

    the sensors at a stabilised moderately cool temperature of 15 deg. C and to intelligently control the exposure time of the device, so as to reliably measure flux levels in the range 1 W/m super(2)/nm to 10/6 W/m super(2)/nm commonly encountered in the ocean...

  9. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  10. Comparison of capacitive and inductive sensors designed for partial discharges measurements in electrical power apparatus

    Directory of Open Access Journals (Sweden)

    Kunicki Michał

    2017-01-01

    Full Text Available In the paper results of simultaneously conducted measurements achieved using capacitive and inductive sensors are presented according to different PD model sources immersed in a mineral transformer insulation oil. All measurements are preceded under laboratory conditions using typical measurement set up commonly applied for on-site PD detection: measuring impedance and capacitor and high frequency current transformer (HFCT are used respectively. Measuring frequency and voltage level influence as well as phase resolved PD patterns analysis are investigated in the research. Various fundamental PD signal descriptors assigned for selected frequencies are also proposed and compared for chosen sensors. The main purpose of the presented research is to compare PD measurement results achieved using selected type of sensors during laboratory measurements and to point the best application areas in fields of PD detection in high voltage apparatus under normal operating conditions. Furthermore a proper measurement results interpretation coming from different sensors as well as measurement conducting problems and achieved patterns disparities are also discussed in the paper.

  11. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-01-01

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented. PMID:28492471

  12. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium.

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-05-11

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented.

  13. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  14. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  15. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions

    International Nuclear Information System (INIS)

    Zhou, Jie; Rong, Weibin; Wang, Lefeng; Gao, Peng; Sun, Lining

    2016-01-01

    This paper presents the design, fabrication and calibration of a novel two-dimension microforce sensor with nano-Newton resolution. The sensor, mainly composed of a clamped–clamped beam (horizontal detecting beam), an overhanging beam (vertical detecting beam) and a half-folded beam, is highly sensitive to microforces in the horizontal (parallel to the probe of the designed sensor) and vertical (perpendicular to the wafer surface) directions. The four vertical sidewall surface piezoresistors (horizontal piezoresistors) and two surface piezoresistors (vertical piezoresistors) were fabricated to achieve the requirements of two-dimension microforce measurements. Combining the sensor structure with Wheatstone bridge configurations, the microforce decoupling among the x , y , and z direction can be realized. Accordingly, the sensor is capable of detecting microforces in the horizontal and vertical directions independently. The calibration results verified that the sensor sensitivities at room temperature are 210.58 V N −1 and 159.2 V N −1 in the horizontal and vertical directions, respectively. Additionally, the sensor’s corresponding force resolutions are estimated at 2 nN and 3 nN in theory, respectively. The sensor can be used to measure the contact force between manipulating tools and micro-objects, in fields such as microassembly and biological assays. (paper)

  16. Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements

    Directory of Open Access Journals (Sweden)

    Slavisa Tomic

    2017-11-01

    Full Text Available This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS and angle of arrival (AoA measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP principle and the Kalman filtering (KF framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.

  17. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  18. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  19. In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wei-Jung Hsieh

    2009-06-01

    Full Text Available This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED. The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness. A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE® EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  20. Development of a Tonometric Sensor with a Decoupled Circular Array for Precisely Measuring Radial Artery Pulse

    Directory of Open Access Journals (Sweden)

    Min-Ho Jun

    2016-05-01

    Full Text Available The radial artery pulse is one of the major diagnostic indices used clinically in both Eastern and Western medicine. One of the prominent methods for measuring the radial artery pulse is the piezoresistive sensor array. Independence among channels and an appropriate sensor arrangement are important for effectively assessing the spatial-temporal information of the pulse. This study developed a circular-type seven-channel piezoresistive sensor array using face-down bonding (FDB as one of the sensor combination methods. The three-layered housing structure that included independent pressure sensor units using the FDB method not only enabled elimination of the crosstalk among channels, but also allowed various array patterns to be created for effective pulse measurement. The sensors were arranged in a circular-type arrangement such that they could estimate the direction of the radial artery and precisely measure the pulse wave. The performance of the fabricated sensor array was validated by evaluating the sensor sensitivity per channel, and the possibility of estimating the blood vessel direction was demonstrated through a radial artery pulse simulator. We expect the proposed sensor to allow accurate extraction of the pulse indices for pulse diagnosis.

  1. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  2. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  3. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.

