WorldWideScience

Sample records for paramagnetic resonance imaging

  1. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  2. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  3. Paramagnetic contrast media for magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Presently, a variety of radiofrequency (RF) and magnetic field gradient pulse sequences is used to manipulate magnetic resonance (MR) image contrast. Such manipulation may be performed by altering the RF pulse sequence repetition time (TR), the spin-echo delay time (TE), the inversion-delay time (TI), and the flip angle. The detection and characterization of a lesion or structure may thus be optimized. Although such contrast manipulation is noninvasive, magnetic resonance imaging (MRI) still suffers somewhat from lack of specificity. Also, the use of multiple imaging sequences to locate and characterize a lesion may prolong the imaging time and, thus, might place an economic burden on the system. Paramagnetic pharmaceuticals offer promise in this regard. They shorten tissue relaxation times, thus permitting the use of shorter imaging parameters, and in some circumstances, may obviate additional and more time-consuming pulse sequences. Paramagnetics could expand the sensitivity and specificity of MRI and provide functional information with regard to tissue perfusion, tissue viability, and blood-brain barrier integrity

  4. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Qu Ximei; Wang Liqin; Zhang Wenyi; Liu Zhongchao; Cui Songye; Feng Xin; Jiaoling

    2013-01-01

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  5. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  6. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  7. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    International Nuclear Information System (INIS)

    Perez-Mayoral, Elena; Negri, Viviana; Soler-Padros, Jordi; Cerdan, Sebastian; Ballesteros, Paloma

    2008-01-01

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T 1 and T 2 of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH e ) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH e , independent of water relaxivity, diffusion or exchange

  8. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  9. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  10. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization

    Science.gov (United States)

    Durand, Sylvain; Frapart, Yves-Michel; Kerebel, Maud

    2017-11-01

    Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L 1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained.

  12. In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance.

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J

    2015-01-01

    For over a century, it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. © 2015 Elsevier Inc. All rights reserved.

  13. In vivo pO2 imaging of tumors: Oxymetry with very low frequency Electron Paramagnetic Resonance

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J.

    2016-01-01

    For over a century it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. PMID:26477263

  14. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  15. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  16. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  17. Electron Paramagnetic Resonance Spectrometry and Imaging in Melanomas: Comparison between Pigmented and Nonpigmented Human Malignant Melanomas

    Directory of Open Access Journals (Sweden)

    Quentin Godechal

    2013-06-01

    Full Text Available It has been known for a long time that the melanin pigments present in normal skin, hair, and most of malignant melanomas can be detected by electron paramagnetic resonance (EPR spectrometry. In this study, we used EPR imaging as a tool to map the concentration of melanin inside ex vivo human pigmented and nonpigmented melanomas and correlated this cartography with anatomopathology. We obtained accurate mappings of the melanin inside pigmented human melanoma samples. The signal intensity observed on the EPR images correlated with the concentration of melanin within the tumors, visible on the histologic sections. In contrast, no EPR signal coming from melanin was observed from nonpigmented melanomas, therefore demonstrating the absence of EPR-detectable pigments inside these particular cases of skin cancer and the importance of pigmentation for further EPR imaging studies on melanoma.

  18. Ferro-paramagnetic coupled resonant modes in GdEuCuO4

    International Nuclear Information System (INIS)

    Fainstein, A.; Tovar, M.

    1990-01-01

    Two paramagnetic resonances were observed in compound GdEuCuO 4 : one was originated in trivalent gadolinium paramagnetism, while the other is associated to a weak ferromagnetic mode in Cu-O planes. In this work, experimental results are presented that show an anisotropy and a strongly anomalous temperature dependence of Gd 3+ . A theoretical model was introduced which explains the data in terms of coupled ferro-paramagnetic resonant modes originated in spin exchange coupling of Cu and Gd. (Author). 9 refs., 4 figs

  19. Electron paramagnetic resonance imaging of tumor hypoxia: enhanced spatial and temporal resolution for in vivo pO2 determination.

    Science.gov (United States)

    Matsumoto, Ken-ichiro; Subramanian, Sankaran; Devasahayam, Nallathamby; Aravalluvan, Thirumaran; Murugesan, Ramachandran; Cook, John A; Mitchell, James B; Krishna, Murali C

    2006-05-01

    The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a triarylmethyl (TAM)-based radical is presented. The decay of pixel intensities in an image is used to estimate T2*, which is inversely proportional to pO2. Factors affecting T2* in each pixel are critically analyzed to extract the contribution of dissolved oxygen to EPR line-broadening. Suitable experimental and image-processing parameters were obtained to produce pO2 maps with minimal artifacts. Image artifacts were also minimized with the use of a novel data collection strategy using multiple gradients. Results from a phantom and in vivo imaging of tumor-bearing mice validated this novel method of noninvasive oximetry. The current imaging protocols achieve a spatial resolution of approximately 1.0 mm and a temporal resolution of approximately 9 s for 2D pO2 mapping, with a reliable oxygen resolution of approximately 1 mmHg (0.12% oxygen in gas phase). This work demonstrates that in vivo oximetry can be performed with good sensitivity, accuracy, and high spatial and temporal resolution.

  20. Dating by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.M.

    1984-01-01

    Some natural materials behave like dosimeters in front of the ionizing particle flux coming from environmental radioactivity and the cosmic radiation. This property is used for the dating by Electron Paramagnetic Resonance (EPR). Before presenting the basic principles of the EPR analysis and the dating method which uses such a phenomenous, it is reviewed several types of application currently in course of development. (L.C.) [pt

  1. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  2. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  3. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  4. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  5. Electron Paramagnetic Resonance pO2 Image Tumor Oxygen-Guided Radiation Therapy Optimization.

    Science.gov (United States)

    Epel, Boris; Maggio, Matt; Pelizzari, Charles; Halpern, Howard J

    2017-01-01

    Modern standards for radiation treatment do not take into account tumor oxygenation for radiation treatment planning. Strong correlation between tumor oxygenation and radiation treatment success suggests that oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. We have developed an OGRT protocol for rodents. Electron paramagnetic resonance (EPR) imaging is used for recording oxygen maps with high spatial resolution and excellent accuracy better than 1 torr. Radiation is delivered with an animal intensity modulated radiation therapy (IMRT) XRAD225Cx micro-CT/ therapy system. The radiation plan is delivered in two steps. First, a uniform 15% tumor control dose (TCD 15 ) is delivered to the whole tumor. In the second step, an additional booster dose amounting to the difference between TCD 98 and TCD 15 is delivered to radio-resistant, hypoxic tumor regions. Delivery of the booster dose is performed using a multiport conformal beam protocol. For radiation beam shaping we used individual radiation blocks 3D-printed from tungsten infused ABS polymer. Calculation of beam geometry and the production of blocks is performed next to the EPR imager, immediately after oxygen imaging. Preliminary results demonstrate the sub-millimeter precision of the radiation delivery and high dose accuracy. The efficacy of the radiation treatment is currently being tested on syngeneic FSa fibrosarcoma tumors grown in the legs of C3H mice.

  6. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    Science.gov (United States)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  7. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    conveniently investigated by means of electron paramagnetic resonance (EPR). In ... ion Ir2+ can experience the Jahn–Teller effect by means of vibration interaction, ... Similarly, k. (and k ) are the orbital reduction factors arising from the anisotropic interactions of the orbital angular momentum operator. From the cluster ...

  8. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  9. In vivo electron paramagnetic resonance oximetry and applications in the brain

    Directory of Open Access Journals (Sweden)

    John M Weaver

    2017-01-01

    Full Text Available Molecular oxygen (O2 is essential to brain function and mechanisms necessary to regulate variations in delivery or utilization of O2 are crucial to support normal brain homeostasis, physiology and energy metabolism. Any imbalance in cerebral tissue partial pressure of O2 (pO2 levels may lead to pathophysiological complications including increased reactive O2 species generation leading to oxidative stress when tissue O2 level is too high or too low. Accordingly, the need for oximetry methods, which assess cerebral pO2 in vivo and in real time, is imperative to understand the role of O2 in various metabolic and disease states, including the effects of treatment and therapy options. In this review, we provide a brief overview of the common in vivo oximetry methodologies for measuring cerebral pO2 . We discuss the advantages and limitations of oximetry methodologies to measure cerebral pO2 in vivo followed by a more in-depth review of electron paramagnetic resonance oximetry spectroscopy and imaging using several examples of current electron paramagnetic resonance oximetry applications in the brain.

  10. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  11. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  12. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  13. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  14. Nitroxide radicals as contrast substances for magnetic resonance imaging diagnostics. Part 1

    International Nuclear Information System (INIS)

    Zhelev, Z.

    2016-01-01

    In last ten years, there is a significant progress in the selective and localized detection of redox-active compounds in the cells, tissues, and intact organisms. This progress is due to the development of new synthetic and genetically encoded redox-sensitive contrast substances, as well as due to the improvement of the techniques for their imaging: fluorescent, chemiluminescent, magnetic resonance, nuclear, ultrasonic. One of the most attractive redox-sensitive contrast substances are cyclic (stable) nitroxide radicals. They can be visualized and analyzed in vitro and in vivo by a variety of magnetic resonance techniques - electron-paramagnetic resonance imaging (EPRI), magnetic resonance imaging (MRI), Overhauser-enhanced MRI (OMRI). This review describes the merits and demerits of the nitroxide-enhanced EPR and MRI and the perspectives for their application in biomedical studies and clinical practice. The article is intended for a wide range of readers - from students to specialists in the field. Key words: Magnetic Resonance Imaging (MRI). Electron-Paramagnetic Resonance (EPR). Overhauser-Enhanced MRI (O MRI). Nitroxide

  15. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    International Nuclear Information System (INIS)

    Coene, A.; Dupré, L.; Crevecoeur, G.

    2015-01-01

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR

  16. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  17. Topical questions in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.; Florida Univ., Gainesville, FL; Florida Univ., Gainesville, FL

    1989-01-01

    This paper examines a number of practical questions concerning magnetic resonance imaging. These include the choice of operating magnetic field strength, the problem of siting and screening, a procedure for securing precise slice selection and the use of paramagnetic contrast agents. (author). 5 refs

  18. Electrically-detected electron paramagnetic resonance of point centers in 6H-SiC nanostructures

    Czech Academy of Sciences Publication Activity Database

    Bagraev, N.T.; Gets, D.S.; Kalabukhova, E.N.; Klyachkin, L.E.; Malyarenko, A.M.; Mashkov, V.A.; Savchenko, Dariia; Shanina, B.D.

    2014-01-01

    Roč. 48, č. 11 (2014), s. 1467-1480 ISSN 1063-7826 R&D Projects: GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * electrically- detected electron paramagnetic resonance * 6H -SiC nanostructures * nitrogen-vacancy defect * point defect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.739, year: 2014

  19. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  20. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  1. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  2. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  3. In Vivo Application of Proton-Electron Double-Resonance Imaging

    Science.gov (United States)

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  4. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  5. Some examples of utilization of electron paramagnetic resonance in biology

    International Nuclear Information System (INIS)

    Bemski, G.

    1982-10-01

    A short outline of the fundamentals of electron paramagnetic resonance (EPR) is presented and is followed by examples of the application of EPR to biology. These include use of spin labels, as well as of ENDOR principally to problems of heme proteins, photosynthesis and lipids. (Author) [pt

  6. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  7. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    Science.gov (United States)

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-03

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  9. Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA

    International Nuclear Information System (INIS)

    Paajanen, H.; Brasch, R.C.; Schmiedl, U.; Ogan, M.

    1987-01-01

    Chemical inflammation was induced subcutaneously in 10 rats using carrageenan mucopolysaccharide. Dual spin echo (SE) imaging of inflammatory loci was performed employing a 0.35 tesla resistive magnet. In addition, gadolinium-DTPA was administrated intravenously into 5 rats to evaluate the potential benefits of paramagnetic contrast medium for the detection and characterization of inflammatory loci. T2 weighted SE images demonstrated the edematous lesions as zones of high intensity. This was attributed to the increased relaxation times of lesions when compared to the adjacent soft tissue. The inflammation was also delineated on T1 weighted SE images, but only after injection of paramagnetic Gd-DTPA. Carrageenan mucopolysaccharide-induced lesions provide a useful experimental model for in viva evaluation of soft tissue inflammation using magnetic resonance imaging. No special benefit of paramagnetic contrast enhancement was demonstrated in this model of local edema. (orig.)

  10. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  11. Magnetic resonance imaging in the cranio-cervical region

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    Since the introduction of nuclear magnetic resonance imaging (NMR) in the neurosurgical and neurological diagnostic this new imaging modality has shown to be of high diagnostic value - especially in disease process of the cranio-vertebral junction. Other imaging moralities such as x-ray CT and myelography are of inferior quality as the images are degraded by bone artifacts and superposition of other structures. NMR can reveal many aspects of the cranio-vertebral region in a single examination without artifacts from surrounding structures. A further improvement of NMR is the introduction of para-magnetic agents, such as gadolinium-DTPA, as it increases the specifity by dynamic magnetic resonance imaging. The authors present a review of their clinical experience

  12. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  13. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  14. Magnetic resonance imaging using paramagnetic contrast agents in the clinical evaluation of myocardial infarction. Chapter 15

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der

    1992-01-01

    MRI is noninvasive and specific method for production of high resolution tomographic images in blocks of 3D information. Apart from scintigraphic techniques and computed tomography for evaluation of myocardial ischemia and infarcts, MRI has emerged as a new diagnostic technique to study the extent of anatomical and functional abnormalities in patients with coronary artery disease. Conventional noncontrast MRI can identify acute-infarcted myocardial areas, although the difficulty in identifying myocardial ischemia and infarct with noncontrast MRI suggests a potential role for contrast enhanced MRI. Use of the paramagnetic contrast agent gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) improves depiction of infarcted myocardium on T1-weighted spin -echo MR images that are obtained soon after acute myocardial infarction. This is of particular interest for the estimation of myocardial infarct size. Furthermore, ultrafast subsecond imaging, in combination with Gd-DTPA, offers the potential to analyze cardiac first pass and myocardial perfusion. The development of nontoxic paramagnetic contrast agents which are selectively taken up by viable myocardium would be helpful in assessing the presence of ischemic/infarcted myocardium salvage by MRI following reperfusion. (author). 58 refs., 6 figs

  15. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  16. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    Science.gov (United States)

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  17. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    Science.gov (United States)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  18. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  19. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  20. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  1. Thermally stimulated luminescence and electron paramagnetic resonance studies on uranium doped calcium phosphate

    CERN Document Server

    Natarajan, V; Veeraraghavan, R; Sastry, M D

    2003-01-01

    Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies on uranium doped calcium phosphate yielded mechanistic information on the observed glow peaks at 365, 410 and 450 K. TSL spectral studies of the glow peaks showed that UO sub 2 sup 2 sup + acts as the luminescent center. Electron paramagnetic resonance studies on gamma-irradiated samples revealed that the predominant radiation induced centers are H sup 0 , PO sub 4 sup 2 sup - , PO sub 3 sup 2 sup - and O sup - ion. Studies on the temperature dependence studies of the EPR spectra of samples annealed to different temperatures indicate the role of H sup 0 and PO sub 4 sup 2 sup - ions in the main glow peak at 410 K.

  2. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  3. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  4. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Urena N, F.

    2000-01-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  5. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  6. A superheterodyne spectrometer for electronic paramagnetic. Resonance; Spectrometre superheterodyne de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, J L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-12-15

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [French] Apres quelques generalites sur le phenomene de resonance paramagnetique electronique, une synthese des differentes techniques experimentales, permet de fixer le choix d'un type d'appareillage. Un spectrometre de RPE superheterodyne realise en laboratoire et comportant un circuit original est expose dans le detail. Cet appareil a permis de nombreux resultats experimentaux dont quelques-uns sont decrits a titre d'exemple. (auteur)

  7. Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies

    Science.gov (United States)

    Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.

    This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.

  8. Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron

    International Nuclear Information System (INIS)

    Gercke, U.; Siems, C.-D.

    1979-01-01

    Electron paramagnetic resonance (EPR) measurements at 9 and 35 GHz on polycrystalline β rhombohedral boron with various carbon contents resulted in partly resolved absorption spectra. At 300 K the spin density ratio of two lines (called D and E) showed a linear increase with the carbon content. This ratio is temperature dependent. The lines D and E are photo-EPR active with different quantum efficiencies at various temperatures. (Auth.)

  9. Electron paramagnetic resonance of isolated Assub(Ga)+ antisite defect in neutron-transmutation doped semi-insulating GaAs

    International Nuclear Information System (INIS)

    Manasreh, M.O.; McDonald, P.F.; Kivlighn, S.A.; Minton, J.T.; Covington, B.C.

    1988-01-01

    The isolated Assub(Ga) antisite defect produced by the neutron-transmutation doping in semi-insulating GaAs was studied using the electron paramagnetic resonance technique. The results show that the optically induced quenching of the isolated Assub(Ga) + antisite defect is quite different from that of the EL2 center. Illumination with white light seems to always reduce the electron paramagnetic resonance spectrum suggesting that depopulation of the EL2 center does not introduce a noticeable change in the Assub(Ga) + antisite concentration. (author)

  10. Retrospective dosimetry of nail by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2015-01-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified

  11. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.

    Science.gov (United States)

    Teeling-Smith, Richelle M; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A; Šimon, Marek; Bhallamudi, Vidya P; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G; Hammel, P Chris

    2016-05-10

    Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    Directory of Open Access Journals (Sweden)

    Alexei Bogdanov

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity (R1/Gd. The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1 imaging of nanomolar amounts of an oxidoreductase (peroxidase; (2 detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3 imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.

  13. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Godiksen, Anita; Vennestrøm, Peter N. R.; Rasmussen, Søren Birk

    2017-01-01

    Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR...

  14. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    is Professor of Chemistry at. IIT Madras. ... speeding up the CW imaging by special novel methods. How- ever, the ... presence of gradients which are applied in two or three dimen- sions and ... optics and mechanical engineer- ing stands for ...

  15. Investigation of lanthanide ions and other paramagnetic impurities in natural fluorite by electron paramagnetic resonance: examples of application to mining exploration and geochemistry

    International Nuclear Information System (INIS)

    Chatagnon, B.

    1981-01-01

    This research thesis reports the application to geology, and more particularly to geochemistry and mining exploration, of a physical method: the electron paramagnetic resonance (EPR). After a report of a bibliographical investigation on mineralogy and geochemistry of fluorite and lanthanides, as well as on paramagnetic centres observed by physicists in synthetic fluorite, the author reports an experimental work, and describes two examples of application of EPR: firstly, the exploration of radioactive ores, and secondly, with the joint use of neutron activation analysis, the characterization of the redox status of the hydrothermal solution which is at the origin of fluorinated mineralisation

  16. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J

    2012-01-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  17. Data acquisition system for electronic paramagnetic resonance spectrophotometer

    International Nuclear Information System (INIS)

    Pena Eguiluz, R.

    1992-01-01

    In the Atomic and Molecular Physics Laboratory at the Physics Department of the Instituto Nacional de Investigaciones Nucleares (ININ), there is in operation an electronic paramagnetic resonance spectrometer (EPR). This equipment is utilized for determine, the distribution of the absorbed energy intensity for a sample of paramagnetic substance by means of the study and analysis of its emission lines spectrum. The useful information is provided as a graphic result showing the spectrum corresponding to the analyzed sample. In similar devices like this, the researchers problem, trying to get the important information, is a hard and imprecise work, thus, this process of find the ordinate magnitudes of a approximately two hundred points, equal spaced in the spectrum, is carried out completely by hand. After this, the information is captured and processed in a personal computer. As a solution for this problem, an interface in both aspects, hardware and software adaptable to a personal computer, was designed and constructed. This interface is able to: a) To get and digitized the analogical signal, that represents the corresponding spectrum curve. b) It stores the digitized information in files and c) It displays in graphic mode the stored data, and then these are normalized in order to be transferred to a statistics and analytical software packets (Author)

  18. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  19. Paramagnetic pharmaceuticals for functional studies

    International Nuclear Information System (INIS)

    Hall, L.D.; Hogan, P.G.

    1987-01-01

    It has been suggested that limitations of the Magnetic Resonance Imaging (MRI) method may be minimised by the use of ''image contrast'' agents. These are exogenous chemicals administered to the patient which, by influencing the magnetic resonance properties of the water in the region of the pathology, serve to heighten the contrast between that tissue and its surroundings. At present the most widely used agent is gadolinium-DTPA (Gd-DTPA). This appears to have many desirable features and its development provides a textbook example for the early stages of any future development. All compounds used so far can be subdivided into one of the following categories: Paramagnetic metal species; Ferromagnetic metal species; Stable free radicals; Oxygen carriers; Susceptibility agents; and Density substitution agents. The authors summarise briefly these chemical substances and their reported uses

  20. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  1. Electron paramagnetic resonance study of Ce doped partially stabilized ZrO2 crystals

    Directory of Open Access Journals (Sweden)

    Mikhail А. Borik

    2017-09-01

    Full Text Available ZrO2 (PSZ solid solutions crystals stabilized with yttrium and cerium oxides have been studied using electron paramagnetic resonance (EPR in the X and Q ranges. Zr3+ have been observed centers in the as-annealed ZrO2 crystals stabilized only by yttrium oxide (2.8 mol% Y2O3. Another type of paramagnetic-O-centers appear as a result of CeO2 addition to ZrO2 crystals along with yttrium oxide. To estimate the concentration of Ce3+ ions in PZS crystals, we recorded the EPR spectra in the presence of a reference at 7 K. Paramagnetic Ce3+ ions have been identified and their relative amount in the PSZ crystals before and after high-temperature heat treatment has been assessed. Annealing in air leads decreases the concentration of Ce3+ ions for all the test compositions and changes the color of the crystals from red to white. After annealing of the sample 2.0Y0.8Ce3Zr, the amount of paramagnetic Ce3+ ions decreased approximately twofold. Paramagnetic centers from Ce3+ have not been detected in the specimen with a low cerium content of 0.1 mol% after annealing which indicates the complete transition of Ce3+ to the Ce4+ state. We show that the forming cerium paramagnetic centers are bound by strong exchange interactions. No angular dependence of the EPR lines of the paramagnetic Ce3+ cations on the applied external magnetic field has been observed. Probable origin of the absence of angular dependence is that the impurity rare-earth ions are located close to one another, forming impurity clusters with an effective spin of Seff=1/2.

  2. AgInS{sub 2}-ZnS nanocrystals: Evidence of bistable states using light-induced electron paramagnetic resonance and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Sonia S.; Renard, Olivier; Chevallier, Theo; Le Blevennec, Gilles [Laboratoire d' Innovation pour les Technologies des Energies Nouvelles et les Nanomateriaux, Departement de Technologie des Nano-Materiaux, Service d' Elaboration de Nanomateriaux, Laboratoire de Synthese et Integration des Nanomateriaux, CEA-Grenoble (France); Lombard, Christian; Pepin-Donat, Brigitte [Laboratoire Structure et Proprietes d' Architecture Moleculaire (UMR 5819) CEA-CNRS - UJF/INAC/CEA-Grenoble (France)

    2014-04-15

    The precursor (AgIn){sub x} Zn{sub 2(1-x)}(S{sub 2}CN(C{sub 2}H{sub 5}){sub 2}){sub 4} was used to prepared AgInS{sub 2}-ZnS nanocrystals with different compositions (x = 0.4 and x = 0.7) and with different time of reaction (10 min and 75 min). The photoluminescence features of the nanocrystals were addressed by combining steady-state spectroscopy and light-induced electron paramagnetic resonance. Both techniques showed the contribution of at least two components for the emission, previously assigned to surface and intrinsic states. Light-induced electron paramagnetic resonance allowed detection of the photocreation both of irreversible paramagnetic species that are likely responsible for the nano-crystals degradation assigned to surface states and of reversible paramagnetic species assigned to intrinsic states. Moreover, reversible bistable paramagnetic states were observed. This Letter provides a scheme that might be useful in addressing the well-known problem of aging of the nanocrystals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Electron paramagnetic resonance spectrum of fresh fruits processed by gamma-rays

    International Nuclear Information System (INIS)

    Jesus, E.F.O. de; Lopes, R.T.

    1999-01-01

    Pulp of irradiated kiwi fruits, after extraction by ethyl alcohol of part of the water and sugars, has been analyzed by electron paramagnetic resonance in order to study the possibility of identifying irradiated fruits. The results allow to confirm that for a period of approximately 12 weeks a triplet with a coupling isotropic constant of 3.05 mT, intensity ratio 1:2:1 and a factor g=2,0026 is visible in irradiated fruits

  4. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  5. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    Science.gov (United States)

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  6. Contribution of electron paramagnetic resonance to the studies of hemoglobin: the nitrosylhemoglobin system

    International Nuclear Information System (INIS)

    Bemski, G.

    1995-03-01

    Since the initial work of Ingram Electron Paramagnetic Resonance contributed considerably to research in hemoglobins. Now, 40 years later some of the results of the application of EPR to nitrosyl hemoglobin (HbNO), are reviewed as an example of the diversity of information which this technique can provide are reviewed. (author). 34 refs, 7 figs

  7. Electron Paramagnetic Resonance and X-ray Diffraction of Boron- and Phosphorus-Doped Nanodiamonds

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.; Shymanski, V. I.

    2017-11-01

    Powders of boron- and phosphorus-doped detonation nanodiamonds and sintered pellets of non-doped nanodiamond powders were studied using electron paramagnetic resonance and x-ray diffraction. Doping of detonation nanodiamond crystals with boron and phosphorus was demonstrated to be possible. These methods could be used to diagnose diamond nanocrystals doped during shock-wave synthesis.

  8. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  9. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  10. Electron paramagnetic resonance of rhyolite and γ-irradiated trona minerals

    International Nuclear Information System (INIS)

    Koeksal, F.; Koeseoglu, R.; Basaran, E.

    2003-01-01

    Rhyolite from the ''Yellow Stone of Nevsehir'' and γ-irradiated trona from the Ankara Mine have been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite was examined by X-ray powder diffraction and found to consist mainly of SiO 2 . Before γ-irradiation, the existing paramagnetic species in rhyolite were identified as PO 4 2- , CH 2 OH, CO 3 - , SO 2 - , CO 3 3- , and CO 2 - free radicals and Fe 3+ at ambient temperature. At 113 K SO 2 - , CO 3 3- , and CO 2 - radicals and Fe 3+ were observed. The γ-irradiation produced neither new species nor detectable effects on these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of their motions. Before γ-irradiation, the trona mineral shows only Mn 2+ lines, but after γ-irradiation it indicated the inducement of CO 3 3- and CO 2 - radicals at ambient temperature, 113 K, in addition to the Mn 2+ lines. The g and a values of the species were determined. (orig.)

  11. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  12. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  13. Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Mozzati, Maria Cristina; Azzoni, Carlo Bruno; Capsoni, Doretta; Bini, Marcella; Massarotti, Vincenzo

    2003-01-01

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu 3 Ti 4 O 12 have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO 4 -TiO 6 -CuO 4 complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested

  14. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  15. Investigations of a new nanostructured Si-material by spectral response and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, Z.T.; Ley, M. [Laboratoire PHASE, CNRS UPR 292, 23 rue du Loess, F-67037 Strasbourg cedex 2 (France); Turek, P.; Bernard, M. [Institut Charles Sadron, CNRS UPR 22, 6 rue Boussingault, F-67083 Strasbourg cedex (France)

    2002-08-01

    Electron spin resonance (or electron paramagnetic resonance) was applied to analyze multi-interface solar cells with an active amorphized substructure inserted in the emitter. The nanostructure was realized by P ion implantation followed by an adequate thermal treatment to yield very sharp a-Si/c-Si heterointerfaces. The authors have investigated especially the substructure and the transition zones between the two Si phases, which is particularly interesting because of the stress induced by the density difference of the two Si phases. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  16. Electron paramagnetic resonance study of copper impurity charge-states in PbWO.sub.4./sub. scintillator

    Czech Academy of Sciences Publication Activity Database

    Hofstaetter, A.; Laguta, V. V.; Meyer, B.K.; Nikl, Martin; Rosa, Jan; Zhu, R.Y.

    2004-01-01

    Roč. 38, - (2004), s. 703-706 ISSN 1350-4487 R&D Projects: GA AV ČR(CZ) KSK1010104 Keywords : electron paramagnetic resonance * tungstates * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.664, year: 2004

  17. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  18. Design and Optimization of Gadolinium Based Contrast Agents for Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pereira, G.A.; Geraldes, C.F.G.C.; University of Coimbra

    2007-01-01

    The role of Gd 3+ chelates as contrast agents in Magnetic Resonance Imaging is discussed. The theory describing the different contributions to paramagnetic relaxation relevant to the understanding of the molecular parameters determining the relativity of those Gd 3+ chelates, is presented. The experimental techniques used to obtain those parameters are also described. Then, the various approaches taken to optimize those parameters, leading to maximum relativity (efficiency) of the contrast agents, are also illustrated with relevant examples taken from the literature. The various types of Gd 3+ -based agents, besides non-specific and hepatobiliary agents, are also discussed, namely blood pool, targeting, responsive and paramagnetic chemical shift saturation transfer (PARACEST) agents. Finally, a perspective is presented of some of the challenges lying ahead in the optimization of MRI contrast agents to be useful in Molecular Imaging. (author)

  19. Proton nuclear magnetic resonance in paramagnetic CoCl2.6H2O

    International Nuclear Information System (INIS)

    Oravcova, J.; Murin, J.; Rakos, M.; Olcak, D.

    1978-01-01

    Nuclear magnetic resonance (NMR) is studied of protons of the crystal water of paramagnetic CoCl 2 .6H 2 O. The measurements were carried out on powdered samples at room temperature, for values of the external magnetic field ranging from 0.3 to 1.0 T. The NMR signals of protons of the crystal water exhibit asymmetric shape which changes with the applied external magnetic field. We found that the second moment of the resonance line shows a linear dependence on the square of the induction of the externally applied magnetic field. The cause of the asymmetry of the NMR line of protons of the crystal water and the dependence of the second moment of the resonance line on the induction of external magnetic field are interpreted. (author)

  20. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    Science.gov (United States)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  1. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  2. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  3. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  4. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  5. Study of the arrangement of crystallites in γ-irradiated human enamel by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Cevc, P.; Schara, M.; Ravnik, C.; Skaleric, U.

    1976-01-01

    The arrangement of tooth enamel microcrystals has been studied on CO 3 3- bound electrons by paramagnetic resonance. It was found that noncarious human maxillary central incisors have a greater degree of alignment of tooth enamel microcrystals than the carious ones. The outermost surface layer of enamel showed a greater crystallite degree of alignment than other parts

  6. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    Science.gov (United States)

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  7. Er3+ impurities in KTiOPO4 studied by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Bravo, D; MartIn, A; Carvajal, J J; Aguilo, M; DIaz, F; Lopez, F J

    2006-01-01

    An electron paramagnetic resonance (EPR) study of Er 3+ ions in single crystals of KTiOPO 4 (KTP) is presented. The EPR spectra show the existence of eight different Er 3+ centres. The g-matrix has been determined for all eight centres from the analysis of the angular dependences of the spectrum in three planes of the crystal. This study provides strong evidence about incorporation of erbium in the low-symmetry K + sites of KTP. Possible reasons for the appearance of such a large number of Er 3+ centres are discussed

  8. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  9. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  10. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  11. Two-frequency radiospectrometer for studying paramagnetics under a strong magnetic field

    International Nuclear Information System (INIS)

    Vertii, A.A.; Gudym, I.Y.; Ivanchenko, I.V.

    1994-01-01

    A two-frequency radiospectrometer for studying electron paramagnetic resonance in the 120-150-GHz band and nuclear magnetic resonance in the 180-200-MHz band is described. The spectrometer is used to measure the properties of paramagnetics by a double-resonance technique in a magnetic field of up to 5 T at a temperature ranging from 1.7 to 20 degrees K

  12. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  13. Powderspec, a program for the efficient simulation of spectra of electron paramagnetic resonance of powders with orthorhombic symmetry

    International Nuclear Information System (INIS)

    Gonzalez T, L.; Beltran L, V.

    1991-09-01

    In this report a FORTRAN source program which simulates the second order powder pattern and spectrum of electron paramagnetic resonance (EPR) in crystal fields with orthorhombic symmetry using Gauss-Legendre quadratures is given. Also the commentaries which describe each step in detail are presented. (Author)

  14. Theoretical studies of the local structure and electron paramagnetic resonance parameters for tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics

    2015-07-01

    The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.

  15. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  16. Comparative study between different nitrosyls hemoproteins using electron paramagnetic resonance; Estudo comparativo entre diferentes nitrosil hemoproteinas por ressonancia paramagnetica eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Caracelli, Ignez

    1988-12-31

    Using the Electron Paramagnetic Resonance (EPR) technique, the properties of several nitrosyl hemoproteins were investigated as a function of temperature, pH and nitric oxide (NO) concentration. (author). 59 refs., 53 figs., 6 tabs.

  17. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  18. Electron paramagnetic resonance and electron-nuclear double resonance study of the neutral copper acceptor in ZnGeP sub 2 crystals

    CERN Document Server

    Stevens, K T; Setzler, S D; Schünemann, P G; Pollak, T M

    2003-01-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance have been used to characterize the neutral copper acceptor in ZnGeP sub 2 crystals. The copper substitutes for zinc and behaves as a conventional acceptor (i.e. the 3d electrons do not play a dominant role). Because of a high degree of compensation from native donors, the copper acceptors in our samples were initially in the nonparamagnetic singly ionized state (Cu sub Z sub n sup -). The paramagnetic neutral state (Cu sub Z sub n sup 0) was observed when the crystals were exposed to 632.8 nm or 1064 nm laser light while being held at a temperature below 50 K. The g matrix of the neutral copper acceptor is axial g sub p sub a sub r = 2.049 and g sub p sub e sub r sub p = 2.030), with the unique principal direction parallel to the tetragonal c axis of the crystal. The hyperfine and nuclear quadrupole matrices also exhibit c-axis symmetry (A sub p sub a sub r = 87.6 MHz, A sub p sub e sub r sub p = 34.8 MHz and P = 0.87 MHz for sup 6 su...

  19. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  20. Electron paramagnetic resonance investigation of polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mozzati, Maria Cristina [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Azzoni, Carlo Bruno [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Capsoni, Doretta [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Bini, Marcella [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Massarotti, Vincenzo [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy)

    2003-11-05

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO{sub 4}-TiO{sub 6}-CuO{sub 4} complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested.

  1. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    Marble, G.; Valderas, R.

    1966-01-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [fr

  2. Observation of Conducting Structures in Detonation Nanodiamond Powder by Electron Paramagnetic Resonance

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.

    2018-01-01

    We have used electron paramagnetic resonance (EPR) to study high-purity detonation nanodiamond (DND) powders at room temperature. In recording the EPR signal with g factor 2.00247 and line width 0.890 mT, with automatic frequency control locking the frequency of the microwave generator (klystron) to the frequency of the experimental cavity, we observed a change in the shape of the EPR signal from the DND powder due to formation of an anisotropic electrically conducting structure in the powder. The electrical conductivity of the DND sample is apparent in the Dysonian EPR lineshape (strongly asymmetric signal with g factor 2.00146 and line width 0.281 mT) together with an abrupt shift of the baseline at the time of resonant absorption, and in the decrease in the cavity Q due to nonresonant microwave absorption. The observed effect can be explained by transition of the DND powder from a dielectric state to a state with metallic conductivity, due to spin ordering in a preferred direction.

  3. Magnetic resonance imaging of transfusional hemosiderosis complicating thalassemia major

    International Nuclear Information System (INIS)

    Brasch, R.C.; Wesbey, G.E.; Gooding, C.A.; Koerper, M.A.

    1984-01-01

    Tissue deposits of hemosiderin, a paramagnetic iron-protein complex, resulted in marked abnormalities of magnetic resonance (MR) spin-echo signal intensity within the viscera of three children with transfusional hemosiderosis and thalassemia major. In all patients the liver and bone marrow demonstrated abnormally low spin-echo intensities and the kidneys and muscles had abnormally high intensities. These observations correlate with in vitro MR observation of ferric (Fe +3 ) solutions, in which concentrations of ferric salts greater than 20 mmol yielded higher intensities than did water alone. MR imaging is sensitive to the tissue deposition of hemosiderin, and MR intensity appears to provide a rough measure of the amount of iron deposited

  4. Initial deposition and electron paramagnetic resonance defects characterization of TiO2 films prepared using successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Wu Yiyong; Shi Yaping; Xu Xianbin; Sun Chengyue

    2012-01-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO 2 ) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO 2 film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 Å/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: ► TiO 2 films are deposited on glass at 25 °C by successive ionic layer adsorption and reaction method with a rate of 4.6 Å/cycle. ► The films nucleate in an island mode initially but grow in a layer mode afterwards. ► The SILAR TiO 2 films nucleation period is five cycles. ► Electron paramagnetic resonance spectroscopy shows that TiO 2 films paramagnetic defects are attributed to oxygen vacancies. ► They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  5. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  6. Electron paramagnetic resonance of atomic hydrogen (H0) centers in pink tourmaline from Brazil

    International Nuclear Information System (INIS)

    Camargo, M.B.

    1985-01-01

    A model for explaining the atom of hydrogen (H 0 ) in pink tourmaline irradiated with gamma rays is presented. The concentration of H 0 was evaluated and the H 0 lines using the electron paramagnetic resonance were analysed. The g factor and the hyperfine interaction constant were measured with accuracy and determined by matrix diagonalization of spin hamiltonian in vetor space of four dimensions, followed by an iterative calculation with quick convergence the local electric field produced by charges in the lattice was calculated and compared with the value obtained experimentally. (M.C.K.) [pt

  7. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  8. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...... and obtained a set of basis functions for the elements Sc–Zn, which were saturated with respect to both the Fermi contact and spin-dipolar components of the hyperfine coupling tensor [Hedeg°ard et al., J. Chem. Theory Comput., 2011, 7, pp. 4077-4087]. Furthermore, a contraction scheme was proposed leading...

  9. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  10. Assignment of hyperfine shifted haem methyl carbon resonances in paramagnetic low-spin met-cyano complex of sperm whale myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasuhiko

    1987-09-28

    The hyperfine shifted resonances arising from all four individual haem carbons of the paramagnetic low-spin met-cyano complex of sperm whale myoglobin have been clearly identified and assigned for the first time with the aid of /sup 1/H-/sup 13/C heteronuclear chemical shift correlated spectroscopy. Alteration of the in-plane symmetry of the electronic structure of haem induced by the ligation of proximal histidyl imidazole spreads the haem carbon resonances to 32 ppm at 22/sup 0/C, indicating the sensitivity of those resonances to the haem electronic/molecular structure. Those resonances are potentially powerful probes in characterizing the nature of haem electronic structure. 25 refs.; 2 figs.; 1 table.

  11. Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Ian J Rowland

    Full Text Available Non-invasive 3D magnetic resonance imaging techniques were used to investigate metamorphosis of the alimentary tract of Manduca sexta from the larval to the adult stage. The larval midgut contracts in volume immediately following cessation of feeding and then greatly enlarges during the late pharate pupal period. Magnetic resonance imaging revealed that the foregut and hindgut of the pharate pupa undergo ecdysis considerably earlier than the external exoskeleton. Expansion of air sacs in the early pupa and development of flight muscles several days later appear to orient the midgut into its adult position in the abdomen. The crop, an adult auxiliary storage organ, begins development as a dorsal outgrowth of the foregut. This coincides with a reported increase in pupal ecdysteroid titers. An outgrowth of the hindgut, the rectal sac, appears several days later and continues to expand until it nearly fills the dorsal half of the abdominal cavity. This development correlates with a second rise in pupal ecdysteroid titers. In the pharate pupa, the presence of paramagnetic species renders the silk glands hyperintense.

  12. Field-swept pulsed electron paramagnetic resonance of Cr3+-doped ZBLAN fluoride glass

    International Nuclear Information System (INIS)

    Drew, S.C.; Pilbrow, J.R.; Newman, P.J.; MacFarlane, D.R.

    2001-01-01

    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr 3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr 3+ -doped ZBLAN reveals that much of the broad resonance extending from g eff =5.1 to g eff =1.97, characteristic of X-band continuous wave EPR of Cr 3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  13. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  14. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  15. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    Science.gov (United States)

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  16. Technical aspects of contrast-enhanced magnetic resonance imaging of the breast: literature review

    International Nuclear Information System (INIS)

    Leopoldino, Denise de Deus; Gracio, Tatiana Schiller; D'Ippolito, Giuseppe; Bezerra, Alexandre Sergio de Araujo; Gracio, Tatiana Schiller

    2005-01-01

    With the advances in surface coil technology and the development of new imaging protocols in addition to the increase of the use of contrast agents, contrast enhanced magnetic resonance imaging (MRI) has emerged as a promising modality for detection, diagnosis and staging of breast cancer. Despite these advances, there are some unresolved issues, including no defined standard technique for contrast-enhanced breast MRI and no standard criteria of interpretation for the evaluation of such studies. In this article, we review the literature and discuss the general requirements and recommendations for contrast agent-enhanced breast MRI, including image interpretation criteria, MR equipment, dedicated radiofrequency coils, use of paramagnetic contrast agents, fat-suppression techniques, planes of acquisition, pulse sequence specifications and artifact sources. (author)

  17. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  18. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Albertstr. 19, Freiburg (Germany)

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  19. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  20. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment

    Czech Academy of Sciences Publication Activity Database

    Polovka, M.; Šťavíková, Lenka; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 7990-8000 ISSN 0021-9673 R&D Projects: GA ČR GA203/08/1536; GA MŠk LC06023 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized fluid extraction * electron paramagnetic resonance spectroscopy * antioxidant activity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  1. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  2. Initial deposition and electron paramagnetic resonance defects characterization of TiO{sub 2} films prepared using successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yiyong, E-mail: wuyiyong2001@yahoo.com.cn [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Shi Yaping [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Harbin University of Commerce, P.O. 493, Song bei District, Harbin, 150028 (China); Xu Xianbin; Sun Chengyue [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China)

    2012-06-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO{sub 2}) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO{sub 2} film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 A/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: Black-Right-Pointing-Pointer TiO{sub 2} films are deposited on glass at 25 Degree-Sign C by successive ionic layer adsorption and reaction method with a rate of 4.6 A/cycle. Black-Right-Pointing-Pointer The films nucleate in an island mode initially but grow in a layer mode afterwards. Black-Right-Pointing-Pointer The SILAR TiO{sub 2} films nucleation period is five cycles. Black-Right-Pointing-Pointer Electron paramagnetic resonance spectroscopy shows that TiO{sub 2} films paramagnetic defects are attributed to oxygen vacancies. Black-Right-Pointing-Pointer They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  3. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  4. Evaluation of adriamycin nephropathy by an in vivo electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Oteki, Takaaki; Nagase, Sohji; Yokoyama, Hidekatsu; Ohya, Hiroaki; Akatsuka, Takao; Tada, Mika; Ueda, Atsushi; Hirayama, Aki; koyama, Akio

    2005-01-01

    A rat model for human minimal change nephropathy was obtained by the intravenous injection of adriamycin (ADR) at 5 mg/kg. By using an in vivo electron paramagnetic resonance (EPR) spectrometer operating at 700 MHz, the temporal changes in signal intensities of a nitroxide radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), in the kidneys of rats with ADR nephropathy were investigated. The decay rate of the EPR signal intensity obtained in the kidney is indicative of the renal reducing ability. It was found that the reducing ability in the kidney declined on the 7th day after ADR administration and recovered after the 14th day. Impairment of the reducing ability occurred before the appearance of continuous urinary protein. The in vitro EPR study showed that this impairment of in vivo renal reducing ability is related to impairment of the reducing ability in the mitochondria

  5. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  6. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system

    International Nuclear Information System (INIS)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente; Alcala, Rafael

    1996-01-01

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author)

  7. Endometrium evaluation with high-field (3-Tesla) magnetic resonance imaging in patients submitted to uterine leiomyoma embolization

    International Nuclear Information System (INIS)

    Jacobs, Monica Amadio Piazza; Nasser, Felipe; Zlotnik, Eduardo; Messina, Marcos de Lorenzo; Baroni, Ronaldo Hueb

    2013-01-01

    To evaluate the endometrial alterations related to embolization of uterine arteries for the treatment of symptomatic uterine leiomyomatosis (pelvic pain and/or uterine bleeding) by means of high-field (3-Tesla) magnetic resonance. This is a longitudinal and prospective study that included 94 patients with a clinical and imaging diagnosis of symptomatic uterine leiomyomatosis, all of them treated by embolization of the uterine arteries. The patients were submitted to evaluations by high-field magnetic resonance of the pelvis before and 6 months after the procedure. Specific evaluations were made of the endometrium on the T2-weighted sequences, and on the T1-weighted sequences before and after the intravenous dynamic infusion of the paramagnetic contrast. In face of these measures, statistical analyses were performed using Student's t test for comparison of the results obtained before and after the procedure. An average increase of 20.9% was noted in the endometrial signal on T2-weighted images obtained after the uterine artery embolization procedure when compared to the pre-procedure evaluation (p=0.0004). In the images obtained with the intravenous infusion of paramagnetic contrast, an average increase of 18.7% was noted in the post-embolization intensity of the endometrial signal, compared to the pre-embolization measure (p<0.035). After embolization of the uterine arteries, there was a significant increase of the endometrial signal on the T2-weighted images and on the post-contrast images, inferring possible edema and increased endometrial flow. Future studies are needed to assess the clinical impact of these findings

  8. Endometrium evaluation with high-field (3-Tesla) magnetic resonance imaging in patients submitted to uterine leiomyoma embolization

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Monica Amadio Piazza [Post-graduation Program in Abdominal Imaging, Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Nasser, Felipe [Intervention Radiology Department, Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Zlotnik, Eduardo; Messina, Marcos de Lorenzo [Gynecology and Obstetrics Department, Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Baroni, Ronaldo Hueb [Magnetic Resonance Unit, Imaging Department, Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2013-07-01

    To evaluate the endometrial alterations related to embolization of uterine arteries for the treatment of symptomatic uterine leiomyomatosis (pelvic pain and/or uterine bleeding) by means of high-field (3-Tesla) magnetic resonance. This is a longitudinal and prospective study that included 94 patients with a clinical and imaging diagnosis of symptomatic uterine leiomyomatosis, all of them treated by embolization of the uterine arteries. The patients were submitted to evaluations by high-field magnetic resonance of the pelvis before and 6 months after the procedure. Specific evaluations were made of the endometrium on the T2-weighted sequences, and on the T1-weighted sequences before and after the intravenous dynamic infusion of the paramagnetic contrast. In face of these measures, statistical analyses were performed using Student's t test for comparison of the results obtained before and after the procedure. An average increase of 20.9% was noted in the endometrial signal on T2-weighted images obtained after the uterine artery embolization procedure when compared to the pre-procedure evaluation (p=0.0004). In the images obtained with the intravenous infusion of paramagnetic contrast, an average increase of 18.7% was noted in the post-embolization intensity of the endometrial signal, compared to the pre-embolization measure (p<0.035). After embolization of the uterine arteries, there was a significant increase of the endometrial signal on the T2-weighted images and on the post-contrast images, inferring possible edema and increased endometrial flow. Future studies are needed to assess the clinical impact of these findings.

  9. Magnetic resonance imaging in the staging of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Hiroichi; Umeda, Takashi; Niijima, Tadao; Yashiro, Naobumi; Kawabe, Kazuki

    1987-07-01

    Eighteen patients with renal neoplasm underwent magnetic resonance imaging (MRI) using a 1.5 Tesla superconducting magnetic system and spin echo images were obtained by quick scan technique under holding breath. MR images were interpreted independently of the computerized tomography (CT) findings. The preoperative stagings of the 18 renal carcinomas, as judged by MRI, were compared with those obtained at laparotomy. The anatomic staging was correctly performed by MRI in 13 patients (72 %). In the patients who had intrarenal small tumor with normal renal contour, MRI demonstrated a solid mass clearly distinguishable from surrounding renal parenchyma using the paramagnetic contrast agent (gadolinium-DTPA). When compared with results of evaluation by CT in staging, MRI appeared to have several advantages in determination of whole mass; the detection of tumor thrombus into renal vein and inferior vena cava; and the evaluation of direct tumor invasion of adjacent organs. MRI should play an important role in the staging of renal cell carcinoma.

  10. Magnetic resonance imaging in the staging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Kishi, Hiroichi; Umeda, Takashi; Niijima, Tadao; Yashiro, Naobumi; Kawabe, Kazuki

    1987-01-01

    Eighteen patients with renal neoplasm underwent magnetic resonance imaging (MRI) using a 1.5 Tesla superconducting magnetic system and spin echo images were obtained by quick scan technique under holding breath. MR images were interpreted independently of the computerized tomography (CT) findings. The preoperative stagings of the 18 renal carcinomas, as judged by MRI, were compared with those obtained at laparotomy. The anatomic staging was correctly performed by MRI in 13 patients (72 %). In the patients who had intrarenal small tumor with normal renal contour, MRI demonstrated a solid mass clearly distinguishable from surrounding renal parenchyma using the paramagnetic contrast agent (gadolinium-DTPA). When compared with results of evaluation by CT in staging, MRI appeared to have several advantages in determination of whole mass; the detection of tumor thrombus into renal vein and inferior vena cava; and the evaluation of direct tumor invasion of adjacent organs. MRI should play an important role in the staging of renal cell carcinoma. (author)

  11. Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effects of paramagnetic proton signal enhancement

    International Nuclear Information System (INIS)

    Brady, T.J.; Goldman, M.R.; Pykett, I.L.; Buonanno, F.S.; Kistler, J.P.; Newhouse, J.H.; Burt, C.T.; Hinshaw, W.S.; Pohost, G.M.

    1982-01-01

    In a study to evaluate the potential of proton nuclear magnetic resonance (NMR) imaging with and without manganese contrast enhancement for detecting acute myocardial infarction, 12 dogs underwent 90-minute occlusion of the left circumflex coronary artery. Transverse-section NMR images of the excised, nonbeating heart were obtained at 1-cm intervals using the steady-state-free-precession (SSFP) technique. All NMR images revealed detailed structure of the heart. The three hearts without manganese showed no difference in intensity between the normal and the ischemic posterior regions, whereas those with manganese demonstrated a clearly demarcated zone of reduced signal intensity consistent with the ischemic zone. It is concluded that high-resolution tomograms of the excised canine myocardium can be obtained using proton NMR imaging. With the SSFP imaging technique, proton signal enhancement with manganese infusion is necessary to differentiate between ischemic and nonischemic myocardium after 90 minutes of coronary occlusion

  12. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  13. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented

  14. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  15. Pulse-electron paramagnetic resonance of Cr.sup.3+./sup. centers in SrTiO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Dejneka, Alexandr; Lančok, Ján; Trepakov, Vladimír; Jastrabík, Lubomír; Badalyan, A. G.

    2013-01-01

    Roč. 113, č. 17 (2013), "174106-1"-"174106-6" ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : pulse-electron paramagnetic resonance * Cr3+ centers in SrTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.185, year: 2013

  16. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  17. A compensating point defect in carbon-doped GaN substrates studied with electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Willoughby, W. R.; Zvanut, M. E.; Paudel, Subash; Iwinska, M.; Sochacki, T.; Bockowski, M.

    2018-04-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to investigate a type of point defect present in 1019 cm-3 carbon-doped GaN substrates grown by hydride vapor phase epitaxy. A broad, isotropic resonance at g ˜ 1.987 was observed at 3.5 K, and the EPR intensity increased with illumination at energies greater than 2.75 eV and decreased with photon energies greater than 0.95 eV. The latter is consistent with a deep level of 0.95 eV above the valence band maximum and implies that the associated defect likely participates in donor compensation. The ionization energy for this defect is close to the predicted value for the (-/0) transition level of CN and transition levels associated with Ga vacancies such as VGa and VGa-ON-2H.

  18. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    Science.gov (United States)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  19. Electronic Paramagnetic Resonance of irradiated nails: challenges for a dosimetry in radiation accidents

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2014-01-01

    The purpose of this work is to characterize samples of human nails exposed to high doses of radiation, applying the technique of Electron Paramagnetic Resonance (EPR). The objective is to establish a dose response study that allow determine the absorbed dose by exposed individuals in situations of radiological accidents, in a retrospective form. Samples of human nails were collected and afterward irradiated with gamma radiation, and received dose of 20 Gy. The EPR measurement performed on the samples, before irradiation, permitted the signal identification of the components associated with effects caused by the mechanical stress during the fingernail cutting, the so-called mechanically induced signal (MIS). After the irradiation, different species of free radicals were identified, the so-called radiation induced signal (RIS). (author)

  20. Gamma-Irradiated seafoods: identification and dosimetry by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1989-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the production of free radicals induced by 60Co γ-rays in shrimp exoskeleton, mussel shells, and fish bones. The EPR spectrum for irradiated shrimp shell was dose dependent and appeared to be derived from more than one radical. The major component of the radiation-induced spectrum resulted from radical formation in chitin, assigned by comparison with irradiated N-acetyl-D-glucosamine. Other measurements include the total yield of radicals formed as a function of dose and the longevity of the radiation-induced EPR signal. Similar measurements were made for mussel shells and fish bones, and the results are compared and discussed. It was concluded that irradiated shrimp (with shell attached) could definitely be identified by this technique; however, precise determination of absorbed dose was less straightforward. Positive identification of irradiated fish bones was also clearly distinguishable, and dosimetry by EPR appeared to be feasible. (author)

  1. Electron paramagnetic resonance investigations of Fe3+ doped layered TiInS2 and TiGaSe2 single crystals

    International Nuclear Information System (INIS)

    Faik, Mikailov; Bulat, Rameev; Sinan, Kazan; Bekir, Aktash; Faik, Mikailov; Bulat, Rameev

    2005-01-01

    Full text : TiInS 2 and TiGaSe 2 single crystals doped by paramagnetic Fe ions have been studied at room temperature by Electron Paramagnetic Resonance (EPR) technique. A fine structure of EPR spectra of paramagnetic Fe 3 + ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe 3 + centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe 3 + site and CF parameters were determined. It was established that symmetry axis of the axial component in the CF is making an angle of about 48 and 43 degree with the plane of layers of TiInS 2 and TiGaSe 2 crystals respectively. Experimental results indicate that the Fe ions substitute In (GA) at the center of InS 4 (GaSe 4 ) tetrahedrons, and the rhombic distortion of the CF is caused by the TI ions located in the trigonal cavities between the tethedral complexes

  2. Anomalous magnetism and electron paramagnetic resonance spectroscopy of the ZrNi1-xCrxSn solid solution

    International Nuclear Information System (INIS)

    Stadnyk, Y.V.; Skolozdra, R.V.; Gorelenko, Y.K.; Romaka, L.P.; Jankowska-Frydel, A.; Grinberg, M.

    2000-01-01

    The static magnetic properties and electron paramagnetic resonance (EPR) spectra of ZrNi 1-x Cr x Sn solid solution (0 pp =(120±5)G type and g=1.980±0.001, peak-to-peak width ΔH pp =(10±1)G, respectively. They have been attributed to Cr 3+ ions in Ni-sites of the lattice coupled by magnetic dipolar interaction (type I) and to exchange coupled Cr 3+ pairs or clusters of more than two Cr 3+ ions (type II). The third line detected in the samples with x=0.3,0.4 characterised by g eff =2.0003±0.0001 and ΔH pp =(3.0±0.5)G has been interpreted as conduction electron spin resonance (CESR). (orig.)

  3. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  4. Investigation of the biochemical state of paramagnetic ions in vivo using the magnetic field dependence of 1/T1 of tissue protons (NMRD profile): applications to contrast agents for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Koenig, S.H.; Brown, R.D. III; Spiller, M.; Wolf, G.L.

    1988-01-01

    Nuclear magnetic relaxation dispersion (NMRD) profiles of protons are obtained in homogenous aqueous solutions of the paramagnetic ions, Mn 2+ and Gd 3+ and their chelate and macromolecular complexes in vitro, giving information regarding the biochemical state of these ions. Similarly NMRD profiles of protons of excised rabbit tissues containing Mn 2+ and Gd 3+ complexes are obtained. These NMRD profiles are shown to be very useful for determining the fate of potentially useful paramagnetic NMR imaging contrast agents in vivo. (U.K.)

  5. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  6. Multifrequency Electron Paramagnetic Resonance Theory and Applications

    CERN Document Server

    Misra, Sushil K

    2011-01-01

    Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.

  7. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  8. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  9. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    Science.gov (United States)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  10. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  11. Relaxation study of a paramagnetic ion by the observation of nuclear resonance signals

    International Nuclear Information System (INIS)

    Landesman, A.

    1960-01-01

    Dynamic polarization of protons in water containing the paramagnetic ion NO(SO 3 ) 2 was studied, both theoretically and experimentally, as a function of magnetic field. The enhancement of the proton polarization depends appreciably on the relaxation process of the electron spin and so enables us to decide which is the real relaxation process. We tried the two following processes: a) The electron spin is coupled with the nitrogen magnetic moment by hyperfine interaction; if this interaction has an anisotropic part, a relaxation process for the electronic spin will result through the Brownian motion of the ion. b) The relaxation of the electron spin takes place through spin-orbit coupling of the electron spin. Experimental results showed that the relaxation took place through the second process with the help of dynamic polarization we were able to study the relaxation of an electron spin in a liquid without using any electron resonance spectrometer, simply by observing the resonance of a nuclear spin coupled with the electron spin. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 937-948, 1959 [fr

  12. New developments in high field electron paramagnetic resonance with applications in structural biology

    International Nuclear Information System (INIS)

    Bennati, Marina; Prisner, Thomas F

    2005-01-01

    Recent developments in microwave technologies have led to a renaissance of electron paramagnetic resonance (EPR) due to the implementation of new spectrometers operating at frequencies ≥90 GHz. EPR at high fields and high frequencies (HF-EPR) has been established up to THz (very high frequency (VHF) EPR) in continuous wave (cw) operation and up to about 300 GHz in pulsed operation. To date, its most prominent application field is structural biology. This review article first gives an overview of the theoretical basics and the technical aspects of HF-EPR methodologies, such as cw and pulsed HF-EPR, as well as electron nuclear double resonance at high fields (HF-ENDOR). In the second part, the article illustrates different application areas of HF-EPR in studies of protein structure and function. In particular, HF-EPR has delivered essential contributions to disentangling complex spectra of radical cofactors or reaction intermediates in photosynthetic reaction centres, radical enzymes (such as ribonucleotide reductase) and in metalloproteins. Furthermore, HF-EPR combined with site-directed spin labelling in membranes and soluble proteins provides new methods of investigating complex molecular dynamics and intermolecular distances

  13. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India); Kesavadas, C. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)], E-mail: chandkesav@yahoo.com; Thomas, B.; Gupta, A.K.; Thamburaj, K.; Kapilamoorthy, T. Raman [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)

    2009-01-15

    Susceptibility weighted imaging (SWI) is a magnetic resonance (MR) technique that is exquisitely sensitive to paramagnetic substances, such as deoxygenated blood, blood products, iron, and calcium. This sequence allows detection of haemorrhage as early as 6 h and can reliably detect acute intracerebral parenchymal, as well as subarachnoid haemorrhage. It detects early haemorrhagic transformation within an infarct and provides insight into the cerebral haemodynamics following stroke. It helps in the diagnosis of cerebral venous thrombosis. It also has applications in the work-up of stroke patients. The sequence helps in detecting microbleeds in various conditions, such as vasculitis, cerebral autosomal dominant arteriopathy, subacute infarcts and leucoencephalopathy (CADASIL), amyloid angiopathy, and Binswanger's disease. The sequence also aids in the diagnosis of vascular malformations and perinatal cerebrovascular injuries. This review briefly illustrates the utility of this MR technique in various aspects of stroke diagnosis and management.

  14. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    Science.gov (United States)

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  15. Retrospective dosimetry of nail by Electron Paramagnetic Resonance; Dosimetria retrospectiva de unha por Ressonancia Paramagnetica Eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified.

  16. Using an electron paramagnetic resonance method for testing motor oils

    Energy Technology Data Exchange (ETDEWEB)

    Krais, S; Tkac, T

    1982-01-01

    Using an ER-9 spectrometer from the Karl Zeiss company, the relative effectiveness is studied of antioxidation additives. Motor oils of the E group, M6AD, 465, M6AD, 466, M6AD 467, 15 W/40, S-3/2 M/4, R-950, which contain the antioxidation additive were tested in Petter AV-1 motors at a temperature of 50 degrees for 120 hours and Petter AVB at a temperature of 90 degrees for 53 hours. To measure the concentration of free radicals of the antioxidation additives one part of 2,2-diphenyl-1-picrylhydrazine (I), which forms stable dimagnetic products with the radicals of the antioxidation additives was introduced into each three parts of the oil. The reduction in the intensity of the signal of I was the measure of the radical concentration. The spectrum was taken for 1 to 2 minutes. The graphs of the dependence of the electron paramagnetic resonance on the test time and the concentration of I are built. The beginning and end of the induction period of oxidation of the oils and the change in the hourly activity of the PP was recorded.

  17. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  18. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, D. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: david.bravo@uam.es; Lagomacini, J.C. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, M.; Martin, P. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, A. [Department Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, F.J. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Ibarra, A. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain)

    2009-06-15

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 fused silica irradiated with neutrons at fluences 10{sup 21} and 10{sup 22} n/m{sup 2}, and gamma-ray doses up to 12 MGy. The effects of post-irradiation thermal annealing treatments, up to 850 deg. C, have also been investigated. Paramagnetic oxygen-related defects (POR and NBOHC) and E'-type defects have been identified and their concentration has been measured as a function of neutron fluence, gamma dose and post-irradiation annealing temperature. It is found that neutrons at the highest fluence generate a much higher concentration of defects (mainly E' and POR, both at concentrations about 5 x 10{sup 18} spins/cm{sup 3}) than gamma irradiations at the highest dose (mainly E' at a concentration about 4 x 10{sup 17} spins/cm{sup 3}). Moreover, for gamma-irradiated samples a lower treatment temperature (about 400 deg. C) is required to annihilate most of the observed defects than for neutron-irradiated ones (about 600 deg. C)

  19. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  20. Photoexcitation electron paramagnetic resonance studies on nickel-related defects in diamond

    CERN Document Server

    Pereira, R N; Neves, A J; Sobolev, N A

    2003-01-01

    Measurements of the electron paramagnetic resonance (EPR) upon photoexcitation are reported on Ni defects in diamonds grown with Ni-containing solvent/catalysts. The temperature dependence of the W8 EPR spectrum photoquenching shows that the relaxation of substitutional Ni sub s sup - upon electron ionization is very small, corroborating the interpretation that the previously reported photoinduced effects with thresholds at 2.5 and 3.0 eV correspond to two complementary photoionization transitions involving Ni sub s. Photoinduced behaviour of the NIRIM1 EPR centre favours the interstitial Ni sub i sup + model for this defect and suggests that the Ni sub i sup 0 sup / sup + level is located at 1.98 +- 0.03 eV below the conduction band. In N-doped diamond, Ni sub i is more likely to appear in the neutral state, undetectable by EPR, whereas at substitutional sites Ni sub s sup - is revealed. Observation of a strong AB2 EPR signal photoquenching and simultaneous detection of different spectral dependencies of the...

  1. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  2. Visualization through Magnetic Resonance Imaging of DNA Internalized Following “In Vivo” Electroporation

    Directory of Open Access Journals (Sweden)

    Simonetta Geninatti Crich

    2005-01-01

    Full Text Available The ability to visualize plasmid DNA entrapment in muscle cells undergoing an “in vivo” electroporation treatment was investigated on BALB/c mice using a 7-T magnetic resonance imaging (MRI scanner using the paramagnetic Gd–DOTA–spd complex as imaging reporter. Gd–DOTA–spd bears a tripositively charged spermidine residue that yields a strong binding affinity toward the negatively charged DNA chain (6.4 kb, Ka = 2.2 × 103 M−1 for approximately 2500 ± 500 binding sites. Cellular colocalization of Gd-DOTA-spd and plasmid DNA has been validated by histological analysis of excised treated muscle. In vivo MRI visualization of Gd-DOTA-spd distribution provides an excellent route to access the cellular entrapment of plasmid DNA upon applying an electroporation pulse.

  3. Effects of water on fingernail electron paramagnetic resonance dosimetry.

    Science.gov (United States)

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-09-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Improved paramagnetic chelate for molecular imaging with MRI

    International Nuclear Information System (INIS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-01-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent

  5. Improved paramagnetic chelate for molecular imaging with MRI

    Science.gov (United States)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  6. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    Science.gov (United States)

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-08

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.

  7. Detection of free radicals in γ-irradiated seasnail hard tissues by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Koeseoglu, Rahmi; Koeksal, Fevzi

    2003-01-01

    Gamma-irradiated seasnail (from family of Helix lukortium) hard tissues (CaCO 3 ) were investigated by electron paramagnetic resonance (EPR) at room temperature. The radicals produced by γ-irradiation in seasnail were attributed to orthorhombic C · O 2 - , freely rotating C · O 2 - , orthorhombic C · O 3 - , axial C · O 3 - , and axial C · O 3 3- free radicals. Unirradiated seasnail hard tissues also feature Mn 2+ ions in their EPR spectra. The hyperfine values were determined for the 13 C nucleus in the orthorhombic C · O 2 - and axial C · O 3 3- free radicals and for the manganese impurity ions. The g values of all the free radicals have been measured. The results were compared with the literature data for similar defects

  8. Conventional electron paramagnetic resonance of Mn2+ in synthetic hydroxyapatite at different concentrations of the doped manganese

    Science.gov (United States)

    Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.

  9. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  10. Moessbauer, electron paramagnetic resonance and magnetic susceptibility studies of photosensitive nitrile hydratase from Rhodococcus sp. N-771

    International Nuclear Information System (INIS)

    Nagamune, Teruyuki; Honda, Jun; Kobayashi, Yoshio; Sasabe, Hiroyuki; Endo, Isao; Ambe, Fumitoshi; Teratani, Yoshitaka; Hirata, Akira

    1992-01-01

    Moessbauer, magnetic susceptibility and electron paramagnetic resonance (EPR) studies of inactive and photoactivated NHase enzymes were performed to elucidate the electronic change of non-heme two-iron atom center of the enzyme by photoactivation. These spectroscopic investigations revealed that both the two iron atoms of the active NHase could be assigned to low-spin ferric state, and those of the inactive NHase could each be assigned to low-spin ferric and low-spin ferrous ones. From these results, it was concluded that one of the non-heme iron atoms is oxidized in the inactive NHase during photoactivation. (orig.)

  11. Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Erdem, Emre; Mass, Valentina; Gembus, Armin; Schulz, Armin; Liebau-Kunzmann, Verena; Fasel, Claudia; Riedel, Ralf; Eichel, Rüdiger-A

    2009-07-21

    Lithium-doped polymer-derived silicon carbonitride ceramics (SiCN:Li) synthesized at various pyrolysis temperatures, have been investigated by means of multifrequency and multipulse electron paramagnetic resonance (EPR) and Raman spectroscopy in order to determine different defect states that may impact the materials electronic properties. In particular, carbon- and silicon-based 'dangling bonds' at elevated, as well as metallic networks containing Li0 in the order of 1 microm at low pyrolysis temperatures have been observed in concentrations ranging between 10(14) and 10(17) spins mg(-1).

  12. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Tresp, H; Hammer, M U; Winter, J; Reuter, S; Weltmann, K-D

    2013-01-01

    In this paper the qualitative and quantitative detection of oxygen radicals in liquids after plasma treatment with an atmospheric pressure argon plasma jet by electron paramagnetic resonance spectroscopy is investigated. Absolute values for · OH and O 2 ·- radical concentration and their net production rate in plasma-treated liquids are determined without the use of additional scavenging chemicals such as superoxide dismutase (SOD) or mannitol (D-MAN). The main oxygen-centred radical generation in PBS was found to originate from the superoxide radical. It is shown that hidden parameters such as the manufacturer of chemical components could have a big influence on the comparability and reproducibility of the results. Finally, the effect of a shielding gas device for the investigated plasma jet with a shielding gas composition of varying oxygen-to-nitrogen ratio on radical generation after plasma treatment of phosphate-buffered saline solution was investigated. (paper)

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  14. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    Science.gov (United States)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  15. Electron paramagnetic resonance and electron-nuclear double-resonance study of Ti sup 3 sup + centres in KTiOPO sub 4

    CERN Document Server

    Setzler, S D; Fernelius, N C; Scripsick, M P; Edwards, G J; Halliburton, L E

    2003-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance have been used to characterize four Ti sup 3 sup + centres in undoped crystals of potassium titanyl phosphate (KTiOPO sub 4 or KTP). These 3d sup 1 defects (S = 1/2) are produced by ionizing radiation (either 60 kV x-rays or 355 nm photons from a tripled Nd:YAG laser), and form when the regular Ti sup 4 sup + ions in the crystal trap an electron. Two of these trapped-electron centres are only observed in hydrothermally grown KTP and the other two are dominant in flux-grown KTP. Both of the Ti sup 3 sup + centres in hydrothermally grown crystals have a neighbouring proton (i.e. an OH sup - molecule). In the flux-grown crystals, one of the Ti sup 3 sup + centres is adjacent to an oxygen vacancy and the other centre is tentatively attributed to a self-trapped electron (i.e. a Ti sup 3 sup + centre with no stabilizing entity nearby). The g matrix and phosphorus hyperfine matrices are determined for all four Ti sup 3 sup + centres, and the proto...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  19. In-depth magnetic characterization of a [2 × 2] Mn(III) square grid using SQUID magnetometry, inelastic neutron scattering, and high-field electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Konstantatos, Andreas; Bewley, Robert; Barra, Anne Laure

    2016-01-01

    . Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single...

  20. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  1. Application of electron paramagnetic resonance to identify irradiated soybean

    International Nuclear Information System (INIS)

    Bhaskar, S.; Behere, Arun; Sharma, Arun

    2006-01-01

    Full text: Electron paramagnetic resonance spectroscopy was applied to study free radicals in soy bean seed after gamma irradiation and to establish the potential of these radiation induced free radicals as the indicator of the radiation treatment. The radiation doses administered to the samples were 1 to 30 kGy. A stable doublet signal was detected at g = 2.0279 with hyperfine coupling constant of 2.8 mT, produced only by radiolysis. This signal can be used to identify irradiated soy bean seed samples. With the increase of the radiation dose the central line intensity and the intensities of the satellite lines showed almost a linear rise having linear correlation factors of 0.99724 and 0.99996, respectively. Thermal treatment at 373 deg K in air was studied. No line specific to thermolysis was observed. The spectrometer was operated with power 0.253 mW, microwave frequency 9.74 GHz, modulation frequency 100 kHz and scan range 10 mT. To study the stability of the signal, EPR spectra were obtained from the irradiated skin part of soy bean seeds samples following 1 and 90 days of storage after radiation treatment. The two satellite lines of g left = 2.0279 and g right 1.99529 were detected in all samples. This suggests that the signal is associated with a stable radical and therefore, the detection of a particular free radical as a marker of irradiation is proposed

  2. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  3. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  5. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  6. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  7. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry; Aplicacion de la Resonancia paramagnetica electronica a la dosimetria de las radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  8. Electron paramagnetic resonance study of the Ce.sup.3+./sup. pair centers in YAlO.sub.3./sub.:Ce scintillator crystals

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Mihóková, Eva; Novák, Pavel; Nikl, Martin

    2015-01-01

    Roč. 92, č. 22 (2015), "224105-1"-"224105-10" ISSN 1098-0121 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * scintillator * pair of ions * density functional theory calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  9. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  10. Magnetic resonance imaging of the cardiovascular system: present state of the art and future potential

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    State-of-the-art magnetic resonance imaging (MRI) generates high-resolution images of the cardiovascular system. Conventional MRI techniques provide images in six to ten minutes per tomographic slice. New strategies have substantially improved the speed of imaging. The technology is relatively expensive, and its cost-effectiveness remains to be defined in relation to other effective, less expensive, and noninvasive technologies, such as echocardiography and nuclear medicine. The ultimate role of MRI will depend on several factors, including the development of specific applications such as (1) noninvasive angiography, especially of the coronary arteries;(2) noninvasive, high-resolution assessment of regional myocardial blood flow distribution (e.g., using paramagnetic contrast agents); (3) characterization of myocardial diseases using proton-relaxation property changes; and (4) evaluation of in vivo myocardial biochemistry. The three-dimensional imaging capability and the ability to image cardiovascular structures without contrast material give MRI a potential advantage over existing noninvasive diagnostic imaging techniques. This report analyzes current applications of MRI to the cardiovascular system and speculates on their future

  11. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids

    Science.gov (United States)

    Owens, F. J.; Sharma, J.

    1980-03-01

    Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

  12. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    Sankaran Subramanian and Murali C Krishna ... the National Cancer Institute, .... They are non-toxic and can be injected intravenously or intraperitoneally for EPR ..... Consumption of green vegetables, green tea, Vitamin E, polyphenols, ...

  13. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  14. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  15. Experimental determination of the radial dose distribution in high gradient regions around 192Ir wires: Comparison of electron paramagnetic resonance imaging, films, and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Kolbun, N.; Leveque, Ph.; Abboud, F.; Bol, A.; Vynckier, S.; Gallez, B.

    2010-01-01

    Purpose: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate 192 Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. Methods: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. Results: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate (∼0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. Conclusions: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a 192 Ir wire source.

  16. Nuclear magnetic resonance imaging in orthopedics

    International Nuclear Information System (INIS)

    Peters, P.E.; Matthiass, H.H.; Reiser, M.

    1990-01-01

    NMR imaging (MR tomography) allows the non-invasive diagnostic evaluation of cartilage, ligaments, tendons and muscles of the limbs, joints and the vertebral spine. The images are characterized by a good spatial resolution, and in contrast to the X-ray CT, sectional images can be done in all planes, as well as three-dimensional image reconstructions. The book reviews the current state of the art and foreseeable developments of NMR imaging of the supporting and connective tissue, also discussing the application of paramagnetic contrast media, and the novel NMR spectroscopy as a method pointing into the future. All contributions discussing the clinical aspects have been written jointly by experts in orthopedics and radiology. (orig.) With 153 figs., 8 tabs [de

  17. Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance

    DEFF Research Database (Denmark)

    Godiksen, Anita; Stappen, Frederick N.; Vennestrøm, Peter N. R.

    2014-01-01

    Cu-CHA combines high activity for the selective catalytic reduction (SCR) reaction with better hydrothermal stability and selectivity compared to other copper-substituted zeolites. At the same time Cu-CHA offers an opportunity for unraveling the coordination environment of the copper centers since...... the zeolite framework is very simple with only one crystallographically independent tetrahedral site (T-site). In this study the results of an X-band electron paramagnetic resonance (EPR) investigation of ion-exchanged Cu-CHA zeolite with a Si/Al ratio of 14 ± 1 is presented. Different dehydration treatments...... of the EPR silent monomeric Cu2+ in copper-substituted zeolites is suggested to be copper species with an approximate trigonal coordination sphere appearing during the dehydration. After complete dehydration at 250 °C the majority of the EPR silent Cu2+ is suggested to exist as Cu2+–OH– coordinated to two...

  18. Electron paramagnetic resonance dosimetry in fingernails

    International Nuclear Information System (INIS)

    Romanyukha, Alex; Benevides, Luis A.; Reyes, Ricardo; Trompier, Francois; Clairand, Isabelle; Swartz, Harold M.

    2008-01-01

    Full text: Based on the capabilities of new instrumentation and the experience gained in the use of teeth for 'after-the-fact' dosimetry, we have undertaken a systematic electron paramagnetic resonance (EPR) study of irradiated fingernails. There have been only a modest number of previous studies of radiation-induced signals in fingernails. While these have given us some promising aspects, overall results have been inconsistent. The most significant problem of EPR fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to do dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically-induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. Having applied these methods, we were able to understand that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it looses water, it becomes deformed again. The same happens to fingernail tissue. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. Obtained results show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 minutes in water. This is an ongoing study but even at its present state of development, it has shown that it

  19. Electron paramagnetic resonance and electron-nuclear double-resonance study of Ti{sup 3+} centres in KTiOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Setzler, S D [BAE Systems, Nashua, NH 03061 (United States); Stevens, K T [Northrop Grumman, Space Technology, Synoptics, Charlotte, NC 28273 (United States); Fernelius, N C [Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPSO, Wright-Patterson AFB, OH 45433 (United States); Scripsick, M P [Nova Phase, Newton, NJ 07860 (United States); Edwards, G J [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Halliburton, L E [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2003-06-18

    Electron paramagnetic resonance and electron-nuclear double resonance have been used to characterize four Ti{sup 3+} centres in undoped crystals of potassium titanyl phosphate (KTiOPO{sub 4} or KTP). These 3d{sup 1} defects (S = 1/2) are produced by ionizing radiation (either 60 kV x-rays or 355 nm photons from a tripled Nd:YAG laser), and form when the regular Ti{sup 4+} ions in the crystal trap an electron. Two of these trapped-electron centres are only observed in hydrothermally grown KTP and the other two are dominant in flux-grown KTP. Both of the Ti{sup 3+} centres in hydrothermally grown crystals have a neighbouring proton (i.e. an OH{sup -} molecule). In the flux-grown crystals, one of the Ti{sup 3+} centres is adjacent to an oxygen vacancy and the other centre is tentatively attributed to a self-trapped electron (i.e. a Ti{sup 3+} centre with no stabilizing entity nearby). The g matrix and phosphorus hyperfine matrices are determined for all four Ti{sup 3+} centres, and the proton hyperfine matrix is determined for the two centres associated with OH{sup -} ions. These Ti{sup 3+} centres contribute to the formation of the grey tracks often observed in KTP crystals used to generate the second harmonic of high-power, near-infrared lasers.

  20. Crystallite arrangement of hydroxyapatite microcrystals in human tooth cementum as revealed by electron paramagnetic resonance (EPR)

    International Nuclear Information System (INIS)

    Skaleric, U.; Gaspirc, B.; Cevc, P.; Schara, M.

    1998-01-01

    Human dental cementum was analyzed by electron paramagnetic resonance (EPR). The measured EPR powder spectra of γ-irradiated cementum resembled those of γirradiated enamel. Both spectra were characterized by the same line shapes and g values. The position of the extreme first derivate peaks can be described by g 1 =2.0023 and g 2 =1.9971±0.0002, and are assignable to the CO 3 3- center. The angular dependence of the cementum EPR spectra indicates a different arrangement of the hydroxyapatite microcrystals compared to that of enamel. A corresponding model of cementum micro-crystal alignment has been proposed. The methodology presented can be utilized for studying the mineralization process of root cementum and other mineralized tissues. (au)

  1. Electron paramagnetic resonance of gamma irradiated (CH3)3NHClO4 and CH3NH3ClO4 single crystals

    International Nuclear Information System (INIS)

    Yavuz, Metin; Koeksal, Fevzi

    1999-01-01

    Gamma irradiation damage centers in (CH 3 ) 3 NHClO 4 and CH 3 NH 3 ClO 4 single crystals have been investigated at room temperature by the electron paramagnetic resonance (EPR) technique. It has been found that γ-irradiation produces the (CH 3 ) 3 N + radical in the first, and NH + 3 and ClO 3 radicals in the second compound. The EPR parameters of the observed radicals have been determined and discussed

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  3. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  4. Electron paramagnetic resonance of globin proteins - a successful match between spectroscopic development and protein research

    Science.gov (United States)

    Van Doorslaer, Sabine; Cuypers, Bert

    2018-02-01

    At the start of the twenty-first century, the research into the haem-containing globins got a considerable impetus with the discovery of three new mammalian globins: neuroglobin, cytoglobin and androglobin. Globins are by now found in all kingdoms of life and, in many cases, their functions are still under debate. This revival in globin research increased the demand for adequate physico-chemical research tools to determine the structure-function relationships of these proteins. From early days onwards, electron paramagnetic resonance (EPR) has been used in globin research. In recent decades, the field of EPR has been revolutionised with the introduction of many new pulsed and high-field EPR techniques. In this review, we highlight how EPR has become an essential tool in globin research, and how globins equally provide ideal model systems to push technical developments in EPR.

  5. In vivo colocalization of 2-nitroimidazole EF5 fluorescence intensity and electron paramagnetic resonance oximetry in mouse tumors

    International Nuclear Information System (INIS)

    Mahy, Pierre; Bast, Marc de; Gallez, Bernard; Gueulette, John; Koch, Cameron J.; Scalliet, Pierre; Gregoire, Vincent

    2003-01-01

    Background and purpose: The primary objective of this study was to establish in vivo the relationship between 2-2-nitro-1H-imidazol-1yl-N-(2,2,3,3,3-pentafluoropropyl)-acetamide (EF5) adduct formation and intratumoral oxygen concentrations measured by electron paramagnetic resonance (EPR) in a tumor model mimicking a clinical situation. The secondary objective was an attempt to calibrate in situ the immunofluorescence (IF) signal with EPR oximetry. Materials and methods: IM syngeneic fibrosarcoma (NFSA) bearing C3H mice were used. Three days after injection of a paramagnetic charcoal into the tumor, the mice were anesthetized, injected with the hypoxic marker EF5, and monitored every 20 min for 3 h with a low-frequency EPR spectrometer. Animals were allowed to breath either under 21 or 100% O 2 . Tumors were then harvested, frozen, cut into sections including the charcoal and processed for EF5 adducts detection using monoclonal antibodies. Slices were viewed with a fluorescence microscope and 190x140 μm areas surrounding the charcoal were digitized and analyzed with the NIH-Image and Adobe Photoshop TM software. The fluorescence intensity (FI) was measured in the whole pictures and in strips of 10 μm around the charcoal. Results: EF5 binding increased with decreasing pO 2 , most substantially at pO 2 below 5 mm Hg. Baseline (ambient air) pO 2 reached 3.2±2.1 mm Hg in NFSA tumors. It increased to 9.8±3.2 mm Hg under 100% O 2 . A statistically significant correlation was observed on an individual tumor basis between the FI in the first 10 μm strip around the charcoal and the pO 2 determined by EPR oximetry (Wilcoxon signed rank test: P 2 in an in vivo environment under biologically-relevant pO 2 values of less than 10 mm Hg

  6. Determination of azide in biological fluids by use of electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Minakata, Kayoko; Suzuki, Osamu

    2005-01-01

    A simple and sensitive method has been developed for the determination of azide ion (N 3 - ) in biological fluids and beverages. The procedure was based on the formation of a ternary complex Cu(N 3 ) 2 (4-methylpyridine) x in benzene, followed by its detection by electron paramagnetic resonance. The complex in benzene showed a characteristic four-peak hyperfine structure with a g-value of 2.115 at room temperature. Cu 2+ reacted with N 3 - most strongly among common metals found in biological fluids. Several anions and metal ions in biological fluids did not interfere with the determination of N 3 - in the presence of large amounts of Cu 2+ and oxidants. In the present method, N 3 - at the concentration from 5 μM to 2 mM in 100 μl solution could be determined with the detection limit of 20 ng. The recoveries were more than 95% for N 3 - added to 100 μl of blood, urine, milk and beverages at 200 μM. Our method is recommendable because it takes less than 10 min to determine N 3 - and the produced complex is quite stable

  7. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    Science.gov (United States)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  8. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  9. Contrast-enhanced magnetic resonance imaging of tumours of the central nervous systems: a clinical review

    International Nuclear Information System (INIS)

    Graif, M.; Steiner, R.E.

    1986-01-01

    The clinical application of the intravascular paramagnetic contrast agent gadolinium-DTPA for magnetic resonance imaging (MRI) imaging of tumours of the central nervous system (CNS) has been assessed over the past 3 years. Various patterns of contrast enhancement were observed, and situations in MRI where the administration of contrast medium may be useful have been defined. These include lesions which are isointense with normal brain matter, the separation of tumour from surrounding oedema, evaluation of the degree of blood-brain barrier breakdown, delineation of tumours obscured by overlying calcification on computed tomography (CT) and in the investigation of lesions in anatomical areas where CT has known limitations (brain, stem, cervical spine). Changes in relaxation times in normal and abnormal tissues following contrast medium, toxicity and dosage of gadolinium-DTPA, and MRI pulse sequence techniques are reviewed. (author)

  10. Towards improving the detection limit of electron paramagnetic resonance (EPR) dosimetry of drywall (wallboard)

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, R.; Thompson, J.W. [Dept. of Medical Physics and Applied Radiation Sciences, McMaster Univ., Hamilton, Ontario (Canada); Rink, W.J. [School of Geography and Earth Sciences, McMaster Univ., Hamilton, Ontario (Canada); Boreham, D. [Dept. of Medical Physics and Applied Radiation Sciences, McMaster Univ., Hamilton, Ontario (Canada)

    2009-07-01

    The intensity of the electron paramagnetic resonance (EPR) line corresponding to the carbonate free radical (CO{sub 3}{sup -}) in gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) drywall was previously shown to be proportional to absorbed dose. Heating irradiated drywall reduces the radiosensitive signal of the CO{sub 3}{sup -} radical. The response of the CO{sub 3}{sup -} EPR line to heat treatments is being studied in order to determine a background for an arbitrary drywall sample. Ultimately this is expected to improve the precision of dose measurements with drywall and to reduce the detection limit. Controlled heating of irradiated drywall was performed at temperatures between 50{sup o}C and 100{sup o}C. Although higher temperatures reduce the radiosensitive signal rapidly, the non-radiosensitive EPR signals are affected dramatically as well, presumably due to a phrase change from gypsum to plaster of Paris to anhydrite. (author)

  11. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    Science.gov (United States)

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigation of Mn Implanted LiNbO3 applying electron paramagnetic resonance technique

    International Nuclear Information System (INIS)

    Darwish, A.; Ila, D.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    The effect of ion implantation on the LiNbO 3 crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO 3 :Mn 2+ at a depth of approximately 200 nm was formed by implantation of 2.5 x 10 14 Mncm 2 and 1 x 10 17 Mn/cm 2 at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO 3 :Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal

  13. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  14. Biophysical dose measurement using electron paramagnetic resonance in rodent teeth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    Electron paramagnetic resonance (EPR) dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. However, there are situations that do not involve a human victim (e.g. tests for suspected environmental overexposures, measurements of doses to experimental animals in radiation biology research, or chronology of archaeological deposits). For such cases we have developed an EPR dosimetry technique making use of enamel of teeth extracted from mice. Tooth enamel from both previously irradiated and unirradiated mice was extracted and cleaned by processing in supersaturated KOH aqueous solution. Teeth from mice with no previous irradiation history exhibited a linear EPR response to the dose in the range from 0.8 to 5.5 Gy. The EPR dose reconstruction for a preliminarily irradiated batch resulted in the radiation dose of (1.4±0.2) Gy, which was in a good agreement with the estimated exposure of the teeth. The sensitivity of the EPR response of mouse enamel to gamma radiation was found to be half of that of human tooth enamel. The dosimetric EPR signal of mouse enamel is stable up at least to 42 days after exposure to radiation. Dose reconstruction was only possible with the enamel extracted from molars and premolars and could not be performed with incisors. Electron micrographs showed structural variations in the incisor enamel, possibly explaining the large interfering signal in the non-molar teeth

  15. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  16. Magnetic resonance tomography for focal lesions in the liver using the para-magnetic contrast medium gadolinium DTPA

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Felix, R.; Wolf, K.J.; Klinikum Charlottenburg, Berlin

    1986-01-01

    The use of the para-magnetic contrast medium gadolinium DTPA for magnetic resonance tomography of focal lesions in the liver was investigated in 31 patients. Two dosage schedules of the contrast medium (0.1 and 0.2 mmol/kg body weight) were used with field strengths of 0.35 and 0.5 Tesla. Using T 1 sequences, gadolinium DTPA showed increased signal intensity in the liver and in tumours, but this was significantly more marked in the tumour. On T 1 spin-echo sequences, previously iso-intense lesions became visible after administration of contrast. On the other hand, contrast-enhanced lesions were less well seen on inversion recovery sequences because of a reduction in the contrast between tumour and liver tissue. The contrast between tumour and liver tissue was not improved by gadolinium DTPA in comparison with precontrast inversion recovery sequences and T 2 spin-echo sequences. The perfusion of intra-hepatic tumours could be elucidated by magnetic resonance tomography after the administration of gadolinium DTPA. (orig.) [de

  17. Coiled-coil formation of the membrane-fusion K/E peptides viewed by electron paramagnetic resonance.

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    Full Text Available The interaction of the complementary K (Ac-(KIAALKE3-GW-NH2 and E (Ac-(EIAALEK3-GY-NH2 peptides, components of the zipper of an artificial membrane fusion system (Robson Marsden H. et al. Angew Chemie Int Ed. 2009 is investigated by electron paramagnetic resonance (EPR. By frozen solution continuous-wave EPR and double electron-electron resonance (DEER, the distance between spin labels attached to the K- and to the E-peptide is measured. Three constructs of spin-labelled K- and E-peptides are used in five combinations for low temperature investigations. The K/E heterodimers are found to be parallel, in agreement with previous studies. Also, K homodimers in parallel orientation were observed, a finding that was not reported before. Comparison to room-temperature, solution EPR shows that the latter method is less specific to detect this peptide-peptide interaction. Combining frozen solution cw-EPR for short distances (1.8 nm to 2.0 nm and DEER for longer distances thus proves versatile to detect the zipper interaction in membrane fusion. As the methodology can be applied to membrane samples, the approach presented suggests itself for in-situ studies of the complete membrane fusion process, opening up new avenues for the study of membrane fusion.

  18. Dosimetric properties of textile fibers: application of electron paramagnetic resonance dosimetry to an accidental gamma irradiation

    International Nuclear Information System (INIS)

    Kamenopoulou, V.

    1988-01-01

    The dosimetric properties of some twenty textile fibers have been studied in order to develop a method for determining the dose received in the case of an accidental gamma irradiation. Three textile fibers having properties most closely satisfying our needs were selected for detailed investigations: cotton, polypropylene and quartz. Electron Paramagnetic Resonance (EPR) readout techniques were used. In order to eliminate spectral anisotropy problems due to textile fiber inhomogeneities, a system has been developed to rotate samples in the resonant cavity during measurements. The structure, physical and chemical properties of cotton and polypropylene were investigated. A bibliographic study of the combined effects of light, heat and ionizing radiation on textile fibers was carried out. A linear relation exists between the EPR signal and the gamma ray dose received over a certain dose range. A method has been developed for preparing samples so as to reduce background noise not due to irradiation; in this way the detection threshold is lowered and a greater time stability obtained. Unknown doses corresponding to known spectra are determined by linear interpolation using a series of spectra obtained from the same fabric irradiated with known doses [fr

  19. Electron paramagnetic resonance study of exchange coupled Ce.sup.3+./sup. ions in Lu.sub.2./sub.SiO.sub.5./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Rosa, Jan; Nikl, Martin

    2016-01-01

    Roč. 90, Jul (2016), s. 23-26 ISSN 1350-4487 R&D Projects: GA ČR GAP204/12/0805; GA MŠk(CZ) LM2011029; GA MŠk LO1409 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * scintillators * lutetium oxyorthosilicate * exchange coupled ions * cerium ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  20. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite; Estudo por ressonancia paramagnetica eletronica de defeitos induzidos pelas radiacoes ionizantes na hidroxiapatita do esmalte dentario

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures 65 refs., 40 figs., 5 tabs.

  1. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Silke Barbara Lohan

    2015-08-01

    Full Text Available Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling. Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS. Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR spectroscopy, it is possible to measure paramagnetic substances such as free radicals. Therefore the dermal antioxidant activity can be determined by applying semi-stable radicals onto the skin and measuring the antioxidant-induced radical scavenging activity in the skin. In recent years, EPR has been developed as a spectroscopic method for determining the antioxidant status in vivo. Several studies have shown that an additional uptake of dietary supplements, such as carotenoids or vitamin C in physiological concentrations, provide a protective effect against free radicals. Using the EPR technique it could be demonstrated that the radical production in stress situations, such as irradiation with infrared and visible light, was reduced with time. However, not only the oral uptake of antioxidants, but also the topical application of antioxidants, e.g., a hyperforin-rich cream, is very useful against the development of oxidative stress. Regular application of a hyperforin-rich cream reduced radical formation. The skin lipids, which are very important for the barrier function of the skin, were also stabilized.

  2. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  3. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  4. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study

    Directory of Open Access Journals (Sweden)

    Yvana Lopes Pinheiro da Silva

    2015-04-01

    Full Text Available Objective: To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods: Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results: As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion: Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.

  5. Evaluation of potential practical oral contrast agents for pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bisset, G.S. III; Cincinnati Univ., OH; Children's Hospital Medical Center, Cincinnati, OH

    1989-01-01

    Development of a practical oral contrast agent for magnetic resonance imaging is necessary to improve differentiation of bowel from adjacent structures. In order to find a readily available, inexpensive, non-toxic, palatable solution for use in the pediatric population, several formulas, milk products and a common oral sedative were evaluated in vitro. T1, T2 and signal intensity measurements were performed on a 1.5 T system. Similac with standard iron proved to be a useful high signal intensity agent on multiple pulse sequences. Early in vivo experience in four normal volunteers indicates that this agent provides excellent delineation of the stomach and duodenum from contiguous viscera. Distal small bowel visualization is less predictabel. Further clinical trials should confirm the utility of this solution, which contains a combination of iron salts and paramagnetic metallic ions. (orig.)

  6. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  7. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    Science.gov (United States)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  8. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  9. Magnetic Resonance Imaging. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  11. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

    Science.gov (United States)

    Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A

    2012-01-01

    Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.

  12. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    OpenAIRE

    Sugiyama, M

    1994-01-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intac...

  13. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  14. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  15. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available respectively from Raman spectroscopy study. These particle sizes are known be affected by substrate temperature during the deposition. Electron spin resonance (ESR) results demonstrated a strange antiferromagnetic to paramagnetic transition at a room...

  16. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  17. Some recent multi-frequency electron paramagnetic resonance results on systems relevant for dosimetry and dating.

    Science.gov (United States)

    Callens, F; Vanhaelewyn, G; Matthys, P

    2002-04-01

    Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.

  18. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  19. New method to measure the carbamoylating activity of nitrosoureas by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Gadzheva, V; Ichimori, K; Raikov, Z; Nakazawa, H

    1997-08-01

    A new method for measuring the carbamoylating activity of nitrosoureas and isocyanates using electron paramagnetic resonance (EPR) spectroscopy is described. The extent and time course of carbamoylation reaction of chloroethyl isocyanate and a series of 9 nitrosoureas toward amino group of 4-amino-2,2,6,6-tetramethyl-piperidine-1-oxyl were examined with both the EPR method and the HPLC method which has been proposed by Brubaker et al. [Biochem. Pharmacol. 35:2359 (1986)]. Spin-labeled nitrosoureas we synthesized are included in this study since they have less toxicity or more efficiency than commercially available drug in some cases. The concentration of carbamoylated product was easily determined with the EPR spectra. There is a very high correlation (r = 0.982, t = 2.58, N = 10, p nitrosoureas showed lower carbamoylating activity than non-labeled analogues. The carbamoylating activity for these nitrosourea depended on the reactivity of isocyanate intermediate and almost independent of their half life. This rapid and simple EPR method is suitable for the detailed investigation of the rate and extent of carbamoylation reaction.

  20. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  1. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  2. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  3. Signature of ferro–paraelectric transition in biferroic LuCrO3 from electron paramagnetic resonance and non-resonant microwave absorption

    International Nuclear Information System (INIS)

    Alvarez, G.; Montiel, H.; Durán, A.; Conde-Gallardo, A.; Zamorano, R.

    2014-01-01

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO 3 is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr 3+ (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH pp ), the g-factor and the integral intensity (I EPR ). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO 3 powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material

  4. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  5. Magnetic resonance imaging of the abdomen

    International Nuclear Information System (INIS)

    Kulkarni, M.V.

    1986-01-01

    MRI of the abdomen currently competes with CT and ultrasonography as an imaging technique for abdominal pathology. Although ultrasonography has certain advantages, such as real-time scanning, the major comparison is to be made between MR and CT. CT has slightly superior spatial resolution and minimal motion artifacts, and enables the use of contrast agents in bowel. MR, on the other hand, has improved capabilities in contrasting soft tissues and providing multiplanar imaging. The greatest advantage of CT is the experience that the medical community has gained with it over the last decade. Further development in technology and improvement in the clinical experience with MR will be important in determining its future role in abdominal imaging. Large series of clinical trials are required for further experience. Chemical spectroscopy with proton and possibly other nuclei may improve diagnostic specificity. Paramagnetic contrast agents for bowel specification would certainly improve imaging quality. Thus, MR will play a significant role in abdominal imaging in the future

  6. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  7. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  8. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  9. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    NARCIS (Netherlands)

    Meimaridou, A.; Haasnoot, W.; Shelver, W.L.; Franek, M.; Nielen, M.W.F.

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with

  10. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Alexander J Taylor

    Full Text Available Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  11. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Science.gov (United States)

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  12. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    Science.gov (United States)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  13. Experimental Model for Retrospective Assessment of X-Ray Exposures in Dento-Maxillary Radiology Measured by Electron Paramagnetic Resonance in Tooth Enamel

    Directory of Open Access Journals (Sweden)

    Ioana Costina DÂNŞOREANU

    2009-12-01

    Full Text Available Electron paramagnetic resonance (EPR dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. For experimental purposes in X-ray diagnostic or therapy human persons can not be involved. For such cases we have developed an EPR dosimetry technique making use of enamel of molars extracted from pigs. The method can evaluate doses and dose-profiles of irradiated teeth at low level as 50 – 100 mGy (in air. EPR-spectra acquisition, data processing and dose assessment were done using non-dedicated equipment, devices and software.

  14. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    Science.gov (United States)

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  15. Magnetic resonance imaging in 38 cases of acoustic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Masafumi; Ohtsuka, Takashi; Seiki, Yoshikatsu; Matsumoto, Mikiro; Shibata, Iekado; Terao, Hideo [Toho Univ., Tokyo (Japan). School of Medicine; Kohno, Takeshi; Sanpei, Kenji; Mano, Isamu

    1989-08-01

    The value of magnetic resonance imaging (MRI) in the diagnosis of acoustic tumors was retrospectively assessed in 38 cases. A 0.15 Tesla permanent magnet and a 1.5 Tesla superconducting magnet were employed in 24 and 14 cases, respectively. Gadolinium diethlene triamine pentaacetic acid (Gd-DTPA), a paramagnetic contrast agent, was used in 10 cases. Acoustic tumors were identified in all cases. Small, medium, and large tumors were depicted with equal clarity by MRI and computed tomography (CT). However, tumor contour and extension, accompanying cysts, and brainstem displacement were more clarly visualized on MRI. The use of Gd-DTPA improved the quality of the MR images by markedly enhancing the acoustic tumors in all cases. In particular, detection of small acoustic tumors and intra- or paratumoral cysts was facilitated by the use of Gd-DTPA. The possibility of a correlation between acoustic tumor histology and MRI features was studied by calculation of the contrast to noise (C/N) ratio in 10 cases of acoustic tumor and 7 cases of meningioma. No definite correlation was demonstrated, but there appeared to be some difference in the C/N ratio between acoustic tumors and meningiomas. In three volunteers, MRI demonstrated intracanalicular nerves, separately. Because of its higher resolution, MRI can be expected to replace CT and air CT in the diagnosis of acoustic tumors. (author).

  16. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    International Nuclear Information System (INIS)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-01-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 deg. C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 deg. C increments from 100 to 300 deg. C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60 Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 deg. C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 deg. C/30 min and that similarities between fossil and MEQ spectra after the 300 deg. C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history

  17. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    Science.gov (United States)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-06-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 °C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 °C increments from 100 to 300 °C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 °C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 °C/30 min and that similarities between fossil and MEQ spectra after the 300 °C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history.

  18. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  19. Four-channel surface coil array for sequential CW-EPR image acquisition

    Science.gov (United States)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  20. A Novel Paramagnetic Substrate for Detecting Myeloperoxidase Activity in Vivo

    Directory of Open Access Journals (Sweden)

    Mohammed S. Shazeeb

    2012-09-01

    Full Text Available Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT with 5-hydroxytryptophan (HTrp. Characterization of the resulting probe (bis-HTrp-DTPA(Gd in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd (1 improves solubility in water; (2 acts as a substrate for both horseradish peroxidase and MPO enzymes; (3 induces cross-linking of proteins in the presence of MPO; (4 produces oxidation products, which bind to plasma proteins; and (5 unlike bis-5HT-DTPA(Gd, does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MR! in mice demonstrated that bis-HTrp-DTPA(Gd was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd from MPO-negative sites. Bis-HTrp-DTPA(Gd should offer improvements for MR! of MPO-mediated inflammation in vivo, especially in high-field MR!, which requires a higher dose of contrast agent.

  1. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  2. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  3. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  4. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  5. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  6. PARAssign-paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P., E-mail: skinnersp@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands); Moshev, Mois, E-mail: mois@monomon.me [Leiden University, Leiden Institute of Advanced Computer Science (Netherlands); Hass, Mathias A. S., E-mail: hassmas@chem.leidenuniv.nl; Ubbink, Marcellus, E-mail: m.ubbink@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands)

    2013-04-15

    The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47 kDa protein, and using both synthetic and experimental data for amide assignment of a 14 kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure.

  7. Magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging

  8. Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Konstantinova, E. A.; Demin, V. A.; Timoshenko, V. Yu.

    2008-01-01

    The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications

  9. Signature of ferro–paraelectric transition in biferroic LuCrO{sub 3} from electron paramagnetic resonance and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Montiel, H. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Durán, A. [Centro de Nanociencias y Nanotecnología de la Universidad Nacional Autónoma de México, Km. 107, Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, B.C. México (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)

    2014-12-15

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO{sub 3} is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr{sup 3+} (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH{sub pp}), the g-factor and the integral intensity (I{sub EPR}). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO{sub 3} powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material.

  10. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  11. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  13. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del

    2007-01-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  14. Sodium-23 magnetic resonance brain imaging

    International Nuclear Information System (INIS)

    Winkler, S.S.; Wisconsin Univ., Madison

    1990-01-01

    This is a review of recent work in 23 Na MR imaging. The main emphasis of recent papers has been pulse sequences that, with appropriate postprocessing, give images of the fast, slow, and intermediate components of T 2 decay. The assignment of compartmental designation to the T 2 component remains a problem except for homogeneous structures easily identifiable anatomically (ventricles, superior sagittal sinus, globe of the eye). Compartmental distribution of sodium is described. The predominance of the interstitial and plasma compartment, the invisibility of part of the intracellular sodium, and the difficulty in imaging the very fast T 2 component of visible intracellular sodium make the usual Na spin-echo image essentially an image of the interstitial and plasma space. Use of paramagnetic iron oxide coupled to dextran as a contrast medium may help to identify the plasma compartment. Because the usual Na MR images are essentially interstitial and plasma images, our own interest is in observing functional changes in these compartments. Another proposed application is the detection of the very fast T 2 component in brain tumors to aid in defining tumor grade and extent. (orig.)

  15. Complications from the use of intravenous gadolinium-based contrast agents for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Elias Junior, Jorge; Santos, Antonio Carlos dos; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Koenigkam-Santos, Marcel [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Centro de Ciencias das Imagens e Fisica Medica]. E-mail: jejunior@fmrp.usp.br

    2008-07-15

    Gadolinium-based contrast agents are much safer than the iodinated ones; however complications may occur and should be recognized for appropriate orientation and management. The total incidence of adverse reactions to contrast agents in magnetic resonance imaging ranges between 2% and 4%. Cases of severe acute reactions to gadolinium, such as laryngospasm and anaphylactic shock, are rare. Chronic complications secondary to the use of gadolinium also can occur and, recently an association between its use and a rare dermatologic disease occurring in patients with renal failure has been reported. Nephrogenic systemic fibrosis was the subject of an official health notification issued by the American Food and Drug Administration. This progressive disease is characterized by hardened skin with fibrotic nodules and plaques which may involve other parts of the body. Patients who have been affected by this disorder presented chronic renal failure, with metabolic acidosis and had been submitted to magnetic resonance angiography, probably involving exposure to large amounts of intravenous paramagnetic contrast. This review is aimed at presenting a succinct description of the gadolinium-based contrast agent types, possible secondary complications, their preventive measures and management. (author)

  16. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  17. Determination of g-tensors of low-symmetry Nd{sup 3+} centers in LiNbO{sub 3} by rectification of angular dependence of electron paramagnetic resonance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V., E-mail: grachev@physics.montana.edu; Malovichko, G. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Munro, M. [Quantel Laser, Bozeman, Montana 59715 (United States); Kokanyan, E. [Institute of Physical Researches, Ashtarak (Armenia)

    2015-07-28

    Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.

  18. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone; Evaluation par resonance paramagnetique electronique du nombre de radicaux libres produits dans l'os de rat irradie

    Energy Technology Data Exchange (ETDEWEB)

    Marble, G; Valderas, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [French] Le nombre de radicaux libres a vie longue crees par irradiation gamma dans l'os de rat a ete determine a partir du spectre de resonance paramagnetique electronique. Ce nombre decroit lentement avec le temps (demi-vie calculee {approx_equal} 24 jours). IL est proportionnel a la dose de rayonnement gamma delivree au rat. La methode pourra trouver en dosimetrie biologique des applications interessantes. (auteurs)

  19. Evidence of emerging Griffiths singularity in La{sub 0.5} Sr{sub 0.5} MnO{sub 3} nanocrystalline probed by magnetization and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiyuan [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fan, Jiyu, E-mail: jiyufan@nuaa.edu.cn [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xu, Lisa [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tong, Wei [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Dazhi [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); He, Xun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Lei; Pi, Li; Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-01

    We present an investigation of Griffiths singularity in La{sub 0.5} Sr{sub 0.5} MnO{sub 3} nanocrystalline by means of magnetic susceptibility and electron paramagnetic resonance (EPR). An unusual platform was found in paramagnetic region. Based on the analysis of EPR spectrum and magnetization variation across the whole temperature range of phase transition, we confirm it is due to the presence of Griffiths singularity rather than a superparamagnetic state in the nanocrystalline system. Such a singularity phase is constituted with some correlated ferromagnetic clusters which embed in paramagnetic matrix. Although they form ferromagnetic spin correlation, the system do not yield any spontaneous magnetization. According to core–shell model, the emergence of Griffiths singularity can be considered due to the presence of local ferromagnetic fluctuations originated from surface spin disorder as the sample size is confined to nanoscale. - Highlights: • Griffiths singularity rather than superparamagnetism occurs in La{sub 0.5}Sr{sub 0.5}MnO{sub 3} nanoparticals. • The sample’s size reduced to nanoscale results in the short-range ferromagnetic interaction. • The core-shell model is used to understand the formation of Griffiths phase in nanometer La{sub 0.5}Sr{sub 0.5}MnO{sub 3}.

  20. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  1. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics; O kinetike nakopleniya paramagnitnykh radiatsionnykh defektov v berillievykh keramikakh

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Zashkvara, O V; Bitenbaev, M I; Petykhov, Yu V [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan); Inst. Atomnoj Ehnergii, Kurchatov (Kazakhstan)

    1999-07-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ({sup 60}Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects.

  2. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  3. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  4. Electron paramagnetic resonance and neutron activation study of lanthanide ions behaviour in fluorite. Application to the geochemical study of Montroc and Burc veins (Tarn)

    International Nuclear Information System (INIS)

    Meary, Alain

    1983-01-01

    In order to obtain a better understanding of fluorite deposits, rare earth impurities have been analyzed for a large number of samples taken from cross-sections of several low temperature hydrothermal veins; two types of measurements have been used: Electron Paramagnetic Resonance (EPR) and Neutron Activation Analysis (NAA). This enabled us to measure a 'deficit of spins' relative to the total lanthanide concentration, this deficit reveals that the paramagnetic center observed by EPR is not the only mode of incorporation. For Gd no marked deficit is observed; that is the ratio of spin concentrations to total concentration [Gd 3+ ]/[Gd total ] is close to 1 in all the samples; on the other hand, the ratios [Eu 2+ ]/[Eu total ], [Ce 3- F i - ]/[Ce total ], and [Yb 3+ ]/ [Yb total ] exhibit large variations. The first result suggests that the major part of the lanthanides in the samples is incorporated in the crystal lattice and that clustering of lanthanides ions is not important. Deficit of spins observed for Ce and Nd are probably due to the dissociation of paramagnetic complexes Ce 3+ -F i - and Nd 3+ -F i - ; for Eu, it may be attributed to the oxidized state Eu 3+ . Moreover, the sign and the amplitude of the anomaly exhibited by Eu in the normalized lanthanides spectra may be correlated with the majority valence state of Eu in the crystal: a marked positive anomaly belongs to a deficit of paramagnetic divalent Eu and, inversely, if divalent Eu is the majority valence state, the Eu anomaly appears to be negative. The results obtained for the Montroc vein are consistent with a model involving discontinuous injections of hydrothermal solutions. They may be connected to variations of oxygen fugacity arising from cooling of these solutions and from precipitation of sulfides during fluorite precipitation. (author) [fr

  5. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  6. Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex

    Science.gov (United States)

    Xu, Xiao-Hui; Kuang, Min-Quan

    2017-12-01

    The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.

  7. Electron paramagnetic resonance of V4+ in the lanthanum and cerium orthophosphates

    International Nuclear Information System (INIS)

    Lima, J.C. de.

    1983-11-01

    The Electron Paramagnetic Resonance (EPR) spectrum of V 4+ was investigated in polycrystalline samples of lanthanum orthophosphate (LaPO 4 ) and cerium orthophosphate (CePO 4 ) doped with 0.2 wt % vanadium pentoxide (V 2 O 5 ). Measurements were performed at room temperature and 9.5 GHz. In LaPO 4 , two non-equivalent axial sites were inferred from the EPR spectra. The most stable of these two sites is probably substitutional. In CePO 4 , a single axial spectrum was observed. It was attributed to V 4+ in substitutional sites. A central, wide line was also seen; it was attributed to ferromagnetic clusters of vanadium ions. Photoacoustic absorption spectra were also recorded for the two compounds. The EPR and photoacoustic absorption data, when analyzed using the molecular orbital theory, show that for both lanthanum orthophosphate and cerium orthophosphate the ground orbital (d sub(x) 2 sub(-y) 2) of the unpainred electron is purely ionic, while the excited orbitals d sub(xy) and d sub(xz,yz) are partly covalent. The degree of covalency is higher for the d sub(xy) orbital. Finally, it should be pointed out that part of the theory used for the interpretation of the EPR and photoacoustic absorption spectra (study of the ligand field splitting of a d orbital in a site of distorted capped antiprism structure) was developed by the author in the present work and is therefore an original contribution. (Author) [pt

  8. Magnetic resonance imaging of the fetal gallbladder and bile

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Weber, Michael; Prayer, Daniela

    2010-01-01

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  9. Magnetic resonance imaging of the fetal gallbladder and bile

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Weber, Michael [Medical University of Vienna, Department of Radiology, Vienna (Austria); Prayer, Daniela [Medical University of Vienna, Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria)

    2010-12-15

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  10. Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary

    Science.gov (United States)

    Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.

    2015-09-01

    Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  12. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  13. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  15. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  16. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2017-09-01

    Full Text Available Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging.

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  18. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    Energy Technology Data Exchange (ETDEWEB)

    Shames, A. I., E-mail: sham@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negev, Be' er-Sheva 84105 (Israel); Osipov, V. Yu.; Vul’, A. Ya. [Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation); Bardeleben, H.-J. von [Institut des Nano Sciences de Paris-INSP, Université Pierre et Marie Curie/UMR 7588 au CNRS, 7500 Paris (France); Boudou, J.-P.; Treussart, F. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and ENS Cachan, 91405 Orsay (France)

    2014-02-10

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4–25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved g{sub HF1} = 4.26 and g{sub HF2} = 4.00 signals. This feature is attributed to “forbidden” ΔM{sub S} = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D{sub 1} = 0.0950 ± 0.002 cm{sup −1} and D{sub 2} = 0.030 ± 0.005 cm{sup −1}. Nanodiamonds of ∼50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with g{sub HF1} = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  19. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    International Nuclear Information System (INIS)

    Shames, A. I.; Osipov, V. Yu.; Vul’, A. Ya.; Bardeleben, H.-J. von; Boudou, J.-P.; Treussart, F.

    2014-01-01

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4–25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved g HF1  = 4.26 and g HF2  = 4.00 signals. This feature is attributed to “forbidden” ΔM S  = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D 1  = 0.0950 ± 0.002 cm −1 and D 2  = 0.030 ± 0.005 cm −1 . Nanodiamonds of ∼50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with g HF1  = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds

  20. Electronic paramagnetic resonance (EPR) of spices treated by gamma irradiation; Ressonancia paramagnetica eletronica (RPE) aplicada a analise de especiarias irradiadas (com radiacao gama)

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Alexandre Soares; Rodrigues, Rogerio Rivail, E-mail: asleal@cdtn.b [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serv. de Reator e Irradiacoes; Krambrock, Klaus; Guedes, Kassilio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2004-07-15

    The treatment of food by ionizing radiation is a method that has been increased in many countries in substitution for the use of chemical products. The knowledge of safe and reliable techniques of detection of irradiated food is a factor that can contribute to the largest acceptance for the consuming market. This work presents the electron paramagnetic resonance (EPR) as method of detection of the irradiated spices rosemary and cilantro. The obtained results indicate that EPR can be used satisfactorily for that group of victuals in the identification of irradiated species and in the determination of the received dose. (author)

  1. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  3. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone; Evaluation par resonance paramagnetique electronique du nombre de radicaux libres produits dans l'os de rat irradie

    Energy Technology Data Exchange (ETDEWEB)

    Marble, G.; Valderas, R. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [French] Le nombre de radicaux libres a vie longue crees par irradiation gamma dans l'os de rat a ete determine a partir du spectre de resonance paramagnetique electronique. Ce nombre decroit lentement avec le temps (demi-vie calculee {approx_equal} 24 jours). IL est proportionnel a la dose de rayonnement gamma delivree au rat. La methode pourra trouver en dosimetrie biologique des applications interessantes. (auteurs)

  4. Studied by electron paramagnetic resonance (EPR) of polymethyl methacrylate (PMMA) irradiated with gamma photons from cobalt 60

    International Nuclear Information System (INIS)

    Jalali, Hajer

    2013-01-01

    Ionizing radiation is radiation able to deposit enough energy in the material through which they pass to create ionization. These ionizing radiations, when mastered, have many practical uses beneficial (areas of health, industry ...). Gamma rays are emitted by radioactive nuclei. The objective of our work is the study of polymethyl methacrylate (PMMA) irradiated by gamma photons from cobalt-60. To study the technique of radio spectroscopy (9 to 10Hz) electron paramagnetic resonance EPR is used. This technique is specific to characterize transient free radicals involved in chemical reactions such as oxidation, combustion, polymerization reactions ... We analyzed the EPR spectra three batch KS, EB, and JF our dosimeter according to the dose (high and low) and showed that the dosimetric response can be represented in exponential form (high dose) and linear form (low dose). We also studied the kinetics of decay of the EPR signal as a function of time (fading) and showed that the responses relating to stabilize after 20 min of irradiation.

  5. Jahn-Teller glass formation in beta-lithium ammonium sulfate monocrystals studied by means of the electron paramagnetic resonance of Mn sup 2 sup + and Cu sup 2 sup + ions

    CERN Document Server

    Waplak, S

    2002-01-01

    The EPR (electron paramagnetic resonance) spectra of non-Jahn-Teller (JT) Mn sup 2 sup + and JT Cu sup 2 sup + ions have been studied for alpha- or beta-LAS structure modification in the temperature range of 4.2-480 K. The experimental evidence for JT glass with frozen-in random strain fields due to the presence of the JT Cu sup 2 sup + ions is presented.

  6. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  7. Dancing with the Electrons: Time-Domain and CW EPR Imaging

    Directory of Open Access Journals (Sweden)

    Sankaran Subramanian

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T 2 * or T 2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo . We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the ( unpaired electrons’, metaphorically speaking.

  8. Magnetic resonance imaging in epilepsy. Magnetresonanztomographie bei Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Layer, G.; Elger, C.E.; Reiser, M. (Bonn Univ. (Germany). Klinik fuer Epileptologie)

    1993-04-01

    The most important causes of focal epilespy are hippocampal sclerosis, circumscribed tumors, vascular malformations, trauma and perinatal damage. At the moment MRI is the best radiological imaging modality for localizing and characterizing a focus. In many cases, however, even MRI is negative. Especially in hippocampal sclerosis the diagnostic role of MRI is still not well established. Diagnostic criteria are side differences with hippocampal atrophy and circumscribed signal increase on T2-weighted images of the affected temporal lobe. Circumscribed lesions caused by tumors or vascular malformations are demonstrated very reliably by paracoronal T2-weighted sequences. Routine administration of the paramagnetic contrast material Gd-DTPA is not necessary. (orig.).

  9. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Science.gov (United States)

    2011-09-20

    ...] Magnetic Resonance Imaging Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging...

  10. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  11. Magnetic resonance imaging of infectious myositis

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha [The Catholic Univ., College of Medicine, Suwon (Korea, Republic of)

    1998-09-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  12. Magnetic resonance imaging of infectious myositis

    International Nuclear Information System (INIS)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha

    1998-01-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  13. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  14. Musculoskeletal applications of magnetic resonance imaging: Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Harms, S.E.; Fisher, C.F.; Fulmer, J.M.

    1989-01-01

    Magnetic resonance imaging provides superior contrast, resolution, and multiplanar imaging capability, allowing excellent definition of soft-tissue and bone marrow abnormalities. For these reasons, magnetic resonance imaging has become a major diagnostic imaging method for the evaluation of many musculoskeletal disorders. The applications of magnetic resonance imaging for musculoskeletal diagnosis are summarized and examples of common clinical situations are given. General guidelines are suggested for the musculoskeletal applications of magnetic resonance imaging

  15. Imaging by magnetic resonance

    International Nuclear Information System (INIS)

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  16. Pulse sequences for contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  17. Magnetic resonance imaging- physical principles and clinical application

    International Nuclear Information System (INIS)

    Tavri, Omprakash J.

    1996-01-01

    The advances in equipment and knowledge related to radiology are occurring at an astonishingly rapid rate. On November 8, 1895, William Conrad Roentgen discovered x-rays. In 1972, Godfrey Hounsfield and George Ambrose introduced computec tomography at a meeting of the British Institute of Radiology. In the same year, Paul Lauterbur published the idea of spatially resolving nuclear magnetic resonance samples, naming it zeugmatography. In 1977, Waldo Hinshaw and co-workers published a magnetic resonance image of a human hand and wrist, and by 1981 several centres were obtaining clinical magnetic resonance (MR) images. In a very short time, magnetic resonance imaging (MRI) has gained acceptance as a clinically useful imaging tool. (author)

  18. Study of the radiolysis of tetracycline hydrochloride in powder form, in aqueous solutions and in benzyl alcohol, at 77K, by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Guedes, S.M.L.

    1984-01-01

    The radiolysis of tetracycline hydrochloride in powder form, dissolved in benzyl alcohol and in acid, neutral and alkaline aerated aqueous solutions at 77K is studied by electron paramagnetic resonance spectroscopy. Mechanisms of reactions that occur in the radiolysis of these systems are proposed and some aspects of the reactions that occurs with electrons and with hydrogen atoms at 77K are investigated, since tetracycline hydrochloride captures both paramagnetic species. Also discussed is the influence of some factors in the migration of these species at 77K, such as: the position of solutes, the crystalline structure of the solvent, the kinetic energy of the species and the angle of incidence in the channeling. The rate constants for the reaction between the electron and physical and chemical traps which are present in the alkaline aerated aqueous solutions, at 77k, are calculated. The values found are, respectively: k=9.6 x 10 15 1 mol -1 s -1 and k= 1.8 x 10 10 1 mol -1 s -1 . (Author) [pt

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  20. Disappearance of electron-hole asymmetry in nanoparticles of Nd1−xCaxMnO3(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence

    International Nuclear Information System (INIS)

    Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd 1−x Ca x MnO 3 in hole doped (x=0.4;NCMOH) and electron doped (x=0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at ∼250 K, an antiferromagnetic (AFM) transition at ∼150 K, and a transition to a canted AFM phase/mixed phase at ∼80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at ∼280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the “g” values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples

  1. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the technologist or scheduler before the exam. ... patient for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests ...

  4. Clinical application of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Alwatban, Adnan Z.W.

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  5. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  6. Powderspec, a program for the efficient simulation of spectra of electron paramagnetic resonance of powders with orthorhombic symmetry; Powderspec, un programa para la simulacion eficiente de espectros de resonancia paramagnetica electronica de polvos con simetria ortorrombica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez T, L.; Beltran L, V

    1991-09-15

    In this report a FORTRAN source program which simulates the second order powder pattern and spectrum of electron paramagnetic resonance (EPR) in crystal fields with orthorhombic symmetry using Gauss-Legendre quadratures is given. Also the commentaries which describe each step in detail are presented. (Author)

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Radiologist prepping patient for magnetic resonance ...

  8. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  9. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  10. Unified explanation for optical and electron paramagnetic resonance spectra of Cr sup 3 sup + ions in LiNbO sub 3 crystals

    CERN Document Server

    Zhao, M G

    1997-01-01

    An approximately microscopic model is developed for the Cr sup 3 sup + -6O sup 2 sup - cluster and applied to study the optical data and electron paramagnetic resonance (EPR) g-factors and the zero-field splitting D-value in LiNbO sub 3 :Cr sup 3 sup +. Analysis of the optical and EPR data indicate that Cr sup 3 sup + ions substitute at Nb sites and Nb-vacancy (Li) sites simultaneously. The results are in good agreement with the experimental findings. This means that the optical and EPR data and the substitution site of Cr sup 3 sup + ions in LiNbO sub 3 can be interpreted uniformly. (author)

  11. Dancing with the Electrons: Time-Domain and CW In Vivo EPR Imaging

    Directory of Open Access Journals (Sweden)

    Murali C. Krishna

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired electrons’, metaphorically speaking.

  12. Magnetic resonance imaging in the evaluation of periosteal reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino, E-mail: marcello@fmrp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Sa, Jose Luiz de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Oliveira, Rodrigo Cecilio Vieira de [Clinica de Diagnostico por Imagem Tomoson, Aracatuba, SP (Brazil); Engel, Edgard Eduard [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor

    2010-07-15

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  13. Magnetic resonance imaging in the evaluation of periosteal reactions

    International Nuclear Information System (INIS)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino; Engel, Edgard Eduard

    2010-01-01

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  14. Prominent porto-systemic collateral pathways in patients with portal hypertension: demonstration by gadolinium-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Caldana, Rogerio Pedreschi; Bezerra, Alexandre Araujo Sergio; Cecin, Alexnadre Oliveira; Souza, Luis Ronan Marques Ferreira de; Goldman, Susan Menasce; D'Ippolito, Giuseppe; Szejnfeld, Jacob

    2003-01-01

    To demonstrate the usefulness of gadolinium-enhanced magnetic resonance angiography in the evaluation of prominent porto-systemic collateral pathways. We reviewed the images from 40 patients with portal hypertension studied with gadolinium-enhanced magnetic resonance angiography and selected illustrative cases of prominent porto-systemic collateral pathways. The scans were performed using high field equipment (1.5 Tesla) and a 3 D volume technique. Image were obtained after intravenous injection of paramagnetic contrast media using a power injector. Magnetic resonance angiography demonstrated with precision the porto-systemic collateral pathways, particularly when investigating extensive territories or large vessels. The cases presented show the potential of this method in the investigation of patients with portal hypertension. Gadolinium-enhanced magnetic resonance angiography is a useful method for the evaluation of patients with portal hypertension and prominent collateral pathways. (author)

  15. Site selective substitution Pt for Ti in KTiOPO{sub 4}:Ga crystals revealed by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V.; Meyer, M.; Jorgensen, J.; Malovichko, G. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Hunt, A. W. [Idaho Accelerator Center, Idaho State University, Pocatello, Idaho 83209 (United States)

    2014-07-28

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO{sub 4}) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO{sub 4} creating Pt{sup 3+} centers. Two different Pt{sup 3+} centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with {sup 39}K and two {sup 31}P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt{sup 3+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  16. Phenolic composition and related antioxidant properties in differently colored lettuces: a study by electron paramagnetic resonance (EPR) kinetics.

    Science.gov (United States)

    Pérez-López, Usue; Pinzino, Calogero; Quartacci, Mike Frank; Ranieri, Annamaria; Sgherri, Cristina

    2014-12-10

    Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.

  17. Investigation of some parameters influencing the sensitivity of human tooth enamel to gamma radiation using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    El-Faramawy, N.

    2008-01-01

    Electron paramagnetic resonance (EPR) has been successfully used as a physical technique for gamma radiation dose reconstruction using calcified tissues. To minimize potential discrepancies between EPR readings in future studies, the effects of cavity response factor, tooth position and donor gender on the estimated gamma radiation dose were studied. It was found that the EPR response per sample mass used for assessment of doses in teeth outside of the 70-100 mg range should be corrected by a factor which is a function of the sample mass. In the EPR measurements, the difference in sensitivity of different tooth positions to γ-radiation was taken into consideration. It was determined that among all the premolars and molars tooth positions, the relative standard deviation of sensitivity was 6.5%, with the wisdom teeth and the first molars having the highest and lowest sensitivity to γ-radiation, respectively. The current results reveal no effect of the donor gender on the sensitivity to γ-radiation. (author)

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... about radiology? Share your patient story here Images ... Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  20. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  1. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Child Health, London (United Kingdom); Barber, Joy L. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Taylor, Andrew M. [Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London (United Kingdom); Sebire, Neil J. [UCL Institute of Child Health, London (United Kingdom); Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom)

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present. (orig.)

  2. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  3. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    Science.gov (United States)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  4. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  5. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  6. Electron paramagnetic resonance of Na, [(FeEDTA)2oJ-12H20] crystal electrons

    International Nuclear Information System (INIS)

    Esquivel, Darci Motta de Souza

    1974-01-01

    Crystals of Na [(Fe EDTA) 2 o] ·12H 2 0 were investigated by means of electron paramagnetic resonance spectroscopy. The spectra were obtained at various temperatures and crystals orientations. These spectra are very complex with many absorption bands. As the crystal orientation with respect to the magnetic field was changed the variations of the intensity and number of bands were recorded. The antiferromagnetic coupling between the iron atoms in the bridge Fe - 0 - Fe gives rise to states with total spin quantum number S= 0, 1, 2, 3, 4 and 5. Analyses of the EPR spectra as a function of temperature provided a means for the identification of the EPR absorption bands attributed to the states with S = 2. It was also possible to calculate the exchange parameter value J = 300 K. From the study of bands angular dependence in relation to the crystal orientation in the magnetic field it was found that the magnetic crystal axes X, Y, Z and the crystals axes a, b, c are related as (a, b, c) = (Y, Z, X) ! with a precision of 5 deg. Also the crystalline distortion parameters were calculated D = 0.21 ± 0.02 cm 1 ; E = 0.015 ± 0.005 cm 1 . (author)

  7. Electron paramagnetic resonance and optical properties of Cr3+ doped YAl3(BO3)4

    International Nuclear Information System (INIS)

    Wells, Jon-Paul R; Yamaga, Mitsuo; Han, Thomas P J; Honda, Makoto

    2003-01-01

    We report on the electron paramagnetic resonance (EPR) and optical absorption and fluorescence spectroscopy of YAl 3 (BO 3 ) 4 single crystals doped with 0.2 mol% of trivalent chromium. From EPR we determine that the Cr 3+ ions reside in sites of essentially octahedral symmetry with an orthorhombic distortion. The ground state 4 A 2 splitting is determined to be 2√D 2 + 3E 2 ∼ 1.05 ± 0.04 cm -1 , where D and E are fine-structure parameters, and we can attribute this splitting to the combined effect of a low-symmetry distortion and spin-orbit coupling. The g-values and fine-structure parameters D and E of the ground state 4 A 2 are measured to be g x ∼ g y ∼ g z = 1.978 ± 0.005, vertical bar D vertical bar = 0.52 ± 0.02 cm -1 and vertical bar E vertical bar 0.010 ± 0.005 cm -1 respectively. From 10 K optical absorption we have measured the position and crystal-field splittings of the 2 E, 2 T 1 , 4 T 2 , 2 T 2 and 4 T 1 states with the 4 T 2 and 4 T 1 levels appearing as vibronically broadened bands

  8. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    Science.gov (United States)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  9. Principles of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mlynarik, V.; Tkac, I.; Srbecky, M.

    1995-01-01

    The aim of this review is to describe and explain the basic principles of magnetic resonance imaging. The first part of the text is devoted to the phenomenon of magnetic resonance (the interaction of RF magnetic field with the set of magnetic moments in the homogeneous magnetic field) and to relaxation processes. Then, the creation of MR image is described (slice selection, phase and frequency encoding of spatial information). The basic and the most frequently used techniques are explained (spin echo, gradient echo). The way the repetition and echo times influence the image quality and contrast (T1 or T2 weighing) is described. The part with the technical description of the MR equipment is included in the review. The MR imagination examination are compared with X-ray computer tomography technique

  10. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  11. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  12. Content Based Retrieval System for Magnetic Resonance Images

    International Nuclear Information System (INIS)

    Trojachanets, Katarina

    2010-01-01

    The amount of medical images is continuously increasing as a consequence of the constant growth and development of techniques for digital image acquisition. Manual annotation and description of each image is impractical, expensive and time consuming approach. Moreover, it is an imprecise and insufficient way for describing all information stored in medical images. This induces the necessity for developing efficient image storage, annotation and retrieval systems. Content based image retrieval (CBIR) emerges as an efficient approach for digital image retrieval from large databases. It includes two phases. In the first phase, the visual content of the image is analyzed and the feature extraction process is performed. An appropriate descriptor, namely, feature vector is then associated with each image. These descriptors are used in the second phase, i.e. the retrieval process. With the aim to improve the efficiency and precision of the content based image retrieval systems, feature extraction and automatic image annotation techniques are subject of continuous researches and development. Including the classification techniques in the retrieval process enables automatic image annotation in an existing CBIR system. It contributes to more efficient and easier image organization in the system.Applying content based retrieval in the field of magnetic resonance is a big challenge. Magnetic resonance imaging is an image based diagnostic technique which is widely used in medical environment. According to this, the number of magnetic resonance images is enormously growing. Magnetic resonance images provide plentiful medical information, high resolution and specific nature. Thus, the capability of CBIR systems for image retrieval from large database is of great importance for efficient analysis of this kind of images. The aim of this thesis is to propose content based retrieval system architecture for magnetic resonance images. To provide the system efficiency, feature

  13. Magnetic resonance imaging of central nervous system neoplasms

    International Nuclear Information System (INIS)

    Kortman, K.E.; Bradley, W.G. Jr.

    1986-01-01

    MRI has proved effective in the evaluation of intracranial mall lesions, and has become the imaging modality of choice in the work-up of suspected cerebral neoplasia. The reported lack of specificity may, at least in part, reflect a relative lack of familiarity with this new modality. Specificity will be maximized by diligent application of the diagnostic criteria already established by CT, and by recognition of distinctive MRI patterns as more experience is gained. The expected availability of paramagnetic contrast materials will yield an additional advantage in MRI, particularly in separating the tumor from edema

  14. EPR imaging of dose distributions aiming at applications in radiation therapy

    International Nuclear Information System (INIS)

    Lund, E.; Kolbun, N.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    A one-dimensional electron paramagnetic resonance (EPR) imaging method for visualisation of dose distributions in photon fields has been developed. Pressed pellets of potassium dithionate were homogeneously irradiated in a 60 Co radiation field to 600 Gy. The EPR analysis was performed with an X-Band (9.6 GHz) Bruker E540 EPR and EPR imaging spectrometer equipped with an E540 GC2X two-axis X-band gradient coil set with gradients along the y axis (along the sample tube) and z axis (along B 0 ) and an ER 4108TMHS resonator. Image reconstruction, including deconvolution, baseline corrections and corrections for the resonator sensitivity, was performed using an in-house-developed Matlab code for the purpose to have a transparent and complete algorithm for image reconstruction. With this method, it is possible to visualise a dose distribution with an accuracy of ∼5 % within ±5 mm from the centre of the resonator. (authors)

  15. Electron paramagnetic resonance and density-functional theory studies of Cu(II)-bis(oxamato) complexes.

    Science.gov (United States)

    Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias

    2008-08-04

    In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.

  16. Dental magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hilgenfeld, Tim; Bendszus, Martin; Haehnel, Stefan

    2016-01-01

    Growing distribution and utilization of digital volume tomography (DVT) extend the spectrum of clinical dental imaging. Additional diagnostic value, however, comes along with an increasing amount of radiation. In contrast, magnetic resonance imaging is a radiation free imaging technique. Furthermore, it offers a high soft tissue contrast. Morphological and numerical dental anomalies, differentiation of periapical lesions and exclusion of complications of dental diseases are field of applications for dental MRI. In addition, detection of caries and periodontal lesions and injury of inferior alveolar nerve are promising application areas in the future.

  17. Cranial magnetic resonance imaging

    International Nuclear Information System (INIS)

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes

  18. Capsular contracture and possible implant rupture: is magnetic resonance imaging useful?

    Science.gov (United States)

    Paetau, Alyssa A; McLaughlin, Sarah A; McNeil, Rebecca B; Sternberg, Erez; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2010-03-01

    Currently, magnetic resonance imaging is considered the accepted standard to evaluate breast implant integrity. To evaluate its utility in diagnosing ruptured silicone implants in the setting of capsular contracture and to correlate the preoperative assessment of implant integrity with or without magnetic resonance imaging with operative findings, 319 capsulectomies (171 patients with capsular contractures) were retrospectively reviewed. Preoperative magnetic resonance imaging was done on 160 implants, whereas the remaining 159 were evaluated using only physical examination and/or mammography. Postoperative results were analyzed to determine the sensitivity, specificity, and accuracy of preoperative magnetic resonance imaging in comparison with clinical and/or mammography evaluation alone. Although occasionally valuable, overall, preoperative magnetic resonance imaging was no more accurate than clinical evaluation with or without mammography in predicting implant status: magnetic resonance imaging 124 of 160 (78 percent) and clinical 121 of 159 (76 percent; p = 0.77). In the setting of capsular contracture, physical examination with or without mammogram is as accurate as magnetic resonance imaging in determining implant integrity. Although magnetic resonance imaging is a sensitive diagnostic tool, in symptomatic patients with capsular contracture, it cannot be viewed as infallible.

  19. Electron paramagnetic resonance study on n-type electron-irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, P; Rabia, K; Son, N T; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Ohshima, T; Morishita, N; Itoh, H [Japan Atomic Energy Research Institute, Takasaki 370-1292 (Japan); Isoya, J [University of Tsukuba, Tsukuba 305-8550 (Japan)], E-mail: paca@ifm.liu.se

    2008-03-15

    Electron Paramagnetic Resonance (EPR) was used to study defects in n-type 3C-SiC films irradiated by 3-MeV electrons at room temperature with a dose of 2x10{sup 18} cm{sup -2}. After electron irradiation, two new EPR spectra with an effective spin S = 1, labeled L5 and L6, were observed. The L5 center has C{sub 3v} symmetry with g = 2.004 and a fine-structure parameter D = 436.5x10{sup -4} cm{sup -1}. The L5 spectrum was only detected under light illumination and it could not be detected after annealing at {approx}550{sup 0}C. The principal z-axis of the D tensor is parallel to the <111>-directions, indicating the location of spins along the Si-C bonds. Judging from the symmetry and the fact that the signal was detected under illumination in n-type material, the L5 center may be related to the divacancy in the neutral charge state. The L6 center has a C{sub 2v}-symmetry with an isotropic g-value of g = 2.003 and the fine structure parameters D = 547.7x10{sup -4} cm{sup -1} and E = 56.2x10{sup -4} cm{sup -1}. The L6 center disappeared after annealing at a rather low temperature ({approx}200 deg. C), which is substantially lower than the known annealing temperatures for vacancy-related defects in 3C-SiC. This highly mobile defect may be related to carbon interstitials.

  20. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  1. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  2. Electron paramagnetic resonance of the ns1 centers in crystals

    International Nuclear Information System (INIS)

    Nistor, S.V.; Ursu, I.

    1993-05-01

    The results of the EPR studies concerning the paramagnetic centers with ns 1 (N=n>2) outer electronic configuration contained in crystals are reviewed. Such centers, with 2 S 1/2 ground state, are produced by electron trapping at impurities of the IB and IIB group or by hole trapping at impurities of the IIIB and IV group of elements. The production and structural properties of such centers consisting of ns 1 ions (atoms) at various sites in the crystal lattice with different configurations of neighbouring defects are discussed in connection with their EPR characteristics. Tables containing the spin Hamiltonian parameters of all ns 1 centers reported in the literature until the end of year 1992 are given. (author). 146 refs, 14 tabs

  3. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  4. Magnetic resonance imaging in sudden deafness

    International Nuclear Information System (INIS)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo; Yamashita, Helio

    2005-01-01

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  5. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  6. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  7. Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.

    Science.gov (United States)

    Pol, Vilas Ganpat

    2010-06-15

    The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.

  8. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    Science.gov (United States)

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  9. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  10. Opening the black box: imaging nanoparticle transport with MRI

    Science.gov (United States)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  11. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    Science.gov (United States)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  12. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr [Çukurova University (Turkey); Tapramaz, Recep, E-mail: recept@omu.edu.tr [Ondokuz Mayıs University (Turkey)

    2016-03-25

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  13. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  14. Molecular orbital calculations of the unpaired electron distribution and electric field gradients in divalent paramagnetic Ir complexes

    International Nuclear Information System (INIS)

    Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.

    1988-01-01

    Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt

  15. Magnetic resonance imaging of central nervous system haemorrhage

    International Nuclear Information System (INIS)

    Silberstein, M.; Hennessy, O.

    1993-01-01

    The variable magnetic resonance imaging appearances of central nervous system haemorrhage, both intra- and extra-axial, are described. These will vary with the type of image contrast (T1 or T2 weighting), the nature of the imaging sequence (spin-echo or gradient-echo) and the time from onset of haemorrhage. Magnetic resonance imaging is a useful technique for imaging haemorrhage in the central nervous system as it yields temporal information about haematoma development, and it is the only non-invasive means of imaging intraspinal haemorrhage. However, in the imaging of haematomas within 24 h of onset and in subarachnoid haemorrhage computed tomography is the investigation of choice. 13 refs., 6 figs

  16. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  17. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies.

    Science.gov (United States)

    Vanin, Anatoly F; Poltorakov, Alexander P; Mikoyan, Vasak D; Kubrina, Lyudmila N; Burbaev, Dosymzhan S

    2010-09-15

    Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (capital EM, Cyrillic-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin's red salt esters and can be prepared by treatment of aqueous solutions of Fe(2+) and thiols (small er, Cyrilliccapital EN, Cyrillic 7.4) with gaseous nitric oxide (NO) at the thiol:Fe(2+) ratio 1:1. capital EM, Cyrillic-DNICs are synthesized under identical conditions at the thiol:Fe(2+) ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)(2)}(7) at g(aver.)=2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at small er, Cyrilliccapital EN, Cyrillic 9-10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe(2+) ratio 1:2 results in their conversion into capital EM, Cyrillic-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-capital EM, Cyrillic-DNIC solutions results in cysteine oxidation-controlled conversion of capital EM, Cyrillic-DNICs first into cys-B-DNICs and then into the EPR-silent compound capital HA, Cyrillic able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound capital HA, Cyrillic is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe(2+) chelator small o, Cyrillic-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound capital HA, Cyrillic represents a polynuclear

  19. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il [KHNP Radiation Health Institute, Gyeongju (Korea, Republic of)

    2017-04-15

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  20. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    International Nuclear Information System (INIS)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il

    2017-01-01

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  1. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  2. Magnetic resonance imaging of generalised musculo-skeletal diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Schalke, B.C.G.

    1989-01-01

    The results presented are drawn from 320 examinations by NMR imaging of patients with various systemic muscle diseases (dystrophies, myositides, metabolic disorders), and are interpreted so as to explain the relevant characteristic distribution patterns of the degenerative processes in the femoral musculature as shown by the NMR images. Four basic patterns are presented according to the criteria homogeneous-heterogeneous and symmetric-asymmetric, and the diseases identified by the differential diagnostic evaluation are discussed. The optimum measuring conditions for magnetic resonance imaging of the musculature are given, and the specific magnetic resonance criteria of myositides, neurogenic myopathies, myofonous dystrophies, c.n. polio, morbus Pompe, familial hypokalemic paralysis, centronuclear mypathy, morbus Duchenne are explained. The significance of NMR imaging with regard to biopsy or therapy planning is discussed, and magnetic resonance examination is recommended to be applied prior to biopsy. (orig.) [de

  3. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  4. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    Science.gov (United States)

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  5. The influence of microscopic disorder on electron paramagnetic resonance spectra of Eu2+ ions in Pb1-xGexTe

    International Nuclear Information System (INIS)

    Radzynski, T; Lusakowski, A; Swiatek, K; Story, T

    2009-01-01

    In mixed crystals, because of the different ionic radii of cations or anions and the randomness in the placement of ions of different kinds, the crystal lattice is locally deformed. Such local deformations have significant influence on the ground state splitting of magnetic ions. Because this ground state splitting is responsible for the position of the electron paramagnetic resonance (EPR) lines, microscopic disorder is one of the factors which lead to the broadening of the lines, and eventually to their disappearance. This paper is devoted to semi-quantitative analysis of the influence of microscopic disorder on EPR spectra. The theory is compared against measurements performed on mono-crystalline Pb 1-x Ge x Te epitaxial layers containing Eu 2+ ions for different germanium and europium contents. With increasing germanium content we observe gradual disappearance of the EPR lines, although macroscopically, on the basis of x-ray diffraction analysis, each layer might have been considered as a perfect crystal.

  6. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  7. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yung Szen, E-mail: yungszen@utm.my [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan); Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Tabuchi, Yutaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro, E-mail: kitagawa@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan)

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  8. Free-radical probes for functional in vivo EPR imaging

    Science.gov (United States)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  9. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  10. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    Science.gov (United States)

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  11. Magnetic resonance imaging of the abdomen and pelvis

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Magnetic resonance imaging (MRI) of the abdomen presents greater inherent difficulties than other anatomic regions. However, new techniques now allow imaging comparable in quality to computed tomography (CT). Magnetic resonance imaging offers the advantages of greater tissue contrast, multiplanar imaging, and lack of ionizing radiation or risk of toxic reactions from iodinated contrast media. Its use remains limited by high cost, limited availability, lack of a bowel contrast agent, and long imaging time, which some patients cannot tolerate. In many areas of abdominal imaging, MRI is now comparable to CT, but because of the greater availability and lesser cost, CT remains the procedure of choice. Magnetic resonance imaging is more accurate for staging neoplasms of the liver, adrenal glands, kidneys, bladder, prostate, uterus, and cervix and may aid in diagnosis of hepatic, adrenal, and uterine masses. In selected patients, especially those in whom CT is inconclusive or those who cannot tolerate iodinated contrast material, MRI can provide valuable information. Development of faster scanning techniques and MRI contrast agents and wider availability will probably increase the usefulness of abdominal MRI. At this time, MRI complements other abdominal imaging procedures. In a small number of patients, however, it can provide unique information in a virtually risk-free manner

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  18. Tuner and radiation shield for planar electron paramagnetic resonance microresonators

    International Nuclear Information System (INIS)

    Narkowicz, Ryszard; Suter, Dieter

    2015-01-01

    Planar microresonators provide a large boost of sensitivity for small samples. They can be manufactured lithographically to a wide range of target parameters. The coupler between the resonator and the microwave feedline can be integrated into this design. To optimize the coupling and to compensate manufacturing tolerances, it is sometimes desirable to have a tuning element available that can be adjusted when the resonator is connected to the spectrometer. This paper presents a simple design that allows one to bring undercoupled resonators into the condition for critical coupling. In addition, it also reduces radiation losses and thereby increases the quality factor and the sensitivity of the resonator

  19. Effect of paramagnetic manganese cations on H-1 MRS of the brain

    DEFF Research Database (Denmark)

    Madsen, K. S.; Holm, David Alberg; Søgaard, L. V.

    2008-01-01

    Manganese cations (Mn2+) call be used as all intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn2+ is neurotoxic and play influence the concentration of H-1 MR-detectable metabolites. Furthermore, the paramagnetic Mn...

  20. Task-oriented lossy compression of magnetic resonance images

    Science.gov (United States)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  1. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  2. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  3. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  4. Viscosity of bound water and model of proton relaxation in fine-dispersed substances at the presence of adsorbed paramagnetic ions

    International Nuclear Information System (INIS)

    Fedodeev, V.I.

    1975-01-01

    A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods

  5. Viscosity of bound water and model of proton relaxation in fine-dispersed substances at the presence of adsorbed paramagnetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Fedodeev, V I

    1975-09-01

    A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods.

  6. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  7. Effect of ultraviolet irradiation on free radical scavenging activity of immunosuppressants used in lung transplantation and comparative electron paramagnetic resonance study of kinetics of their interactions with model free radicals.

    Science.gov (United States)

    Stanjek-Cichoracka, A; Żegleń, S; Ramos, P; Pilawa, B; Wojarski, J

    2018-06-01

    The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition. © 2018 John Wiley & Sons Ltd.

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  9. Electron paramagnetic resonance (EPR) of antiferromagnetic nanoparticles of La1-xSrxCrO3 (0.000 ≤ x ≤ 0.020) synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Franco, Adolfo; Santana, Ricardo C.

    2010-01-01

    Nanocrystalline particles of La 1-x Sr x CrO 3 (0.000 ≤ x ≤ 0.020) compounds were synthesized in order to investigate the antiferromagnetic (AFM) to paramagnetic (PM) phase transition temperature, g-factor, line width and intensity by electron paramagnetic resonance (EPR). All samples were synthesized by combustion reaction method using strontium nitrate, lanthanum nitrate, chromium nitrate and urea as fuel without subsequent heat treatment. X-ray diffraction patterns of all systems showed broad peaks consistent with orthorhombic structure of LaCrO 3 . The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The average crystallite sizes determined from the prominent (1 1 2) peak of the diffraction using Scherrer's equation was independent of the addition of Sr 2+ ions; being ca. 31-29 nm for x = 0.000 and 0.020, respectively. The EPR line width and intensity were found to be dependent on Sr 2+ addition and temperature. However, the AFM-PM transition temperature was found to be independent of strontium concentration, being ca. 296 K. In the PM phase, g-factor was nearly temperature independent with increasing of x. The EPR results indicated that the addition of Sr 2+ ions may induce creation of Cr 3+ -Cr 4+ clusters.

  10. Lymphoma of uterine cervix: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kanaan, Daniel; Constantino, Carolina Pesce Lamas; Souza, Rodrigo Canellas de, E-mail: daniel.kanaan@hotmail.com [Department of Radiology, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Parente, Daniella Braz [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2012-05-15

    Lymphoma of the cervix is a rare disease. About 1.0% to 1.5% of extranodal lymphomas originates in the female genital tract. The clinical presentation of this condition is nonspecific and magnetic resonance imaging is important for diagnostic elucidation. The present report describes the case of a 80-year-old patient with lumbar pain, whose magnetic resonance imaging showed a large uterine mass. The final diagnosis was lymphoma. (author)

  11. Pocket atlas of cranial magnetic resonance imaging

    International Nuclear Information System (INIS)

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance Imaging Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  13. Electron paramagnetic resonance study of conformational effects in alkyl-substituted 2-cyclohexanonyl radicals in an adamantane matrix

    International Nuclear Information System (INIS)

    Walter, H.F.

    1975-01-01

    Electron paramagnetic resonance spectra have been obtained for radicals produced by x-irradiation of cyclohexanone and various alkyl-substituted cyclohexanones trapped in an adamantane matrix. Temperature variation of these spectra permits determination of the enthalpy and entropy of activation for interconversion between the two half-chair conformations. In those cases where the two conformations have intrinsically different energies, the enthalpy and entropy differences between conformations are determined. For 2-cyclohexanonyl radical, the enthalpy of activation is 3.90 +- 0.07 kcal/mole and the entropy of activation is -2.3 +- 0.3 e.u. Methyl substitution on C 3 or C 5 gives a radical with activation parameters similar to the parent radical, indicating moderate realignment of atoms during the conformational change. Methyl substitution on C 4 gives a radical with lower activation parameters, which are interpreted to indicate conformational change mainly be a folding along the diagonal through the radical site. Larger groups attached to C 3 influence enthalpy and entropy differences between conformations much less than when they are attached to C 5 . Very large groups attached to C 5 apparently flatten the ring; it is not known whether or not this is a matrix effect. Deuteration seems to cause a slight reduction in the activation parameters for 2-cyclohexanonyl radical

  14. Parallel magnetic resonance imaging

    International Nuclear Information System (INIS)

    Larkman, David J; Nunes, Rita G

    2007-01-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)

  15. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  16. Levitation in paramagnetic liquids

    International Nuclear Information System (INIS)

    Dunne, P.A.; Hilton, J.; Coey, J.M.D.

    2007-01-01

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated

  17. Magnetic resonance imaging findings in patients with Hallervorden-Spatz syndrome

    International Nuclear Information System (INIS)

    Nomura, Cesar Higa; Lima, Eduardo Carneiro; Cerri, Giovanni Guido; Leite, Claudia da Costa; Rosemberg, Sergio

    2003-01-01

    The objective of this study was to review the magnetic resonance imaging findings in patients with Hallervorden-Spatz syndrome. We evaluated eight patients with Hallervorden-Spatz syndrome using magnetic resonance imaging. The protocol included at least sagittal and axial T1-weighted images and axial and coronal T2-weighted images. Intravenous gadolinium was administered in a dose of 0.1 mmol/kg. Post-enhanced images were obtained at least in the axial and coronal planes. The results were: all patients presented a bilateral and symmetrical 'tiger-eye signal' on T2-weighted images, corresponding to central hyperintensity and peripheral hypointensity in the globi pallidus. FLAIR and diffusion images showed similar abnormalities. There was no gadolinium enhancement in any of the cases. We concluded that magnetic resonance imaging findings in patients with Hallervorden-Spatz syndrome are very typical and allow the diagnosis of the disease. (author)

  18. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  19. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Simon Meyer

    2009-10-01

    Full Text Available MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs. Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlF(x structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 A. With GDP and AlF(x, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlF(x requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD.

  20. Unusual Presentation of Popliteal Cyst on Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ohishi

    2016-01-01

    Full Text Available Popliteal cyst commonly presents as an ellipsoid mass with uniform low signal intensity on T1-weighted magnetic resonance images and high signal intensity on T2-weighted images. Here, we describe a popliteal cyst with unusual appearance on magnetic resonance imaging, including heterogeneous intermediate signal intensity on T2-weighted images. Arthroscopic cyst decompression revealed that the cyst was filled with necrotic synovial villi, indicative of rheumatoid arthritis. Arthroscopic enlargement of unidirectional valvular slits with synovectomy was useful for the final diagnosis and treatment.

  1. Free radicals imaged in vivo in the rat by using proton-electron double-resonance imaging

    International Nuclear Information System (INIS)

    Lurie, D.J.; Nicholson, Ian; Foster, M.A.; Mallard, J.R.

    1990-01-01

    A new technique called proton-electron double-resonance imaging is described for imaging free radicals in aqueous samples. The method is a combination of proton NMR imaging with nuclear electron double resonance. The results of using this technique to image free radicals in vivo in the rat are presented. Rats were injected intravenously with a nitroxide free radical solution and a series of images was obtained from which the clearance of the free radical through the liver and kidneys could be observed. (author)

  2. EPR Imaging at a Few Megahertz Using SQUID Detectors

    Science.gov (United States)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  3. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    International Nuclear Information System (INIS)

    Bertaina, S; Groll, N; Chen, L; Chiorescu, I

    2011-01-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  4. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  5. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3- for protein structure analysis

    International Nuclear Information System (INIS)

    Yagi, Hiromasa; Loscha, Karin V.; Su, Xun-Cheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried

    2010-01-01

    Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA) 3 ] 3- , can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA) 3 ] 3- to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd 3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA) 3 ] 3- complexes of paramagnetic lanthanide (Ln 3+ ) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.

  6. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes

    NARCIS (Netherlands)

    Briley-Saebo, Karen C.; Mulder, Willem J. M.; Mani, Venkatesh; Hyafil, Fabien; Amirbekian, Vardan; Aguinaldo, Juan Gilberto S.; Fisher, Edward A.; Fayad, Zahi A.

    2007-01-01

    The vulnerability or destabilization of atherosclerotic plaques has been directly linked to plaque composition. Imaging modalities, such as magnetic resonance (MR) imaging, that allow for evaluation of plaque composition at a cellular and molecular level, could further improve the detection of

  7. Structural magnetic resonance imaging in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Deblaere, Karel [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium); Ghent University Hospital, MR Department - 1K12, Ghent (Belgium); Achten, Eric [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium)

    2008-01-15

    Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy. (orig.)

  8. Structural magnetic resonance imaging in epilepsy

    International Nuclear Information System (INIS)

    Deblaere, Karel; Achten, Eric

    2008-01-01

    Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy. (orig.)

  9. Meniscal configuration using magnetic resonance imaging; Configuracao meniscal pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Arthur da Rocha C.; Turrini, Elisabete; Karoauk, Teresa C.C.; Lederman, Henrique M. [Escola Paulista de Medicina, Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem

    1997-04-01

    The authors present a review of the normal meniscal configuration and correlation with anatomic specimens. The images were obtained by magnetic resonance imaging. The images were obtained by magnetic resonance imaging. The authors emphasize the importance of knowing the relationship between the meniscus and the adjacent anatomic structures. (author) 31 refs., 10 figs., tabs.

  10. Magnetic resonance imaging of the normal equine digit and metacarpophalangeal joint

    International Nuclear Information System (INIS)

    Park, R.D.; Nelson, T.R.; Hoopes, P.J.

    1987-01-01

    Magnetic resonance (MR) images were made in sagittal and transverse planes through the metacarpophalangeal joint and digit of a horse. The images accurately depicted gross anatomic structures in the leg. Soft tissue structures were defined as separate entities on the images. Histologic variation in tissues correlated with signal intensity differences on the MR images. Magnetic resonance imaging appears to be a promising imaging modality for evaluating musculoskeletal structures in equine limbs

  11. Magnetic resonance spectroscopy as an imaging method

    International Nuclear Information System (INIS)

    Bomsdorf, H.; Imme, M.; Jensen, D.; Kunz, D.; Menhardt, W.; Ottenberg, K.; Roeschmann, P.; Schmidt, K.H.; Tschendel, O.; Wieland, J.

    1990-01-01

    An experimental Magnetic Resonance (MR) system with 4 tesla flux density was set up. For that purpose a data acquisition system and RF coils for resonance frequencies up to 170 MHz were developed. Methods for image guided spectroscopy as well as spectroscopic imaging focussing on the nuclei 1 H and 13 C were developed and tested on volunteers and selected patients. The advantages of the high field strength with respect to spectroscopic studies were demonstrated. Developments of a new fast imaging technique for the acquisition of scout images as well as a method for mapping and displaying the magnetic field inhomogeneity in-vivo represent contributions to the optimisation of the experimental procedure in spectroscopic studies. Investigations on the interaction of RF radiation with the exposed tissue allowed conclusions regarding the applicability of MR methods at high field strengths. Methods for display and processing of multi-dimensional spectroscopic imaging data sets were developed and existing methods for real-time image synthesis were extended. Results achieved in the field of computer aided analysis of MR images comprised new techniques for image background detection, contour detection and automatic image interpretation as well as knowledge bases for textural representation of medical knowledge for diagnosis. (orig.) With 82 refs., 3 tabs., 75 figs [de

  12. Clinical magnetic resonance: imaging and spectroscopy

    International Nuclear Information System (INIS)

    Andrew, E.R.; Bydder, Graeme; Griffiths, John; Iles, Richard; Styles, Peter

    1990-01-01

    This book begins with a readable, comprehensive but non-mathematical introduction to the basic underlying principles of magnetic resonance. Further chapters include information on the theory and principles of MRI and MRS, the interpretation of MR images, the clinical applications and scope of MRI and MRS, practical aspects of spectroscopy and magnetic resonance, and also the practical problems associated with the siting, safety and operation of large MRI and MRS equipment. (author)

  13. Far-field superresolution by imaging of resonance scattering

    KAUST Repository

    Schuster, Gerard T.; Huang, Y.

    2014-01-01

    We show that superresolution imaging in the far-field region of the sources and receivers is theoretically and practically possible if migration of resonant multiples is employed. A resonant multiple is one that bounces back and forth between two

  14. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    Science.gov (United States)

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  15. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  16. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Kumar, V.; Jagannathan, N.R.; Thulkar, S.; Kumar, R.

    2012-01-01

    Existing screening investigations for the diagnosis of early prostate cancer lack specificity, resulting in a high negative biopsy rate. There is increasing interest in the use of various magnetic resonance methods for improving the yield of transrectal ultrasound-guided biopsies of the prostate in men suspected to have prostate cancer. We review the existing status of such investigations. A literature search was carried out using the Pubmed database to identify articles related to magnetic resonance methods for diagnosing prostate cancer. References from these articles were also extracted and reviewed. Recent studies have focused on prebiopsy magnetic resonance investigations using conventional magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging, diffusion weighted magnetic resonance imaging, magnetization transfer imaging and magnetic resonance spectroscopy of the prostate. This marks a shift from the earlier strategy of carrying out postbiopsy magnetic resonance investigations. Prebiopsy magnetic resonance investigations has been useful in identifying patients who are more likely to have a biopsy positive for malignancy. Prebiopsy magnetic resonance investigations has a potential role in increasing specificity of screening for early prostate cancer. It has a role in the targeting of biopsy sites, avoiding unnecessary biopsies and predicting the outcome of biopsies. (author)

  17. Assessing topology and surface orientation of an antimicrobial peptide magainin 2 using mechanically aligned bilayers and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Mayo, Daniel J; Sahu, Indra D; Lorigan, Gary A

    2018-07-01

    Aligned CW-EPR membrane protein samples provide additional topology interactions that are absent from conventional randomly dispersed samples. These samples are aptly suited to studying antimicrobial peptides because of their dynamic peripheral topology. In this study, four consecutive substitutions of the model antimicrobial peptide magainin 2 were synthesized and labeled with the rigid TOAC spin label. The results revealed the helical tilts to be 66° ± 5°, 76° ± 5°, 70° ± 5°, and 72° ± 5° for the TOAC substitutions H7, S8, A9, and K10 respectively. These results are consistent with previously published literature. Using the EPR (electron paramagnetic resonance) mechanical alignment technique, these substitutions were used to critically assess the topology and surface orientation of the peptide with respect to the membrane. This methodology offers a rapid and simple approach to investigate the structural topology of antimicrobial peptides. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Oxidation of carbon monoxide cocatalyzed by palladium(0) and the H(5)PV(2)Mo(10)O(40) polyoxometalate probed by electron paramagnetic resonance and aerobic catalysis.

    Science.gov (United States)

    Goldberg, Hila; Kaminker, Ilia; Goldfarb, Daniella; Neumann, Ronny

    2009-08-17

    The H(5)PV(2)Mo(10)O(40) polyoxometalate and Pd/Al(2)O(3) were used as co-catalysts under anaerobic conditions for the activation and oxidation of CO to CO(2) by an electron transfer-oxygen transfer mechanism. Upon anaerobic reduction of H(5)PV(2)Mo(10)O(40) with CO in the presence of Pd(0) two paramagnetic species were observed and characterized by continuous wave electron paramagnetic resonance (CW-EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopic measurements. Major species I (65-70%) is assigned to a species resembling a vanadyl cation that is supported on the polyoxometalate and showed a bonding interaction with (13)CO. Minor species II (30-35%) is attributed to a reduced species where the vanadium(IV) atom is incorporated in the polyoxometalate framework but slightly distanced from the phosphate core. Under aerobic conditions, CO/O(2), a nucleophilic oxidant was formed as elucidated by oxidation of thianthrene oxide as a probe substrate. Oxidation reactions performed on terminal alkenes such as 1-octene yielded a complicated mixture of products that was, however, clearly a result of alkene epoxidation followed by subsequent reactions of the intermediate epoxide. The significant competing reaction was a hydrocarbonylation reaction that yielded a approximately 1:1 mixture of linear/branched carboxylic acids.

  19. Magnetic resonance imaging in obstetric diagnosis.

    Science.gov (United States)

    Weinreb, J C; Lowe, T W; Santos-Ramos, R; Cunningham, F G; Parkey, R

    1985-01-01

    Five patients with abnormal pregnancies were examined with ultrasound (US) and magnetic resonance imaging (MR). Three had a malformed fetus, 1 had a molar pregnancy, and 1 had an ovarian mass. Both maternal and fetal structures were clearly shown, although fetal motion may have resulted in image degradation in some cases. The authors suggest that MR may be useful in obstetric diagnosis.

  20. Magnetic resonance imaging of semicircular canals.

    Science.gov (United States)

    Sbarbati, A; Leclercq, F; Zancanaro, C; Antonakis, K

    1992-01-01

    The present paper reports the results of the first investigation of the semicircular canals in a living, small animal by means of high spatial resolution magnetic resonance imaging. This procedure is noninvasive and allows identification of the endolymphatic and perilymphatic spaces yielding a morphology quite consistent with direct anatomical examination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1506290

  1. The introduction of clinical magnetic resonance imaging in Australia

    International Nuclear Information System (INIS)

    Sorby, W.; Baddeley, H.

    1986-01-01

    Magnetic resonance imaging is a new, but expensive, modality that is being introduced into clinical use in Australia. While it promises increased safety and accuracy in many situations, its precise role when compared with computed tomography and other modalities is not fully established. Therefore, a Government financed evaluation of costs and efficacy of magnetic resonance imaging units in five teaching hospitals is to be conducted over two years (1986-1988). Experience with the introduction of computed tomography to Australia and other nations has revealed difficulties in the evaluation by conventional methods of a diagnostic technology that is improving rapidly; it is to be hoped that a systematic evaluation of the clinical applications of magnetic resonance imaging will be more achievable and useful

  2. A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261

  3. Brain Imaging Using Hyperpolarized 129Xe Magnetic Resonance Imaging.

    Science.gov (United States)

    Chahal, Simrun; Prete, Braedan R J; Wade, Alanna; Hane, Francis T; Albert, Mitchell S

    2018-01-01

    Hyperpolarized (HP) 129 Xe magnetic resonance imaging (MRI) is a novel iteration of traditional MRI that relies on detecting the spins of 1 H. Since 129 Xe is a gaseous signal source, it can be used for lung imaging. Additionally, 129 Xe dissolves in the blood stream and can therefore be detectable in the brain parenchyma and vasculature. In this work, we provide detailed information on the protocols that we have developed to image 129 Xe within the brains of both rodents and human subjects. © 2018 Elsevier Inc. All rights reserved.

  4. Magnetic resonance imaging in neuroradiology

    International Nuclear Information System (INIS)

    Voigt, K.; Lotx, J.W.

    1990-01-01

    Magnetic resonance imaging (MRI) is now accepted as an effective method of investigating a wide range of disorders, especially of the brain and spine. A short introduction on image contrast in MRI is given and the advantages and disadvantages for the different diseases of the brain is discussed. Excellent soft-tissue contrast, multiplanar imaging capabilities and lack of ionising radiation are conspicuous advantages, and it is now established as the investigation of choice in a large number of clinical conditions, especially when the central nervous system is involved. However, it remains only one of a series of imaging modalities. A confident provisional clinical diagnosis is essential for establishing an imaging protocol and the intention should always be to reach a definitive diagnosis in the least invasive and most cost-effective way. 7 figs., 19 refs

  5. Magnetic Resonance Imaging of Liver Metastasis.

    Science.gov (United States)

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Assessment of coronary artery disease with nicorandil stress magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kawase, Yoshio; Nichimoto, Masaki; Hato, Katsunori; Okajima, Kazue; Yoshikawa, Junichi

    2004-01-01

    Although dipyridamole and adenosine have been used as vasodilator agents, we believe they are inadequate for vasodilator perfusion magnetic resonance imaging, due to adverse effects (flushing, warmth, headaches, and arrhythmia). Nicorandil, a potassium channel opener, has been reported to increase coronary blood flow and it was associated with fewer adverse effects than adenosine or dipiridamole. We set out to investigate whether the coronary artery stenosis could be assessed by nicorandil stress perfusion magnetic resonance imaging. First-pass contrast-enhanced magnetic resonance images of the left ventricle acquired from 50 patients at rest and during intravenous administration of nicorandil using multi-slice turbo field echo with multi shot echo-planar-imaging. Coronary angiography was performed within 1 week. There was no adverse effects during nicorandil stress in any patients. The overall sensitivity and specificity of magnetic resonance imaging in identifying patients with significant stenosis of at least one coronary artery were 93.9% (31 of 33 patients) and 94.1% (16 of 17 patients), respectively. The sensitivity of magnetic resonance imaging for detecting significant stenosis in the left anterior descending artery was 87.5%; the sensitivity in the left circumflex artery was 80%; the sensitivity in the right coronary artery was 92.3%. Similar sensitivities were observed for all 3 vascular regions, indicating that all myocardial segments were visualized with similar image quality. The present study shows that nicorandil stress perfusion magnetic resonance imaging is a safe, feasible technique for assessing coronary artery stenosis severity in a totally-noninvasive manner. (authors)

  7. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    Science.gov (United States)

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  9. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  10. NATO Advanced Research Workshop on Nuclear Magnetic Resonance of Paramagnetic Macromolecules

    CERN Document Server

    1995-01-01

    Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.

  11. Magnetic resonance imaging of the elbow. Part II: Abnormalities of the ligaments, tendons, and nerves

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew [University of Wisconsin Hospital, Department of Radiology, Madison, WI (United States)

    2005-01-01

    Part II of this comprehensive review on magnetic resonance imaging of the elbow discusses the role of magnetic resonance imaging in evaluating patients with abnormalities of the ligaments, tendons, and nerves of the elbow. Magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the soft tissue structures of the elbow. Magnetic resonance imaging can detect tears of the ulnar collateral ligament and lateral collateral ligament of the elbow with high sensitivity and specificity. Magnetic resonance imaging can determine the extent of tendon pathology in patients with medial epicondylitis and lateral epicondylitis. Magnetic resonance imaging can detect tears of the biceps tendon and triceps tendon and can distinguishing between partial and complete tendon rupture. Magnetic resonance imaging is also helpful in evaluating patients with nerve disorders at the elbow. (orig.)

  12. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Directory of Open Access Journals (Sweden)

    Estelrich J

    2015-03-01

    Full Text Available Joan Estelrich,1,2 María Jesús Sánchez-Martín,1 Maria Antònia Busquets1,2 1Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain; 2Institut de Nanociència I Nanotecnologia (IN2UB, Barcelona, Catalonia, SpainAbstract: Magnetic resonance imaging (MRI has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions, providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of

  13. Magnetic resonance imaging of popliteal artery pathologies

    International Nuclear Information System (INIS)

    Holden, Andrew; Merrilees, Stephen; Mitchell, Nicola; Hill, Andrew

    2008-01-01

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions

  14. Magnetic resonance imaging of popliteal artery pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Andrew [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: andrewh@adhb.govt.nz; Merrilees, Stephen [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: smerrilees@adhb.govt.nz; Mitchell, Nicola [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: nmit010@ec.auckland.ac.nz; Hill, Andrew [Department of Vascular Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: ahill@adhb.govt.nz

    2008-07-15

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions.

  15. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    Science.gov (United States)

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  16. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  17. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  18. Identification of paramagnetic nitrogen centers (P1) in diamond crystallites synthesized via the sintering of detonation nanodiamonds at high pressure and temperature

    Science.gov (United States)

    Osipov, V. Yu.; Shakhov, F. M.; Efimov, N. N.; Minin, V. V.; Kidalov, S. V.; Vul', A. Ya.

    2017-06-01

    Diamond single crystals synthesized from powder detonation nanodiamonds (DNDs) by means of treatment at high pressures ( P 7 GPa) and temperatures ( T > 1300°C) have been studied by electron paramagnetic resonance (EPR). A key feature of treatment (high-pressure high-temperature (HPHT) sintering) is the use of low molecular weight alcohols in the process. The appearance of a hyperfine EPR signal structure due to "paramagnetic nitrogen" (P1 centers) is explained by the growth of submicron and micron diamond single crystals from DND nanocrystals by the oriented attachment and coalescence mechanism. Such growth and coarsening of crystals appreciably decreases the concentration of paramagnetic centers, the presence of which hinders the detection of a hyperfine structure in the EPR signal from P1 centers, in the near-surface areas of coalesced and grown together DND particles. It has been shown that the concentration of paramagnetic defects of all types decreases to 3.1 × 1018 g-1 ( 60 ppm) during HPHT treatment at T = 1650°C. This causes the successful identification of P1 centers, whose fraction is no less than 40% of the total amount of paramagnetic centers in microcrystals synthesized by HPHT sintering.

  19. Magnetic resonance imaging in radiotherapy treatment planning

    NARCIS (Netherlands)

    Moerland, Marinus Adriaan

    1996-01-01

    From its inception in the early 1970's up to the present, magnetic resonance imaging (MRI) has evolved into a sophisticated technique, which has aroused considerable interest in var- ious subelds of medicine including radiotherapy. MRI is capable of imaging in any plane and does not use ionizing

  20. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  1. Electron paramagnetic resonance studies of manganese centers in SrTiO.sub.3./sub.: Non-Kramers Mn.sup.3+./sup. ions and spin-spin coupled Mn.sup.4+./sup. dimers

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Dejneka, Alexandr; Lančok, Ján; Trepakov, Vladimír; Jastrabík, Lubomír; Badalyan, A. G.

    2012-01-01

    Roč. 111, č. 10 (2012), "104119-1"-"104119-6" ISSN 0021-8979. [International Symposium on Integrated Functionalities (ISIF) /22./. San Juan, Puerto Rico , 13.06.2010-16.06.2010] R&D Projects: GA TA ČR TA01010517; GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(CZ) CZ.2.16/3.1.00/22132 Institutional research plan: CEZ:AV0Z10100522 Keywords : electron paramagnetic resonance * X- and Q-band * SrTiO 3 doped with Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.210, year: 2012

  2. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    Science.gov (United States)

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R 2 = 0.95), plasma (R 2 = 0.82), and erythrocytes (R 2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  3. Caroli's disease: magnetic resonance imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Guy, France; Cognet, Francois; Dranssart, Marie; Cercueil, Jean-Pierre; Conciatori, Laurent; Krause, Denis [Department of Radiology and Imaging, Dijon Le Bocage University Hospital, 2 Blvd. Marechal de Lattre de Tassigny, BP 1542, 21034 Dijon Cedex (France)

    2002-11-01

    Our objective was to describe the main aspects of MR imaging in Caroli's disease. Magnetic resonance cholangiography with a dynamic contrast-enhanced study was performed in nine patients with Caroli's disease. Bile duct abnormalities, lithiasis, dot signs, hepatic enhancement, renal abnormalities, and evidence of portal hypertension were evaluated. Three MR imaging patterns of Caroli's disease were found. In all but two patients, MR imaging findings were sufficient to confirm the diagnosis. Moreover, MR imaging provided information about the severity, location, and extent of liver involvement. This information was useful in planning the best therapeutic strategy. Magnetic resonance cholangiography with a dynamic contrast-enhanced study is a good screening tool for Caroli's disease. Direct cholangiography should be reserved for confirming doubtful cases. (orig.)

  4. Basic principles of magnetic resonance imaging - an update

    International Nuclear Information System (INIS)

    Scherzinger, A.L.; Hendee, W.R.

    1985-01-01

    Magnetic resonance (MR) imaging technology has undergone many technologic advances over the past few years. Many of these advances were stimulated by the wealth of information emerging from nuclear magnetic resonance research in the areas of new and optimal scanning methods and radio-frequency coil design. Other changes arose from the desire to improve image quality, ease siting restrictions and generally facilitate the clinical use of MR equipment. Many questions, however, remain unanswered. Perhaps the most controversial technologic question involves the optimal field strength required for imaging or spectroscopic applications or both. Other issues include safety and clinical efficacy. Technologic issues affect all aspects of MR use including the choice of equipment, examination procedure and image interpretation. Thus, an understanding of recent changes and their theoretic basis is necessary. 92 references, 10 figures, 1 table

  5. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    Science.gov (United States)

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  6. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  7. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    Science.gov (United States)

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance

  8. Basic principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Valk, J.; MacLean, C.; Algra, P.R.

    1985-01-01

    The intent of this book is to help clinicians understand the basic physical principles of magnetic resonance (MR) imaging. The book consists of the following: a discussion of elementary considerations; pulse sequencing; localization of MR signals in space; MR equipment; MR contrast agents; clinical applications; MR spectroscopy; and biological effects of MR imaging; a set of appendixes; and a bibliography. Illustrations and images are included

  9. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  10. Finding the Truth in Medical Imaging: Painting the Picture of Appropriateness for Magnetic Resonance Imaging in Canada.

    Science.gov (United States)

    Vanderby, Sonia; Peña-Sánchez, Juan Nicolás; Kalra, Neil; Babyn, Paul

    2015-11-01

    Questions about the appropriateness of medical imaging exams, particularly related to magnetic resonance exams, have arisen in recent years. However, the prevalence of inappropriate imaging in Canada is unclear as inappropriate exam proportion estimates are often based on studies from other countries. Hence, we sought to compare and summarize Canadian studies related to magnetic resonance imaging appropriateness. We completed a systematic literature search identifying studies related to magnetic resonance appropriateness in Canada published between 2003 and 2013. Two researchers independently searched and evaluated the literature available. Articles that studied or discussed magnetic resonance appropriateness in Canada were selected based on titles, abstracts, and, where necessary, full article review. Articles relating solely to other modalities or countries were excluded, as were imaging appropriateness guidelines and reviews. Fourteen articles were included: 8 quantitative studies and 6 editorials/commentaries. The quantitative studies reported inappropriate proportions of magnetic resonance exams ranging from 2%-28.5%. Our review also revealed substantial variations among study methods and analyses. Common topics identified among editorials/commentaries included reasons for obtaining imaging in general and for selecting a specific modality, consequences of inappropriate imaging, factors contributing to demand, and suggested means of mitigating inappropriate medical imaging use. The available studies do not support the common claim that 30% of medical imaging exams in Canada are inappropriate. The actual proportion of inappropriate magnetic resonance exams has not yet been established conclusively in Canada. Further research, particularly on a widespread national scale, is needed to guide healthcare policies. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Electronic Paramagnetic Resonance of irradiated nails: challenges for a dosimetry in radiation accidents; Ressonancia Paramagnetica Eletronica de unhas irradiadas: desafios para uma dosimetria em acidentes radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rodrigues Junior, Orlando [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The purpose of this work is to characterize samples of human nails exposed to high doses of radiation, applying the technique of Electron Paramagnetic Resonance (EPR). The objective is to establish a dose response study that allow determine the absorbed dose by exposed individuals in situations of radiological accidents, in a retrospective form. Samples of human nails were collected and afterward irradiated with gamma radiation, and received dose of 20 Gy. The EPR measurement performed on the samples, before irradiation, permitted the signal identification of the components associated with effects caused by the mechanical stress during the fingernail cutting, the so-called mechanically induced signal (MIS). After the irradiation, different species of free radicals were identified, the so-called radiation induced signal (RIS). (author)

  12. Magnetic resonance imaging of Parkinsonism

    International Nuclear Information System (INIS)

    Mukai, Eiichiro; Makino, Naoki; Fujishiro, Kenichiro.

    1989-01-01

    We have analyzed magnetic resonance images in 33 patients; 18 patients with Parkinson's disease, 1 patient with diurnally fluctuating progressive dystonia, 1 patient with pure akinesia, 6 patients with multiple system atrophy, 1 patient with flunarizine induced parkinsonism, and 4 patients with unclassified parkinsonism. The MR images were obtained using a 1.5-T GE MR System. A spin-echo pulse sequence was used with a TE of 30 msec and 80 msec and a TR of 2000 msec. No signal abnormalities were seen in any patient with Parkinson's disease but 3 showed slightly decreased signal intensity of the putamen on T2-weighted sequences. Patients with diurnally fluctuating progressive dystonia and pure akinesia evidensed no abnormal findings. All six patients with multiple system atrophy demonstrated decreased signal intensity of the putamen, particularly along their lateral and posterior portions, and an enlarged substantia nigra. Atrophy of the pons and cerebellum was detected in all cases with multiple system atrophy. One case of flunarizine induced parkinsonism showed slightly decreased signal intensity of the putamen. Four cases of unclassified parkinsonism showed decreased signal in the putamen on T2-weighted sequences. Magnetic resonance imaging has the potential to become a useful diagnostic tool in the management of parkinsonism. (author)

  13. Magnetic resonance imaging of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Eiichiro [National Hospital of Nagoya (Japan); Makino, Naoki; Fujishiro, Kenichiro

    1989-06-01

    We have analyzed magnetic resonance images in 33 patients; 18 patients with Parkinson's disease, 1 patient with diurnally fluctuating progressive dystonia, 1 patient with pure akinesia, 6 patients with multiple system atrophy, 1 patient with flunarizine induced parkinsonism, and 4 patients with unclassified parkinsonism. The MR images were obtained using a 1.5-T GE MR System. A spin-echo pulse sequence was used with a TE of 30 msec and 80 msec and a TR of 2000 msec. No signal abnormalities were seen in any patient with Parkinson's disease but 3 showed slightly decreased signal intensity of the putamen on T2-weighted sequences. Patients with diurnally fluctuating progressive dystonia and pure akinesia evidensed no abnormal findings. All six patients with multiple system atrophy demonstrated decreased signal intensity of the putamen, particularly along their lateral and posterior portions, and an enlarged substantia nigra. Atrophy of the pons and cerebellum was detected in all cases with multiple system atrophy. One case of flunarizine induced parkinsonism showed slightly decreased signal intensity of the putamen. Four cases of unclassified parkinsonism showed decreased signal in the putamen on T2-weighted sequences. Magnetic resonance imaging has the potential to become a useful diagnostic tool in the management of parkinsonism. (author).

  14. Electron magnetic resonance study of monovalent Na doping in Pr0.6Sr0.4−xNaxMnO3 manganites

    International Nuclear Information System (INIS)

    Thaljaoui, Rachid; Boujelben, Wahiba; Pękała, Marek; Szydłowska, Jadwiga; Cheikhrouhou, Abdelwaheb

    2012-01-01

    Highlights: ► New monovalent doped manganites Pr 0.6 Sr 0.4−x Na x MnO 3 (x = 0, 0.05). ► Comparison of electron magnetic resonance spectra in ferro- and paramagnetic phases. ► Double exchange interactions weakened by Na doping as indicated by activation energy. ► Magnetic susceptibility derived from resonance intensity obeys Curie–Weiss law. - Abstract: Effect of monovalent Na doping on the magnetic properties is studied in Pr 0.6 Sr 0.4−x Na x MnO 3 system (x = 0, 0.05) using X-band electron magnetic resonance and magnetization measurements. Temperature variation of magnetic resonance spectra of doped and undoped manganites is analyzed for paramagnetic and ferromagnetic states and compared to similar systems. In paramagnetic phase the magnetic susceptibility proportional to resonance signal intensity is found to obey the Curie–Weiss law. The effective magnetic moment becomes smaller in doped manganite. The paramagnetic Curie temperature derived from signal intensity equals to 312 and 306 K for the undoped and doped manganites, respectively, and is close to values obtained from magnetization variation in paramagnetic phase. The activation energy determined using the adiabatic small polaron hopping model is higher for the undoped than the doped manganite, which proves that the Na doping slightly reduces the Mn 3+ /Mn 4+ double exchange interactions.

  15. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki

    1991-01-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author)

  16. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1991-11-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).

  17. Magnetic resonance imaging in central nervous system tuberculosis

    International Nuclear Information System (INIS)

    Trivedi, Richa; Saksena, Sona; Gupta, Rakesh K

    2009-01-01

    Tuberculosis (TB) in any form is a devastating disease, which in its most severe form involves the central nervous system (CNS), with a high mortality and morbidity. Early diagnosis of CNS TB is necessary for appropriate treatment to reduce this morbidity and mortality. Routine diagnostic techniques involve culture and immunological tests of the tissue and biofluids, which are time-consuming and may delay definitive management. Noninvasive imaging modalities such as computed tomography (CT) scan and magnetic resonance imaging (MRI) are routinely used in the diagnosis of neurotuberculosis, with MRI offering greater inherent sensitivity and specificity than CT scan. In addition to conventional MRI imaging, magnetization transfer imaging, diffusion imaging, and proton magnetic resonance spectroscopy techniques are also being evaluated for better tissue characterization in CNS TB. The current article reviews the role of various MRI techniques in the diagnosis and management of CNS TB

  18. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  19. Paramagnetic contrast material

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Paramagnetic contrast materials have certainly demonstrated clinical utility in a variety of organ systems for improved detection of various neoplastic, inflammatory, infectious, and physiologic abnormalities. Although the more commonly employed extracellular agents, such as Gd-DTPA, have been quite safe and useful, particularly in the CNS, it is almost certain that other substances will achieve more success in various other organs, such as iron oxides in the reticuloendothelial system and persisting extracellular agents in the cardiovascular system. Finally, as MRI technology continues to evolve, producing such exciting new sequences as gradient-echo fast scans, the roles of currently existing and newly discovered paramagnetic pharmaceuticals must be continuously reevaluated both to obtain maximum clinical benefit and to guide the search for newer agents that may further optimize the diagnostic efficacy of MRI

  20. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.