    2017-11-02

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality, and the observation accuracy at the sensor level. In particular, the aim is to reconstruct the estimation parameter with minimum error at a fusion center under a system budget constraint. To achieve this goal, a subset of sensing locations is selected from a large pool of candidate sensing locations. Furthermore, the type of sensor to be placed at those locations is selected from a given set of sensor types (e.g., sensors with different power ratings). We further investigate whether it is better to install a large number of cheap sensors, a few expensive sensors or a combination of different sensor types at the optimal locations.

  4. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  5. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    International Nuclear Information System (INIS)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-01-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m -2 .K -1 and 130 μC.N -1 for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to

  6. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  7. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  8. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  9. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  10. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  11. MEMS Technology Sensors as a More Advantageous Technique for Measuring Foot Plantar Pressure and Balance in Humans

    Directory of Open Access Journals (Sweden)

    Clara Sanz Morère

    2016-01-01

    Full Text Available Locomotor activities are part and parcel of daily human life. During walking or running, feet are subjected to high plantar pressure, leading sometimes to limb problems, pain, or foot ulceration. A current objective in foot plantar pressure measurements is developing sensors that are small in size, lightweight, and energy efficient, while enabling high mobility, particularly for wearable applications. Moreover, improvements in spatial resolution, accuracy, and sensitivity are of interest. Sensors with improved sensing techniques can be applied to a variety of research problems: diagnosing limb problems, footwear design, or injury prevention. This paper reviews commercially available sensors used in foot plantar pressure measurements and proposes the utilization of pressure sensors based on the MEMS (microelectromechanical systems technique. Pressure sensors based on this technique have the capacity to measure pressure with high accuracy and linearity up to high pressure levels. Moreover, being small in size, they are highly suitable for this type of measurement. We present two MEMS sensor models and study their suitability for the intended purpose by performing several experiments. Preliminary results indicate that the sensors are indeed suitable for measuring foot plantar pressure. Importantly, by measuring pressure continuously, they can also be utilized for body balance measurements.

  12. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  13. Measuring the Michel parameter ξ''

    International Nuclear Information System (INIS)

    Knowles, P.; Deutsch, J.; Egger, J.; Fetscher, W.; Foroughi, F.; Govaerts, J.; Hadri, M.; Kirch, K.; Kistryn, S.; Lang, J.; Morelle, X.; Naviliat, O.; Ninane, A.; Prieels, R.; Severijns, N.; Simons, L.; Sromicki, J.; Vandormael, S.; Hove, P. van

    1999-01-01

    Unlike the majority of Michel parameters which are consistent with the Standard Model V-A interaction, the experimental value of ξ''(=0.65±0.36) [1] is poorly known. Our experiment will measure the longitudinal polarization, P L , of positrons emitted from the decay of polarized muons. The value of P L , equal to unity in the Standard Model, will decrease for high energy positrons emitted antiparallel to the muon spin if the combination of Michel parameters ξ''/ξξ' - 1 deviates from the Standard Model value of zero

  14. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    Science.gov (United States)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  15. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    Science.gov (United States)

    Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod

    2015-01-01

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728

  16. An ultra-low power wireless sensor network for bicycle torque performance measurements.

    Science.gov (United States)

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2015-05-21

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  17. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    Directory of Open Access Journals (Sweden)

    Sadik K. Gharghan

    2015-05-01

    Full Text Available In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2, and the second experiment used the Advanced and Adaptive Network Technology (ANT protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome. The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  18. Human speech articulator measurements using low power, 2GHz Homodyne sensors

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T; Burnett, G C; Holzrichter, J F

    1999-06-29

    Very low power, short-range microwave ''radar-like'' sensors can measure the motions and vibrations of internal human speech articulators as speech is produced. In these animate (and also in inanimate acoustic systems) microwave sensors can measure vibration information associated with excitation sources and other interfaces. These data, together with the corresponding acoustic data, enable the calculation of system transfer functions. This information appears to be useful for a surprisingly wide range of applications such as speech coding and recognition, speaker or object identification, speech and musical instrument synthesis, noise cancellation, and other applications.

  19. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    Science.gov (United States)

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  20. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments.

    Science.gov (United States)

    Peterson, Philip J D; Aujla, Amrita; Grant, Kirsty H; Brundle, Alex G; Thompson, Martin R; Vande Hey, Josh; Leigh, Roland J

    2017-07-19

    The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 μ g m - 3 and ozone precision of 26.8 μ g m - 3 , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment.