WorldWideScience

Sample records for paramagnetic mn-implanted amorphous

  1. Investigation of Mn Implanted LiNbO3 applying electron paramagnetic resonance technique

    International Nuclear Information System (INIS)

    Darwish, A.; Ila, D.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    The effect of ion implantation on the LiNbO 3 crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO 3 :Mn 2+ at a depth of approximately 200 nm was formed by implantation of 2.5 x 10 14 Mncm 2 and 1 x 10 17 Mn/cm 2 at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO 3 :Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal

  2. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  3. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  4. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  5. Optical and structural behaviour of Mn implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Franco, N.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2006-01-01

    Sapphire single crystals were implanted at room temperature with 180 keV manganese ions to fluences up to 1.8 x 10 17 cm -2 . The samples were annealed at 1000 deg. C in oxidizing or reducing atmosphere. Surface damage was observed after implantation of low fluences, the amorphous phase being observed after implantation of 5 x 10 16 cm -2 , as seen by Rutherford backscattering spectroscopy under channelling conditions. Thermal treatments in air annealed most of the implantation related defects and promoted the redistribution of the manganese ions, in a mixed oxide phase. X-ray diffraction studies revealed the presence of MnAl 2 O 4 . On the contrary, similar heat treatments in vacuum led to enhanced out diffusion of Mn while the matrix remained highly damaged. The analysis of laser induced luminescence performed after implantation showed the presence of an intense red emission

  6. Electronic phase separation in insulating (Ga, Mn) As with low compensation: super-paramagnetism and hopping conduction

    Science.gov (United States)

    Yuan, Ye; Wang, Mao; Xu, Chi; Hübner, René; Böttger, Roman; Jakiela, Rafal; Helm, Manfred; Sawicki, Maciej; Zhou, Shengqiang

    2018-03-01

    In the present work, low compensated insulating (Ga,Mn)As with 0.7% Mn is obtained by ion implantation combined with pulsed laser melting. The sample shows variable-range hopping transport behavior with a Coulomb gap in the vicinity of the Fermi energy, and the activation energy is reduced by an external magnetic field. A blocking super-paramagnetism is observed rather than ferromagnetism. Below the blocking temperature, the sample exhibits a colossal negative magnetoresistance. Our studies confirm that the disorder-induced electronic phase separation occurs in (Ga,Mn)As samples with a Mn concentration in the insulator-metal transition regime, and it can account for the observed superparamagnetism and the colossal magnetoresistance.

  7. The dependence of magnetic ordering temperature in amorphous semiconductors on paramagnetic centre concentration

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Satanin, A.M.

    1981-01-01

    In silicon amorphized by ion implantation (a-Si) the dependence of magnetic ordering temperature (theta) on localized spin concentration (Nsub(s)) is studied by EPR method. Nsub(s) changes by varying the Ne + ion dose from 6x10 14 to 2x10 17 cm -2 and sample annealing. From the comparison of the data obtained with literature ones conclusions are made about the existence of two critical values of Nsub(s) in a-Si (approximately 10 19 and approximately 2x10 20 cm -3 ), when a transition occurs from paramagnetism to antiferromagnetism (at T < theta) and from antiferromagnetism to ferromagnetism, respectively. (author)

  8. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  9. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  10. Amorphous surface layers in Ti-implanted Fe

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10 16 at/cm 2 . The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10 17 Ti/cm 2 at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10 17 Ti/cm 2 implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10 17 Ti/cm 2 produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %

  11. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  12. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  13. The Paramagnetism of Dissolved Mn in {alpha} and {beta} Brasses

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1962-12-15

    Paramagnetic susceptibility measurements have been made on {alpha} and {beta} brasses containing {approx} 1 w/o Mn. The susceptibility varied with temperature according to the Curie Weiss law and the Curie constant and thereby the Bohr magneton number per Mn atom were determined. Interpreted in terms of valency, Mn monovalent in copper has a valency in {alpha} brass which decreases progressively with zinc content attaining the value 0.58 at the limiting of composition. Mn in {beta} brass exhibits a valency 0.8. These results are not in keeping with previous values for the valency of manganese as determined from phase boundary relationships and electron to atom ratios.

  14. Magnetic and electrical properties of several Mn-based amorphous alloys

    Science.gov (United States)

    Obi, Y.; Morita, H.; Fujimori, H.

    1987-03-01

    Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.

  15. Enhanced Cycleability of Amorphous MnO₂ by Covering on α-MnO₂ Needles in an Electrochemical Capacitor.

    Science.gov (United States)

    Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang

    2017-08-24

    An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.

  16. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  17. Amorphous GaP produced by ion implantation

    International Nuclear Information System (INIS)

    Shimada, T.; Kato, Y.; Shiraki, Y.; Komatsubara, K.F.

    1976-01-01

    Two types of non-crystalline states ('disordered' and 'amorphous') of GaP were produced by using ion implantation and post annealing. A structural-phase-transition-like annealing behaviour from the 'disordered' state to the 'amorphous' state was observed. The ion dose dependence and the annealing behaviour of the atomic structure of GaP implanted with 200 keV -N + ions were studied by using electron diffraction, backscattering and volume change measurements. The electronic structure was also investigated by measuring optical absorption and electrical conductivity. The implanted layer gradually loses the crystalline order with the increase of the nitrogen dose. The optical absorption coefficient α and electric conductivity sigma of GaP crystals implanted with 200 keV -N + ions of 1 x 10 16 cm -2 were expressed as αhν = C(hν - E 0 )sup(n) and log sigma = A -BTsup(-1/4), respectively. Moreover, the volume of the implanted layer increased about three percent and the electron diffraction pattern was diffused halo whose intensity monotonically decreases along the radial direction. These results indicate that the as-implanted layer has neither a long range order or short range order ('disordered state'). In the sample implanted at 1 x 10 16 cm -2 , a structural phase-transition-like annealing stage was observed at around 400 0 C. That is, the optical absorption coefficient abruptly fell off from 6 x 10 4 to 7 x 10 3 cm -1 and the volume of the implanted layer decreased about 2% within an increase of less than 10 degrees in the anneal temperature. Moreover, the short range order of the lattice structure appeared in the electron diffraction pattern. According to the backscattering experiment, the heavily implanted GaP was still in the non-crystalline state even after annealing. These facts suggest that heavily implanted GaP, followed by annealing at around 400 0 C, is in the 'amorphous' state, although as-implanted GaP is not in the 'amorphous' state but in the

  18. Structural and magnetic properties of Mn-implanted Si

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Zhang Gufei; Muecklich, A.; Eichhorn, F.; Schell, N.; Groetzschel, R.; Schmidt, B.; Skorupa, W.; Helm, M.; Fassbender, J.; Geiger, D.

    2007-01-01

    Structural and magnetic properties in Mn-implanted, p-type Si were investigated. High resolution structural analysis techniques such as synchrotron x-ray diffraction revealed the formation of MnSi 1.7 nanoparticles already in the as-implanted samples. Depending on the Mn fluence, the size increases from 5 nm to 20 nm upon rapid thermal annealing. No significant evidence is found for Mn substituting Si sites either in the as-implanted or annealed samples. The observed ferromagnetism yields a saturation moment of 0.21μ B per implanted Mn at 10 K, which could be assigned to MnSi 1.7 nanoparticles as revealed by a temperature-dependent magnetization measurement

  19. Amorphous clusters in Co implanted ZnO induced by boron pre-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Potzger, K.; Shalimov, A.; Zhou, S.; Schmidt, H.; Mucklich, A.; Helm, M.; Fassbender, J.; Liberati, M.; Arenholz, E.

    2009-02-09

    We demonstrate the formation of superparamagnetic/ferromagnetic regions within ZnO(0001) single crystals sequently implanted with B and Co. While the pre-implantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly reducing on the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electrons as in the case of metallic Co. The metallic amorphous phases are non-detectable by common X-ray diffraction.

  20. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.; Grant, W.A.; Wohlenberg, P.; Hansen, P.; Chadderton, L.T.

    1978-01-01

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy + and P + ions at doses between 10 13 - 10 17 ions/cm 2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  1. Amorphous bimetallic alloys prepared by steam condensation

    International Nuclear Information System (INIS)

    Drago, V.

    1988-01-01

    Amorphous alloys of MnSn are prepared by steam condensation, in a substratum with a temperature near of the liquid helium. The magnetic and paramagnetic hyperfine spectrum and the ordination temperature by Moessbauer effect 119Sn are measured. A diagram of magnetic phase is proposed, basing on the measures of Moessbauer effect. (C.G.C.) [pt

  2. Amorphization and the effect of implanted ions in SiC

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1994-01-01

    The effects of implanted ion chemistry and displacement damage on the amorphization threshold dose of SiC were studied using cross-section transmission electron microscopy. Room temperature as well as 200 and 400 C irradiations were carried out with 3.6 MeV Fe, 1.8 MeV Cl, 1 MeV He or 0.56 MeV Si ions. The room temperature amorphization threshold dose in irradiated regions well separated from the implanted ions was found to range from 0.3 to 0.5 dpa for the four different ion species. The threshold dose for amorphization in the He, Si and Fe ion-implanted regions was also ∼0.3 to 0.5 dpa. On the other hand, the amorphization threshold in the Cl-implanted region was only about 0.1 dpa. The volume change associated with amorphization was ∼17%. No evidence for amorphization was obtained in specimens irradiated at 200 or 400 C. An understanding of the microstructural evolution of SiC under irradiation is critical to the application of these materials in fusion energy systems

  3. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO{sub 2}:Co films produced by cobalt ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, O. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Cornelius, S.; Hübner, R.; Potzger, K. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Smekhova, A.; Zykov, G.; Gan' shina, E. A.; Granovsky, A. B. [Lomonosov Moscow State University (MSU), Faculty of Physics, 119991 Moscow (Russian Federation); Bähtz, C. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-05-14

    Amorphous, polycrystalline anatase and epitaxial anatase TiO{sub 2} films have been implanted with 5 at. % Co{sup +}. The magnetic and structural properties of different microstructures of TiO{sub 2}:Co, along with the local coordination of the implanted Co atoms within the host lattice are investigated. In amorphous TiO{sub 2}:Co film, Co atoms are in the (II) oxidation state with a complex coordination and exhibit a paramagnetic response. However, for the TiO{sub 2}:Co epitaxial and polycrystalline anatase films, Co atoms have a distorted octahedral (II) oxygen coordination assigned to a substitutional environment with traces of metallic Co clusters, which gives a rise to a superparamagnetic behavior. Despite the incorporation of the implanted atoms into the host lattice, high temperature ferromagnetism is absent in the films. On the other hand, it is found that the concentration and size of the implantation-induced nanoclusters and the magnetic properties of TiO{sub 2}:Co films have a strong dependency on the initial microstructure of TiO{sub 2}. Consequently, metallic nanocluster formation within ion implantation prepared transition metal doped TiO{sub 2} can be suppressed by tuning the film microstructure.

  4. {sup 57}Fe emission Mössbauer spectroscopy following dilute implantation of {sup 57}Mn into In {sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mokhles Gerami, A.; Johnston, K.; Gunnlaugsson, H. P., E-mail: Haraldur.p.gunnlaugsson@cern.ch [PH Div, CERN (Switzerland); Nomura, K. [Tokyo University of Science, Photocatalysis International Research Center (Japan); Mantovan, R. [IMM-CNR, Laboratorio MDM (Italy); Masenda, H. [University of the Witwatersrand, School of Physics (South Africa); Matveyev, Y. A. [Moscow Institute of Physics and Technology (Russian Federation); Mølholt, T. E. [PH Div, CERN (Switzerland); Ncube, M. [University of the Witwatersrand, School of Physics (South Africa); Shayestehaminzadeh, S. [University of Iceland, Science Institute (Iceland); Unzueta, I. [Euskal Herriko Unibertsitatea (UPV/EHU), BCMaterials & Elektrizitate eta Elektronika Saila (Spain); Gislason, H. P. [University of Iceland, Science Institute (Iceland); Krastev, P. B. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Langouche, G. [Instituut voor Kern-en Stralings Fysika, KU Leuven (Belgium); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Ólafsson, S. [University of Iceland, Science Institute (Iceland); Collaboration: the ISOLDE collaboration

    2016-12-15

    Emission Mössbauer spectroscopy has been utilised to characterize dilute {sup 57}Fe impurities in In {sub 2}O{sub 3} following implantation of {sup 57}Mn (T{sub 1/2} = 1.5 min.) at the ISOLDE facility at CERN. From stoichiometry considerations, one would expect Fe to adopt the valence state 3 + , substituting In {sup 3+}, however the spectra are dominated by spectral lines due to paramagnetic Fe{sup 2+}. Using first principle calculations in the framework of density functional theory (DFT), the density of states of dilute Fe and the hyperfine parameters have been determined. The hybridization between the 3d-band of Fe and the 2p band of oxygen induces a spin-polarized hole on the O site close to the Fe site, which is found to be the cause of the Fe{sup 2+} state in In {sub 2}O{sub 3}. Comparison of experimental data to calculated hyperfine parameters suggests that Fe predominantly enters the 8b site rather than the 24d site of the cation site in the Bixbyite structure of In {sub 2}O{sub 3}. A gradual transition from an amorphous to a crystalline state is observed with increasing implantation/annealing temperature.

  5. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  6. Atomistic modeling of defect evolution in Si for amorphizing and subamorphizing implants

    International Nuclear Information System (INIS)

    Lopez, Pedro; Pelaz, Lourdes; Marques, Luis A.; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2004-01-01

    Solid phase epitaxial regrowth of pre-amorphizing implants has received significant attention as a method to achieve high dopant activation with minimal diffusion at low implant temperatures and suppress channelling. Therefore, a good understanding of the amorphization and regrowth mechanisms is required in process simulators. We present an atomistic amorphization and recrystallization model that uses the interstitial-vacancy (I-V) pair as a building block to describe the amorphous phase. I-V pairs are locally characterized by the number of neighbouring I-V pairs. This feature captures the damage generation and the dynamical annealing during ion implantation, and also explains the annealing behaviour of amorphous layers and amorphous pockets

  7. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  8. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  9. Mg amorphous alloys for biodegradable implants

    International Nuclear Information System (INIS)

    Danez, G.P.; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J.

    2010-01-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability (λ) and the criterion of electronegativity (Δe) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  10. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  11. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1995-01-01

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to ∼7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of ∼0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe 2+ ions at RT produced amorphization in the implanted ion region after damage levels of ∼1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He + ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC

  12. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  13. A hierarchical nanostructure consisting of amorphous MnO{sub 2}, Mn{sub 3}O{sub 4} nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Hung, Ching-Yun [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Yang, Yi-Lin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2011-01-15

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO{sub 2} (a-MnO{sub 2}), Mn{sub 3}O{sub 4} nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn{sub 3}O{sub 4} nanocrystals and a-MnO{sub 2} nanorods into an amorphous manganese oxide, the cycle stability of a-MnO{sub 2} is obviously enhanced by adding Mn{sub 3}O{sub 4}. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g{sup -1} in CaCl{sub 2}), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  14. NMR studies of 55Mn in amorphous CexMn100-x alloys

    International Nuclear Information System (INIS)

    Niki, H.; Okamura, K.; Yogi, M.; Amakai, Y.; Takano, H.; Murayama, S.; Obi, Y.

    2008-01-01

    In order to investigate the heavy-fermion like behavior of amorphous alloy Ce x Mn 100-x , the NMR measurements of 55 Mn (I=5/2 ) in Ce 65 Mn 35 have been carried out from 4.2 to 270 K using powdered sample. A broadened NMR spectrum containing five NQR lines split due to NQR interaction is observed. Quadrupole coupling constant 3e 2 Qq/2I(2I-1)h is gradually changed from about 1.8 MHz at 4.2 K to about 1.6 MHz at 270 K. Temperature dependence of the line width is expressed in the Curie-Weiss law with θ p =-10.5K. The value of Knight shift would be almost constant from 4.2 to 270 K

  15. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  16. Amorphization of tantalum by boron and phosphorus ion implantation

    International Nuclear Information System (INIS)

    Thome, L.; Benyagoub, A.; Bernas, H.; Pivin, J.C.; Cahn, R.W.

    1984-01-01

    The nature and depth dependence of the disorder produced by B and P implantation in Ta single crystals were studied in situ via channeling experiments and after implantation via grazing incidence electron diffraction experiments. The correlation of experimental results with implanted impurity profiles determined by SIMS shows that amorphous Ta-B and Ta-P alloys are produced for, respectively, 19% and 8% B and P concentrations in the implanted layer [fr

  17. Anomalous defect processes in Si implanted amorphous SiO2, II

    International Nuclear Information System (INIS)

    Fujita, Tetsuo; Fukui, Minoru; Okada, Syunji; Shimizu-Iwayama, Tsutomu; Hioki, Tatsumi; Itoh, Noriaki

    1994-01-01

    Aanomalous features of the defects in Si implanted amorphous SiO 2 are reported. The numbers of E 1 prime centers and B 2 centers are found to increase monotonically with implanted Si dose, in contrast to the saturating feature of these numbers in Ar implanted samples. Moreover, when H ions are implanted in amorphous SiO 2 predamaged by Si implantation, both of the density and the number of E 1 prime centers increase and they reach a constant value at a small H dose. We point out that these anomalies can be explained in terms of the difference in the cross-section for defect annihilation in the specimens implanted with Si ions and other ions, in accordance with the homogeneous model proposed by Devine and Golanski. We consider that the main mechanism of defect annihilation is the recombination of an E 1 prime center and an interstitial O, which is stabilized by an implanted Si, reducing the cross-section in Si-implanted specimens. ((orig.))

  18. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  19. Amorphous-crystalline interface evolution during Solid Phase Epitaxy Regrowth of SiGe films amorphized by ion implantation

    International Nuclear Information System (INIS)

    D'Angelo, D.; Piro, A.M.; Mirabella, S.; Bongiorno, C.; Romano, L.; Terrasi, A.; Grimaldi, M.G.

    2007-01-01

    Transmission Electron Microscopy was combined with Time Resolved Reflectivity to study the amorphous-crystalline (a-c) interface evolution during Solid Phase Epitaxy Regrowth (SPER) of Si 0.83 Ge 0.17 films deposited on Si by Molecular Beam Epitaxy and amorphized with Ge + ion implantation. Starting from the Si/SiGe interface, a 20 nm thick layer regrows free of defects with the same SPER rate of pure Si. The remaining SiGe regrows with planar defects and dislocations, accompanied by a decrease of the SPER velocity. The sample was also studied after implantation with B or P. In these cases, the SPER rate raises following the doping concentration profile, but no difference in the defect-free layer thickness was observed compared to the un-implanted sample. On the other hand, B or P introduction reduces the a-c interface roughness, while B-P co-implantation produces roughness comparable to the un-implanted sample

  20. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Amorphous Al–Mn coating on NdFeB magnets: Electrodeposition from AlCl3–EMIC–MnCl2 ionic liquid and its corrosion behavior

    International Nuclear Information System (INIS)

    Chen Jing; Xu Bajin; Ling Guoping

    2012-01-01

    Amorphous Al–Mn coating was electrodeposited on NdFeB magnets from AlCl 3 –EMIC–MnCl 2 ionic liquid with the pretreatment of anodic electrolytic etching in AlCl 3 –EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl 3 –EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al–Mn alloy coating to the NdFeB substrate. The amorphous Al–Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: ► Amorphous Al–Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. ► To remove the surface oxides of NdFeB, anodic etching pretreatment is used. ► The deposited Al–Mn alloy coating shows high adhesion to the NdFeB substrate. ► Corrosion tests show that amorphous Al–Mn alloy coating is anodic coating for NdFeB magnet.

  2. Structural characterization of Mn implanted AlInN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Advance Materials Physics Laboratory, Quaid-i-Azam University, Islamabad (Pakistan); Zhu, J J; Wang, Y T [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China)], E-mail: abdulmajid40@yahoo.com, E-mail: akbar@qau.edu.pk

    2008-06-07

    AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 deg. C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 deg. C and 850 deg. C, respectively. Strong decomposition of the samples took place when annealed at 850 deg. C.

  3. Structural characterization of Mn implanted AlInN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Zhu, J J; Wang, Y T

    2008-01-01

    AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 deg. C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 deg. C and 850 deg. C, respectively. Strong decomposition of the samples took place when annealed at 850 deg. C

  4. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  5. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  6. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K., E-mail: Khalid.bouziane@uir.ac.ma [Pôle Energies Renouvelables et Etudes Pétrolières, Université Internationale de Rabat, 11000 – Salé el Jadida, Technopolis (Morocco); Al Azri, M.; Elzain, M. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman); Chérif, S.M. [LSPM (CNRS-UPR 3407), Université Paris, 13-Nord, 99, Avenue Jean Baptiste Clément, 93430 Villetaneuse (France); Mamor, M. [Equipe MSISM, Faculté Poly-Disciplinaire, B.P. 4162 Safi, Université Cadi Ayyad, Marrakech (Morocco); Declémy, A. [Institut P’, CNRS – Université de Poitiers – ENSMA, UPR 3346, SP2MI – Téléport 2, 11 boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil Cedex (France); Thomé, L. [CSNSM-Orsay, Bât. 108, Université d’Orsay, F-91405 Orsay (France)

    2015-05-25

    Highlights: • Shallow Mn-implanted 6H-SiC crystal. • Correlation between Mn-substitutional site concentration and magnetism. • Correlation between defects nature surrounding Mn site and magnetism. • Correlation of magnetism in Mn-doped SiC to Mn at Si sites and vacancy-related defect. - Abstract: n-type 6H-SiC (0 0 0 1) single crystal substrates were implanted with three fluences of manganese (Mn{sup +}) ions: 5 × 10{sup 15}, 1 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} with implantation energy of 80 keV at 365 °C to stimulate dynamic annealing. The samples were characterized using Rutherford backscattering channeling spectroscopy (RBS/C), high-resolution X-ray diffraction technique (HRXRD), and Superconducting Quantum Interference Device (SQUID) techniques. Two main defect regions have been identified using RBS/C spectra fitted with the McChasy code combined to SRIM simulations. Intermediate defects depth region is associated with vacancies (D{sub V}) and deeper defect (D{sub N}) essentially related to the Si and C interstitial defects. The defect concentration and the maximum perpendicular strain exhibit similar increasing trend with the Mn{sup +} fluence. Furthermore, the amount of Mn atoms at Si substitutional sites and the corresponding magnetic moment per Mn atom were found to increase with increasing Mn fluence from 0.7 μ{sub B} to 1.7 μ{sub B} and then collapsing to 0.2 μ{sub B}. Moreover, a strong correlation has been found between the magnetic moment and the combination of both large D{sub V}/D{sub N} ratio and high Mn at Si sites. These results are corroborated by our ab initio calculations considering the most stable configurations showing that besides the amount of Mn substituting Si sites, local vacancy-rich environment is playing a crucial role in enhancing the magnetism.

  7. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Xu Bajin [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling Guoping, E-mail: linggp@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-06-15

    Amorphous Al-Mn coating was electrodeposited on NdFeB magnets from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid with the pretreatment of anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al-Mn alloy coating to the NdFeB substrate. The amorphous Al-Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: Black-Right-Pointing-Pointer Amorphous Al-Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. Black-Right-Pointing-Pointer To remove the surface oxides of NdFeB, anodic etching pretreatment is used. Black-Right-Pointing-Pointer The deposited Al-Mn alloy coating shows high adhesion to the NdFeB substrate. Black-Right-Pointing-Pointer Corrosion tests show that amorphous Al-Mn alloy coating is anodic coating for NdFeB magnet.

  8. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: The formation mechanism and the structure changes during the application for CO oxidation.

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-04-13

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts towards CO oxidation. This study focuses on explaining the crystalline-amorphous-crystalline transformations during thermolysis process of Mn-MIL-100 and studying the structure changes during the reaction process for CO oxidation. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250°C (a-Mn-250) showed a smaller specific surface area (4 m2/g), but displayed a high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction process. When used a-Mn-250 were treated with reaction atmosphere at high temperature (named used a-Mn-250-S), the amorphous catalysts transformed to Mn2O3. Meanwhile, BET surface area (164 m2/g) and the catalytic performance both sharply increased. In addition, used a-Mn-250-S catalyst transformed from Mn2O3 to Mn3O4, resulting in the slightly decrease of catalytic activity under the presence of 1 vol% water vapor in the stream. A schematic of the structure changes during the reaction process was proposed. The achievement of our synthesis relies on the increase of BET surface area using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a high quantity of surface active oxygen species, oxygen vacancies and good low temperature reduction behavior. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mg amorphous alloys for biodegradable implants; Ligas amorfas de magnesio utilizadas em implantes consumiveis

    Energy Technology Data Exchange (ETDEWEB)

    Danez, G.P., E-mail: gabidanez@hotmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability ({lambda}) and the criterion of electronegativity ({Delta}e) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  10. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films

    Science.gov (United States)

    Majid, Abdul; Ahmad, Naeem; Rizwan, Muhammad; Khan, Salah Ud-Din; Ali, Fekri Abdulraqeb Ahmed; Zhu, Jianjun

    2018-02-01

    Gallium nitride (GaN) thin film was deposited onto a sapphire substrate and then implanted with 250 keV Mn ions at two different doses of 2 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The as-grown and post-implantation-thermally-annealed samples were studied in detail using x-ray photoelectron spectroscopy (XPS). The XPS peaks of Ga 3 d, Ga 2 p, N 1 s, Mn 2 p and C 1 s were recorded in addition to a full survey of the samples. The doublet peaks of Ga 2 p for pure GaN were observed blue-shifted when compared with elemental Ga, and appeared further shifted to higher energies for the implanted samples. These observations point to changes in the bonds and the chemical environment of the host as a result of ion implantation. The results revealed broadening of the N 1 s peak after implantation, which is interpreted in terms of the presence of N-Mn bonds in addition to N-Ga bonds. The XPS spectra of Mn 2 p recorded for ion-implanted samples indicated splitting of Mn 2 p 1/2 and Mn 2 p 3/2 peaks higher than that for metallic Mn, which helps rule out the possibility of clustering and points to substitutional doping of Mn. These observations provide a framework that sheds light on the local environment of the material for understanding the mechanism of magnetic exchange interactions in Mn:GaN based diluted magnetic semiconductors.

  11. Paramagnetic behavior at room temperature of Zn{sub 1−x}Mn{sub x}Te nanocrystals grown in a phosphate glass matrix by the fusion method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra S., E-mail: alessandra@mestrado.ufu.br [Universidade Federal de Uberlândia, Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Uberlândia CEP: 38400-902 (Brazil); Franco, Adolfo; Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, C. P. 131, 74001-970 Goiânia, GO (Brazil); Dantas, Noelio O. [Universidade Federal de Uberlândia, Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Uberlândia CEP: 38400-902 (Brazil)

    2015-10-25

    This work reports on the synthesis and characterization of Zn{sub 1−x}Mn{sub x}Te nanocrystals (NCs) with Mn doping concentration x varying from 0.000 to 0.800. Physical properties of samples were studied by transmission electron microscopy, magnetic force microscopy, vibrating sample magnetometry and electron paramagnetic resonance spectroscopy. Room temperature experiments revealed the size of NCs, the growth of magnetization and non-linear dependence of magnetic susceptibility on the concentration of Mn{sup 2+} ions; samples with low concentrations revealed the presence of ions in the interior and near the surface of the NCs. The results obtained confirm the paramagnetic behavior of Zn{sub 1−x}Mn{sub x}Te NCs at room temperature.

  12. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  13. Study of the Local Environment of Mn Ions Implanted in GaSb

    International Nuclear Information System (INIS)

    Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.T.; Barcz, A.; Hallen, A.; Arvanitis, D.

    2010-01-01

    The first attempts to establish an implantation process leading to formation of ferromagnetic inclusions inside the GaSb matrix are presented. Gallium antimonide containing ferromagnetic MnSb precipitations is considered as a promising material for novel spintronic applications. It is possible to obtain such inclusions during the molecular beam epitaxy (MBE) growth. However, for commercial application it would be also important to find an optimal way of producing this kind of inclusions by Mn ions implantation. In order to achieve this goal, several parameters of implantation and post annealing procedures were tested. The ion energy was kept at 10 keV or 150 keV and four different ion doses were applied, as well as various annealing conditions. The analysis of X-ray absorption spectra allowed to estimate the local atomic order around Mn atoms. Depending on the implantation energy and annealing processes, the manganese oxides or manganese atoms located in a heavily defected GaSb matrix were observed. The performed analysis helped in indicating the main obstacles in formation of MnSb inclusions inside the GaSb matrix by Mn ion implantation. (author)

  14. Magnetic properties of Mn-oxide nanoparticles dispersed in an amorphous SiO2 matrix

    Science.gov (United States)

    Milivojević, D.; Babić-Stojić, B.; Jokanović, V.; Jagličić, Z.; Makovec, D.

    2011-03-01

    Samples of Mn-oxide nanoparticles dispersed in an amorphous SiO2 matrix with manganese concentration 0.7 and 3 at% have been synthesized by a sol-gel method. Transmission electron microscopy analysis has shown that the samples contain agglomerates of amorphous silica particles 10-20 nm in size. In silica matrix two types of Mn-rich particles are dispersed, smaller nanoparticles with dimensions between 3 and 10 nm, and larger crystalline areas consisting of aggregates of the smaller nanoparticles. High-temperature magnetic susceptibility study reveals that dominant magnetic phase at higher temperatures is λ-MnO2. At temperatures below TC=43 K strong ferrimagnetism originating from the minor Mn3O4 phase masks the relatively weak magnetism of λ-MnO2 with antiferromagnetic interactions. Magnetic field dependence of the maximum in the zero-field-cooled magnetization for both the samples in the vicinity of 40 K, and a frequency shift of the real component of the ac magnetic susceptibility in the sample with 3 at% Mn suggest that the magnetic moments of the smaller Mn3O4 nanoparticles with dimensions below 10 nm are exposed to thermally activated blocking process just below the Curie temperature TC. Appearance of a maximum in the zero-field-cooled magnetization for both the samples below 10 K indicates possible spin glass freezing of the magnetic moments at low temperatures which might occur in the geometrically frustrated Mn sublattice of the λ-MnO2 crystal structure.

  15. Tuning the bimetallic amide-imide precursor system to make paramagnetic GaMnN nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Drygas, Mariusz [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Janik, Jerzy F., E-mail: janikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Musial, Michal [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Gosk, Jacek [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Twardowski, Andrzej, E-mail: andrzej.twardowski@fuw.edu.pl [University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warszawa (Poland)

    2016-09-01

    A bimetallic molecular system made of gallium (III) tris(dimethyl)amide Ga(NMe{sub 2}){sub 3} and manganese (II) bis(trimethylsilyl)amide Mn[N(SiMe{sub 3}){sub 2}]{sub 2} (Me = CH{sub 3}, fixed initial Mn-content 10 at.%) was subjected to ammonolysis in refluxing/liquid ammonia. Upon isolation at room temperature, the amide-imide mixed metal precursor was pyrolyzed at elevated temperatures under an ammonia flow by two different routes. Route 1 consisted of a direct nitridation at high temperatures of 500, 700 or 900 °C. In route 2, a low temperature pyrolysis at 150 °C was applied prior to nitridation at the same final temperatures as in route 1. All nanopowders were characterized by XRD diffraction, FT-IR spectroscopy, and SEM/EDX microscopy and analysis. Thorough magnetization measurements in function of magnetic field and temperature were carried out with a SQUID magnetometer. In all samples, the paramagnetic phase of GaMnN was accompanied by an antiferromagnetic by-product linked to a Mn-containing species from decomposition and oxidation of Mn-precursor excess. The Mn-contents in the crystalline GaMnN, i.e., Mn-incorporated in GaN crystal lattice, were of the order of 2–3 at.% mostly independent on the nitridation route whereas the latter had a pronounced effect on amounts of the antiferromagnetic by-product. - Highlights: • New bimetallic precursor system for conversion to GaN/Mn nanopowders was designed. • Two conversion routes were applied with precursor nitridation at 500, 700 or 900 °C. • Prepared nanopowders were thoroughly characterized including magnetic measurements. • The major product was the gallium nitride Mn-doped phase GaMnN with 2–3 at.% of Mn.

  16. Investigations of a new nanostructured Si-material by spectral response and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, Z.T.; Ley, M. [Laboratoire PHASE, CNRS UPR 292, 23 rue du Loess, F-67037 Strasbourg cedex 2 (France); Turek, P.; Bernard, M. [Institut Charles Sadron, CNRS UPR 22, 6 rue Boussingault, F-67083 Strasbourg cedex (France)

    2002-08-01

    Electron spin resonance (or electron paramagnetic resonance) was applied to analyze multi-interface solar cells with an active amorphized substructure inserted in the emitter. The nanostructure was realized by P ion implantation followed by an adequate thermal treatment to yield very sharp a-Si/c-Si heterointerfaces. The authors have investigated especially the substructure and the transition zones between the two Si phases, which is particularly interesting because of the stress induced by the density difference of the two Si phases. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  17. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    International Nuclear Information System (INIS)

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-01-01

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 °C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 °C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {311} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  18. Amorphization and recrystallization in MeV ion implanted InP crystals

    International Nuclear Information System (INIS)

    Xiong, F.; Nieh, C.W.; Jamieson, D.N.; Vreeland, T. Jr.; Tombrello, T.A.

    1988-01-01

    A comprehensive study of MeV- 15 N-ion-implanted InP by a variety of analytical techniques has revealed the physical processes involved in MeV ion implantation into III-V compound semiconductors as well as the influence of post-implantation annealing. It provides a coherent picture of implant distribution, structural transition, crystalline damage, and lattice strain in InP crystals induced by ion implantation and thermal annealing. The experimental results from the different measurements are summarized in this report. Mechanisms of amorphization by implantation and recrystallization through annealing in MeV-ion-implanted InP are proposed and discussed in light of the results obtained

  19. Conventional electron paramagnetic resonance of Mn2+ in synthetic hydroxyapatite at different concentrations of the doped manganese

    Science.gov (United States)

    Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.

  20. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    Science.gov (United States)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R. I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.

    2014-04-01

    Polyimide (PI), polyetheretherketone (PEEK) and polyethylene terephthalate (PET) foils were implanted with 80 keV Mn+ ions at room temperature at fluencies of 1.0 × 1015-1.0 × 1016 cm-2. Mn depth profiles determined by RBS were compared to SRIM 2012 and TRIDYN simulations. The processes taking place in implanted polymers under the annealing procedure were followed. The measured projected ranges RP differ slightly from the SRIM and TRIDYN simulation and the depth profiles are significantly broader (up to 2.4 times) than those simulated by SRIM, while TRIDYN simulations were in a reasonable agreement up to the fluence 0.5 × 1016 in PEEK. Oxygen and hydrogen escape from the implanted layer was examined using RBS and ERDA techniques. PET, PEEK and PI polymers exhibit oxygen depletion up to about 40% of its content in virgin polymers. The compositional changes induced by implantation to particular ion fluence are similar for all polymers examined. After annealing no significant changes of Mn depth distribution was observed even the further oxygen and hydrogen desorption from modified layers appeared. The surface morphology of implanted polymers was characterized using AFM. The most significant change in the surface roughness was observed on PEEK. Implanted Mn atoms tend to dissipate in the polymer matrix, but the Mn nanoparticles are too small to be observed on TEM micrographs. The electrical, optical and structural properties of the implanted and sub-sequently annealed polymers were investigated by sheet resistance measurement and UV-Vis spectroscopy. With increasing ion fluence, the sheet resistance decreases and UV-Vis absorbance increases simultaneously with the decline of optical band gap Eg. The most pronounced change in the resistance was found on PEEK. XPS spectroscopy shows that Mn appears as a mixture of Mn oxides. Mn metal component is not present. All results were discussed in comparison with implantation experiment using the various ion species (Ni, Co

  1. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    International Nuclear Information System (INIS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R.I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.

    2014-01-01

    Polyimide (PI), polyetheretherketone (PEEK) and polyethylene terephthalate (PET) foils were implanted with 80 keV Mn + ions at room temperature at fluencies of 1.0 × 10 15 –1.0 × 10 16 cm −2 . Mn depth profiles determined by RBS were compared to SRIM 2012 and TRIDYN simulations. The processes taking place in implanted polymers under the annealing procedure were followed. The measured projected ranges R P differ slightly from the SRIM and TRIDYN simulation and the depth profiles are significantly broader (up to 2.4 times) than those simulated by SRIM, while TRIDYN simulations were in a reasonable agreement up to the fluence 0.5 × 10 16 in PEEK. Oxygen and hydrogen escape from the implanted layer was examined using RBS and ERDA techniques. PET, PEEK and PI polymers exhibit oxygen depletion up to about 40% of its content in virgin polymers. The compositional changes induced by implantation to particular ion fluence are similar for all polymers examined. After annealing no significant changes of Mn depth distribution was observed even the further oxygen and hydrogen desorption from modified layers appeared. The surface morphology of implanted polymers was characterized using AFM. The most significant change in the surface roughness was observed on PEEK. Implanted Mn atoms tend to dissipate in the polymer matrix, but the Mn nanoparticles are too small to be observed on TEM micrographs. The electrical, optical and structural properties of the implanted and sub-sequently annealed polymers were investigated by sheet resistance measurement and UV–Vis spectroscopy. With increasing ion fluence, the sheet resistance decreases and UV–Vis absorbance increases simultaneously with the decline of optical band gap E g . The most pronounced change in the resistance was found on PEEK. XPS spectroscopy shows that Mn appears as a mixture of Mn oxides. Mn metal component is not present. All results were discussed in comparison with implantation experiment using the various ion

  2. Model of the recrystallization mechanism of amorphous silicon layers created by ion implantation

    International Nuclear Information System (INIS)

    Drosd, R.M.

    1979-11-01

    The recrystallization behavior during annealing of thin films of amorphous (α) silicon, in contact with a single crystal silicon substrate (referred to as C), has been studied in the transmission electron microscope (TEM). The amorphous film is created during high dose phosphorus ion implantation at 100 keV. It was found that the crystal substrate orientation and the implantation temperature have dramatic effects on the recrystallizaton rate, and the defect microstructure produced during annealing. Specifically, (100) wafers implanted at 77 0 K contain only a low density of dislocation loops, but when the same wafer is implanted at room temperature the dislocation density is increased drastically. (111) wafers, when implanted at 77 0 K show a high density of microtwins, but as the implantation temperature is increased a gradual increase in the density of dislocation loops is observed along with a reduction of the microtwins. At an implantation temperature of about 100 0 C both orientations give an identical defect microstructure when annealed, which is a dense tangle of dislocations

  3. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  4. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  5. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Science.gov (United States)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  6. Lattice sites, charge states and spin–lattice relaxation of Fe ions in "5"7Mn"+ implanted GaN and AlN

    International Nuclear Information System (INIS)

    Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Gunnlaugsson, H.P.; Johnston, K.; Mantovan, R.; Mølholt, T.E.; Ncube, M.; Shayestehaminzadeh, S.; Gíslason, H.P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    2016-01-01

    The lattice sites, valence states, resulting magnetic behaviour and spin–lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive "5"7Mn"+ ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV γ-rays from the "5"7Fe Mössbauer state (populated from the "5"7Mn β"− decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100–800 K show the presence of magnetically split sextets in the “wings” of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe"3"+ with rather slow spin–lattice relaxation rates which follow a T"2 temperature dependence characteristic of a two-phonon Raman process. - Highlights: • The majority of the Fe ions are in the 2+ state, located on near substitutional sites associated with vacancy type defects. • A significant fraction of the Fe ions are in the paramagnetic Fe"3"+ state. • Spin–lattice relaxation of Fe"3"+ in both GaN and AlN follows a two-phonon Raman process.

  7. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  8. Magnetic and electrical transport properties of delta-doped amorphous Ge:Mn magnetic semiconductors

    International Nuclear Information System (INIS)

    Li, H.L.; Lin, H.T.; Wu, Y.H.; Liu, T.; Zhao, Z.L.; Han, G.C.; Chong, T.C.

    2006-01-01

    We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature

  9. Tribological studies of nitrogen ion implantation induced overlayer coatings of amorphous carbon and carbonitride phase

    International Nuclear Information System (INIS)

    Kumar, N.; Srivastava, S.K.; Pandian, R.; Bahuguna, Ashok; Dhara, S.; Nair, K.G.M.; Dash, S.; Tyagi, A.K.

    2013-01-01

    Highlights: ► Composite phase of amorphous carbon and carbonitride phase is observed on the N + ion implanted surface of steel. ► Advanced properties of implanted surface shows low friction coefficient of ∼0.05. ► High wear resistance 4.3 × 10 −8 mm 3 /Nm of N + implanted surface is obtained. -- Abstract: Morphology and microstructure of N + ion implanted 316 LN steel are found to modify with irradiated substrate temperature. At low temperature of 100 °C, self-similar micro-ripples are formed but at high temperature of 200 and 300 °C, micro-pores and blisters are observed on the implanted surface. Chemically modified surface is found to consist of amorphous carbon and carbonitride phase. Such composite characteristic of implanted steel surface at irradiated substrate temperature of 300 °C shows improved tribological properties with low friction coefficient and high wear resistance

  10. Lattice sites, charge states and spin–lattice relaxation of Fe ions in {sup 57}Mn{sup +} implanted GaN and AlN

    Energy Technology Data Exchange (ETDEWEB)

    Masenda, H., E-mail: hilary.masenda@wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Naidoo, D. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4000 (South Africa); iThemba LABS, PO Box 725, Somerset West 7129 (South Africa); Gunnlaugsson, H.P. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Johnston, K. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); Mantovan, R. [Laboratorio MDM, IMM-CNR, Via Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mølholt, T.E. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); Ncube, M. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Shayestehaminzadeh, S. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 5274 Aachen (Germany); Gíslason, H.P. [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Langouche, G. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Ólafsson, S. [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Weyer, G. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus (Denmark)

    2016-03-01

    The lattice sites, valence states, resulting magnetic behaviour and spin–lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive {sup 57}Mn{sup +} ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV γ-rays from the {sup 57}Fe Mössbauer state (populated from the {sup 57}Mn β{sup −} decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100–800 K show the presence of magnetically split sextets in the “wings” of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe{sup 3+} with rather slow spin–lattice relaxation rates which follow a T{sup 2} temperature dependence characteristic of a two-phonon Raman process. - Highlights: • The majority of the Fe ions are in the 2+ state, located on near substitutional sites associated with vacancy type defects. • A significant fraction of the Fe ions are in the paramagnetic Fe{sup 3+} state. • Spin–lattice relaxation of Fe{sup 3+} in both GaN and AlN follows a two-phonon Raman process.

  11. Ion implantation - a useful tool for the preparation of new materials

    International Nuclear Information System (INIS)

    Buckel, W.

    1975-01-01

    The following experimental results on ion implantation in superconductors are discussed: 1) Implantation of paramagnetic manganese ions into the superconductors Sn, Pb, Hg lowers the transition temperature. 2) Sn implanted with Mn exhibits the Kondo effect, a minimum in the resistivity versus temperature immediately above Tsub(c). 3) Pd may become superconducting, when charged with H at ratios H/Pd > 0.8. Tsub(c) first increases with concentration and then drops again. The increase in Tsub(c) is still larger for Pd-noble metal alloys charged with H(D). (WBU) [de

  12. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    Science.gov (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  13. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  14. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  15. Improvement of tribological properties of tool steels implanted with C+Ti

    International Nuclear Information System (INIS)

    Roman, E.; Segovia, J.L. de; Rodriguez, R.; Sanz, A.

    1995-01-01

    The chemical state and tribological properties of tempered and annealed steels (95MnCrW5 and 30CrMoV12) implanted with C+Ti has been studied by using the Auger sputtering depth profile and the ball on disk method to determine the wear parameters. The sample hardness was measured by the Vickers method. Friction coefficients are reduced by a factor of 0.8 for samples of steel 95MnCrW5 and by a factor of 0.4 for samples of 30CrMoV12 steel. The implanted 95MnCrW5 samples show a phase of mixed amorphous carbon and carbides. (author)

  16. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  17. Ferromagnetism and transport in Mn and Mg co-implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Gurin, P V [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Danilov, Yu A [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Malysheva, E I [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Horikoshi, Y [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan); Onomitsu, K [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan)

    2007-03-15

    We investigated the influence of Mn and Mg co-implantation accompanied by rapid thermal annealing on magnetic and galvanomagnetic properties of p-GaAs. We characterized the samples with SQUID magnetometry and magnetotransport measurements in the temperature interval 4.2 Kimplanted samples. Temperature dependences of resistance, magnetoresistance and Hall effect have been measured in the temperature range 4.2{<=}T{<=}300 K. The anomalous Hall effect is visible up to 195 K and shows influence of ferromagnetism of Ga{sub 1-x}Mn{sub x}As solid solution on galvanomagnetic properties of holes. Above this temperature, ferromagnetism survives due to the MnAs and Ga{sub 1-x}Mn{sub x} clusters. The magnetoresistance changes from colossal negative to enhanced positive with increasing temperature near T = 35 K.

  18. Evidence of emerging Griffiths singularity in La{sub 0.5} Sr{sub 0.5} MnO{sub 3} nanocrystalline probed by magnetization and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiyuan [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fan, Jiyu, E-mail: jiyufan@nuaa.edu.cn [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xu, Lisa [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tong, Wei [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Dazhi [Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); He, Xun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Lei; Pi, Li; Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-01

    We present an investigation of Griffiths singularity in La{sub 0.5} Sr{sub 0.5} MnO{sub 3} nanocrystalline by means of magnetic susceptibility and electron paramagnetic resonance (EPR). An unusual platform was found in paramagnetic region. Based on the analysis of EPR spectrum and magnetization variation across the whole temperature range of phase transition, we confirm it is due to the presence of Griffiths singularity rather than a superparamagnetic state in the nanocrystalline system. Such a singularity phase is constituted with some correlated ferromagnetic clusters which embed in paramagnetic matrix. Although they form ferromagnetic spin correlation, the system do not yield any spontaneous magnetization. According to core–shell model, the emergence of Griffiths singularity can be considered due to the presence of local ferromagnetic fluctuations originated from surface spin disorder as the sample size is confined to nanoscale. - Highlights: • Griffiths singularity rather than superparamagnetism occurs in La{sub 0.5}Sr{sub 0.5}MnO{sub 3} nanoparticals. • The sample’s size reduced to nanoscale results in the short-range ferromagnetic interaction. • The core-shell model is used to understand the formation of Griffiths phase in nanometer La{sub 0.5}Sr{sub 0.5}MnO{sub 3}.

  19. Ferromagnetic and paramagnetic magnetization of implanted GaN:Ho,Tb,Sm,Tm films

    Energy Technology Data Exchange (ETDEWEB)

    Maryško, M., E-mail: marysko@fzu.cz; Hejtmánek, J.; Laguta, V. [Institute of Physics of ASCR v.v.i., Cukrovarnická 10, 162 00 Prague 6 (Czech Republic); Sofer, Z.; Sedmidubský, D.; Šimek, P.; Veselý, M. [Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague 6 (Czech Republic); Mikulics, M. [Peter Grünberg Institut, PGI-9, Forschung Centrum, Jülich D-52425 (Germany); JARA, Fundamentals of Future Information Technology, D52425 Jülich (Germany); Buchal, C. [Peter Grünberg Institut, PGI-9, Forschung Centrum, Jülich D-52425 (Germany); Macková, A.; Malínský, P. [Nuclear Physics Institute of the ASCR v.v.i., 250 68 Řež (Czech Republic); Department of Physics, Faculty of Science, J.E.Purkinje University, České mládeže, 400 96 Ústí nad Labem (Czech Republic); Wilhelm, R. A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany)

    2015-05-07

    The SQUID magnetic measurements were performed on the GaN films prepared by metal-organic vapour phase epitaxy and implanted by Tb{sup 3+}, Tm{sup 3+}, Sm{sup 3+}, and Ho{sup 3+} ions. The sapphire substrate was checked by the electron paramagnetic resonance method which showed a content of Cr{sup 3+} and Fe{sup 3+} impurities. The samples 5 × 5 mm{sup 2} were positioned in the classical straws and within an estimated accuracy of 10{sup −6 }emu, no ferromagnetic moment was detected in the temperature region of 2–300 K. The paramagnetic magnetization was studied for parallel and perpendicular orientation. In the case of GaN:Tb sample, at T = 2 K, a pronounced anisotropy with the easy axis perpendicular to the film was observed which can be explained by the lowest quasi-doublet state of the non-Kramers Tb{sup 3+} ion. The Weiss temperature deduced from the susceptibility data using the Curie-Weiss (C-W) law was found to depend substantially on the magnetic field.

  20. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    Science.gov (United States)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  1. Nanostructured amorphous MnO{sub 2} prepared by reaction of KMnO{sub 4} with triethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanjing [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Liu Enhui, E-mail: liuenhui99@sina.com.c [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Li Limin; Huang Zhengzheng; Shen Haijie; Xiang Xiaoxia [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2010-09-03

    Amorphous manganese dioxide is prepared by reaction of potassium permanganate with an organic reductant triethanolamine. The effect of heat-treatment temperature is studied on the characteristics of the materials. Power X-ray diffraction (XRD), scanning electron microscope (SEM) and N{sub 2} adsorption and desorption measurements are employed to investigate crystalline structure, surface morphology, the specific surface area and the pore size distribution. It is found that when the annealing temperature reaches up to 400 {sup o}C, the crystalline convert to {alpha}-MnO{sub 2} from amorphous MnO{sub 2}. The electrochemical characteristics of the prepared MnO{sub 2} powder are characterized by means of cyclic voltammetry (CV), experiments in 1.0 mol L{sup -1} Na{sub 2}SO{sub 4} electrolyte. The specific capacitance (SC) value is 251 F g{sup -1} that is obtained from the product annealing at 350 {sup o}C at a CV scan rate of 2 mV s{sup -1}. And charging-discharging measurement reveals the good stability of the prepared material.

  2. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Husnain, G

    2009-01-01

    Mn ions were implanted into GaN thin films with six doses ranging from 10 14 to 5 x 10 16 cm -2 and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M s and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  3. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Sharif, Rehana [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Husnain, G, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2009-07-07

    Mn ions were implanted into GaN thin films with six doses ranging from 10{sup 14} to 5 x 10{sup 16} cm{sup -2} and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M{sub s} and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  4. Electronic structure of xenon implanted with low energy in amorphous silicon

    International Nuclear Information System (INIS)

    Barbieri, P.F.; Landers, R.; Oliveira, M.H. de; Alvarez, F.; Marques, F.C.

    2007-01-01

    Electronic structure of Xe implanted in amorphous silicon (a-Si) films are investigated. Xe atoms were implanted with low energy by ion beam assisted deposition (IBAD) technique during growth of the a-Si films. The Xe implantation energy varied in the 0-300 eV energy range. X-ray photoelectron spectroscopy (XPS), X-ray Auger excited spectroscopy (XAES) and X-ray absorption spectroscopy (XAS) were used for investigating the Xe electronic structure. The Xe M 4 N 45 N 45 transitions were measured to extract the Auger parameter and to analyze the initial state and relaxation contributions. It was found that the binding energy variation is mainly due to initial state contribution. The relaxation energy variation also shows that the Xe trapped environment depends on the implantation energy. XAS measurements reveals that Xe atoms are dispersed in the a-Si matrix

  5. Electrical properties of the regrown implantation-induced amorphous layer on (1 1-bar 0 0)- and (1 1 2-bar 0)-oriented 6H-SiC

    International Nuclear Information System (INIS)

    Nakamura, Tomonori; Tanabe, Hitoshi; Hitomi, Takeshi; Satoh, Masataka

    2003-01-01

    In the (1 1-bar 0 0) and (1 1 2-bar 0)-oriented 6H-SiC, the electrical properties and activation process of the implanted phosphorus in the layer regrown from the implantation-induced amorphous layer are investigated by means of Hall effect measurement and Rutherford backscattering spectrometry. The samples are implanted by 60 keV phosphorus ions at room temperature with doses of 3 x 10 15 and 1 x 10 15 cm -2 to form implantation-induced amorphous layer and the partially disordered implant-layer, respectively. The implanted phosphorus in the implantation-induced amorphous layer can be electrically activated by annealing at 1000 deg. C. The electrical activity for the case of the implantation-induced amorphous layer (ratio of sheet carrier concentration to ion dose) is 2-3 times larger than that for the case of the partially disordered implant-layer for the annealing temperature of 1500 deg. C

  6. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    Graphical abstract: A novel hybrid of hollow amorphous MnSnO 3 nanoparticles and nitrogen-doped reduced graphene oxide was fabricated. The unique structure and well-combination of both components account for the ultra long-term cyclic life with high reversible capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . - Highlights: • Novel hybrid of MnSnO 3 and nitrogen-doped reduced graphene oxide was fabricated. • The MnSnO 3 nanoparticles possess amorphous and hollow structure in the composite. • The excellent electrochemical performance benefits from unique nanostructure. • The reversible capacity of as-prepared hybrid is 610 mAh g −1 after 1000 cycles. • A long-term life with 97.3% capacity retention over 1000 cycles was obtained. - Abstract: Tin-based metal oxides usually suffer from severe capacity fading resulting from aggregation and considerable volume variation during the charge/discharge process in lithium ion batteries. In this work, a novel nanocomposite (MTO/N-RGO) of hollow amorphous MnSnO 3 (MTO) nanoparticles and nitrogen-doped reduced graphene oxide (N-RGO) has been designed and synthesized by a two-step method. Firstly, the nitrogen-doped graphene nanocomposite (MTO/N-RGO-P) with MnSn(OH) 6 crystal nanoparticles was synthesized by a facile solvothermal method. Subsequently, the MTO/N-RGO nanocomposite was obtained through the post heat treatment of MTO/N-RGO-P. The designed heterostructure and well-combination of the hollow amorphous MTO and N-RGO matrix can accelerate the ionic and electronic transport, and simultaneously accommodate the aggregation and volume variation of MTO nanoparticles during the lithiation–delithiation cycles. The as-prepared hybrid of MTO and N-RGO (MTO/N-RGO) exhibits a high reversible capacity of 707 mAh g −1 after 110 cycles at 200 mA g −1 , superior rate capability, and long-term cyclic life with high capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . Superior capacity retention of

  7. Local structure of 57Mn/57Fe implanted into lithium hydride

    International Nuclear Information System (INIS)

    Miyazaki, Jun; Nagatomo, Takashi; Kobayashi, Yoshio

    2013-01-01

    We report the in-beam Moessbauer Spectra of 57 Mn implanted into polycrystalline LiH at under room temperature. As compared with the result of DFT calculations, 57 Fe atoms were implanted into Li or H substitutional site in LiH crystal. With an increase the sample temperature, we could observe the decrease of lattice defects. (author)

  8. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  9. Amorphization threshold in Si-implanted strained SiGe alloy layers

    International Nuclear Information System (INIS)

    Simpson, T.W.; Love, D.; Endisch, E.; Goldberg, R.D.; Mitchell, I.V.; Haynes, T.E.; Baribeau, J.M.

    1994-12-01

    The authors have examined the damage produced by Si-ion implantation into strained Si 1-x Ge x epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si 1-x Ge x (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si 1-x Ge x , and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer

  10. Effect of paramagnetic manganese cations on H-1 MRS of the brain

    DEFF Research Database (Denmark)

    Madsen, K. S.; Holm, David Alberg; Søgaard, L. V.

    2008-01-01

    Manganese cations (Mn2+) call be used as all intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn2+ is neurotoxic and play influence the concentration of H-1 MR-detectable metabolites. Furthermore, the paramagnetic Mn...

  11. In-depth magnetic characterization of a [2 × 2] Mn(III) square grid using SQUID magnetometry, inelastic neutron scattering, and high-field electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Konstantatos, Andreas; Bewley, Robert; Barra, Anne Laure

    2016-01-01

    . Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single...

  12. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  13. Production of amorphous metal layers using ion implantation and investigation of the related modification of some surface properties

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vu Hoang Lam.

    1993-01-01

    Amorphous layers were produced by implanting B + ions into Al at 50 keV. The modification of the electrochemical corrosion resistance and the mechanical strength of implanted specimen was investigated. (author). 2 refs, 1 tab, 2 figs

  14. Study of Paramagnetic Monohydrates MeSO4.1H2O (Me = Mn2+, Co2+, Fe2+, Ni2+, Cu2+

    Directory of Open Access Journals (Sweden)

    Jelšovská Kamila

    2000-09-01

    Full Text Available Nuclear magnetic resonance (NMR of protons of crystrallization water in isomorphous paramagnetic monohydrates MeSO4.1H2O with Me = Mn2+ , Co2+ , Fe2+ , Ni2+ , Cu2+ is studied in the present paper. Several physically important parameters characterizing the studied substances were derived from the NMR spectra. In this paper we analysed the dependences of the NMR second moment M2 on the magnitude of the external magnetic field induction Br and the temperature. The proton NMR spectra in paramagnetic hydrates have an asymmetric form caused by the anisotropy of the local magnetic field acting on resonating nuclei and their second moments, M2, depend linearly on the square of the external magnetic field Br. The parameters M20 (the part of the second moment M2 which corresponds to the nuclear dipole-dipole interactions and á which characterize nuclear dipole-dipole interactions of protons and paramagnetic ions, respectively, are derived from experimentally obtained dependences of M2 vs Br2. The measurements were performed at the room temperature. Calculations were realized using the approximation where two nearest neighbour ions Me2+ to each water molecule are considered. The temperature dependence of the second moment, which was realised in the temperature range 123-313 K, was more informative than the field one. Besides the individual dependences M2(T measured at fr1 and fr2 we analysed the temperature dependence of the difference ∆M2(T. Beside the second moment M20 the Curie-Weiss constant è and the magnetic moment µi of paramagnetic ions were determined from the temperature dependences. The parameters è and M20 were determined directly from the experimental data. Some knowledge on the crystalline structure for the studied substance was required for the calculation of the magnetic moment µi. By means of the classification of substances according to the Curie-Weiss parameter, the negative value of the temperature parameter è for all studied

  15. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  16. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  17. Internal friction evidence of intrinsic inhomogeneity in the paramagnetic region of La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Ma, Y.Q.; Song, W.H.; Zhao, B.C.; Zhang, R.L.; Yang, J.; Lu, W.J.; Du, J.J.; Sun, Y.P.

    2005-01-01

    We have investigated the optimally doped manganite La 0.67 Ca 0.33 MnO 3 by measurements of the resistivity ρ, magnetization M, Young's modulus E and internal friction Q - 1 . A remarkable peak in the Q - 1 curve is observed in the paramagnetic (PM) region, and it is attributed to the formation of magnetic clusters. Furthermore, this peak is characteristic of thermally activated relaxation. Our observation is discussed combined with the analysis of the electrical transport and magnetic properties in PM region

  18. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2

    International Nuclear Information System (INIS)

    Bonafos, C.; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R.

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO 2 layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates

  19. A simple chemical synthesis of amorphous carbon nanotubes–MnO{sub 2} flake hybrids for cold cathode application

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sourav [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); Banerjee, Diptonil; Das, Nirmalya Sankar [School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, Kalyan Kumar, E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India); School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India)

    2015-08-30

    Highlights: • Amorphous carbon nanotubes (aCNTs) have been synthesized chemically. • The walls of the aCNTs have been anchored by MnO{sub 2} nanoflakes. • It is seen for the first time that MnO{sub 2} modified aCNTs show much better field emission property. • Experimental result has also been supported theoretically. • This can acts as doorstep to develop a new hybrid system as a novel cold cathode material. - Abstract: A simple approach has been implemented to synthesize amorphous carbon nanotubes (a-CNTs) and manganese oxide (MnO{sub 2}) hybrid nanostructure at temperature as low as ∼250 °C in open atmosphere. Microscopic studies of the samples revealed that the walls of the a-CNTs were coated uniformly by MnO{sub 2} nanoflakes. The composition of the as prepared sample was studied with the help of energy dispersive X-ray and X-ray photoelectron spectroscopy. Electron field emission study was done in a custom built high vacuum field emission setup for the prepared a-CNT and manganese oxide (MnO{sub 2}) hybrid nanostructure. It is seen that the performance of the a-CNTs as cold cathode emitter has been enhanced greatly when MnO{sub 2} nanoflakes were coated uniformly over it. The turn on field has been reduced from 7.17 to value as low as 3.82 V/mm with enhancement factor increases from 2428 to 6965. Finite element based simulation study theoretically confirms the enhancement of field emission properties of as prepared MnO{sub 2} nanoflake coated a-CNTs. The results have been explained due to enhanced surface roughness leading to higher enhancement factor and overall increase of emission sites.

  20. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    Science.gov (United States)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  1. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system

    International Nuclear Information System (INIS)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente; Alcala, Rafael

    1996-01-01

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author)

  2. Thermodynamic properties of paramagnetic α - and β -Mn from first principles: The effect of transverse spin fluctuations

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic, magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field theoretical models to describe the different types of disorder and then we connect each layer of theory to the others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational) degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988), 10.1103/PhysRevB.37.790] of the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal expansion coefficient, and heat capacity of both phases show a good agreement with available experimental data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on site IV in α -Mn and site I in β -Mn on the thermodynamic properties of these two phases. Similar to the findings of experimental studies, we conclude that magnetic moment on site IV in α -Mn is not of a localized character. However, a similar analysis suggests that the magnetic moment of site I in β -Mn should be treated as localized.

  3. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C. E-mail: bonafos@el.ub.es; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO{sub 2} layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates.

  4. Random magnetic anisotropy in thin films of amorphous Mn48B52

    International Nuclear Information System (INIS)

    Kistenmacher, T.J.; Bryden, W.A.; Moorjani, K.

    1989-01-01

    While crystalline MnB is a ferromagnet (T c =573 K), rf diode-sputtered thin films of composition Mn 48 B 52 are amorphous as ascertained by x-ray scattering and exhibit a low-field, hysteretic, static magnetization peak characteristic of a spin glass. High-field (up to 44 kG) static magnetization data at temperatures ranging between 6 and 200 K are analyzed within the random anisotropy model of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)]. In this model, the field-dependent magnetization at a given temperature is expressed as M(H)=M(0)(1-CH -1/2 )+χ'H, where the lead term follows from the analysis of a ferromagnet with a wandering axis (FWA) and the second term accounts for contributions from induced moments. The T 3/2 dependence of the saturation magnetization of the FWA contribution, M(0), at low temperatures is suggestive of spin-wave excitations, while the temperature dependence of the fitting parameters C and χ' consistently identify several characteristic temperatures associated with the magnetic behavior of a-Mn 48 B 52 , including the low-field spin-glass transition temperature and Curie temperature and the curvature crossover temperature (established from a classical Arrott plot) that separates the FWA state and a pseudoparamagnetic limit

  5. Magnetism in V-/Mn-doped ZnO layers fabricated on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; El-Shaer, A.; Schlenker, E.; Bakin, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Reuss, F.; Kling, R.; Schoch, W.; Limmer, W. [University Ulm, Department of Semiconductor Physics, Ulm (Germany); Ahlers, H.; Siegner, U.; Sievers, S.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Eisenmenger, J.; Mueller, T.; Ziemann, P. [University Ulm, Department of Solid State Physics, Ulm (Germany); Huebel, A.; Denninger, G. [Universitaet Stuttgart, 2. Physkalisches Institut, Stuttgart (Germany)

    2007-07-15

    Doping ZnO with transition metals (TM) is an obvious approach to produce diluted magnetic semiconductors for magnetoelectronic and spintronic applications. We have carried out experimental studies on the fabrication and characterisation of Mn-doped ZnO layers and V-doped ZnO layers and nanorods, the results of which are reviewed in this paper. From SQUID measurements, both epitaxial and implanted ZnMnO layers show paramagnetic behaviour. Epitaxial ZnVO layers show ferromagnetic SQUID signals, but the presence of any secondary phases in the ZnVO layers may not be ruled out. We also show that the used Al{sub 2}O{sub 3} substrates produce a ferromagnetic SQUID signal, that complicates the analysis of magnetisation data and hence the confirmation of ferromagnetism only from SQUID results. (orig.)

  6. Electron paramagnetic resonance and AC susceptibility studies of Mn and Gd doped 1:2:3 superconductors

    International Nuclear Information System (INIS)

    La Robina, M.A.

    1997-01-01

    For many years superconductivity was considered to be a low temperature phenomenon occurring below ∼ 25K. All this changed in April 1986 when J. G. Bednorz and K. A. Muller showed that the oxide La 2-x Ba x CuO 4 becomes a superconductor at ∼ 30K. Later in December 1986 the oxides La 2-x Sr x CuO 4 and La 2-x Ba x CuO 4 synthesised under high pressure, were shown to superconduct at ∼ 40K and ∼ 50K, respectively. Finally in February 1987, Chu synthesised the classic superconductor YBa 2 Cu 3 O 6.8 , the so-called 1:2:3 material, which has a critical temperature circa 92K. In this thesis, electron paramagnetic resonance (EPR) and susceptibility measurements are reported on various superconductors. In 1987 Bowden et al., showed that pure phase 1:2:3 samples are characterised by an absence of Cu EPR signals. This contrasts sharply with the Green phase material, Y 2 Ba 1 Cu 1 O 5 , which shows a very large EPR signal with a g eff of 2.08. In an attempt to induce EPR signals, Mn doped 1:2:3 samples have been synthesised and characterised with EPR , AC susceptibility, XRD and SEM measurements. It is shown that Mn EPR signals are not evident in the Mn doped samples with a g eff of 2.09. Also, below T c the EPR signals of the lightly doped Mn samples vanish. It is argued that this is due to fluxoids motion within the superconductor, which gives rise to very large non-reproducible signals. It is suggested that the signals originate from Cu, impurity contaminants and multiple phases produced when the 1:2:3 superconductor is doped with Manganese (author)

  7. Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor

    International Nuclear Information System (INIS)

    Pang, Mingjun; Long, Guohui; Jiang, Shang; Ji, Yuan; Han, Wei; Wang, Biao; Liu, Xilong; Xi, Yunlong

    2015-01-01

    Highlights: • Graphene/MnO 2 is successfully fabricated by a facile co-precipitation method. • The graphene/MnO 2 electrode reaches 367 Fg −1 in 1 M KOH electrolyte. • The electrode exhibits good cycling performance of 73.9% retention after 1000 cycles. - Abstract: Nanostructured graphene/amorphous α-MnO 2 composites have been synthesized by a facile co-precipitation method under the alkaline condition, in which graphene nanosheets as a supporting substrate to grow MnO 2 . Characterizations of prepared samples’ morphology and microstructures indicate MnO 2 is successfully formed on the surface of graphene by electrostatic interaction. Moreover, the electrochemical properties of the synthesized electrode materials for supercapacitors are studied in a three-electrode experimental setup using a 1 M KOH aqueous solution as the electrolyte. As a result, the specific capacitance of graphene/MnO 2 composite (weight ratio of graphene to MnO 2 is 1:1) determined by a galvanostatic charge–discharge method at a current density of 1 Ag −1 reaches 367 Fg −1 , which is 1.8 and 4.6 fold higher than that of pure graphene and MnO 2 . The capacity retention of the graphene/MnO 2 composite is 73.9% of the original capacitance after 1000 cycles, indicating graphene/MnO 2 composite is a promising electrode material for supercapacitors

  8. Amorphization of ceramics by ion beams

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; White, C.W.; Williams, J.M.; Appleton, B.R.; Naramoto, H.

    1984-01-01

    The influence of the implantation parameters fluence, substrate temperature, and chemical species on the formation of amorphous phases in Al 2 O 3 and α-SiC was studied. At 300 0 K, fluences in excess of 10 17 ions.cm -2 were generally required to amorphize Al 2 O 3 ; however, implantation of zirconium formed the amorphous phase at a fluence of 4 x 10 16 Zr.cm -2 . At 77 0 K, the threshold fluence was lowered to about 2 x 10 15 Cr.cm -2 . Single crystals of α-SiC were amorphized at 300 0 K by a fluence of 2 x 10 14 Cr.cm -2 or 1 x 10 15 N.cm -2 . Implantation at 1023 0 K did not produce the amorphous phase in SiC. The micro-indentation hardness of the amorphous material was about 60% of that of the crystalline counterpart

  9. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  10. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    Science.gov (United States)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  11. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr [Çukurova University (Turkey); Tapramaz, Recep, E-mail: recept@omu.edu.tr [Ondokuz Mayıs University (Turkey)

    2016-03-25

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  12. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    Science.gov (United States)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  13. Damage annealing in low temperature Fe/Mn implanted ZnO

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Bharuth-Ram, K.; Johnston, K.; Langouche, G.; Mantovan, R.; Mølholt, T. E.; Naidoo, D.; Ólafsson, O.; Weyer, G.

    2015-01-01

    57 Fe Emission Mössbauer spectra obtained after low fluence (<10 12 cm −2 ) implantation of 57 Mn (T 1/2 = 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe 2+ and Fe 3+ on Zn sites, interstitial Fe and Fe in damage regions (Fe D ). The Fe D component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (∼10 15 cm −2 ) 57 Fe/ 57 Co implanted ZnO and 57 Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT

  14. The influence of nitrogen implantation on the electrical properties of amorphous IGZO

    Science.gov (United States)

    Zhan, S. L.; Zhao, M.; Zhuang, D. M.; Fu, E. G.; Cao, M. J.; Guo, L.; Ouyang, L. Q.

    2017-09-01

    In this study, nitrogen (N) implantation was adopted to regulate the carrier concentration and the Hall mobility of amorphous Indium Gallium Zinc Oxide (a-IGZO) films. The Hall Effect measurement demonstrates that the increase of implantation fluence can decrease the carrier concentration of a-IGZO by three orders to 1016 cm-3, which attributes to the reduction of oxygen defects. The addition of nitrogen atoms can result in the increase of Hall mobility to 9.93 cm2/V s with the subsequent decrease to 6.49 cm2/V s, which reflects the reduction of the average potential barrier height (φ0) to be 22.0 meV with subsequent increase to 74.8 meV in the modified percolation model. The results indicate that nitrogen can serve as an effective p-type dopants and oxygen defect suppressors. N-implantation with an appropriate fluence can effectively improve the Hall mobility and reduce the carrier concentration simultaneously.

  15. The micro-magnetic structures of Mn sup + ion-implanted GaSb

    CERN Document Server

    Zhang Fu Qiang; Liu Zhi Kai

    2003-01-01

    The micro-magnetic structures of Mn sup + ion-implanted GaSb are studied using a magnetic force microscope (MFM). MFM images reveal that there are many magnetic domains with different magnetization directions in our samples. The magnetic domain structures and the magnetization direction of typical MFM patterns are analyzed by numeric simulation. (author)

  16. Magnetic and transport properties of Cu1.05Cr0.89 Mg0.05O2 and Cu0.96Cr0.95 Mg0.05Mn0.04O2 films

    International Nuclear Information System (INIS)

    Xu Qingyu; Schmidt, Heidemarie; Zhou Shengqiang; Potzger, Kay; Helm, Manfred; Hochmuth, Holger; Lorenz, Michael; Meinecke, Christoph; Grundmann, Marius

    2008-01-01

    We prepared conductive, polycrystalline or amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films on a-plane sapphire substrates by pulsed laser deposition under different O 2 partial pressure and substrate temperature. Hall measurements were performed to study the majority carrier type in these films. Polycrystalline Cu 1.05 Cr 0.89 Mg 0.05 O 2 is n-type conducting at 290 K, while in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 the type of majority charge carriers changes from electrons to holes at around 270 K. Interestingly, the structure has little influence on the magnetic properties of the films. A clear antiferromagnetic to paramagnetic transition was observed in both polycrystalline and amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films at 25 K. Similar electrical properties to Cu 1.05 Cr 0.89 Mg 0.05 O 2 film were observed for Cu 0.96 Cr 0.95 Mg 0.05 Mn 0.04 O 2 in dependence on the structure, while only paramagnetic without antiferromagnetic ordering was observed down to 5 K. Large negative magnetoresistance of 27% at 20 K was observed at 6 T in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 film

  17. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Study and realisation of plane optical waveguides in amorphous silica by ion implantation

    International Nuclear Information System (INIS)

    Moutonnet, Danielle

    1974-01-01

    Within the framework of the replacement of radio-electric waves by light waves as support of information transmission in telecommunications, this research thesis addresses the use of ion implantation for the development of small waveguides with low losses. The author first describes how such waveguides can be characterised by studying the propagation of an electromagnetic wave in a plane waveguide, and the different ways to introduce energy in these waveguides. Then, she discusses how the obtained results can be used to determine the main parameters of an optical waveguide, or more generally of a thin transparent layer for a chosen wavelength. In the second part, the author reports the application of this general method to the case of guides obtained by ion implantation. She notably identifies the possibilities of ion implantation as technological tool to develop waveguides, and discusses how the performed experiments allow a better understanding of physical mechanisms occurring during implantation. In this second part, she recalls generally admitted theories about ion implantation, describes experiment principles (implantation of oxygen or nitrogen ions into amorphous silica followed by annealing) and discusses the obtained results (increase of the refraction index, i.e. of the guiding effect, stronger for oxygen than for nitrogen) [fr

  19. Absence of intrinsic ferromagnetism in Zn{sub 1-x}Mn{sub x}O alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huawei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shi Erwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen Zhizhan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu Xuechao [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xiao Bing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2006-10-04

    Zn{sub 1-x}Mn{sub x}O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn{sup 2+} ions are homogeneously substituted by Mn{sup 2+} ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn{sub 2}O{sub 4}. (letter to the editor)

  20. Electron paramagnetic resonance studies of manganese centers in SrTiO.sub.3./sub.: Non-Kramers Mn.sup.3+./sup. ions and spin-spin coupled Mn.sup.4+./sup. dimers

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Dejneka, Alexandr; Lančok, Ján; Trepakov, Vladimír; Jastrabík, Lubomír; Badalyan, A. G.

    2012-01-01

    Roč. 111, č. 10 (2012), "104119-1"-"104119-6" ISSN 0021-8979. [International Symposium on Integrated Functionalities (ISIF) /22./. San Juan, Puerto Rico , 13.06.2010-16.06.2010] R&D Projects: GA TA ČR TA01010517; GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(CZ) CZ.2.16/3.1.00/22132 Institutional research plan: CEZ:AV0Z10100522 Keywords : electron paramagnetic resonance * X- and Q-band * SrTiO 3 doped with Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.210, year: 2012

  1. The crystallographic phases and magnetic properties of Fe2MnSi1-xGex

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    Fe 2 MnSi 1-x Ge x (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) compounds were prepared by a mechanically activated solid-state diffusion method. Both X-ray diffraction and differential scanning calorimetry evidenced the presence of an amorphous phase after 10 h of milling. The X-ray data reveal that in the high-temperature annealing the single D0 3 -type phase can be retained up to 50% substitution of Ge for Si in Fe 2 MnSi. A metastable D0 3 phase is obtained after crystallization of the as-milled amorphous compounds with x>0.5. High-temperature annealing transforms the low-temperature D0 3 phase into a single D0 19 phase (x=1) or a mixture of D0 3 and D0 19 phase (x=0.6 and 0.8). Low-field thermomagnetic measurements show a moderately sharp ferromagnetic-paramagnetic transition, which becomes enormously broad in higher magnetic fields. The Curie temperature is significantly enhanced when going from the D0 3 phase to the D0 19 phase. Neither a magnetic-field-induced transition nor a reversible structural transition is observed throughout this compound series. The magnetocaloric effect associated with the magnetic transition is small

  2. Damage annealing in low temperature Fe/Mn implanted ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gunnlaugsson, H. P. [University of Aarhus, Department of Physics and Astronomy (Denmark); Bharuth-Ram, K., E-mail: kbr@tlabs.ac.za [Durban University of Technology, Physics Department (South Africa); Johnston, K. [PH Department, ISOLDE/CERN (Switzerland); Langouche, G. [University of Leuven, Instituut voor Kern-en Stralings fysika (Belgium); Mantovan, R. [Laboratorio MDM, IMM-CNR (Italy); Mølholt, T. E. [University of Iceland, Science Institute (Iceland); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Ólafsson, O. [University of Iceland, Science Institute (Iceland); Weyer, G. [University of Aarhus, Department of Physics and Astronomy (Denmark)

    2015-04-15

    {sup 57}Fe Emission Mössbauer spectra obtained after low fluence (<10{sup 12} cm {sup −2}) implantation of {sup 57}Mn (T{sub 1/2}= 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe {sup 2+} and Fe {sup 3+} on Zn sites, interstitial Fe and Fe in damage regions (Fe {sub D}). The Fe {sub D} component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (∼10{sup 15} cm {sup −2}){sup 57}Fe/ {sup 57}Co implanted ZnO and {sup 57}Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT.

  3. Rapid synthesis of graphene/amorphous α-MnO{sub 2} composite with enhanced electrochemical performance for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Mingjun [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Long, Guohui [College of Life Sciences, Jilin Agricultural University, Changchun 130118 (China); Jiang, Shang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Ji, Yuan, E-mail: jiyuan@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Han, Wei [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Wang, Biao [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Liu, Xilong; Xi, Yunlong [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China)

    2015-04-15

    Highlights: • Graphene/MnO{sub 2} is successfully fabricated by a facile co-precipitation method. • The graphene/MnO{sub 2} electrode reaches 367 Fg{sup −1} in 1 M KOH electrolyte. • The electrode exhibits good cycling performance of 73.9% retention after 1000 cycles. - Abstract: Nanostructured graphene/amorphous α-MnO{sub 2} composites have been synthesized by a facile co-precipitation method under the alkaline condition, in which graphene nanosheets as a supporting substrate to grow MnO{sub 2}. Characterizations of prepared samples’ morphology and microstructures indicate MnO{sub 2} is successfully formed on the surface of graphene by electrostatic interaction. Moreover, the electrochemical properties of the synthesized electrode materials for supercapacitors are studied in a three-electrode experimental setup using a 1 M KOH aqueous solution as the electrolyte. As a result, the specific capacitance of graphene/MnO{sub 2} composite (weight ratio of graphene to MnO{sub 2} is 1:1) determined by a galvanostatic charge–discharge method at a current density of 1 Ag{sup −1} reaches 367 Fg{sup −1}, which is 1.8 and 4.6 fold higher than that of pure graphene and MnO{sub 2}. The capacity retention of the graphene/MnO{sub 2} composite is 73.9% of the original capacitance after 1000 cycles, indicating graphene/MnO{sub 2} composite is a promising electrode material for supercapacitors.

  4. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  5. Diffusion and recrystallization of B implanted in crystalline and pre-amorphized Ge in the presence of F

    International Nuclear Information System (INIS)

    Hsu, William; Kim, Taegon; Chou, Harry; Rai, Amritesh; Palard, Marylene; Benítez-Lara, Alfredo; Josefina Arellano-Jiménez, M.; José-Yacamán, Miguel; Dolocan, Andrei; Banerjee, Sanjay K.

    2016-01-01

    Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B"+ implantation, the use of the heavier BF_2"+ ions or even BF"+ is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B"+, BF"+, and BF_2"+ implants in crystalline and pre-amorphized Ge, employing rapid thermal annealing at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF"+, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p"+/n junctions formed by BF"+ implantation was evaluated.

  6. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  7. Effect of isochronal annealing on photoluminescence properties of Mn-implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar

    2009-01-01

    Mn ions were implanted into metal organic chemical vapour deposition (MOCVD)-grown GaN with dose ranging from 10 14 to 5x10 16 cm -2 . Isochronal annealing at 800 and 850 deg. C has been carried out after implantation of the samples. Photoluminescence measurements were carried out on the implanted samples before and after annealing. A peak found at 3.34 eV in the spectra of implanted samples after annealing at 850 deg. C is attributed to the stacking faults. Blue and green luminescence bands have been observed suppressed and an oxygen-related peak appeared at 3.44 eV in the PL spectra. The suppression of blue and green luminescence bands has been assigned to dissociation of V Ga O N complex. Near-band-edge (NBE) peak exhibited a blue shift after 800 deg. C anneal and then red shift to restore its original energy position when annealed at 850 deg. C

  8. Effect of isochronal annealing on photoluminescence properties of Mn-implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)], E-mail: abdulmajid40@yahoo.com; Ali, Akbar [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)], E-mail: akbar@qau.edu.pk

    2009-01-15

    Mn ions were implanted into metal organic chemical vapour deposition (MOCVD)-grown GaN with dose ranging from 10{sup 14} to 5x10{sup 16} cm{sup -2}. Isochronal annealing at 800 and 850 deg. C has been carried out after implantation of the samples. Photoluminescence measurements were carried out on the implanted samples before and after annealing. A peak found at 3.34 eV in the spectra of implanted samples after annealing at 850 deg. C is attributed to the stacking faults. Blue and green luminescence bands have been observed suppressed and an oxygen-related peak appeared at 3.44 eV in the PL spectra. The suppression of blue and green luminescence bands has been assigned to dissociation of V{sub Ga}O{sub N} complex. Near-band-edge (NBE) peak exhibited a blue shift after 800 deg. C anneal and then red shift to restore its original energy position when annealed at 850 deg. C.

  9. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  10. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  11. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application

    International Nuclear Information System (INIS)

    Neogi, S.K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G.S.; Krishna, J.B.M.; Bandyopadhyay, S.

    2016-01-01

    The structural, morphological, optical and magnetic properties of Ar +9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10 14 (low), 10 15 (intermediate) and 10 16 (high) ions/cm 2 . Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10 16 ions/cm 2 with saturation magnetization (M S ) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn 2+ ions and V Zn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar 9+ ion implanted films. • The maximum magnetization was attained for highest dose of Ar 9+ implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  12. Differences in structure and magnetic behavior of Mn-AlN films due to substrate material

    International Nuclear Information System (INIS)

    Sato, Takanobu; Nakatani, Ryoichi; Endo, Yasushi; Kirino, Fumiyoshi

    2009-01-01

    The structure and magnetic behavior of Mn-AlN (Al 1-x Mn x N, x = 0.03, 0.04) films deposited on thermally oxidized Si (001) substrates and sapphire (0001) substrates were studied. Mn-AlN films deposited on each substrate had a wuertzite-type AlN phase with a preferentially oriented c-axis. Mn-AlN films that were deposited on Si (001) substrate exhibited paramagnetic behavior. In addition to paramagnetic behavior, weak ferromagnetic behavior with curie temperatures higher than room temperature were observed for Mn-AlN films deposited on sapphire (0001) substrates.

  13. Optical and magnetic resonance investigations of Zn1-x Mn x O magnetic semiconductors

    International Nuclear Information System (INIS)

    Zhang Huawei; Shi Erwei; Chen Zhizhan; Liu Xuechao; Xiao Bing; Song Lixin

    2006-01-01

    Zn 1- x Mn x O crystallites were synthesized by hydrothermal method. X-ray diffraction, UV-Vis absorption spectroscopy, and electron paramagnetic resonance (EPR) spectra confirm the substitution of Zn site by Mn 2+ ion. The nonmonotonic variation of band gap exhibits that the short-ranged interactions between the d electrons of Mn and the s and p electrons of the host bands are dominated at lower Mn concentration (x). EPR spectra show that Mn 2+ is in exchange interaction at higher x. By using a Curie-Weiss equation on the EPR data, it is found that the dominant magnetic property is antiferromagnetic for higher x, and paramagnetic for lower x

  14. Jahn-Teller glass formation in beta-lithium ammonium sulfate monocrystals studied by means of the electron paramagnetic resonance of Mn sup 2 sup + and Cu sup 2 sup + ions

    CERN Document Server

    Waplak, S

    2002-01-01

    The EPR (electron paramagnetic resonance) spectra of non-Jahn-Teller (JT) Mn sup 2 sup + and JT Cu sup 2 sup + ions have been studied for alpha- or beta-LAS structure modification in the temperature range of 4.2-480 K. The experimental evidence for JT glass with frozen-in random strain fields due to the presence of the JT Cu sup 2 sup + ions is presented.

  15. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  16. Permeability and giant magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X=Cr, Mn, Ni) amorphous ribbons

    International Nuclear Information System (INIS)

    Byon, Kwang Seok; Yu, Seong-Cho; Kim, Cheol Gi

    2001-01-01

    The magnetoimpedance (MI) has been measured in the amorphous ribbons of the soft ferromagnetic alloy Co 69 Fe 4.5 X 1.5 Si 10 B 15 (X=Cr, Mn, Ni) as functions of frequency (f). For all of the three samples, at low frequency, f≤5MHz, the MI ratio increases with increasing frequency, but the MI ratio decreases at high frequency, f≥5MHz. The MI profiles are not changed at low frequency regions of f≤1MHz in the amorphous ribbons. The MI ratio at high frequency of f=5MHz becomes 57% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 , but the MI ratio becomes 30% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 . The MI ratio at f=10MHz becomes 45% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 and the MI ratio becomes 23% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 , respectively. The maximum values of field sensitivity are 2.7(X=Cr), 2.5(X=Mn), 2.2(X=Ni)%/Oe for f=5MHz. [copyright] 2001 American Institute of Physics

  17. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  18. Electron paramagnetic resonance of rhyolite and γ-irradiated trona minerals

    International Nuclear Information System (INIS)

    Koeksal, F.; Koeseoglu, R.; Basaran, E.

    2003-01-01

    Rhyolite from the ''Yellow Stone of Nevsehir'' and γ-irradiated trona from the Ankara Mine have been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite was examined by X-ray powder diffraction and found to consist mainly of SiO 2 . Before γ-irradiation, the existing paramagnetic species in rhyolite were identified as PO 4 2- , CH 2 OH, CO 3 - , SO 2 - , CO 3 3- , and CO 2 - free radicals and Fe 3+ at ambient temperature. At 113 K SO 2 - , CO 3 3- , and CO 2 - radicals and Fe 3+ were observed. The γ-irradiation produced neither new species nor detectable effects on these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of their motions. Before γ-irradiation, the trona mineral shows only Mn 2+ lines, but after γ-irradiation it indicated the inducement of CO 3 3- and CO 2 - radicals at ambient temperature, 113 K, in addition to the Mn 2+ lines. The g and a values of the species were determined. (orig.)

  19. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  20. High-Temperature Ferromagnetism in Cr- and Mn-Implanted Al(sub x)Ga(sub 1-x)N

    National Research Council Canada - National Science Library

    Ryu, Mee-Yi

    2007-01-01

    ... technique remains a challenging problem. Therefore, we have performed a systematic investigation of annealing temperature effects on magnetic, electrical, and optical properties of Cr-, Mn-, and Ni-implanted AlxGa1-xN to produce a good...

  1. Characterization of High Dose Mn, Fe, and Ni implantation into p-GaN

    CERN Document Server

    Pearton, S J; Thaler, G; Abernathy, C R; Theodoropoulou, N; Hebard, A F; Chu, S N G; Wilson, R G; Zavada, J M; Polyakov, A Y; Osinsky, A V; Norris, P E; Chow, P P; Wowchack, A M; Hove, J M V; Park, Y D

    2002-01-01

    The magnetization of p-GaN or p-AlGaN/GaN superlattices was measured after implantation with high doses (3-5x10 sup 1 sup 6 cm sup - sup 2) of Mn, Fe, or Ni and subsequent annealing at 700-1000 deg. C. The samples showed ferromagnetic contributions below temperatures ranging from 190-250 K for Mn to 45-185 K for Ni and 80-250 K for Fe. The use of superlattices to enhance the hole concentration did not produce any change in ferromagnetic ordering temperature. No secondary phase formation was observed by x-ray diffraction, transmission electron microscopy, or selected area diffraction pattern analysis for the doses we employed.

  2. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys implanted with Ti

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.; Yost, F.G.; Picraux, S.T.

    1984-01-01

    The microstructural and tribological effects of ion implanting C into Ti-implanted, Fe-based alloys are examined and compared to the influence of C introduced by vacuum carburization during Ti implantation alone. The amorphous surface alloy formed by Ti implantation of pure Fe increases in thickness when additional C is implanted at depths containing Ti but beyond the range of carburization. Pin-on-disc tests of 15-5 PH stainless steel show that implantation of both Ti and C reduces friction significantly under conditions where no reduction is obtained by Ti implantation alone; wear depths are also less when C is implanted. All available experimental results can be accounted for by consideration of the thickness and Ti concentration of the amorphous Fe-Ti-C alloy. The thicker amorphous layer on samples implanted with additional C extends tribological benefits to more severe wear regimes

  3. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    Science.gov (United States)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  4. Magnetic study of nanocrystalline 0.95MnO/0.05ZnO

    International Nuclear Information System (INIS)

    Guskos, N.; Dudek, M.; Zolnierkiewicz, G.; Typek, J.; Berczynski, P.; Lendzion-Bielun, Z.; Sibera, D.; Narkiewicz, U.

    2013-01-01

    Nanocrystalline 0.95MnO/0.05ZnO sample has been prepared by coprecipitation and calcination processes. X-ray diffraction showed the presence of Mn 3 O 4 nanocrystallites with an average size of 43 nm. Magnetic properties of the 0.95MnO/0.05ZnO sample have been investigated by dc magnetization and magnetic resonances (electron paramagnetic resonance (EPR), ferromagnetic resonance (FMR)) methods. The magnetization study has shown the presence of dominating Mn 3 O 4 paramagnetic and ferrimagnetic (below 46 K) phases. The blocking temperature determined from magnetization measurements was 41 K. An FMR study has shown the evidence of the spread of nanoparticles sizes. An EPR signal from paramagnetic phase of Mn 3 O 4 was observed at temperatures above 45 K and from defects/spurious phases in the low temperature range (T<16 K). Magnetic anisotropies of the sample in the FMR spectra were taken into account by fitting the observed spectra by two lines corresponding to parallel and perpendicular orientations of nanoparticles in an applied magnetic field. - Highlights: ► Magnetic properties of 0.95MnO/0.05ZnO have been studied by dc magnetization and magnetic resonance. ► FMR and EPR spectra were identified and attributed to various spin systems. ► From the spread of blocking temperatures obtained from magnetic resonance the spread of nanoparticles sizes was estimated.

  5. Correlation between defect and magnetism of low energy Ar{sup +9} implanted and un-implanted Zn{sub 0.95}Mn{sub 0.05}O thin films suitable for electronic application

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Midya, N. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Pramanik, P. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Bhattacharyya, A. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Taki, G.S. [Variable Energy Cyclotron Centre, 1/AF, Salt Lake, Kolkata 700064 (India); Krishna, J.B.M. [UGC DAE CSR, Kolkata Centre, LB 8, Sector III, Salt Lake, Kolkata 700098 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2016-06-15

    The structural, morphological, optical and magnetic properties of Ar{sup +9} implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10{sup 14} (low), 10{sup 15} (intermediate) and 10{sup 16} (high) ions/cm{sup 2}. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10{sup 16} ions/cm{sup 2} with saturation magnetization (M{sub S}) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn{sup 2+} ions and V{sub Zn} related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar{sup 9+} ion implanted films. • The maximum magnetization was attained for highest dose of Ar{sup 9+} implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  6. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, T.; Kamioka, K.; Nishimura, T. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-12-15

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 10{sup 15} cm{sup −2}) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼10{sup 3} Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10{sup −1} Ω cm for 200 °C annealed, and 3.2 × 10{sup −1} Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 10{sup 13} cm{sup −2} for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (V{sub o}{sup +}) is observed in as-implanted samples. The V{sub o}{sup +} related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  7. Calorimetric and magnetic study for Ni{sub 50}Mn{sub 36}In{sub 14} and relative cooling power in paramagnetic inverse magnetocaloric systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Bruno, Nickolaus M. [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Huang, Yujin; Li, Jianguo [School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Ross, Joseph H. [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-11-28

    The non-stoichiometric Heusler alloy Ni{sub 50}Mn{sub 36}In{sub 14} undergoes a martensitic phase transformation in the vicinity of 345 K, with the high temperature austenite phase exhibiting paramagnetic rather than ferromagnetic behavior, as shown in similar alloys with lower-temperature transformations. Suitably prepared samples are shown to exhibit a sharp transformation, a relatively small thermal hysteresis, and a large field-induced entropy change. We analyzed the magnetocaloric behavior both through magnetization and direct field-dependent calorimetry measurements. For measurements passing through the first-order transformation, an improved method for heat-pulse relaxation calorimetry was designed. The results provide a firm basis for the analytic evaluation of field-induced entropy changes in related materials. An analysis of the relative cooling power (RCP), based on the integrated field-induced entropy change and magnetizing behavior of the Mn spin system with ferromagnetic correlations, shows that a significant RCP may be obtained in these materials by tuning the magnetic and structural transformation temperatures through minor compositional changes or local order changes.

  8. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    Science.gov (United States)

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.

  9. Local structural changes in paramagnetic and charge-ordered phases of Sm0.2Pr0.3Sr0.5MnO3: an EXAFS study

    International Nuclear Information System (INIS)

    Priolkar, K R; Kulkarni, Vishwajeet; Sarode, P R; Emura, S

    2008-01-01

    Sm 0.5-x Pr x Sr 0.5 MnO 3 exhibits a variety of ground states as x is varied from 0 to 0.5. At an intermediate doping of x = 0.3 a charge-ordered CE-type antiferromagnetic insulating (AFI) ground state is seen. The transition to this ground state is from a paramagnetic-insulating (PMI) phase through a ferromagnetic-metallic phase (FMM). Local structures in PMI and AFI phases of the x = 0.3 sample have been investigated using Pr K-edge and Sm K-edge extended x-ray absorption fine structure (EXAFS). It can be seen that the tilting and rotation of the MnO 6 octahedra about the b-axis are responsible for the charge-ordered CE-type antiferromagnetic ground state at low temperatures. In addition a shift in the position of the rare-earth ion along the c-axis has to be considered to account for observed distribution of bond distances around the rare-earth ion

  10. Moessbauer study of Mn-Zn and Mn ferrites prepared by wet method

    International Nuclear Information System (INIS)

    Michalk, C.

    1985-01-01

    Moessbauer spectroscopy was employed to study Mn-Zn ferrites before and after low-temperature annealing. The unannealed Mn-Zn ferrite prepared by a wet method and also the sintered material after annealing at 400 deg C in air show the presence of paramagnetic clusters. These findings are explained as being due to nonrandom ordering of Fe 3+ and Zn 2+ ions caused by local charge compensation in the neighbourhood of cation vacancies. A change of cation distribution after annealing at relatively low temperatures was observed. 10 refs., 3 figs. (author)

  11. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua Mn(II) mononuclear complexes with amino-pyridine pentadentate ligands.

    Science.gov (United States)

    Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie

    2008-10-20

    The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.

  12. Optical and magnetic resonance investigations of Zn{sub 1-} {sub x} Mn {sub x} O magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huawei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Shi Erwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen Zhizhan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: zzchen@mail.sic.ac.cn; Liu Xuechao [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Xiao Bing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Song Lixin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2006-10-15

    Zn{sub 1-} {sub x} Mn {sub x} O crystallites were synthesized by hydrothermal method. X-ray diffraction, UV-Vis absorption spectroscopy, and electron paramagnetic resonance (EPR) spectra confirm the substitution of Zn site by Mn{sup 2+} ion. The nonmonotonic variation of band gap exhibits that the short-ranged interactions between the d electrons of Mn and the s and p electrons of the host bands are dominated at lower Mn concentration (x). EPR spectra show that Mn{sup 2+} is in exchange interaction at higher x. By using a Curie-Weiss equation on the EPR data, it is found that the dominant magnetic property is antiferromagnetic for higher x, and paramagnetic for lower x.

  13. Chiral Paramagnetic Skyrmion-like Phase in MnSi

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B.

    2009-01-01

    We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and neutron spin echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous

  14. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    Energy Technology Data Exchange (ETDEWEB)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany); Neumaier, Bernd [Institute for Radiochemistry and Experimental Molecular Imaging, Medical Clinics, University of Cologne (Germany); Coenen, Heinz H [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany)

    2015-05-18

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  15. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    International Nuclear Information System (INIS)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes; Neumaier, Bernd; Coenen, Heinz H

    2015-01-01

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  16. Mössbauer spectra obtained using β - γ coincidence method after 57Mn implantation into LiH and LiD

    Science.gov (United States)

    Sato, Y.; Kobayashi, Y.; Yamada, Y.; Kubo, M. K.; Mihara, M.; Nagatomo, T.; Sato, W.; Miyazaki, J.; Tanigawa, S.; Natori, D.; Sato, S.; Kitagawa, A.

    2016-12-01

    Highly energetic 57Mn ( T 1/2 = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β - γ coincidence detection was then carried out on the 57Fe obtained from β -decay of the 57Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional 57Fe atoms on the lattice sites is discussed.

  17. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Mikšová, Romana; Pupíková, Hana; Khaibullin, R. I.; Slepička, P.; Gombitová, A.; Kováčik, L.; Švorčík, V.; Matoušek, J.

    2014-01-01

    Roč. 325, APR 15 (2014), s. 89-96 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019; GA ČR GA106/09/0125; GA ČR GBP302/12/G157 Institutional support: RVO:61389005 Keywords : Mn ion implantation * polymers * depth profiles * RBS * TEM * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  18. High-spin configuration of Mn in Bi{sub 2}Se{sub 3} three-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolos, Agnieszka, E-mail: agnieszka.wolos@fuw.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Drabinska, Aneta [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Borysiuk, Jolanta [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Sobczak, Kamil [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaminska, Maria [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Hruban, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Strzelecka, Stanislawa G.; Materna, Andrzej; Piersa, Miroslaw; Romaniec, Magdalena; Diduszko, Ryszard [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2016-12-01

    Electron paramagnetic resonance was used to investigate Mn impurity in Bi{sub 2}Se{sub 3} topological insulator grown by the vertical Bridgman method. Mn in high-spin S=5/2, Mn{sup 2+}, configuration was detected regardless of the conductivity type of the host material. This means that Mn{sup 2+}(d{sup 5}) energy level is located within the valence band, and Mn{sup 1+}(d{sup 6}) energy level is outside the energy gap of Bi{sub 2}Se{sub 3}. The electron paramagnetic resonance spectrum of Mn{sup 2+} in Bi{sub 2}Se{sub 3} is characterized by the isotropic g-factor |g|=1.91 and large axial parameter D=−4.20 GHz h. This corresponds to the zero-field splitting of the Kramers doublets equal to 8.4 GHz h and 16.8 GHz h, respectively, which is comparable to the Zeeman splitting for the X-band. Mn in Bi{sub 2}Se{sub 3} acts as an acceptor, effectively reducing native-high electron concentration, compensating selenium vacancies, and resulting in p-type conductivity. However, Mn-doping simultaneously favors formation of native donor defects, most probably selenium vacancies. For high Mn-doping it may lead to the resultant n-type conductivity related with strong non-stoichiometry and degradation of the crystal structure - switching from Bi{sub 2}Se{sub 3} to BiSe phase. - Highlights: • We studied electron paramagnetic resonance in Bi{sub 2}Se{sub 3}:Mn. • We found Mn in high-spin Mn{sup 2+} configuration in both n-type and p-type samples. • The g-factor for Mn{sup 2+} equals to 1.91 and axial parameter D=−4.20 GHz h. • Mn acts as an acceptor. • Mn substitution affects formation of native donors.

  19. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  20. Defect luminescence and lattice strain in Mn{sup 2+} doped ZnGa{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, K.; Abhilash, K.P. [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Christopher Selvin, P., E-mail: pcsphyngmc@rediffmail.com [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-06-15

    Undoped and Mn{sup 2+} doped ZnGa{sub 2}O{sub 4} phosphors were prepared by solution combustion method and characterized by XRD, SEM, luminescence and electron paramagnetic resonance (EPR) techniques. Based on XRD results, it is inferred that, strain in ZnGa{sub 2}O{sub 4} host lattice increases with incorporation of Mn{sup 2+} ions in the lattice. Mn{sup 2+} doping at concentration levels investigated, lead to significant reduction in the defect emission and this has been attributed to the formation of higher oxidation states of Mn ions in the lattice. Electron Paramagnetic Resonance studies confirmed that majority of Mn ions exist as Mn{sup 2+} species and they occupy tetrahedral Zn{sup 2+} site in ZnGa{sub 2}O{sub 4} lattice with an average hyperfine coupling constant, A{sub iso}∼82 G.

  1. Damage formation and recovery in Fe implanted 6H–SiC

    CERN Document Server

    Miranda, Pedro; Catarino, Norberto; Lorenz, Katharina; Correia, João Guilherme; Alves, Eduardo

    2012-01-01

    Silicon carbide doped with magnetic ions such as Fe, Mn, Ni or Co could make this wide band gap semiconductor part of the diluted magnetic semiconductor family. In this study, we report the implantation of 6H-SiC single crystals with magnetic $^{56}$Fe$^{+}$ ions with an energy of 150 keV. The samples were implanted with 5E14 Fe$^+$/cm$^{2}$ and 1E16 Fe$^+$/cm$^{2}$ at different temperatures to study the damage formation and lattice site location. The samples were subsequently annealed up to 1500°C in vacuum in order to remove the implantation damage. The effect of the annealing was followed by Rutherford Backscattering/Channeling (RBS/C) measurements. The results show that samples implanted above the critical amorphization temperature reveal a high fraction of Fe incorporated into regular sites along the [0001] axis. After the annealing at 1000°C, a maximum fraction of 75%, corresponding to a total of 3.8E14 Fe$^{+}$/cm$^{2}$, was measured in regular sites along the [0001] axis. A comparison is made betwee...

  2. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, E., E-mail: erich.friedland@up.ac.za

    2017-01-15

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  3. Laser activation of Ultra Shallow Junctions (USJ) doped by Plasma Immersion Ion Implantation (PIII)

    International Nuclear Information System (INIS)

    Vervisch, Vanessa; Larmande, Yannick; Delaporte, Philippe; Sarnet, Thierry; Sentis, Marc; Etienne, Hasnaa; Torregrosa, Frank; Cristiano, Fuccio; Fazzini, Pier Francesco

    2009-01-01

    Today, the main challenges for the realization of the source/drain extensions concern the ultra-low energy implantation and the activation of the maximum amount of dopants with a minimized diffusion. Among the different annealing processes, one solution is the laser thermal annealing. Many studies [F. Torregrosa, C. Laviron, F. Milesi, M. Hernandez, H. Faik, J. Venturini, Proc. 14th International Conference on Ion Implant Technology, 2004; M. Hernandez, J. Venturini, D. Zahorski, J. Boulmer, D. Debarre, G. Kerrien, T. Sarnet, C. Laviron, M.N Semeria, D. Camel, J.L Santailler, Appl. Surf. Sci. 208-209 (2003) 345-351] have shown that the association of Plasma Immersion Ion Implantation (PIII) and Laser Thermal Process (LTP) allows to obtain junctions of a few nanometers with a high electrical activation. All the wafers studied have been implanted by PULSION (PIII implanter developed by Ion Beam Services) with an acceleration voltage of 1 kV and a dose of 6 x 10 15 at./cm 2 . In this paper, we compare the annealing process achieved with three excimer lasers: ArF, KrF and XeCl with a wavelength of respectively 193, 248 and 308 nm. We analyse the results in terms of boron activation and junction depth. To complete this study, we have observed the effect of pre-amorphization implantation (PAI) before PIII process on boron implantation and boron activation. We show that Ge PAI implanted by classical beam line allows a decrease of the junction depth from 20 down to 12 nm in the as-implanted condition. Transmission Electron Microscopy (TEM) analyses were performed in order to study the structure of pre-amorphized silicon and to estimate the thickness of the amorphous layer. In order to determine the sheet resistance (R s ) and the junction depth (X j ), we have used the four-point probe technique (4PP) and secondary ion mass spectrometry (SIMS) analysis. To complete the electrical characterizations some samples have been analyzed by non-contact optical measurements. All the

  4. Amorphization, morphological instability and crystallization of krypton ion irradiated germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1991-01-01

    Krypton ion irradiation of crystalline Ge and subsequent thermal annealing were both carried out with in situ transmission electron microscopy observations. The temperature dependence of the amorphization dose, effect of foil thickness, morphological changes during continuous irradiation of the amorphous state as well as the effect of implanted gas have been determined. The dose of 1.5 MeV Kr required for amorphization increases with increasing temperature. At a fixed temperature, the amorphization dose is higher for thicker regions of the specimen. Continuous irradiation of amorphous Ge at room temperature results in a high density of small cavities which grow with increasing dose. Cavities do not coalesce during growth but develop into irregular-shaped holes that eventually transform the amorphous Ge into a sponge-like material. Formation of the spongy structure is independent of Kr implantation. The crystallization temperature and the morphology of recrystallized Ge depend on the Kr + dose. Voids are expelled from recrystallized Ge, while the sponge-like structure is retained after crystallization. (author)

  5. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system; Resonancia paramagnetica electronica en el sistema semiconductor magnetico diluido Cd Mn In X (X:Te,S)

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente [Universidad de los Andes, Merida (Venezuela). Dept. de Fisica; Alcala, Rafael [Zaragoza Univ. (Spain). Dept. de Fisica de la Materia Condensada

    1997-12-31

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author). 18 refs., 2 figs., 2 tabs.

  6. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  7. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  8. Optical constants correlated electrons-spin of micro doughnuts of Mn-doped ZnO films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-09-01

    Full Text Available Diluted magnetic semiconductor (DMS) Mn:ZnO thin films with “ring-like or doughnut-like” structures were grown using aerosol spray pyrolysis for 20 and 30 min. Electron paramagnetic resonance revealed the ferromagnetic ordering which varies with Mn...

  9. Correlation of electrical transport and magnetism in amorphous Mn-B alloys

    Science.gov (United States)

    Bryden, W. A.; Morgan, J. S.; Kistenmacher, T. J.; Moorjani, K.

    1987-04-01

    X-ray scattering, magnetism, and electrical transport studies on amorphous thin films of MnxB100-x alloys with x=52 and 48 are reported. Each alloy exhibits a low-field (5 G) static susceptibility peak (10 K, x=52; 16 K, x=48) associated with a spin-glass transition. Isothermal magnetization data (6 K) are analyzed within the random anisotropy model of Chudnovsky, Saslow, and Serota. The magnetization isotherm for the x=52 alloy is dominated at high fields (>24 kG) by field-induced moments, while for x=48 a term (αH-1/2) arising from a ferromagnet with a wandering axis prevails to the highest field strength (44 kG). Initially the electrical resistance for these Mn-B alloys decreases monotonically with decreasing temperature, reaching a minimum (Tm) at 22 K (x=52) and 45 K (x=48). For T>Tm, a quadratic form can be effectively employed, with a negative T2 coefficient and a positive linear coefficient. The rise in resistivity for T

  10. Amorphization of Ge and InP studied using nuclear hyperfine methods

    International Nuclear Information System (INIS)

    Byrne, A.P.; Bezakova, E.; Glover, C.J.; Ridgway, M.C.

    1999-01-01

    The ion beam amorphization of InP and Ge has been studied using the Perturbed Angular Correlation (PAC) technique. Semiconductor samples were preimplanted with the radioisotope 111 In using a direct production-recoil implantation method and beams from the ANU Heavy-ion Facility. Following annealing samples were amorphized using Ge beams with doses between 2 x 10 12 ion/cm 2 and 5000 x 10 12 ion/cm 2 . For InP the PAC spectra identified three distinct regimes, crystalline, disordered and amorphous environments, with a smooth transition observed as a function of dose. The dose dependence of the relative fractions of the individual probe environments has been determined. A direct amorphization process consistent with the overlap model was quantified and evidence for a second amorphization process via the overlap of disordered regions was observed. The PAC method compares favorably with other methods used in its ability to differentiate changes at high dose. The results for InP will be compared with those in Ge. The implantation method will be discussed, as will developments in the establishment of a dedicated facility for the implantation of radioisotopes

  11. Electron magnetic resonance study of monovalent Na doping in Pr0.6Sr0.4−xNaxMnO3 manganites

    International Nuclear Information System (INIS)

    Thaljaoui, Rachid; Boujelben, Wahiba; Pękała, Marek; Szydłowska, Jadwiga; Cheikhrouhou, Abdelwaheb

    2012-01-01

    Highlights: ► New monovalent doped manganites Pr 0.6 Sr 0.4−x Na x MnO 3 (x = 0, 0.05). ► Comparison of electron magnetic resonance spectra in ferro- and paramagnetic phases. ► Double exchange interactions weakened by Na doping as indicated by activation energy. ► Magnetic susceptibility derived from resonance intensity obeys Curie–Weiss law. - Abstract: Effect of monovalent Na doping on the magnetic properties is studied in Pr 0.6 Sr 0.4−x Na x MnO 3 system (x = 0, 0.05) using X-band electron magnetic resonance and magnetization measurements. Temperature variation of magnetic resonance spectra of doped and undoped manganites is analyzed for paramagnetic and ferromagnetic states and compared to similar systems. In paramagnetic phase the magnetic susceptibility proportional to resonance signal intensity is found to obey the Curie–Weiss law. The effective magnetic moment becomes smaller in doped manganite. The paramagnetic Curie temperature derived from signal intensity equals to 312 and 306 K for the undoped and doped manganites, respectively, and is close to values obtained from magnetization variation in paramagnetic phase. The activation energy determined using the adiabatic small polaron hopping model is higher for the undoped than the doped manganite, which proves that the Na doping slightly reduces the Mn 3+ /Mn 4+ double exchange interactions.

  12. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization

    International Nuclear Information System (INIS)

    Huang Xingkang; Lv Dongping; Yue Hongjun; Attia, Adel; Yang Yong

    2008-01-01

    α- and β-MnO 2 were controllably synthesized by hydrothermally treating amorphous MnO 2 obtained via a reaction between Mn 2+ and MnO 4 - , and cationic effects on the hydrothermal crystallization of MnO 2 were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO 2 dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K + , NH 4 + and H + in the hydrothermal systems. The experimental results showed that K + /NH 4 + were in competition with H + to form polymorphs of α- and β-MnO 2 , i.e., higher relative K + /NH 4 + concentration favoured α-MnO 2 , while higher relative H + concentration favoured β-MnO 2

  13. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  14. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  15. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340 ± 10K

  16. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si + at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340±10K

  17. Structure and low temperature thermal relaxation of amorphized germanium

    International Nuclear Information System (INIS)

    Glover, C.J.; Ridgway, M.C.; Byrne, A.P.; Clerc, C.; Hansen, J.L.; Larsen, A.N.

    1999-01-01

    The structure of implantation-induced damage in amorphized Ge has been investigated using high resolution extended x-ray absorption fine structure spectroscopy (EXAFS). EXAFS data analysis was performed with the Cumulant Method, allowing a full reconstruction of the interatomic distance distribution (RDF). For the case of MeV implantation at -196 deg C, for an ion-dose range extending two orders of magnitude beyond that required for amorphization, a dose-dependent asymmetric RDF was determined for the amorphous phase including an increase in bond-length as a function of ion dose. Low-temperature thermal annealing resulted in structural relaxation of the amorphous phase as evidenced by a reduction in the centroid, asymmetry and width of the RDF. Such an effect was attributed to the formation (and subsequent annihilation) of three- and five-fold Co-ordinated atoms, comparing favourably to theoretical simulations of the structure of a-Ge

  18. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  19. On magnetic ordering in silicon made amorphous by ion implantation

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.N.; Polyakov, S.M.

    1978-01-01

    Temperature dependences of the EPR intensity for silicon irradiated with the neon and argon ions at (2-4)x10 17 cm -2 doses have been studied. Paramagnetic defects with 2.0055 g-factor were recorded. Intensity jump associated with the transformation of the irradiated layer part to ferromagnetic state is observed at approximately 140 K. Paramagnetic centre distributions at temperatures above and lower the magnetic ordering temperature have heen investigated. It has been found, that ferromagnetic ordering is observed in a layer with the defect concentrations (3-7)x10 20 cm -3 , located at a depth > 100 A. Magnetic-ordered layer thickness is proportional to the incident ion energy

  20. The influence of annealing on manganese implanted GaAs films

    International Nuclear Information System (INIS)

    Buerger, Danilo; Zhou, Shengqiang; Grenzer, Joerg; Reuther, Helfried; Anwand, Wolfgang; Gottschalch, Volker; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Besides low-temperature molecular beam epitaxy, ion implantation provides an alternative route to incorporate Mn into GaAs above the equilibrium solubility limit. Recently, Mn implanted GaAs diluted magnetic semiconductor was obtained by pulsed laser annealing. However, post-implantation annealing can lead to the formation of secondary phases. In order to compare the post-annealing effect, we investigate GaMnAs by implanting up to 6 at% Mn followed by rapid thermal and flashlamp annealing. The structural properties were probed by high resolution X-ray diffraction. The magnetic properties were determined by SQUID measurements. Auger electron spectroscopy has been used to profile the depth distribution of Mn in GaAs after implantation and annealing. We elucidate after implantation a loss of As and that during rapid thermal annealing most of the Mn diffuses towards the surface. Flash lamp annealing prevents out-diffusion, but the recrystallisation efficiency is low. Only the flash lamp annealed samples reveal weak ferromagnetism.

  1. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni-Mn-In and Ni-Mn-Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni{sub 50}Mn{sub 50-x}In{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 35}In{sub 15}, Ni{sub 50}Mn{sub 35-x}Co{sub x}In{sub 15}, Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge), Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 25+y}Ga{sub 25-y}, and Ni{sub 50-x}Co{sub x}Mn{sub 32-y}FeyGa{sub 18}. It was found that the magnetic entropy change, {Delta}S, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change {Delta}H=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni{sub 50}Mn{sub 50-x}In{sub x} (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition {Delta}S=24 J/(kg K) was detected for {Delta}H=5 T at T=350 K. The variation in composition of Ni{sub 2}MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni{sub 42}Co{sub 8}Mn{sub 32-y}FeyGa{sub 18} system. The adiabatic change of temperature ({Delta}T{sub ad}) in the vicinity of TC and TM of Ni{sub 50}Mn{sub 35}In{sub 15} and Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge) was found to be {Delta}T{sub ad}=-2 K and 2 K for {Delta}H=1.8 T, respectively. It was observed that |{Delta}T{sub ad}| Almost-Equal-To 1 K for {Delta}H=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall

  2. Mössbauer spectra obtained using β − γ coincidence method after {sup 57}Mn implantation into LiH and LiD

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Kubo, M. K. [International Christian University, Division of Arts Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Nagatomo, T. [RIKEN, Nishina Center Accelerator Based Science (Japan); Sato, W. [Kanazawa University, Department of Chemistry (Japan); Miyazaki, J. [Tokyo University Agri. Technology, Department of Chemistry and Engineering (Japan); Tanigawa, S.; Natori, D. [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Sato, S.; Kitagawa, A. [National Institute Radiological Sciences (NIRS) (Japan)

    2016-12-15

    Highly energetic {sup 57}Mn (T{sub 1/2} = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β − γ coincidence detection was then carried out on the {sup 57}Fe obtained from β{sup −}decay of the {sup 57}Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional {sup 57}Fe atoms on the lattice sites is discussed.

  3. Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Mozzati, Maria Cristina; Azzoni, Carlo Bruno; Capsoni, Doretta; Bini, Marcella; Massarotti, Vincenzo

    2003-01-01

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu 3 Ti 4 O 12 have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO 4 -TiO 6 -CuO 4 complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested

  4. Investigation of the biochemical state of paramagnetic ions in vivo using the magnetic field dependence of 1/T1 of tissue protons (NMRD profile): applications to contrast agents for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Koenig, S.H.; Brown, R.D. III; Spiller, M.; Wolf, G.L.

    1988-01-01

    Nuclear magnetic relaxation dispersion (NMRD) profiles of protons are obtained in homogenous aqueous solutions of the paramagnetic ions, Mn 2+ and Gd 3+ and their chelate and macromolecular complexes in vitro, giving information regarding the biochemical state of these ions. Similarly NMRD profiles of protons of excised rabbit tissues containing Mn 2+ and Gd 3+ complexes are obtained. These NMRD profiles are shown to be very useful for determining the fate of potentially useful paramagnetic NMR imaging contrast agents in vivo. (U.K.)

  5. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  6. High dose implantations of antimony for buried layer applications

    International Nuclear Information System (INIS)

    Gailliard, J.P.; Dupuy, M.; Garcia, M.; Roussin, J.C.

    1978-01-01

    Electrical and physical properties of high dose implantations of antimony in silicon have been studied for use in buried layer applications. The results have been obtained both on and oriented silicon wafers. Following implantations which lead to amorphization we perform an annealing at 600 0 C for 10 mn in order to recrystallize the layer. The observed electrical properties (μ, R) show that the concentration of electrically active antimony ions is greater than that predicted from the solubility of antimony in silicon. Further annealing (in the range 1050 0 - 1200 0 ) induces: firstly a precipitation of the Sb and secondly a diffusion and dissolution of the precipitates. There is a different evolution of the defects in the and silicon slices. T.E.M. reveals no defects in the wafers after one hour annealing at 1200 0 C, whereas defects and twins remain in wafers. Having obtained the evolution of R with time and temperature it is then determined the implantation and annealing conditions which lead to the low resistivity (R = 10) needed for buried layer applications. Results with very many industrially made devices are discussed

  7. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  8. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  9. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  10. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  11. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    Science.gov (United States)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  12. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  13. Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Otto, G.; Hohmuth, K.; Heera, V.

    1987-01-01

    Boron, phosphorus and arsenic ions have been implanted into evaporated iron and nickel thin films at room temperature, and the implantation-induced microstructure has been investigated by high-voltage electron microscopy and transmission high energy electron diffraction. The metal films were implanted with ions to a constant dose of 1 x 10 17 and 5 x 10 17 ions/cm 2 respectively at energy of 50 keV. An amorphous layer was produced by boron and phosphorus ion implantation. Information on the atomic structure of the amorphous layers was obtained from the elastically diffracted electron intensity. On the basis of the correct scattering curves, the total interference function and the pair correlation function were determined. Finally, the atomic arrangement of the implantation-induced amorphous layers is discussed and structure produced by ion irradiation is compared with amorphous structures formed with other techniques. (author)

  14. Anomalous thermal expansion in YMn2, Y6Mn23 and YMn12

    International Nuclear Information System (INIS)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A.

    1997-01-01

    The thermal expansion coefficient α(T) of YMn 2 , Y 6 Mn 23 and YMn 12 is presented in the temperature range 4.2-1000 K together with α(T) of YCo 2 and YNi 2 . The strong variation of α(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.)

  15. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  16. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  17. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  18. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  19. Damage and in-situ annealing during ion implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Washburn, J.; Byrne, P.F.; Cheung, N.W.

    1982-11-01

    Formation of amorphous (α) layers in Si during ion implantation in the energy range 100 keV-11 MeV and temperature range liquid nitrogen (LN)-100 0 C has been investigated. Cross-sectional transmission electron microscopy (XTEM) shows that buried amorphous layers can be created for both room temperature (RT) and LN temperature implants, with a wider 100 percent amorphous region for the LN cooled case. The relative narrowing of the α layer during RT implantation is attributed to in-situ annealing. Implantation to the same fluence at temperatures above 100 0 C does not produce α layers. To further investigate in situ annealing effects, specimens already containing buried α layers were further irradiated with ion beams in the temperature range RT-400 0 C. It was found that isolated small α zones (less than or equal to 50 diameter) embedded in the crystalline matrix near the two α/c interfaces dissolved into the crystal but the thickness of the 100 percent α layer was not appreciably affected by further implantation at 200 0 C. A model for in situ annealing during implantation is presented

  20. Boron-implantation-induced crystalline-to-amorphous transition in nickel: An experimental assessment of the generalized Lindemann melting criterion

    International Nuclear Information System (INIS)

    Liu, P.C.; Okamoto, P.R.; Zaluzec, N.J.; Meshii, M.

    1999-01-01

    The generalized Lindemann melting hypothesis has recently been used to develop a unified thermodynamic criterion for melting applicable to both heat-induced melting and disorder-induced crystalline-to-amorphous (c-a) transformation. The hypothesis stipulates that the sum left-angle μ 2 right-angle Total of the static and dynamic root-mean-square (rms) atomic displacements is a constant fraction of the nearest-neighbor distance along the melting curve of a solid. To test this hypothesis, energy-filtered selected area electron-diffraction intensity measurements were used to determine the generalized Lindemann parameter δ=√ (left-angle μ 2 right-angle Total ) /d nn , in which d nn represents the nearest-neighbor distance, as a function of boron concentration during implantation of 50-keV ampersand hthinsp;B + into polycrystalline Ni at 77 K. The onset of amorphization was found to occur close to 10 at.ampersand hthinsp;% boron, which is in good agreement with the value predicted by T o curve calculated using the generalized Lindemann hypothesis. Moreover, the critical value of the generalized Lindemann parameter for amorphization, δ Critical =0.115±0.01, is within experimental error, identical to that for Ni just below its thermodynamic melting temperature of T=1728 ampersand hthinsp;K, hence providing a direct confirmation for the generalized Lindemann melting hypothesis. copyright 1999 The American Physical Society

  1. Disappearance of electron-hole asymmetry in nanoparticles of Nd1−xCaxMnO3(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence

    International Nuclear Information System (INIS)

    Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd 1−x Ca x MnO 3 in hole doped (x=0.4;NCMOH) and electron doped (x=0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at ∼250 K, an antiferromagnetic (AFM) transition at ∼150 K, and a transition to a canted AFM phase/mixed phase at ∼80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at ∼280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the “g” values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples

  2. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    International Nuclear Information System (INIS)

    Bertaina, S; Groll, N; Chen, L; Chiorescu, I

    2011-01-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  3. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  4. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  5. Hydrogen evolution characteristics of Ni-Mn microencapsulated MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} alloys in 6 M KOH

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, MV. [Ni-MH Section, Electrochemical Energy Sources Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Ananthi, P. [Department of Chemistry, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621 212 (India)

    2008-10-15

    Nickel-manganese alloys were coated from sulphate baths by electrodeposition with 'Packed Bed' technique on the surface of proprietary lanthanum rich non-stoichiometric MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} (Ml = lanthanum rich misch metal) hydrogen storage alloy particles. The structure and nature of the microencapsulated alloys were characterized using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR). The hydrogen evolution reaction (HER) was investigated in 6 M KOH at 30 C by galvnostatic cathodic polarisation technique. The effects of Ni/Mn ratio in the bath and deposition current density were studied. Among the investigated depositions, Ni{sub 150}Mn{sub 100} (30) and Ni{sub 150}Mn{sub 10} (60) (concentration of Ni and Mn salts in electrodeposition bath given in grams per liter; electrodeposition current density (CD) given within brackets in milliamphere per square centimeter) coated samples exhibited the highest activity towards the HER. It can be concluded that disordered paramagnetic coatings with Ni concentrations above 80 at.% exhibit higher catalytic activity towards HER. The Tafel mechanism is the easiest pathway for HER on most of the studied coatings. However, some of the Ni-rich coatings prefer the Volmer-Tafel path and one sample [Ni{sub 150}Mn{sub 150} (80)] prefers the Heyrovsky-Volmer path. (author)

  6. Photo-induced charge-transfer phase transition of rubidium manganese hexacyanoferrate in ferromagnetic and paramagnetic states

    International Nuclear Information System (INIS)

    Tokoro, Hiroko; Hashimoto, Kazuhito; Ohkoshi, Shin-ichi

    2007-01-01

    A charge transfer phase transition with thermal hysteresis loop is observed in a series of rubidium manganese hexacyanoferrates, RbMn[Fe(China) 6 ] (1), Rb 0.88 Mn[Fe(China) 6 ] 0.96 .0.6H 2 O (2), and Rb 0.97 Mn[Fe(China) 6 ] 0.99 .0.2H 2 O (3). This phase transition is accompanied by a structural change from cubic (F4-bar 3m) to tetragonal (I4-bar m2). Its high-temperature (HT) and low-temperature (LT) phases are composed of Mn II (S=2/5)NC-Fe III (S=1/2) and Mn III (S=2)-NC-Fe II (S=0), respectively. The phase transition is caused by a metal-to-metal charge transfer from Mn II to Fe III and a Jahn-Teller distortion of the produced Mn III ion. At the ferromagnetic state in LT phase of 2, the photo-induced phase transition is observed, i.e., magnetization is quenched by the irradiation with only one shot of laser pulse. This phenomenon is caused by a photo-induced phase transition from the LT phase to the HT phase. In 3, optical switching between LT and HT phases at room temperature in paramagnetic region is observed

  7. Structural and magnetic properties of Cr and Mn doped InN

    International Nuclear Information System (INIS)

    Ney, A.; Rajaram, R.; Arenholz, E.; Harris, J.S.; Samant, M.; Farrow, R.F.C.; Parkin, S.S.P.

    2006-01-01

    We present a detailed magnetic characterization of Cr and Mn doped InN films be means of superconducting quantum interference device magnetometry and X-ray magnetic circular dichroism. The InN:Cr films exhibit ferromagnetic behavior up to 300 K in a doping region from 2% to 8% without detectable phase segregation. The easy axis of magnetization is found to be in the film plane. On the contrary, Mn-doped films show signatures of phase segregation and paramagnetic behavior

  8. Hyperfine interaction and some thermomagnetic properties of amorphous and partially crystallized Fe70−xMxMo5Cr4Nb6B15 (M = Co or Ni, x = 0 or 10 alloys

    Directory of Open Access Journals (Sweden)

    Rzącki Jakub

    2015-03-01

    Full Text Available As revealed by Mössbauer spectroscopy, replacement of 10 at.% of iron in the amorphous Fe70Mo5Cr4Nb6B15 alloy by cobalt or nickel has no effect on the magnetic structure in the vicinity of room temperature, although the Curie point moves from 190 K towards ambient one. In the early stages of crystallization, the paramagnetic crystalline Cr12Fe36Mo10 phase appears before α-Fe or α-FeCo are formed, as is confirmed by X-ray diffractometry and transmission electron microscopy. Creation of the crystalline Cr12Fe36Mo10 phase is accompanied by the amorphous ferromagnetic phase formation at the expense of amorphous paramagnetic one.

  9. Ellipsometric and channeling studies on ion-implanted silicon

    International Nuclear Information System (INIS)

    Lohner, T.; Mezey, G.; Kotai, E.; Paszti, F.; Kiralyhidi, L.; Valyi, G.; Gyulai, J.

    1980-09-01

    RBS and ellipsometric investigations were combined to separate the contribution of radiation damage and overlayer contamination. It is pointed out that disorder effects which were produced by silicon self-implantation are shielded without proper surface cleaning. For cleaning, plasma stripping proved to be an effective method. The change in psi parameter could be correlated with the degree of amorphousness. It seems that Δ parameter ''feels'' crystalline-amorphous phase transition on low dose 31 P + and 27 Al + implants. No clear evidence was found for impurity effects on high-dose 75 As + and 31 P + implants. (author)

  10. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  11. Structural characterization of amorphous Fe-Si and its recrystallized layers

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2006-01-01

    We have synthesized amorphous Fe-Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe + ions to a fluence of 4.0 x 10 17 cm -2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe-Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi 2 thin layer

  12. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin; Zhang, Jie; Ma, Junjun; Zhang, Yuxin; Yao, Kexin

    2015-01-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  13. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  14. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  15. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  16. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  17. Local moment formation and magnetic coupling of Mn dopants in Bi2Se3: A low-temperature ferromagnetic resonance study

    Science.gov (United States)

    Savchenko, D.; Tarasenko, R.; Vališka, M.; Kopeček, J.; Fekete, L.; Carva, K.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.

    2018-05-01

    We compare the magnetic and electronic configuration of single Mn atoms in molecular beam epitaxy (MBE) grown Bi2Se3 thin films, focusing on electron paramagnetic (ferromagnetic) resonance (EPR and FMR, respectively) and superconducting quantum interference device (SQUID) techniques. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) reveal the expected increase of disorder with increasing concentration of magnetic guest atoms, however, Kikuchi patterns show that disorder consists majorly of μm-scale 60° twin domains in the hexagonal Bi2Se3 structure, which are promoted by the presence of single unclustered Mn impurities. Ferromagnetism below TC (5.4±0.3) K can be well described by critical scaling laws M (T) (1 - T /TC) β with a critical exponent β = (0.34 ± 0.2) , suggesting 3D Heisenberg class magnetism instead of e.g. 2D-type coupling between Mn-spins in van der Waals gap sites. From EPR hyperfine structure data we determine a Mn2+ (d5, S = 5/2) electronic configuration with a g-factor of 2.002 for -1/2 → +1/2 transitions. In addition, from the strong dependence of the low temperature FMR fields and linewidth on the field strength and orientation with respect to the Bi2Se3 (0001) plane, we derive magnetic anisotropy energies of up to K1 = -3720 erg/cm3 in MBE-grown Mn-doped Bi2Se3, reflecting the first order magneto-crystalline anisotropy of an in-plane magnetic easy plane in a hexagonal (0001) crystal symmetry. We observe an increase of K1 with increasing Mn concentration, which we interpret to be correlated to a Mn-induced in-plane lattice contraction. Across the ferromagnetic-paramagnetic transition the FMR intensity is suppressed and resonance fields converge the paramagnetic limit of Mn2+ (d5, S = 5/2).

  18. Synthesis of dilute magnetic semiconductors by ion implantation

    International Nuclear Information System (INIS)

    Braunstein, G.H.; Dresselhaus, G.; Withrow, S.P.

    1986-01-01

    We have synthesized layers of CdMnTe by implantation of Mn into CdTe. Samples of CdTe have been implanted with Mn ions of 60 keV energy to fluences in the range 1 x 10 13 cm -2 to 2 x 10 16 cm -2 resulting in local concentrations of up to 10% at the maximum of the Mn distribution. Rutherford backscattering-channeling analysis has been used to study the radiation damage after implantation and after subsequent rapid thermal annealing (RTA). These experiments reveal that RTA for 15 sec at a temperature T greater than or equal to 700 0 C results in the complete recovery of the lattice order, without affecting the stoichiometry of CdTe. Photoluminescence (PL) measurements of a sample showing complete annealing reveal an increase in the band gap corresponding to the synthesis of very dilute (x approx. = 0.004) Cd/sub 1-x/Mn/sub x/Te. A shift of the excitonic PL peak to lower energies is observed when a magnetic field H less than or equal to 1T is applied. These measurements provide clear evidence for the synthesis of a DMS by ion implantation of Mn into CdTe

  19. Amorphization and recrystallization processes in monocrystalline beta silicon carbide thin films

    International Nuclear Information System (INIS)

    Edmond, J.A.; Withrow, S.P.; Kong, H.S.; Davis, R.F.

    1985-01-01

    Individual, as well as multiple doses of 27 Al + , 31 P + , 28 Si + , and 28 Si + and 12 C + , were implanted into (100) oriented monocrystalline β-SiC films. The critical energy of approx. =16 eV/atom required for the amorphization of β-SiC via implantation of 27 Al + and 31 P + was determined using the TRIM84 computer program for calculation of the damage-energy profiles coupled with the results of RBS/ion channeling analyses. In order to recrystallize amorphized layers created by the individual implantation of all four ion species, thermal annealing at 1600, 1700, or 1800 0 C was employed. Characterization of the recrystallized layers was performed using XTEM. Examples of SPE regrown layers containing precipitates and dislocation loops, highly faulted-microtwinned regions, and random crystallites were observed

  20. Mn-AlInN: a new diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Zhu, J.J.

    2009-01-01

    Mn ions have been incorporated into MOCVD grown Al 1-x In x N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at ∝260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T c above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  1. Binding of Mn(II) ions to lecithin bilayers as determined by ESR and NMR investigations

    International Nuclear Information System (INIS)

    Sabatini, G.; Tiezzi, E.; Valensin, G.

    1983-01-01

    The Mn(II)-lecithin system was investigated by means of paramagnetic relaxation studies. Unsonicated and sonicated aqueous dispersions were considered at various temperatures and pH values. Information was derived from both the frequency dependence of the ESR line shape and the paramagnetic contributions to the water proton relaxation rates. A dynamic equilibrium was suggested, by taking into account the role of the through-water cation binding in the metal-lipid interaction

  2. Approaches to USJ Formation Beyond Molecular Implantation

    International Nuclear Information System (INIS)

    Hatem, C.; Renau, A.; Godet, L.; Kontos, A.; Papasouliotis, G.; England, J.; Arevalo, E.

    2008-01-01

    As junction depth requirements approach sub 10 nm and the sensitivity to residual implant damage continues to increase, the capability to produce abrupt, shallow profiles while maintaining low residual damage becomes a difficult challenge. Implantation induced amorphization has been widely applied to reduce channeling tails of implanted dopant profiles for integrated circuit manufacturing. This has been required to meet aggressive junction depth targets. The problem, however, is that pre-amorphization creates high defect densities that remain near the former amorphous-crystalline interface post anneal. These end of range (EOR) defects become of greater concern as the industry begins to move towards millisecond anneal technologies. Millisecond anneal, while capable of close to diffusionless activation and abrupt junctions, has caused concern for its inability to fully repair these EOR defects. There has been a recent focus on removing traditional PAI through molecular implantation with limited success. Towards this end we have investigated alternative techniques to reduce EOR damage while maintaining the junction depth, sheet resistance and abruptness. Here we describe the results of two of these techniques. The subsequent reduction in EOR through the use of each process and the resultant Rs, junction depth and abruptness are detailed.

  3. Anisotropy barrier reduction in fast-relaxing Mn12 single-molecule magnets

    Science.gov (United States)

    Hill, Stephen; Murugesu, Muralee; Christou, George

    2009-11-01

    An angle-swept high-frequency electron paramagnetic resonance (HFEPR) technique is described that facilitates efficient in situ alignment of single-crystal samples containing low-symmetry magnetic species such as single-molecule magnets (SMMs). This cavity-based technique involves recording HFEPR spectra at fixed frequency and field, while sweeping the applied field orientation. The method is applied to the study of a low-symmetry Jahn-Teller variant of the extensively studied spin S=10 Mn12 SMMs (e.g., Mn12 -acetate). The low-symmetry complex also exhibits SMM behavior, but with a significantly reduced effective barrier to magnetization reversal (Ueff≈43K) and, hence, faster relaxation at low temperature in comparison with the higher-symmetry species. Mn12 complexes that crystallize in lower symmetry structures exhibit a tendency for one or more of the Jahn-Teller axes associated with the MnIII atoms to be abnormally oriented, which is believed to be the cause of the faster relaxation. An extensive multi-high-frequency angle-swept and field-swept electron paramagnetic resonance study of [Mn12O12(O2CCH2But)16(H2O)4]ṡCH2Cl2ṡMeNO2 is presented in order to examine the influence of the abnormally oriented Jahn-Teller axis on the effective barrier to magnetization reversal. The reduction in the axial anisotropy, D , is found to be insufficient to account for the nearly 40% reduction in Ueff . However, the reduced symmetry of the Mn12 core gives rise to a very significant second-order transverse (rhombic) zero-field-splitting anisotropy, E≈D/6 . This, in turn, causes a significant mixing of spin projection states well below the top of the classical anisotropy barrier. Thus, magnetic quantum tunneling is the dominant factor contributing to the effective barrier reduction in fast relaxing Mn12 SMMs.

  4. Corrosion-resistant amorphous alloy ribbons for electromagnetic filtration of iron rusts from water

    International Nuclear Information System (INIS)

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40 0 C. The ferrimagnetic Fe 3 O 4 rust was trapped with the 100 % efficiency and paramagnetic rusts such as α-Fe 2 O 3 , α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity of electromagnetic filter was proportional to the edge length of the filter material where the high magnetic field strength existed. Therefore, melt-spun thin and narrow amorphous alloy ribbons having the high corrosion resistance have the potential utility as electromagnetic filter material. (author)

  5. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    NARCIS (Netherlands)

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  6. Synthesis, microstructure and EPR of CaMnO3 and EuxCa1-xMnO3 manganite, obtained by coprecipitation

    International Nuclear Information System (INIS)

    Santiago T, M.; Hernandez C, L.; Legorreta G, F.; Montiel S, H.; Alvarez L, G.; Flores G, M. A.

    2011-01-01

    The synthesis of CaMnO 3 and Eu x Ca 1-x MnO 3 obtained by coprecipitation method is showed. The synthesized samples were characterized by X-ray diffraction and scanning electronic microscopy, the powders showed orthorhombic structure and pnma space group. When it was doped with Europium, their morphology tendency was spherical. Measurements were carried out on electron paramagnetic resonance (EPR) with constant frequency = 9.4 GHz (band X) and dc magnetic field (H dc) 0-0.8 T, measurements were at 300 K and 77 K. EPR spectra showed significant differences between both samples, indicating that the substitution of divalent alkaline earth cations by trivalent rare earth ions, allowing the formation of a mixed valence state of manganese, Mn 3+ and Mn 4+ . A 77 K, the manganite of concentration x = 0.30 had a magnetic ordering, noted by the presence of hysteresis. (Author)

  7. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  8. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  9. A process for doping an amorphous semiconductor material by ion implantation

    International Nuclear Information System (INIS)

    Kalbitzer, S.; Muller, G.; Spear, W.E.; Le Comber, P.G.

    1979-01-01

    In a process for doping a body of amorphous semiconductor material, the body is held at a predetermined temperature above 20 deg. C which is below the recrystallization temperature of the amorphous semiconductor material during bombardment by accelerated ions of a predetermined doping material. (U.K.)

  10. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  11. Ferromagnetic and paramagnetic magnetization of implanted GaN:Ho,Tb,Sm,Tm films

    Czech Academy of Sciences Publication Activity Database

    Maryško, Miroslav; Hejtmánek, Jiří; Laguta, Valentyn; Sofer, Z.; Sedmidubský, D.; Šimek, P.; Veselý, M.; Mikulics, M.; Buchal, C.; Macková, Anna; Malinský, Petr; Wilhelm, R. A.

    2015-01-01

    Roč. 117, č. 17 (2015), "17B907-1"-"17B907-4" ISSN 0021-8979 R&D Projects: GA ČR GA13-20507S; GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : magnetic field, * ferromagnetic and paramagnetic magnetization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  12. Nanoscale electrochemical metallization memories based on amorphous (La, Sr)MnO3 using ultrathin porous alumina masks

    International Nuclear Information System (INIS)

    Liu, Dongqing; Zhang, Chaoyang; Wang, Nannan; Cheng, Haifeng; Wang, Guang; Shao, Zhengzheng; Zhu, Xuan

    2014-01-01

    Nanoscale electrochemical metallization (ECM) memories based on amorphous La 1−x Sr x MnO 3 (a-LSMO) were fabricated using ultrathin porous alumina masks. The ultrathin alumina masks, with thicknesses of about 200 nm and pore diameters of about 80 nm, were fabricated through a typical two-step anodization electrochemical procedure and transferred onto conductive Pt/Ti/SiO 2 /Si substrates. Resistive switching (RS) properties of the individual Ag/a-LSMO/Pt ECM cell were directly measured using a conductive atomic force microscope. The cells exhibited typical RS characteristics and the OFF/ON resistance ratio is as high as 10 2 . Reproducible RS behaviours on the same ECM cell and the I–V cycles obtained from different ECM cells ensured that the RS properties in nanoscale Ag/a-LSMO/Pt cells are reproducible and reliable. This work provides an effective approach for the preparation of nanostructured large-scale ordered ECM memories or memristors. (paper)

  13. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  14. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  15. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  16. Electrical and crystallographic evaluation of SOS implanted with silicon and/or oxygen

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kobayashi, H.; Takahashi, T.; Inada, T.

    1985-01-01

    RBS and Hall measurements have revealed that the formation of an amorphous laer in SOS near in the Si/sapphire interface by oxygen implantation at 130 K followed by regrowth by thermal annealing above 800 0 C for 20 min in N 2 is effective in improving crystalline quality and Hall mobility as well as in increasing activation of implanted P. The temperature dependence of the mobility was measured. The mobility increased by 80% and 40% at 77 K and RT, respectively, after improvement in crystalline quality. The costly low temperature implantation of O can be replaced with dual implantation of Si and O; formation of an amorphous layer by Si implantation and Al gettering by oxygen implantation. (orig.)

  17. Preparation, Investigation and the Study of the Effect of Mn(II Complex of Catechol and 2-Aminopyridine on Seed Germination

    Directory of Open Access Journals (Sweden)

    F. I. El-Moshaty

    2011-01-01

    Full Text Available The formation of mixed ligand complex of Mn(II with catechol (L1 and 2-aminopyridine (L2 was determined by elemental analyses (C, H and N, molar conductance measurement, thermogravimetric analysis, infrared, electronic and electron paramagnetic resonance spectroscopies. The elemental analysis data show the formation of 1:1:1 [M: L1: L2] complex. The molar conductance measurement shows a non-electrolyte nature. The thermogravimetric analysis data of the complex display the existence of hydrated and coordinated water molecules. The infrared spectral data exhibit the coordination sites that are through -OH,-C=N and –NH2 groups. The electronic spectral data display the electronic transitions of the ligands and suggest an octahedral structure for the complex. The electron paramagnetic resonance spectrum of the complex reveals the existence of paramagnetic phenomena and supports its geometrical structure. Seed germination and root length of grass were also assayed under the effect of MnCl2.4H2O, catechol, 2-aminopyridine and its complex. Mn(II salt was the most effective on germination than its complex which possess the high test effect on root length, while the ligands are the least active of all.

  18. Electron paramagnetic resonance investigation of polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mozzati, Maria Cristina [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Azzoni, Carlo Bruno [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Capsoni, Doretta [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Bini, Marcella [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Massarotti, Vincenzo [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy)

    2003-11-05

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO{sub 4}-TiO{sub 6}-CuO{sub 4} complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested.

  19. Mn-AlInN: a new diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Quaid-i-Azam University, Advance Materials Physics Laboratory, Physics Department, Islamabad (Pakistan); Sharif, Rehana [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Zhu, J.J. [Chinese Academy of Sciences, State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Beijing (China)

    2009-09-15

    Mn ions have been incorporated into MOCVD grown Al{sub 1-x}In{sub x}N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at {proportional_to}260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T{sub c} above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  20. The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC

    Science.gov (United States)

    Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.

    2017-04-01

    The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.

  1. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping, E-mail: linggp@zju.edu.cn

    2014-06-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl{sub 2}–AlCl{sub 3}–1-ethyl-3-methylim-idazolium chloride (MnCl{sub 2}–AlCl{sub 3}–EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm{sup 2}, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L{sub c} > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  2. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    International Nuclear Information System (INIS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-01-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl 2 –AlCl 3 –1-ethyl-3-methylim-idazolium chloride (MnCl 2 –AlCl 3 –EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm 2 , while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L c > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  3. Glassy formation ability, magnetic properties and magnetocaloric effect in Al27Cu18Er55 amorphous ribbon

    Science.gov (United States)

    Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang

    2018-05-01

    In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.

  4. Surfactant assisted electrodeposition of MnO2 thin films: Improved supercapacitive properties

    International Nuclear Information System (INIS)

    Dubal, D.P.; Kim, W.B.; Lokhande, C.D.

    2011-01-01

    Highlights: → Effect of Triton X-100 on physico-chemical properties of MnO 2 films. → High supercapacitance of 345 F g -1 . → Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO 2 thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO 2 films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO 2 in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO 2 film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO 2 thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO 2 films deposited in presence of Triton X-100 is 345 F g -1 .

  5. {sup 57}Fe Emission Mössbauer Study on Gd{sub 3}Ga{sub 5}O{sub 12} implanted with dilute{sup 57}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Krastev, P. B. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Gunnlaugsson, H. P., E-mail: haraldur.p.gunnlaugsson@cern.ch [CERN (Switzerland); Nomura, K. [Tokyo University of Science (Japan); Adoons, V. [University of Zululand, Physics and Engineering Department (South Africa); Gerami, A. M.; Johnston, K. [CERN (Switzerland); Ncube, M. [University of the Witwatersrand, School of Physics (South Africa); Mantovan, R. [IMM-CNR, Laboratorio MDM (Italy); Masenda, H. [University of the Witwatersrand, School of Physics (South Africa); Matveyev, Y. A. [Moscow Institute of Physics and Technology (Russian Federation); Mølholt, T. E. [CERN (Switzerland); Unzueta, I. [Euskal Herriko Unibertsitatea (UPV/EHU), BCMaterials & Elektrizitate eta Elektronika Saila (Spain); Bharuth-Ram, K. [Durban University of Technology, Physics Department (South Africa); Gislason, H. [University of Iceland, Science Institute (Iceland); Langouche, G. [University of Leuven, Instituut voor Kern- en Stralingsfysika (Belgium); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Ólafsson, S. [University of Iceland, Science Institute (Iceland); Collaboration: the ISOLDE collaboration

    2016-12-15

    {sup 57}Fe emission Mössbauer spectroscopy has been applied to study the lattice location and properties of Fe in gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} (GGG) single crystals in the temperature interval 300 – 563 K within the extremely dilute (<10{sup −4} at.%) regime following the implantation of{sup 57}Mn (T{sup 1}{sub /2}= 1.5 min.) at ISOLDE/CERN. These results are compared with earlier Mössbauer spectroscopy study of Fe-doped gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12}(GGG), with implantation fluences between 8×10{sup 15} and 6×10{sup 16} atoms cm{sup −2}. Three Fe components are observed in the emission Mössbauer spectra: (i) high spin Fe{sup 2+} located at damage sites due to the implantation process, (ii) high spin Fe{sup 3+} at substitutional tetrahedral Ga sites, and (iii) interstitial Fe, probably due to the recoil imparted on the daughter{sup 57∗}Fe nucleus in the β{sup −} decay of{sup 57}Mn. In contrast to high fluence{sup 57}Fe implantation studies the Fe{sup 3+} ions are found to prefer the tetrahedral Ga site over the octahedral Ga site. No annealing stages are evident in the temperature range investigated. Despite the very low concentration, high-spin Fe{sup 3+} shows fast spin relaxation, presumably due to an indirect interaction between nearby gadolinium atoms.

  6. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    International Nuclear Information System (INIS)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin

    2014-01-01

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V oc = 725 mV) and boron-doped passivated contacts (iV oc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium

    International Nuclear Information System (INIS)

    Xu, Ruizhen; Yang, Xiongbo; Li, Penghui; Suen, Kai Wong; Wu, Guosong; Chu, Paul K.

    2014-01-01

    Highlights: • Carbon, as a biocompatible benign element, was implanted into Mg. • A protective amorphous carbon layer was formed after implantation. • Treated sample exhibits good corrosion resistance in two solutions. - Abstract: The corrosion resistance of magnesium-based biomaterials is critical to clinical applications. In this work, carbon as a biocompatible and benign nonmetallic element with high chemical inertness is implanted into pure magnesium to improve the corrosion behavior. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman scattering reveal the formation of an amorphous carbon layer after ion implantation. Electrochemical studies demonstrate remarkable improvement in the corrosion resistance of magnesium in simulated body fluids (SBF) and Dulbecco’s Modified Eagle Medium (DMEM)

  8. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  9. Reaction mechanisms of MnMoO{sub 4} for high capacity anode material of Li secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Soo; Ogura, Seiichiro; Ikuta, Hiromasa; Uchimoto, Yoshiharu; Wakihara, Masataka [Department of Applied Chemistry, Tokyo Institute of Techonology, 2-12-1, Ookayama, Tokyo 152-8552 Meguro (Japan)

    2002-02-02

    Crystalline MnMoO{sub 4} was synthesized using a conventional solid reaction method and investigated for its physical and electrochemical properties as an anode material for Li secondary battery. The reversible amount of Li insertion/removal of MnMoO{sub 4} anode during the first cycle was about 800 mA h/g, accompanied by irreversible structural transformation into amorphous material. The amorphization during the first Li insertion was investigated by structural analysis using XRD of electrode. The charge compensation during Li insertion/removal was examined by measurement of X-ray Absorption Near Edge Structure (XANES) spectroscopy. Despite its irreversible structural transformation to amorphous during the first lithiation, subsequent cycles showed a reasonable cyclability. This paper presents the electrochemical properties of MnMoO{sub 4} and discusses the mechanism underlying the Li insertion/removal process.

  10. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  11. EPR OF Mn2+ IMPURITIES IN CALCITE: A DETAILED STUDY PERTINENT TO MARBLE PROVENANCE DETERMINATION

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters...... having the correct signs as well as magnitudes. We present data that determine the sign of the axial anisotropy parameter and thereby facilitate future quantum mechanical characterizations of marble electron paramagnetic resonance spectra that supplement provenance determination....

  12. Microstructure and composition of 304 stainless steel implanted with Ti and C

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.

    1989-01-01

    The microstructure and composition of surface alloys formed by implanting Ti and C into 304 stainless steel are examined for a range of Ti fluences, both with and without additional implanted C. The resulting amorphous layers are found to contain TiC precipitates, apparently with some Cr on Ti lattice sites, when the metal-atom fraction of Ti+Cr exceeds 55%. The depth profiles of Ti and C are measured, and the amounts of C incorporated into the alloys during Ti implantation are determined. Small amounts of H are also incorporated during the high-fluence Ti implantations. Thicker amorphous layers than those resulting from Ti implantation alone can be formed when additional C is implanted either before or after the Ti. (orig.)

  13. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    International Nuclear Information System (INIS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-01-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag + ions at different ion fluences ranging from 1 × 10 14 to 5 × 10 15 ions/cm 2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV–Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag + -implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 10 14 ions/cm 2 . Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  14. Muon spin relaxation in ferromagnetic PdMn

    International Nuclear Information System (INIS)

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  15. Muon spin relaxation in ferromagnetic PdMn

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)

    1984-01-01

    Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.

  16. Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia

    International Nuclear Information System (INIS)

    Šimek, P.; Sedmidubský, D.; Huber, Š.; Klímová, K.; Maryško, M.; Mikulics, M.; Sofer, Z.

    2015-01-01

    We present a novel route for the synthesis of manganese doped GaN nanoparticles. Nanoparticles in the form of hexagonal discs were synthesized by rapid thermal treatment of manganese doped ammonium hexafluorogallate in ammonium atmosphere. The morphology of GaN:Mn nanoparticles was investigated using scanning electron microscopy. A concentration over 0.7 wt.% of Mn was observed by X-ray fluorescence and electron microprobe. Structural and electronic properties were investigated using X-ray diffraction, Raman spectroscopy and micro-photoluminescence with excitation wavelength of 325 nm and 532 nm. The magnetic properties between 4.5 K and 300 K were investigated by a superconducting quantum interference device (SQUID) magnetometer. GaN:Mn nanoparticles show a purely paramagnetic behavior which can be interpreted in terms of Mn 2+ ions exhibiting an antiferromagnetic interaction. - Highlights: • A new method for the synthesis of Mn doped GaN nanoparticles. • GaN:Mn nanoparticles form hexagonal discs. • None ferromagnetic ordering observed in GaN:Mn nanoparticles. • The concentration of Mn in GaN:Mn nanoparticles reach up to 0.8 wt.%

  17. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu Xuechao; Zhang Huawei; Zhang Tao; Chen Boyuan; Chen Zhizhan; Song Lixin; Shi Erwei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn 2+ for Zn 2+ without additional acceptor doping. The substitution of N for O (N O −) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn 2+ and Mn 3+ via N O − . The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration

  18. Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film

    Directory of Open Access Journals (Sweden)

    Horoz Sabit

    2018-03-01

    Full Text Available Synthesis and characterization of Mn-doped Sb2S3 thin films (TFs prepared by chemical bath deposition (CBD at room temperature have been documented and their structural, optical, morphological, magnetic and photovoltaic properties have been examined for the first time. Their structural properties reveal that the Mn-doped Sb2S3 TF has an orthorhombic phase structure of Sb2S3, and that the grain size of the Mn-doped Sb2S3 TF (72.9 nm becomes larger than that of undoped Sb2S3 TF (69.3 nm. It has been observed that Mn content causes the Sb2S3 TF band gap to decrease. This situation clearly correlates with band tailing due to the impurities that are involved. The morphological properties have revealed that the shape of the Mn-doped Sb2S3 TF is more uniform than the shape of its undoped counterpart. The study on its magnetic properties has demonstrated that the Mn-doped Sb2S3 TF exhibits paramagnetic behavior. Its paramagnetic Curie-Weiss temperature was found to be -4.1 K. This result suggests that there is an anti-ferromagnetic interaction between Mn moments in the Mn-doped Sb2S3 TF. Incident photon to electron conversion efficiency (IPCE and J-V measurements were also carried out for the Mn-doped Sb2S3 TF for the first time. The results have indicated that the Mn-doped Sb2S3 TF can be utilized as a sensitizer to improve the performance of solar cells. Another important observation on the photovoltaic properties of Mn-doped Sb2S3 TF is that the spectral response range is wider than that of undoped Sb2S3 TF. Our study suggests that the introduction of dopant could serve as an effective means of improving the device performance of solar cells.

  19. High energy P implants in silicon

    International Nuclear Information System (INIS)

    Raineri, V.; Cacciato, A.; Benyaich, F.; Priolo, F.; Rimini, E.; Galvagno, G.; Capizzi, S.

    1992-01-01

    Phosphorus ions in the energy range 0.25-1 MeV and in the dose range 2x10 13 -1x10 15 P/cm 2 were implanted into (100) Si single crystal at different tilt angles. In particular channeling and random conditions were investigated. For comparison some implants were performed on samples with a 2 μm thick surface amorphous layer. Chemical concentration P profiles were obtained by secondary ion mass spectrometry. Carrier concentration and mobility profile measurements were carried out by sheet resistance and Hall measurements on implanted van der Pauw patterns. Carrier concentration profiles were also obtained by spreading resistance (SR) measurements. The damage in the as-implanted samples was determined by backscattering and channeling spectrometry (RBS) as a function of the dose and implantation energy. Comparison of random implants in crystal with implants in amorphous layers shows that in the first case it is impossible to completely avoid the channeling tail. In the implants performed under channeling conditions at low doses the P profiles are flat over more than 2 μm thick layers. Furthermore, by increasing the implanted dose, the shape of the profiles dramatically changes due to the dechanneling caused by the crystal disorder. The data are discussed and compared with Monte Carlo simulations using the MARLOWE code. A simple description of the electronic energy loss provides an excellent agreement between the calculated and experimental profiles. (orig.)

  20. Surfactant assisted electrodeposition of MnO{sub 2} thin films: Improved supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, D.P. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, W.B. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India)

    2011-10-13

    Highlights: > Effect of Triton X-100 on physico-chemical properties of MnO{sub 2} films. > High supercapacitance of 345 F g{sup -1}. > Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO{sub 2} thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO{sub 2} films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO{sub 2} in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO{sub 2} film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO{sub 2} thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO{sub 2} films deposited in presence of Triton X-100 is 345 F g{sup -1}.

  1. Low-temperature thermal decomposition of heavy petroleum distillates: interconnection between the electrical properties and concentration of paramagnetic centres

    Science.gov (United States)

    Dolomatov, M.; Gafurov, M.; Rodionov, A.; Mamin, G.; González, L. Miquel; Vakhin, A.; Petrov, A.; Bakhtizin, R.; Khairudinov, I.; Orlinskii, S.

    2018-05-01

    Changes of paramagnetic centers (PC) concentration in petroleum dispersed systems (PDS) are studied in the process of low-temperature thermolysis. Complex investigation of physicochemical, rheological and electrophysical properties of high-boiling oil fractions is performed. Based on the analysis of the experimental results it can be concluded that the PDS under investigation can be regarded as amorphous broadband organic semiconductors for which PC plays a role of dopant. It shows the perspectives of the asphaltenes usage as a basis for the photovoltaic devices.

  2. Influence of Mn site doping on electrical resistivity of polycrystalline La1-yAyMn1-xBxO3 (A=Ba, Sr; B=Cu, Cr, Co Manganites

    Directory of Open Access Journals (Sweden)

    Paunović N.

    2008-01-01

    Full Text Available We have the measured electrical resistivity of La1-yBayMn1-xCuxO3 (0.17≤y≤0.30; 0.04≤x≤0.10, La1-ySryMn1-xCrxO3 and La1-ySryMn1-xCoxO3 (0.270≤y≤0.294; 0.02≤x≤0.10 polycrystalline samples in the 25-325 K temperature range. The increase of Mn site doping concentration leads to an increase of the electrical resistivity of the samples and the appearance of a “double-peak” structure in the electrical resistivity versus temperature graphs. The first peak represents the insulator-metal transition in vicinity of the paramagnetic-ferromagnetic transition (TC. We have found that the intensity of the second peak increases with an increase of concentration of Mn substituents, due to the hole scattering by the random potential of the Mn site impurities.

  3. Paramagnetic susceptibility of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} metallic glass subjected to high-pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, A.V., E-mail: korolyov@imp.uran.ru [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Kourov, N.I. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Pushin, V.G. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Gunderov, D.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation); Boltynjuk, E.V.; Ubyivovk, E.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Valiev, R.Z. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation)

    2017-09-01

    Highlights: • Zr-based BMG was subjected to HPT at temperatures of 20 °C and 150 °C. • Magnetic measurements reveal well recordable changes in paramagnetic susceptibility. • Paramagnetic susceptibility may be an indicator of a change in the structural state. - Abstract: The Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glass is studied in the as-cast state and in the state after processing by high-pressure torsion at temperatures of 20 °C and 150 °C. According to the data from X-ray diffraction and transmission electron microscopy, the structural state of the samples depends weakly on the conducted processing. At the same time, magnetic measurements reveal well recordable changes in paramagnetic susceptibility induced by the processing of the samples. It is assumed that, because of high-pressure torsion deformation, there occurs a noticeable change in the material electronic structure, which leads to a change in the full susceptibility of the samples. The performed studies demonstrate that paramagnetic susceptibility may be an indicator of a change in the structural state of paramagnetic amorphous metallic substances.

  4. Anomalous thermal expansion in YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A. [Technische Univ., Vienna (Austria). Inst. fuer Experimentalphysik; Dubenko, I.S.; Granovsky, S.A.; Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State Univ., Moscow (Russian Federation)

    1997-07-01

    The thermal expansion coefficient {alpha}(T) of YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12} is presented in the temperature range 4.2-1000 K together with {alpha}(T) of YCo{sub 2} and YNi{sub 2}. The strong variation of {alpha}(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.). 3 refs.

  5. Degradable and porous Fe-Mn-C alloy for biomaterials candidate

    Science.gov (United States)

    Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna

    2018-02-01

    Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure

  6. Electronic Transport and Raman Spectroscopy Characterization in Ion-Implanted Highly Oriented Pyrolytic Graphite

    Science.gov (United States)

    de Jesus, R. F.; Turatti, A. M.; Camargo, B. C.; da Silva, R. R.; Kopelevich, Y.; Behar, M.; Balzaretti, N. M.; Gusmão, M. A.; Pureur, P.

    2018-02-01

    We report on Raman spectroscopy, temperature-dependent in-plane resistivity, and in-plane magnetoresistance experiments in highly oriented pyrolytic graphite (HOPG) implanted with As and Mn. A pristine sample was also studied for comparison. Two different fluences were applied, φ = 0.5× 10^{16} {ions}/{cm}2 and φ = 1.0× 10^{16} {ions}/{cm}2. The implantations were carried out with 20 keV ion energy at room temperature. The Raman spectroscopy results reveal the occurrence of drastic changes of the HOPG surface as a consequence of the damage caused by ionic implantation. For the higher dose, the complete amorphization limit is attained. The resistivity and magnetoresistance results were obtained placing electrical contacts on the irradiated sample surface. Owing to the strong anisotropy of HOPG, the electrical current propagates mostly near the implanted surface. Shubnikov-de Haas (SdH) oscillations were observed in the magnetoresistance at low temperatures. These results allow the extraction of the fundamental SdH frequencies and the carriers' effective masses. In general, the resistivity and magnetoresistance results are consistent with those obtained from Raman measurements. However, one must consider that the electrical conduction in our samples occurs as in a parallel association of a largely resistive thin sheet at the surface strongly modified by disorder with a thicker layer where damage produced by implantation is less severe. The SdH oscillations do not hint to significant changes in the carrier density of HOPG.

  7. Porous MnO2 prepared by sol-gel method for electrochemical supercapacitor

    Science.gov (United States)

    Bazzi, K.; Kumar, A.; Jayakumar, O. D.; Nazri, G. A.; Naik, V. M.; Naik, R.

    2015-03-01

    MnO2 has attracted great attention as material for electrochemical pseudocapacitor due to its high theoretical specific faradic capacitance (~ 1370 F .g-1) , environmental friendliness and wide potential window in both aqueous and nonaqueous electrolytes. However, the MnO2 has a low surface area which depresses its electrochemical performance. The amorphous α-MnO2 composite was synthesized by sol gel method in the presence of the tri-block copolymer P123. Our aim is to investigate the role of P123 on the electrochemical performance of MnO2. The samples with and without P123 were prepared and characterized by x-ray diffraction (XRD), SEM, TEM and Brunauer-Emmett-Teller (BET) method. The electrochemical performances of the amorphous MnO2 composites as the electrode materials for supercapacitors were evaluated by cyclic voltammetry and AC impedance measurements in a 1M Na2SO4 solution. The results show that the sample prepared without P123 exhibited a relatively low specific capacitance of 28F .g-1, whereas the porous MnO2 prepared with P123 exhibited 117 F .g-1at 5 mV/s. The results of crystalline MnO2 composites will also be presented. The authors acknowledge the support from the Richard J. Barber Foundation for Interdisciplinary Research.

  8. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  9. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  10. High resolution photoemission study of Nd1-xSrxMnO3

    International Nuclear Information System (INIS)

    Togashi, T.; Osawa, H.; Shin, S.; Tanaka, K.; Isozumi, Y.; Iwazumi, T.; Nozawa, S.

    2004-01-01

    Full text:Nd 1-x SrxMnO 3 shows the negative colossal magnetoresistance and various electronic phases. In order to reveal their states, we have performed a high- resolution Mn 2p-3d resonance photoemission (RPES) study of Nd 1-x SrxMnO 3 with an energy resolution of 100 meV at BL25SU in SPring-8. Figure 1 shows the Mn 2p-3d RPES spectra of Nd 1-x SrxMnO 3 . It is found that the spectral line shape in the ground-state phases (GS) at low temperatures is closely related to the shape of MnO 6 octahedra depending on x due to a static Jahn- Teller (JT) effect while the line shape in the paramagnetic insulator (PI) phase near room temperature is qualitatively similar to each other irrespective of x. These results strongly suggest that the dynamical and static JT effects are responsible for the 3d electronic states at high and low temperatures, respectively

  11. Temperature dependence of the ESR linewidth in the paramagnetic phase (T>TC) of R1-xBxMnO3+δ (R=La,Pr; B=Ca,Sr)

    International Nuclear Information System (INIS)

    Rettori, C.; Rao, D.; Singley, J.; Kidwell, D.; Oseroff, S.B.; Causa, M.T.; Neumeier, J.J.; McClellan, K.J.; Cheong, S.; Schultz, S.

    1997-01-01

    Electron spin resonance (ESR) experiments in the paramagnetic phase of R 1-x B x MnO 3+δ (R=La,Pr; B=Ca,Sr) show, for 1.1 T C approx-lt T approx-lt 2T C , a linear T increase of the resonance linewidth, ΔH, in powders, ceramic pellets, and single crystals. Above ∼2T C a slowdown in the T increase of ΔH is observed. The data resemble the results found in other ferromagnetic insulators where the spin-lattice relaxation involves a single-phonon process. We find that the one-phonon process may account for the linear T dependence of the linewidth observed up to ∼2T C . A large T dependence of the resonance intensity above T C was found in all the samples studied, suggesting the existence of spin clusters in these compounds over a wide range of temperature. copyright 1997 The American Physical Society

  12. Generalized melting criterion for beam-induced amorphization

    International Nuclear Information System (INIS)

    Lam, N. Q.; Okamoto, Paul R.

    1993-09-01

    Recent studies have shown that the mean-square static atomic displacements provide a generic measure of the enthalpy stored in the lattice in the form of chemical and topological disorder, and that the effect of the displacements on the softening of shear elastic constants is identical to that of heating. This finding lends support to a generalized form of the Lindemann phenomenological melting criterion and leads to a natural interpretion of crystalline-to-amorphous transformations as defect-induced melting of metastable crystals driven beyond a critical state of disorder where the melting temperature falls below the glass-transition temperature. Application of the generalized Lindemann criterion to both the crystalline and amorphous phases indicates that the enthalpies of the two phases become identical when their shear moduli become equal. This thermo-elastic rule provides a basis for predicting the relative susceptibility of compounds to amorphization in terms of their elastic properties as measured by Debye temperatures. The present approach can explain many of the basic findings on beam-induced amorphization of intermetallic compounds as well as amorphous phase formation associated with ion implantation, ion-beam mixing and other solid-state processes

  13. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H; Morita, Y; Ohshima, T

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  14. Surface topographical and structural analysis of Ag{sup +}-implanted polymethylmethacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Saleemi, Farhat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Sagheer, Riffat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Bashir, Shazia [Center for Advanced Studies in Physics (CASP), Government College University, Lahore 54000 (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Siraj, Khurram; Iqbal, Saman [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan)

    2016-08-15

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag{sup +} ions at different ion fluences ranging from 1 × 10{sup 14} to 5 × 10{sup 15} ions/cm{sup 2} using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV–Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag{sup +}-implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 10{sup 14} ions/cm{sup 2}. Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  15. Physicochemical Characterization and In Vivo Evaluation of Amorphous and Partially Crystalline Calcium Phosphate Coatings Fabricated on Ti-6Al-4V Implants by the Plasma Spray Method

    Directory of Open Access Journals (Sweden)

    Estevam A. Bonfante

    2012-01-01

    Full Text Available Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA and amorphous calcium phosphate (ACP surfaces were characterized by scanning electron microscopy (SEM, interferometry (IFM, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FT-IR. Implants were placed in the radius epiphysis, and the right limb of dogs provided implants that remained for 6 weeks, and the left limb provided implants that remained 12 weeks in vivo. Thin sections were prepared for bone-to-implant contact (BIC and bone-area-fraction occupancy (BAFO measurements (evaluated by Friedman analysis <0.05. Results. Significantly, higher Sa (<0.03 and Sq (<0.02 were observed for ACP relative to PSHA. Chemical analysis revealed significantly higher HA, calcium phosphate, and calcium pyrophosphate for the PSHA surface. BIC and BAFO measurements showed no differences between surfaces. Lamellar bone formation in close contact with implant surfaces and within the healing chambers was observed for both groups. Conclusion. Given topographical and chemical differences between PSHA and ACP surfaces, bone morphology and histomorphometric evaluated parameters showed that both surfaces were osseoconductive in plateau root form implants.

  16. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    OpenAIRE

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-01-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): Ga1-xMnxAs and In1-xMnxAs. In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strengt...

  17. Critical parameters near the ferromagnetic-paramagnetic phase transition in La0.7A0.3(Mn1-xbx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) compounds

    International Nuclear Information System (INIS)

    Khiem, N.V.; Phong, P.T.; Bau, L.V.; Nam, D.N.H.; Hong, L.V.; Phuc, N.X.

    2009-01-01

    The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La 0.7 A 0.3 (Mn 1-x B x )O 3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature T C and the critical parameters β, γ and δ. With the values of T C , β and γ, we plot Mx(1-T/T C ) -β vs. Hx(1-T/T C ) -γ . All the data collapse on one of the two curves. This suggests that the data below and above T C obey scaling, following a single equation of state. Critical parameters for x=0 and x Ti =0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for x Al =0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.

  18. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    Science.gov (United States)

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  19. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    Science.gov (United States)

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  20. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  1. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  2. Magnetic resonances spectroscopy of nanosize particles La0.7Sr0.3MnO3

    International Nuclear Information System (INIS)

    Krivoruchko, Vladimir; Konstantinova, Tat'yana; Mazur, Anton; Prokhorov, Andrey; Varyukhin, Victor

    2006-01-01

    Using a co-precipitation method, perovskite-type manganese oxide La 0.7 Sr 0.3 MnO 3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55 Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ∼2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La 0.7 Sr 0.3 MnO 3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K

  3. MnWO{sub 4} nanocapsules: Synthesis, characterization and its electrochemical sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, Selvamani; Suresh, Ranganathan; Giribabu, Krishnamoorthy; Manigandan, Ramadoss; Praveen Kumar, Sivakumar; Munusamy, Settu; Narayanan, Vengidusamy, E-mail: vnnara@yahoo.co.in

    2015-01-15

    Highlights: • Synthesis of MnWO{sub 4} nanocapsules without use of any other external reagent. • High crystalline MnWO{sub 4} was obtained with phase purity. • Electrochemical sensing platform based on MnWO{sub 4} for sensing quercetin. • Micromolar detection ability of MnWO{sub 4} modified GCE. - Abstract: Manganese tungstate (MnWO{sub 4}) was synthesized by surfactant free precipitation method. MnWO{sub 4} was characterized by using various spectroscopic techniques. The phase, crystalline nature and the morphological analysis were carried out using XRD, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). Further, FT-IR, Raman, and DRS-UV–Vis spectral analysis were carried out in order to ascertain the optical property and the presence of functional groups. From the analysis, the morphology of the MnWO{sub 4} was observed to be in capsules with breadth and thickness were in nm range. The oxidation state of tungsten (W), and manganese (Mn) were investigated using X-ray photo electron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR). The synthesized MnWO{sub 4} nanocapsules were used to modify glassy carbon electrode (GCE) to detect quercetin.

  4. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.

    Science.gov (United States)

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-02

    In this work, we prepared CdTe quantum dots, and series of Cd 1-x Mn x Te-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn 2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd 1-x Mn x Te-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd 1-x Mn x Te-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  5. Research on nitrogen implantation energy dependence of the properties of SIMON materials

    International Nuclear Information System (INIS)

    Zhang, E.X.; Sun, J.Y.; Chen, J.; Chen, M.; Zhang, Zh.X.; Li, N.; Zhang, G.Q.; Wang, X.

    2006-01-01

    With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined

  6. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  7. Synthesis and magnetic properties of layered MnPSxSe3-x (0 < x < 3) and corresponding intercalation compounds of 2,2'-bipyridine

    International Nuclear Information System (INIS)

    Yan, Xiaobing; Chen, Xingguo; Qin, Jingui

    2011-01-01

    Graphical abstract: A series of new layered MnPS x Se 3-x (0 x Se 3-x exhibited antiferromagnetism similar to MnPS 3 or MnPSe 3 , but the intercalation of 2,2'-bipyridine can dramatically change the properties of MnPS x Se 3-x slab. Research highlights: → A series of new MnPS x Se 3-x are designed and synthesized for the first time and their layered structure has been determined. → The intercalation chemistry has been initially studied via the intercalation of 2,2'-bipyridine with MnPS x Se 3-x . → The magnetic properties of the series MnPS x Se 3-x and the corresponding intercalation compounds of 2,2'-bipydine have been studied. And the relationship between the structure and the magnetic propertied has been primarily explored. -- Abstract: In this work, we synthesize a series of new MnPS x Se 3-x (0 1-y PS x Se 3-x (bipy) 4y , x = 1.2, 1.8 and 2.4) via the intercalation of 2,2'-bipyridine with MnPS x Se 3-x . XRD results confirm that MnPS x Se 3-x compounds show the layered structure and can be regarded as the solid solution of MnPS 3 and MnPSe 3 . Magnetic measurements indicate that MnPS x Se 3-x compounds exhibit paramagnetism with negative Weiss constant in the paramagnetic temperature region, and an antiferromagnetic phase transition occurs at the Neel temperature. It is found that the magnetic properties of MnPS x Se 3-x slab are dramatically changed after the intercalation of 2,2'-bipyridine, which is close related to the relative ratio of S and Se atom as well as the intralayered Mn 2+ vacancies of MnPS x Se 3-x slab.

  8. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  9. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    Science.gov (United States)

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S

  10. Strain, size and field effects in (La,Ca)MnO3 thin films

    NARCIS (Netherlands)

    Beekman, Christianne

    2010-01-01

    Doped manganese oxides such as La0.67Ca0.33MnO3 (LCMO) are strongly correlated electron systems which display an insulator to metal transition upon cooling at a temperature T_MI. At low temperature the material is ferromagnetic. Above the transition the material is a paramagnetic insulator in which

  11. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  12. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    Science.gov (United States)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  13. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia

    2014-11-18

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  14. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-01-01

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  15. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  16. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  17. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  18. Magnetic and thermoelectric properties of electron doped Ca{sub 0.85}Pr{sub 0.15}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hossain Khan, Momin [Department of Physics, University of Kalyani, Kalyani 741235, West Bengal (India); Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com [Department of Physics, University of Kalyani, Kalyani 741235, West Bengal (India); Bose, Esa [Department of Engineering Physics, B. P. P. I. M.T, Kolkata 700052, West Bengal (India)

    2015-10-01

    We have investigated temperature-dependent magnetization (M), magnetic susceptibility (χ) and thermoelectric (S) properties of the electron-doped Ca{sub 0.85}Pr{sub 0.15}MnO{sub 3}. With decrease of temperature, paramagnetic (PM) to antiferromagnetic (AFM) phase transition occurs with a well-defined Néel temperature (T{sub N}=122 K). Magnetic susceptibility measurements reveal that the paramagnetic state involves modified Curie–Weiss paramagnetism. Field cooled and zero field cooled magnetization measurements indicate a signature of magnetic frustration. Ferromagnetic (FM) double-exchange interactions associated with doped e{sub g} electrons are favored over competing AFM interactions below T{sub irr}=112 K. Magnetization data also shows a second-order phase transition. The sign reversal in S(T) has been interpreted in terms of the change in the electronic structure relating to the orbital degrees of freedom of the doped e{sub g} electron. Low temperature (5–140 K) thermoelectric power, S (T) signifies the importance of electron–magnon scattering process. - Highlights: • Magnetic and thermoelectric properties have been investigated in Ca{sub 0.85}Pr{sub 0.15}MnO{sub 3}. • It shows a PM–AFM second order phase transition at T{sub N}=122 K. • PM state involves modified Curie–Weiss paramagnetism. • The electron–magnon scattering dominates temperature dependent thermoelectric power.

  19. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu; Hu, Fengxia; Wu, Rongrong; Wang, Jianping; Chen, Liming; Sun, Jirong; Shen, Baogen; Li, Lain-Jong; Zhang, Bei; Zhang, Xixiang

    2014-01-01

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  20. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu

    2014-01-03

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  1. Synthesis, microstructure and EPR of CaMnO{sub 3} and Eu{sub x}Ca{sub 1-x}MnO{sub 3} manganite, obtained by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Santiago T, M.; Hernandez C, L.; Legorreta G, F. [Universidad Autonoma del Estado de Hidalgo, AACTyM, Carretera Pachuca-Tulancingo Km 4.5, 42074 Pachuca, Hidalgo (Mexico); Montiel S, H. [UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Departamento de Tecnociencias, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alvarez L, G. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, U. P. Adolfo Lopez Mateos, Edif. 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Flores G, M. A., E-mail: mar200878@hotmail.com [Universidad Politecnica de Pachuca, Laboratorio de Nanotecnologia y Bioelectromagnetismo Aplicado, Carretera Pachuca-Cd. Sahagun Km 20, Ex-Hacienda de Santa Barbara, 43830 Zempoala, Hidalgo (Mexico)

    2011-07-01

    The synthesis of CaMnO{sub 3} and Eu{sub x}Ca{sub 1-x}MnO{sub 3} obtained by coprecipitation method is showed. The synthesized samples were characterized by X-ray diffraction and scanning electronic microscopy, the powders showed orthorhombic structure and pnma space group. When it was doped with Europium, their morphology tendency was spherical. Measurements were carried out on electron paramagnetic resonance (EPR) with constant frequency = 9.4 GHz (band X) and dc magnetic field (H dc) 0-0.8 T, measurements were at 300 K and 77 K. EPR spectra showed significant differences between both samples, indicating that the substitution of divalent alkaline earth cations by trivalent rare earth ions, allowing the formation of a mixed valence state of manganese, Mn{sup 3+} and Mn{sup 4+}. A 77 K, the manganite of concentration x = 0.30 had a magnetic ordering, noted by the presence of hysteresis. (Author)

  2. The use of Raman scattering for studying the defects created by implantation in semiconductors

    International Nuclear Information System (INIS)

    Morhange, J.F.; Beserman, R.; Bourgoin, J.

    1974-01-01

    The evolution of Raman scattering with the dose of implanted ions and annealing temperature in silicon and diamond was studied. The variation in the concentration of the defects introduced by implantation, with the dose and annealing temperature were deduced. These results were compared with results obtained using electron paramagnetic resonance. The comparison shows that Raman scattering is a good technique to study the behavior of the defects in ion implanted semiconductors [fr

  3. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    Science.gov (United States)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  4. Optical and magnetic properties of Sn{sub 1−x}Mn{sub x}O{sub 2} dilute magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Coolahan, Kelsey [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2014-12-05

    Highlights: • Monophasic Mn-doped SnO{sub 2} nanoparticles by solvothermal method for first time. • High surface area with smaller particle size. • Increase in band gap with increasing Mn concentration. • Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism. • Sn{sub 0.85}Mn{sub 0.15}O{sub 2} showed paramagnetic behaviour. - Abstract: Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05, 0.10 and 0.15) nanoparticles with tetragonal structure have been successfully synthesized by solvothermal method using oxalate precursor route. The oxalate precursors and its corresponding oxides were characterized by powder X-ray diffraction (PXRD), thermogravimetric (TG), fourier transform infrared (FTIR) and transmission electron microscopic (TEM) studies. PXRD studies showed the highly crystalline and monophasic nature of the solid solutions. The shifting of X-ray reflections towards higher angle is attributed to the incorporation of Mn{sup 2+} ions in SnO{sub 2} host lattice. The average particle size was found to be in the range of 5–11 nm. Reflectance measurements showed blue shift in energy band gap which increases with increasing Mn{sup 2+} concentration. Surface area of these nanoparticles (59–388 m{sup 2}/g) was found to be high which increases with increasing the dopant ion concentration. Mn-doped SnO{sub 2} showed distinct magnetic behaviour with different manganese concentration. Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism, however on increasing x = 0.15, sample showed paramagnetic behaviour.

  5. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    Science.gov (United States)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  6. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    International Nuclear Information System (INIS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-01-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å 3 . SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn 2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn 2+ and its surroundings

  7. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  8. Origin of second-order transverse magnetic anisotropy in Mn12-acetate

    International Nuclear Information System (INIS)

    Cornia, A.; Sessoli, R.; Sorace, L.; Gatteschi, D.; Barra, A. L.; Daiguebonne, C.

    2002-01-01

    The symmetry breaking effects for quantum tunneling of the magnetization in Mn 12 -acetate, a molecular nanomagnet, represent an open problem. We present structural evidence that the disorder of the acetic acid of crystallization induces sizable distortion of the Mn(III) sites, giving rise to six different isomers. Four isomers have symmetry lower than tetragonal and a nonzero second-order transverse magnetic anisotropy, which has been evaluated using a ligand field approach. The result of the calculation leads to an improved simulation of electron paramagnetic resonance spectra and justifies the tunnel splitting distribution derived from the field sweep rate dependence of the hysteresis loops

  9. Oxalate molecule as the trap for gamma-irradiation energy in the amorphous aluminosilicate Al2(OH)6H4SiO4

    International Nuclear Information System (INIS)

    Nothig-Laslo, V.; Horvath, L.; Bilinski, H.

    1990-01-01

    Paramagnetic species which were the products of gamma irradiation at 77 K and at room temperature were studied by ESR spectroscopy in the amorphous aluminosilicate, Al2(OH)6H4SiO4, prepared in the presence and in the absence of oxalate ion. The aluminosilicate precipitated from the solution containing the oxalate ion in 10(-4) mol dm-3 concentration contained the oxalate only in trace amounts. When gamma-irradiated at 77 K and at room temperature, this compound gave the stable paramagnetic species represented by the single ESR line centered at g = 2.000. We ascribe this spectrum to the CO2- radical formed from the oxalate ion. The same aluminosilicate prepared in the absence of the oxalate either produced no stable paramagnetic product after gamma irradiation at room temperature or resulted in composite ESR spectra, indicating the presence of several paramagnetic species if irradiated at 77 K. Complex ESR spectra were transformed by heating to the stable paramagnetic centers which differed from the one obtained from oxalate ion. We conclude that in Al2(OH)6H4SiO4 oxalate acts as a trap for the gamma-radiation energy

  10. Controlling the microstructure and associated magnetic properties of Ni0.2Mn3.2Ga0.6 melt-spun ribbons by annealing

    Directory of Open Access Journals (Sweden)

    Mahmud Khan

    2017-05-01

    Full Text Available Here we report on the structural and magnetic properties of Ni0.2Mn3.2Ga0.6 melt-spun ribbons. The as-spun ribbons were found to exhibit mixed cubic phases that transform to non-cubic structure upon annealing. Additionally, an amorphous phase was found to co-exist in all ribbons. The SEM images show that minor grain formation occurs on the as-spun ribbons. However, the formation of extensive nano-grains was observed on the surfaces of the annealed ribbons. While the as-spun ribbons exhibit predominantly paramagnetic behavior, the ribbons annealed under various thermal conditions were found to be ferromagnetic with a Curie temperature of about 380 K. The ribbons annealed at 450 °C for 30 minutes exhibit a large coercive field of about 2500 Oe. The experimental results show that the microstructure and associated magnetic properties of the ribbons can be controlled by annealing techniques. The coercive fields and the shape of the magnetic hysteresis loops vary significantly with annealing conditions. Exchange bias effects have also been observed in the annealed ribbons.

  11. Amorphisation during elevated temperature implantation

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Elliman, R.G.

    1994-01-01

    Transition state theory is employed to predict the rates of amorphous zone recrystallization by direct thermal and radiation mediated thermal annealing processes. These rates are functions of zone radius and are employed to describe the competition between amorphous zone generation and annealing during elevated temperature heavy ion implantation of, particularly, Si and the accumulation of amorphousness with increasing ion fluence. This analysis predicts a change from monotonic to sigmoidal to biexponential accumulation functions with increasing annealing rate or substrate temperature in agreement with experiments. A logarithmic dependence of ion flux density upon substrate temperature for the achievement of defined fractional amorphisation is predicted and is also in agreement with the experiment. (author)

  12. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    Science.gov (United States)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  13. Electronic structures and relevant physical properties of Ni2MnGa alloy films

    International Nuclear Information System (INIS)

    Kim, K. W.; Kim, J. B.; Huang, M. D.; Lee, N. N.; Lee, Y. P.; Kudryavtsev, Y. V.; Rhee, J. Y.

    2004-01-01

    The electronic structures and physical properties of the ordered and disordered Ni 2 MnGa alloy films were investigated in this study. Ordered and disordered Ni 2 MnGa alloy films were prepared by flash evaporation onto substrates maintained at 720 K and 150 K, respectively. The results show that the ordered films behave in nearly the same way as the bulk Ni 2 MnGa ferromagnetic shape-memory alloy, including the martensitic transformation at 200 K. It was also revealed that the film deposition onto substrates cooled by liquid nitrogen leads to the formation of a substantially-disordered or an amorphous phase which is not ferromagnetically ordered at room temperature. An annealing of such an amorphous film restores its crystallinity and also recovers the ferromagnetic order. It was also clarified how the structural disordering in the films influences the physical properties, including the loss of ferromagnetism in the disordered films, by performing electronic-structure calculations and a photoemission study.

  14. Impact of concomitant Y and Mn substitution on properties of La{sub 1-z}Y{sub z}Fe{sub 1-y}Mn{sub y}AsO{sub 0.9}F{sub 0.1}

    Energy Technology Data Exchange (ETDEWEB)

    Kappenberger, Rhea; Hammerath, Franziska; Wurmehl, Sabine; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden, Dresden (Germany); Asfaw Afrassa, Mesfin [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Addis Ababa University, College of Natural Science, Addis Ababa (Ethiopia); Rousse, Pierre; Hess, Christian; Prando, Giacomo; Moroni, Matteo; Wolter, Anja U.B. [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Sanna, Samuele; Carretta, Pietro [Dipartimento di Fisica e Unita di CNISM, Pavia (Italy); Lamura, Gianrico [Universita di Genova (Italy); CNR-SPIN, Genova (Italy); Kamusella, Sirko; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden, Dresden (Germany)

    2016-07-01

    The substitution of constituents is frequently used as a local probe to check the microscopic properties of an unconventional superconductor in response to such an ''impurity''. In this talk, we present several structural parameters and the superconducting critical temperatures in response to different substitution levels of Mn and Y in La{sub 1-z}Y{sub z}Fe{sub 1-y}Mn{sub y}AsO{sub 0.9}F{sub 0.1}. We will discuss our findings in the light of chemical pressure inflicted by Y, which has a significantly smaller ionic radius than La, and strong electron localization caused by small amounts of paramagnetic Mn impurities.

  15. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  16. Monte Carlo study of the critical behavior and magnetic properties of La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Bedoya-Hincapie, C.M.; Jurado, F.J.; Riano-Rojas, J.C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion G, Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2010-11-15

    Critical exponents offer important information concerning the interaction mechanisms near the paramagnetic to ferromagnetic transition. In this work a Monte Carlo-Metropolis simulation of the critical behavior in La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films is addressed. Canonical ensemble averages for magnetization per site, magnetic susceptibility and specific heat of stoichiometric manganite within a three-dimensional classical Heisenberg model with nearest magnetic neighbor interactions are computed. The La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films were simulated addressing the thickness influence and thermal dependence. In the model, Mn magnetic ions are distributed on a simple cubic lattice according to the perovskite structure of this manganite. Ferromagnetic coupling for the bonds Mn{sup 3+}-Mn{sup 3+}(e{sub g}-e{sub g}'), Mn{sup 3+}-Mn{sup 4+}(e{sub g}-d{sup 3}) and Mn{sup 3+}-Mn{sup 4+}(e{sub g}'-d{sup 3}) were taken into account. On the basis of finite-size scaling theory, our best estimates of critical exponents, linked to the ferromagnetic to paramagnetic transition, for the correlation length, specific heat, magnetization and susceptibility are, respectively: v=0.56{+-}0.01, {alpha}=0.16{+-}0.03, {beta}=0.34{+-}0.04{gamma} and {gamma}=1.17{+-}0.05. These theoretical results are consistent with the Rushbrooke equalitiy {alpha}+2{beta}+{gamma}=2.

  17. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  18. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  19. Levitation in paramagnetic liquids

    International Nuclear Information System (INIS)

    Dunne, P.A.; Hilton, J.; Coey, J.M.D.

    2007-01-01

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated

  20. Neutron diffraction study of the magnetic structures of CeMn2Ge2 and CeMn2Si2

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Chakoumakos, B.C.; Hill, P.; Ali, N.

    1995-01-01

    The magnetic properties of the layered compounds of the form RMn 2 X 2 (R = Rare Earth, X = Si, Ge) have been thought to be sensitive to the intralayer Mn-Mn distance. Thus it has been reported that the Mn moments in CeMn 2 Si 2 are aligned antiferromagnetically (AF) below T N = 380K, while the Mn moments in CeMn 2 Ge 2 are ferromagnetic (FM) below T C = 316K. Recently, however, there has been some debate about the actual magnetic structures of this family of compounds, and for this reason the authors have performed high-resolution neutron powder diffraction measurements on these compounds for temperatures between 12K and 550K. The measurements indicate that at high temperatures both compounds are paramagnetic. Below T N = 380K CeMn 2 Si 2 becomes a collinear AF, with a structure similar to that reported by Siek et al. in which the magnetic propagation vector is τ = (0 0 1). CeMn 2 Ge 2 on the other hand, exhibits two different magnetic transitions. At T N ∼ 415K there is a transition to a collinear AF phase characterized by the commensurate propagation wavevector τ = (1 0 1). At T C = 318K there is a transition to a conical structure with a ferromagnetic component along the c-axis and a helical component in the ab plane. The helical component is characterized by the incommensurate propagation vector τ = (1 0 1-q z ), where q z is temperature dependent. These findings are consistent with the recent results of Welter et al

  1. Electron spin resonance study of a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal

    CERN Document Server

    Joh, K W; Lee, C E; Hur, N H; Ri, H C

    2003-01-01

    Comprehensive measurements of electron spin resonance were carried out on a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal over a wide temperature range covering the ferromagnetic as well as the paramagnetic phases. Our analysis of the asymmetric lineshapes indicates that the phase segregation of good and poor conducting regions persists far above the ferromagnetic-paramagnetic phase transition temperature.

  2. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  3. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  4. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com [Department of Physics, Vikrama Simhapuri University Post Graduate Center, Kavali-524201 (India); Rao, J. L. [Department of physics, Sri Venkateswara University, Tirupati-517502 (India); Nagabhushana, H. [Prof. C.N.R. Rao Centre for Nano Research, Tumkur University, Tumkur-572103 (India); Nagabhushana, B. M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore - 560054 (India); Chakradhar, R. P. S. [CSIR- National Aerospace Laboratories, Bangalore -560017 (India)

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.

  5. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    Science.gov (United States)

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  6. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    Energy Technology Data Exchange (ETDEWEB)

    Werner, M.; Berg, J.A. van den E-mail: j.a.vandenberg@salford.ac.uk; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q

    2004-02-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10{sup 13} to 5 x 10{sup 15} cm{sup -2}. MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10{sup 14} cm{sup -2} (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a {approx}4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses {>=}4 x 10{sup 14} cm{sup -2} the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, {approx}2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As.

  7. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    International Nuclear Information System (INIS)

    Werner, M.; Berg, J.A. van den; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q.

    2004-01-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10 13 to 5 x 10 15 cm -2 . MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10 14 cm -2 (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a ∼4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses ≥4 x 10 14 cm -2 the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, ∼2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As

  8. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors

    International Nuclear Information System (INIS)

    Xiao, Kang; Li, Jing-Wei; Chen, Gao-Feng; Liu, Zhao-Qing; Li, Nan; Su, Yu-Zhi

    2014-01-01

    Highlights: • A novel 3D dendrites-like MnO2 @Ni has been prepared by a simple electrochemical process. • The as-prepared 3D metal Ni can be improved the electrochemical performance by decorating MnO2. • The findings indicate that the novel 3D architectures offer a very promising design for supercapacitors. - Abstract: In this paper, we report a metal oxide/metal MnO 2 /3D dendrites-like Ni core-shell electrode on Ni foam for high-performance supercapacitors. The MnO 2 /3D-Ni electrode exhibits a large areal capacitance (837.6 mF cm −2 ) at high loading mass of MnO 2 (3 mg cm −2 ). Moreover, MnO 2 /3D-Ni composite electrodes exhibit excellent rate capability and high cycling stability (16% degradation after 2000 cycles). The high electrochemical properties of MnO 2 /3D-Ni electrode can be attributed to the high conductivity of the Ni metal core, high porous and large specific surface structure of the MnO 2 /3D-Ni nanocomposites, which facilitates electrolyte diffusion, electron transport, and material utilization. These results indicate highly conductive 3D dendrites-like Ni nanoparticles may could provide new opportunities for the development of high performance supercapacitors

  9. Pressure Effects on the Magnetic Phase Transition of Mn3SnC1−xNx (x = 0, 0.5)

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Zhao Qing; Wen Yong-Chun; Wang Cong; Yao Yuan; Jin Chang-Qing; Yu Ri-Cheng

    2012-01-01

    The electronic transport properties of Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 were measured under pressures up to 1.8 GPa. At ambient pressure, an abrupt increase of resistance occurs around the temperature of magnetic phase transition in both samples. The transition temperature Tc from paramagnetic to ferrimagnetic state decreases linearly at rates of 12.6 and 6.3K/GPa with pressure for Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 , respectively. This phenomenon could be understood by the Labbe-Jardin tight binding approximation model. (condensed matter: structure, mechanical and thermal properties)

  10. Effects of dopant ion and Mn valence state in the La1-xAxMnO3 (A=Sr,Ba) colossal magnetoresistance films

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho

    2010-01-01

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La 0.7 Sr 0.3 MnO 3 , La 0.7 Ba 0.3 MnO 3 , and La 0.82 Ba 0.18 MnO 3 thin films with different contents of divalent cations and Mn 3+ /Mn 4+ ratios were deposited on amorphous SiO 2 /Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn 3+ /Mn 4+ ratio controlling the Mn 3+ -O 2- -Mn 4+ conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn 3+ /Mn 4+ ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn 3+ /Mn 4+ ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  11. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge

    Directory of Open Access Journals (Sweden)

    K. R. Simov

    2018-01-01

    Full Text Available Mn doping of group-IV semiconductors (Si/Ge is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn–Mn bonding.

  12. Atomic scale characterization of ion-induced amorphization of GaAs and InAs using PAC spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R.; Byrne, A.P.; Ridgway, M.C.

    2005-01-01

    Single crystals of GaAs (100) and InAs (100) were implanted with 1-7 MeV 74 Ge ions over a wide dose range at liquid nitrogen temperature. The implanted substrates were investigated with respect to the damage production by means of perturbed angular correlation spectroscopy based upon hyperfine interactions of nuclear electromagnetic moments of probe nuclei with extra-nuclear fields. The perturbed angular correlation measurements were performed at room temperature utilizing the 111 In/Cd radioisotope probe nuclei. The crystalline, disordered and amorphous probe environments were identified from the measurements. The defect production is described within the framework of different amorphization models. (author). 6 refs., 2 figs

  13. Study of structural modifications induced by ion implantation in austenitic stainless steel; Etude des modifications structurales induites par implantation ionique dans les aciers austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Dudognon, J

    2006-12-15

    Ion implantation in steels, although largely used to improve the properties of use, involves structural modifications of the surface layer, which remain still prone to controversies. Within this context, various elements (N, Ar, Cr, Mo, Ag, Xe and Pb) were implanted (with energies varying from 28 to 280 keV) in a 316LVM austenitic stainless steel. The implanted layer has a thickness limited to 80 nm and a maximum implanted element concentration lower than 10 % at. The analysis of the implanted layer by grazing incidence X ray diffraction highlights deformations of austenite lines, appearance of ferrite and amorphization of the layer. Ferritic phase which appears at the grain boundaries, whatever the implanted element, is formed above a given 'threshold' of energy (produced of fluency by the energy of an ion). The formation of ferrite as well as the amorphization of the implanted layer depends only on energy. In order to understand the deformations of austenite diffraction lines, a simulation model of these lines was elaborated. The model correctly describes the observed deformations (broadening, shift, splitting) with the assumption that the expansion of the austenitic lattice is due to the presence of implanted element and is proportional to the element concentration through a coefficient k'. This coefficient only depends on the element and varies linearly with its radius. (author)

  14. Mechanical properties and microstructure of Fe alloys implanted with Ti and C

    International Nuclear Information System (INIS)

    Follstaedt, D.M.

    1983-01-01

    Steels implanted with Ti and C have reduced friction coefficients and wear depths. All evidence indicates that the reduced friction and wear are the direct result of the surface amorphous layer produced by the implantation. 6 figures, 2 tables

  15. Magnetic and transport properties of Ce 6MnSb 15

    Science.gov (United States)

    Godart, Claude; Rogl, Peter; Alleno, Eric; Gonçalves, António P.; Rouleau, Olivier

    2006-05-01

    In our effort to look for new Ce/Yb-based compounds with large unit cell, we studied Ce 6MnSb 15. Rietveld refinements of X-ray powder diffraction confirm that the material crystallizes in orthorhombic structure La 6MnSb 15-type, Imm2 space group, with 2 Ce sites (8e and 4d) and lattice parameters a=15.1643 Å, b=19.3875 Å and c=4.2794 Å, which closely agree with those already published. Magnetic susceptibility results show a paramagnetic behavior and no magnetic order down to 2 K in contrast to antiferromagnetic order previously reported at 7 K. Resistivity shows a metallic behavior and the Seebeck coefficient is very low, typically -2 μV/K.

  16. Synthesis of diluted magnetic semiconductor Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals in a host glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.S. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Mikhail, H.D., E-mail: ricardosilva@fisica.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas (ICTE), Departamento de Engenharia Mecânica, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, Minas Gerais (Brazil); Pavani, R. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Cano, N.F. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11030-400 Santos, São Paulo (Brazil); Silva, A.C.A.; Dantas, N.O. [Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil)

    2015-11-05

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d{sub 015}-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi{sub 2}Te{sub 3} bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn{sup 2+} ions are substitutional defects occupying Bi sites (Mn{sub Bi}). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn{sup 2+} ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi{sub 2}Te{sub 3} nanocrystals confirmed the presence of the Mn{sup 2+} state. - Highlights: • Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn{sup 2+} ions are located in two distinct Bi{sub 2}Te{sub 3} NCs sites.

  17. Binding of higher alcohols onto Mn(12) single-molecule magnets (SMMs): access to the highest barrier Mn(12) SMM.

    Science.gov (United States)

    Lampropoulos, Christos; Redler, Gage; Data, Saiti; Abboud, Khalil A; Hill, Stephen; Christou, George

    2010-02-15

    Two new members of the Mn(12) family of single-molecule magnets (SMMs), [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(Bu(t)OH)(H(2)O)(3)].2Bu(t)OH (3.2Bu(t)OH) and [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(C(5)H(11)OH)(4)] (4) (C(5)H(11)OH is 1-pentanol), are reported. They were synthesized from [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1) by carboxylate substitution and crystallization from the appropriate alcohol-containing solvent. Complexes 3 and 4 are new members of the recently established [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(solv)(4)] (solv = H(2)O, alcohols) family of SMMs. Only one bulky Bu(t)OH can be accommodated into 3, and even this causes significant distortion of the [Mn(12)O(12)] core. Variable-temperature, solid-state alternating current (AC) magnetization studies were carried out on complexes 3 and 4, and they established that both possess an S = 10 ground state spin and are SMMs. However, the magnetic behavior of the two compounds was found to be significantly different, with 4 showing out-of-phase AC peaks at higher temperatures than 3. High-frequency electron paramagnetic resonance (HFEPR) studies were carried out on single crystals of 3.2Bu(t)OH and 4, and these revealed that the axial zero-field splitting constant, D, is very different for the two compounds. Furthermore, it was established that 4 is the Mn(12) SMM with the highest kinetic barrier (U(eff)) to date. The results reveal alcohol substitution as an additional and convenient means to affect the magnetization relaxation barrier of the Mn(12) SMMs without major change to the ligation or oxidation state.

  18. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials

    Science.gov (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui

    2017-06-01

    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  19. Annealing temperature dependence of the structures and properties of Co-implanted ZnO films

    International Nuclear Information System (INIS)

    Chen, Bin; Tang, Kun; Gu, Shulin; Ye, Jiandong; Huang, Shimin; Gu, Ran; Zhang, Yang; Yao, Zhengrong; Zhu, Shunming; Zheng, Youdou

    2014-01-01

    Highlights: • To avoid the forming of Co clusters and explore the origin of the magnetism, detailed investigation on the properties of the Co-implanted ZnO films with a rather low dose of 8 × 10 15 cm −2 and high implantation energy of 1 MeV were carried out. • The crystalline structure of the damaged region caused by ion-implantation has been recovered via the thermal annealing treatment at the temperature of 900 °C and above. • The low temperature magnetic hysteresis loops have indicated paramagnetism for the annealed films with weak ferromagnetic characteristics. • The zero-field cooling (ZFC) magnetization curves of the Co-implanted ZnO samples have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C. - Abstract: The effects of thermal annealing treatment on the structural, electrical, optical and magnetic properties of Co-implanted ZnO (0 0 0 1) films have been investigated in detail. The crystalline structure of the damaged region caused by ion implantation has been recovered via the thermal annealing at the temperature of 900 °C and above, and no Co clusters or its related oxide phases have been observed. The electrical and optical properties of the annealed films have shown strong dependence on the annealing temperature. The zero field cooling magnetization curves of the annealed films have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C, which are possibly tuned by the changes of the ratio of the itinerant carriers over the localized spin density. The low temperature magnetic hysteresis loops have indicated paramagnetic behavior for the annealed films with weak ferromagnetic characteristics. The ferromagnetism is attributed to the substituted Co 2+ ions and vacancy defects, while the paramagnetism could be induced by ionized interstitial Zn defects

  20. Critical process temperatures for resistive InGaAsP/InP heterostructures heavily implanted by Fe or Ga ions

    Energy Technology Data Exchange (ETDEWEB)

    Fekecs, André [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 0A5 (Canada); Regroupement Québécois sur les Matériaux de Pointe, QC (Canada); Chicoine, Martin [Département de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Regroupement Québécois sur les Matériaux de Pointe, QC (Canada); Ilahi, Bouraoui [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 0A5 (Canada); SpringThorpe, Anthony J. [Canadian Photonics Fabrication Centre, National Research Council, Ottawa, ON K1A 0R6 (Canada); Schiettekatte, François [Département de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Regroupement Québécois sur les Matériaux de Pointe, QC (Canada); Morris, Denis [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 0A5 (Canada); Regroupement Québécois sur les Matériaux de Pointe, QC (Canada); and others

    2015-09-15

    Highlights: • InGaAsP/InP alloys were processed by MeV ion implantation and rapid thermal annealing. • X-ray diffraction and Hall measurement results are compared for several process conditions. • Amorphous layers formed at low implantation temperature. • Dynamic annealing prevented amorphization at implantation above room temperature. • After annealing near 500 °C, sheet resistivities of 10{sup 7} Ω/sq were obtained with low temperature Fe implantation. - Abstract: We report on critical ion implantation and rapid thermal annealing (RTA) process temperatures that produce resistive Fe- or Ga-implanted InGaAsP/InP heterostructures. Two InGaAsP/InP heterostructure compositions, with band gap wavelengths of 1.3 μm and 1.57 μm, were processed by ion implantation sequences done at multiple MeV energies and high fluence (10{sup 15} cm{sup −2}). The optimization of the fabrication process was closely related to the implantation temperature which influences the type of implant-induced defect structures. With hot implantation temperatures, at 373 K and 473 K, X-ray diffraction (XRD) revealed that dynamic defect annealing was strong and prevented the amorphization of the InGaAsP layers. These hot-implanted layers were less resistive and RTA could not optimize them systematically in favor of high resistivity. With cold implantation temperatures, at 83 K and even at 300 K, dynamic annealing was minimized. Damage clusters could form and accumulate to produce resistive amorphous-like structures. After recrystallization by RTA, polycrystalline signatures were found on every low-temperature Fe- and Ga-implanted structures. For both ion species, electrical parameters evolved similarly against annealing temperatures, and resistive structures were produced near 500 °C. However, better isolation was obtained with Fe implantation. Differences in sheet resistivities between the two alloy compositions were less than band gap-related effects. These observations, related

  1. Mn and Fe Impurities in Si$_{1-x}$ Ge$_{x}$ alloys

    CERN Multimedia

    2002-01-01

    Following our investigations of Mn and Fe impurities in elemental semiconductors and in silicon in particular by means of on-line $^{57}$Fe Mössbauer spectroscopy, utilizing radioactive $^{57}$Mn$^{+}$ ion beams at ISOLDE, we propose to extend these studies to bulk and epitaxially-grown Si$_{1-x}$Ge$_{x}$ alloys. In these materials, although already successfully employed in electronic devices, little is known about point defects and important harmful 3d impurities. The experiments aim to determine a variety of fundamental properties: The lattice location of ion-implanted Mn/Fe, the electronic and vibrational properties of dilute Fe impurities in different lattice sites, the charge-state and composition dependence of the diffusivity of interstitial Fe on an atomic scale, the reactions and formation of complexes with lattice defects created by the $^{57}$Mn implantation or by the recoil effect in the nuclear decay to the Mössbauer state of $^{57m}$Fe. Feasibility studies in 2003 indicate that these aims can b...

  2. Proton NMR study of α-MnH 0.06

    Science.gov (United States)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  3. A new polar symmetry of huebnerite (MnWO{sub 4}) with ferrodistortive domains

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H., E-mail: sohyun.park@lmu.de [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Mihailova, B. [Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, 20146 Hamburg (Germany); Pedersen, B. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstraße 1, 85748 Garching (Germany); Paulmann, C. [Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, 20146 Hamburg (Germany); HASYLAB, DESY, Notkestr. 85, 22603 Hamburg (Germany); Behal, D. [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstraße 1, 85748 Garching (Germany); Gattermann, U. [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Hochleitner, R. [Mineralogische Staatssammlung München, Theresienstrasse 41, 80333 Munich (Germany)

    2015-11-15

    Large-size single-crystal samples of huebnerite natural multiferroic MnWO{sub 4} were analyzed by neutron and synchrotron X-ray single-crystal diffraction as well as by polarized Raman spectroscopy. Both neutron and X-ray diffraction analyzes reveal polar space-group symmetry P2 for the nuclear structure of huebnerite via the detection of weak reflections h0l (l=odd) forbidden for the gliding plane c. Renninger scans of the reflection 301 on the neutron single-crystal diffractometer RESI (FRM-II) could confirm the absence of the gliding plane c in both para- and antiferromagnetic states of huebnerite. The symmetry breaking could be explained by structure analyzes with neutron single crystal diffraction data at 293 K revealing that two Mn atoms in P2 are displaced independently along the b axis from their equilibrium position at a polar point site, C{sub 2} in P2/c. Micro X-ray diffraction and Raman-scattering mapping reveal a ferrodistortive domain texture in the room-temperature paramagnetic state of huebnerite, which is attributed to P2 domain formation through a proper ∼180° rotation about the reciprocal-space axis c*. - Graphical abstract: Schematic presentation of polar atomic shifts (arrows) in P2 from the respective equivalent sites (spheres) in P2/c at the boundary of two 180°-in-plane micro twins. - Highlights: • Neutron and X-ray diffraction analyzes reveal the polar symmetry P2 for MnWO{sub 4}. • Raman mapping shows ferrodistortive domains in its RT paramagnetic state. • These observations are explained by the hidden polar site C{sub 2} for Mn atoms.

  4. EXAFS and EPR study of La0.6Sr0.2Ca0.2MnO3 and La0.6Sr0.2Ba0.2MnO3

    International Nuclear Information System (INIS)

    Yang, D.-K.Dong-Seok; Ulyanov, A.N.; Phan, Manh-Huong; Kim, Ikgyun; Ahn, Byong-Keun; Rhee, Jang Roh; Kim, Jung Sun; Nguyen, Chau; Yu, Seong-Cho

    2003-01-01

    Extended X-ray absorption fine structure (EXAFS) analysis and electron-paramagnetic resonance (EPR) have been used to examine the local structure and the internal dynamics of La 0.6 Sr 0.2 Ca 0.2 MnO 3 and La 0.6 Sr 0.2 Ba 0.2 MnO 3 lanthanum manganites. The Mn-O bond distance (∼1.94 Angst for both samples) and the Debye-Waller factors (0.36x10 -2 and 0.41x10 -2 Angst 2 for La 0.6 Sr 0.2 Ca 0.2 MnO 3 and for La 0.6 Sr 0.2 Ba 0.2 MnO 3 , respectively) were obtained from the EXAFS analysis. The dependence of the EPR line width on dopant kind (Ca or Ba) showed a decrease of the spin-lattice interaction with an increase of the Curie temperature. For both compositions, the EPR line intensity followed the exponential law I(T)=I 0 exp(E a /k B T), deduced on the basis of the adiabatic polaron hopping model

  5. Generating MnO2 nanoparticles using simulated amorphization and recrystallization

    CSIR Research Space (South Africa)

    Sayle, TXT

    2005-09-21

    Full Text Available . The resulting MnO2 nanoparticle is about 8 nm in diameter, conforms to the pyrolusite structure (isostructural with rutile TiO2, comprising 1 x 1 octahedra) is heavily twinned and comprises a wealth of isolated and clustered point defects such as cation...

  6. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  7. Mn-doped Ge self-assembled quantum dots via dewetting of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aouassa, Mansour, E-mail: mansour.aouassa@yahoo.fr [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Jadli, Imen [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Bandyopadhyay, Anup [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Kim, Sung Kyu [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Lee, Jeong Yong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-03-01

    Highlights: • We report the new fabrication approach for producing a self- assembled Mn dpoed Ge quantum dots (QDs) on SiO{sub 2} thin film with a Curie temperature above room temperature. These magnetic QDs are crystalline, monodisperse and have a well-defined shape and a controlled size. The investigation opens new routes for elaboration of self-assembled magnetic nanocrystals - Abstract: In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO{sub 2} thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO{sub 2} thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.

  8. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  9. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  10. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiyi [Optoelectronic Institute, Guilin University of Electronic Technology, Guilin 541004, Guangxi (China); Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Ma, Li [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Wang, Xiaojun, E-mail: xwang@georgiasouthern.edu [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-01-15

    Photoluminescence and phosphorescence from different recombining centers in the Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4} phosphors have been observed. By UV excitation the undoped sample presents a broad band of blue–white emission from the host defects while the Mn-doped samples show both the host and Mn{sup 2+} emissions with different phosphorescent durations. At the beginning of UV excitation after the phosphorescence has been exhausted, the fluorescent time dependence of Mn{sup 2+} exhibits a fast decay process to a constant intensity, different from the rising or charging process as the typical behavior for the common persistent phosphors. This unusual behavior was studied using electron paramagnetic resonance (EPR) spectroscopy. A decrease of the EPR signal from Mn{sup 2+} was found for the sample under UV irradiation, suggesting the occurrence of ionization of Mn{sup 2+} to Mn{sup 3+}. A slow recovering process of the ionization has also been detected, which is consistent with the observation of phosphorescence from Mn{sup 2+} doped samples. - Highlights: • Photoluminescence and phosphorescence observed from Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4}. • Unusual charging process from the common phosphors observed and analyzed. • Photo-stimulated EPR with a slow recovering process of Mn{sup 2+} ionization observed.

  11. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  12. Paramagnetic contrast material

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Paramagnetic contrast materials have certainly demonstrated clinical utility in a variety of organ systems for improved detection of various neoplastic, inflammatory, infectious, and physiologic abnormalities. Although the more commonly employed extracellular agents, such as Gd-DTPA, have been quite safe and useful, particularly in the CNS, it is almost certain that other substances will achieve more success in various other organs, such as iron oxides in the reticuloendothelial system and persisting extracellular agents in the cardiovascular system. Finally, as MRI technology continues to evolve, producing such exciting new sequences as gradient-echo fast scans, the roles of currently existing and newly discovered paramagnetic pharmaceuticals must be continuously reevaluated both to obtain maximum clinical benefit and to guide the search for newer agents that may further optimize the diagnostic efficacy of MRI

  13. Electrical and magnetic behavior of La0.7Ca0.3MnO3/La0.7Sr0.2Ca0.1MnO3 composites

    International Nuclear Information System (INIS)

    Phong, P.T.; Dai, N.V.; Manh, D.H.; Thanh, T.D.; Khiem, N.V.; Hong, L.V.; Phuc, N.X.

    2010-01-01

    The electrical transport properties and the magnetoresistance of La 0.7 Ca 0.3 MnO 3 /La 0.7 Sr 0.2 Ca 0.1 MnO 3 composites are investigated as a function of sintering temperature. On the basis of an analysis by X-ray powder diffraction and scanning electron microscopy we suggest that raising the sintering temperature enhanced the interfacial reaction and creates interfacial phases at the boundaries of the La 0.7 Ca 0.3 MnO 3 and La 0.7 Sr 0.2 Ca 0.1 MnO 3 . Results also show that in 3 kOe, and at the Curie temperature, the magnetoresistance value of 14% was observed for the composite sintered at 1300 o C. Based on the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental resistivity-temperature data from 50-300 K and find that the activation barrier decreases as temperature is increased.

  14. Redistribution of erbium during the crystallization of buried amorphous silicon layers

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.; Nikolaev, Yu.A.; Sobolev, N.A.; Sakharov, V.I.; Serenkov, I.T.; Kudryavtsev, Yu.A.

    1999-01-01

    The redistribution of Er during its implantation in silicon at doses close to the amorphization threshold and its subsequent solid-phase epitaxial (SPE) crystallization is investigated. The formation of a buried amorphous (a) layer is discovered at Er doses equal to 5x10 13 and 1x10 14 cm -2 using Rutherford backscattering. The segregation of Er in this case takes place inwardly from the two directions corresponding to the upper and lower boundaries of the buried αlayer and leads to the formation of a concentration peak at the meeting place of the two crystallization fronts. A method for calculating the coordinate dependence of the segregation coefficient k from the distribution profiles of the erbium impurity before and after annealing is proposed. The k(x) curve exhibits a drop, whose width increases with decreasing Er implantation dose. Its appearance is attributed to the nonequilibrium nature of the segregation process at the beginning of SPE crystallization

  15. Moessbauer spectra studied of spin-wave excitation for amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhigao

    1992-01-01

    The average hyperfine fields of amorphous Fe 70 Co 20 Zr 10 , Fe 80 Co 10 Zr 10 and Fe 86 Co 4 -Zr 10 alloys at different temperature were measured by the Moessbauer technique. According to Bloch's T 3/2 relation, spin-wave excitations of above amorphous alloys were studied and their B 3/2 values were found to be 0.40 +- 0.02, 0.45 +- 0.02 and 0.88 +- 0.04, respectively. Comparing the B 3/2 values of crystals, a-Fe-(Co, Ni)-ME, a-Fe-(Cr, Mn, W)-ME and a-Fe-B or TM-Zr invar alloys, the obvious difference among them was observed. Above results can be explained well by the exchange coupling fluctuation and the disorder of spatial arrangement. In this work, the difference between the stiffness coefficients obtained from the inelastic neutron scattering and the magnetization measurements for amorphous Invar alloys was also explained

  16. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  17. Krypton-85 storage in sputter-deposited amorphous metals

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Lytle, J.M.; Gordon, N.R.; Knoll, R.W.

    1982-06-01

    After comparing options for storing radioactive krypton gas, the United States Department of Energy selected ion implantation of the gas into a sputter-deposited metal matrix as the reference process. This technique is being developed with pilot-scale testing and further characterization of the deposited product. The process involves implanting krypton atoms into a growing deposit during the sputtering process. An amorphous metal deposit of nominal composition Ni 0 81 La 0 09 Kr 0 10 has been selected for further studies because of the high krypton loading, high sputtering yield, relatively low cost of the metallic components, resistance to corrosion, and stability of the product. The krypton release from this amorphous metal is described as an activated diffusion process which increases linearly with the square root of time. Studies of krypton release rate as a function of temperature were completed and an activation energy for the diffusion of 70 kcal/mole obtained. From these data, we estimated that the krypton release during the first ten years would be 0.5% for a maximum temperature of 350 0 C. The actual release of the krypton during storage was projected to be lower by a factor of 10 7 with the maximum temperature only 220 0 C. Thermal analysis studies show two energy releases occurring with krypton-containing alloys: one associated with recrystallization of the amorphous alloy and a second associated with krypton release. The total energy release between 100 and 800 0 C was less than 50 cal/g. Estimates are given for the cost of operation of the ion implantation process for solidification of the krypton-85 from a 2000-tonne heavy metal/year reprocessing plant. The present value costs, in 1981 dollars including capital and operating costs and assuming a 30-year life, are about $26M for the lifetime of the plant. Annual energy consumption of the process was estimated to be 3.9 M kWh/year

  18. Effect of milling on the magnetic properties of Al–Mn obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt, Mirna; Silva, Pedro; Gonzalez, Gema

    2012-01-01

    Highlights: ► Al–42 at.% Mn transforms to α-Mn(Al) by mechanical milling after 5 h of milling. ► Transformation to nano β-Mn is reached after 50 h of milling with 6 nm grain size. ► Milling strongly affects magnetic behavior. - Abstract: Al–Mn powders were prepared to obtain the compound Mn 42 Al 58 by mechanical alloying. The powders were milled during different periods (1 h, 5 h, 11.5 h, 15 h, 20 h and 50 h) using a SPEX 8000 mixer mill in nitrogen atmosphere. The materials were characterized by X-ray diffraction (XRD) and magnetic properties at room temperature, using a vibrating sample magnetometer (VSM). XRD shows partial transformation to α-Mn after only 1 h of milling and a mixture of α-Mn and β-Mn after 11.5 h of milling and further milling resulted in transformation to β-Mn phase with a grain size of 6 nm after 50 h. The change in magnetic properties with milling time is quite dramatic, from a ferromagnetic behavior for α-Mn(Al) to paramagnetic after 11.5 h of milling and showing again ferromagnetic behavior, with a strong increase of magnetization values of 5.5 emu/g, after 50 h of milling with formation of β-Mn(Al).

  19. The LiyNi0.2Mn0.2Co0.6O2 electrode materials: A structural and magnetic study

    International Nuclear Information System (INIS)

    Labrini, Mohamed; Saadoune, Ismael; Almaggoussi, Abdelmajid; Elhaskouri, Jamal; Amoros, Pedro

    2012-01-01

    Graphical abstract: EPR signal of the Li 0.6 Co 0.6 Ni 0.2 Mn 0.2 O 2 composition showing that Mn 4+ ions are the solely paramagnetic ions in the structure. Highlights: ► LiCo 0.6 Ni 0.2 Mn 0.2 O 2 was prepared by the combustion method with sucrose as a fuel. ► Chemical delithiaition was performed by using NO 2 BF 4 oxidizing agent. ► The rhombohedral symmetry was preserved upon lithium removal. ► Lithium extraction leads to Ni 2+ oxidation to Ni 4+ followed by Co 3+ oxidation. ► The EPR narrow signal of Li 0.6 Co 0.6 Ni 0.2 Mn 0.2 O 2 is due to the only active Mn 4+ ions. -- Abstract: Layered LiNi 0.2 Mn 0.2 Co 0.6 O 2 phase, belonging to a solid solution between LiNi 1/2 Mn 1/2 O 2 and LiCoO 2 most commercialized cathodes, was prepared via the combustion method at 900 °C for a short time (1 h). Structural and magnetic properties of this material during chemical extraction were investigated. The powders adopted the α-NaFeO 2 structure with almost none of the well-known Li/Ni cation disorder. The analysis of the magnetic properties in the paramagnetic domain agrees with the combination of Ni 2+ (S = 1), Co 3+ (S = 0) and Mn 4+ (S = 3/2) spin-only values. X-ray analysis of the chemically delithiated Li y Ni 0.2 Mn 0.2 Co 0.6 O 2 reveals no structural transition. The process of lithium extraction from and insertion into LiNi 0.2 Mn 0.2 Co 0.6 O 2 was discussed on the basis of ex situ EPR experiments and magnetic susceptibility. Oxidation of Ni 2+ (S = 1) to Ni 3+ (S = 1/2) and to Ni 4+ (S = 0) was observed upon lithium removal.

  20. Magnetic field induced low temperature upturn of magnetization in highly Ca-doped La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} polycrystalline compound

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalipada, E-mail: kalipadadasphysics@gmail.com [Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 (India); Dasgupta, P.; Poddar, A. [CMP Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2017-06-15

    Highlights: • Magnetic field induced super paramagnetic nanoclusters formation. • Magnetic field dependent change of the curvature of the magnetization. • We report the training effect in polycrystalline La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} compound. - Abstract: In our present study we have reported the magnetic properties of highly Ca-doped polycrystalline compound La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3}. Along with the conventional charge ordered antiferromagnetic ground state, a small ferromagnetic phase fraction is present at the low temperature. The effect of the external magnetic field markedly modifies the ground state of the compound. Our experimental results indicate that in addition to the ferromagnetic phase fraction, another field induced super paramagnetic phase grow at low temperature (T < 50 K) above H = 10 kOe magnetic field within the charge ordered antiferromagnetic matrix. The nature of the temperature dependent magnetization curves influenced by the external applied magnetic field was observed and analyzed using Langevin theory of super paramagnetism.

  1. The potential for the fabrication of wires embedded in the crystalline silicon substrate using the solid phase segregation of gold in crystallising amorphous volumes

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    2004-01-01

    The refinement of gold in crystallising amorphous silicon volumes was tested as a means of creating a conducting element embedded in the crystalline matrix. Amorphous silicon volumes were created by self-ion-implantation through a mask. Five hundred kiloelectronvolt Au + was then implanted into the volumes. The amorphous volumes were crystallised on a hot stage in air, and the crystallisation was characterised using cross sectional transmission electron microscopy. It was found that the amorphous silicon volumes crystallised via solid phase epitaxy at all the lateral and vertical interfaces. The interplay of the effects of the gold and also the hydrogen that infilitrated from the surface oxide resulted in a plug of amorphous material at the surface. Further annealing at this temperature demonstrated that the gold, once it had reached a certain critical concentration nucleated poly-crystalline growth instead of solid phase epitaxy. Time resolved reflectivity and Rutherford backscattering and channeling measurements were performed on large area samples that had been subject to the same implantation regime to investigate this system further. It was discovered that the crystallisation dynamics and zone refinement of the gold were complicated functions of both gold concentration and temperature. These findings do not encourage the use of this method to obtain conducting elements embedded in the crystalline silicon substrate

  2. MnBi particles with high energy density made by spark erosion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phi-Khanh, E-mail: phi@ucsd.edu; Jin, Sungho [Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States); Berkowitz, Ami E. [Physics Department, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20–30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M{sub S}, albeit with H{sub C} of a few kOe. If lightly milled, the agglomerates are broken up to yield H{sub C} of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH){sub MAX} ∼ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  3. Formation of shallow junctions for VLSI by ion implantation and rapid thermal annealing

    International Nuclear Information System (INIS)

    Oeztuerk, M.C.

    1988-01-01

    In this work, several techniques were studied to form shallow junctions in silicon by ion implantation. These include ion implantation through thin layers of silicon dioxide and ion implantation through a thick polycrystalline silicon layer. These techniques can be used to reduce the junction depth. Their main disadvantage is dopant loss in the surface layer. As an alternative, preamorphization of the Si substrate prior to boron implantation to reduce boron channeling was investigated. The disadvantage of preamorphization is the radiation damage introduced into the Si substrate using the implant. Preamorphization by silicon self-implantation has been studied before. The goal of this study was to test Ge as an alternative amorphizing agent. It was found that good-quality p + -n junctions can be formed by both boron and BF 2 ion implantation into Ge-preamorphized Si provided that the preamorphization conditions are optimized. If the amorphous crystalline interface is sufficiently close to the surface, it is possible to completely remove the end-of-range damage. If these defects are not removed and are left in the depletion region, they can result in poor-quality, leaky junctions

  4. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhandayuthapani, T. [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Girish, M. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600025 (India)

    2015-10-30

    Graphical abstract: - Highlights: • MnS films with diverse morphological features were prepared without any complexing agent. • The change in morphology of MnS films may be due to the “oriented aggregation”. • The dual role (as sulfur source and structure directing agent) of thiourea was observed. • Sulfur source concentration induced enhancement in the crystallization of films. - Abstract: In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M–H plot.

  5. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce–Fe–B amorphous ribbons

    International Nuclear Information System (INIS)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce 13−x Fe 81+x B 6 ( x   =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce–Fe–B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116–150 J kg −1 and 319–420 J kg −1 , respectively, for the magnetic field changes of 0–2 T and 0–5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce–Fe–B amorphous magnets are attractive magnetic refrigerant candidates. (paper)

  6. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers

    International Nuclear Information System (INIS)

    Yim, H.I.; Lee, S.Y.; Hwang, J.Y.; Rhee, J.R.; Chun, B.S.; Wang, K.L.; Kim, Y.K.; Kim, T.W.; Lee, S.S.; Hwang, D.G.

    2008-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) with and without an amorphous ferromagnetic material such as CoFeSiB 10, CoFe 5/CoFeSiB 5, and CoFe 10 (nm) were prepared and compared to investigate the bias voltage dependence of the tunneling magnetoresistance (TMR) ratio. Typical DMTJ structures were Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer 10/AlO x /CoFe 7/IrMn 10/Ru 60 (in nanometers). The interlayer coupling field and the normalized TMR ratios at the applied voltages of +0.4 and -0.4 V of the amorphous CoFeSiB free-layer DMTJ offer lower and higher values than that of the polycrystalline CoFe free-layer DMTJ, respectively. An amorphous ferromagnetic CoFeSiB layer improves the interface roughness of the free layer/tunnel barrier and, as a result, the interlayer coupling field and bias voltage dependence of the TMR ratio are suppressed at a given voltage. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  8. Structural relaxation in an amorphous rapidly quenched cobalt-based alloy

    International Nuclear Information System (INIS)

    Fradin, V.; Grynszpan, R.I.; Alves, F.; Houzali, A.; Perron, J.C.

    1995-01-01

    An amorphous melt-spun Co-based alloy (Metglas 2705 MN) is investigated by Doppler Broadening and Positron Lifetime techniques in order to follow the microstructural changes yielded by isochronal annealings before crystallization. The results are correlated with those of Differential Scanning Calorimetry and Coercive Field measurements. The quenched empty spaces underlined by Lifetime measurements are less than one atomic volume in size and migrate without clustering in larger voids. Both Positron Annihilation and Coercive Field investigations suggest that the overall decrease of free volume related to structural relaxation in this amorphous material, proceeds mainly via compositional short-range ordering. These local chemical rearrangements which lead to a partial disorientation of the magnetic moments act as strong pinning points for Bloch Walls. (orig.)

  9. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  10. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  11. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  12. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L

    2010-01-01

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  13. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Vitos, L, E-mail: gebhardt@mch.rwth-aachen.d [Department of Materials Science and Engineering, Applied Materials Physics, oyal Institute of Technology, SE-10044 Stockholm (Sweden)

    2010-07-28

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  14. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  15. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  16. Magnetic, transport, and optical properties of Ca0.85Eu0.15MnO3 single crystal

    International Nuclear Information System (INIS)

    Naumov, S.V.; Loshkareva, N.N.; Mostovshchikova, E.V.; Solin, N.I.; Korolev, A.V.; Arbuzova, T.I.; Telegin, S.V.; Patrakov, E.I.

    2013-01-01

    Magnetic, transport and optical properties of the Ca 0.85 Eu 0.15 MnO 3 single crystal are studied and discussed in comparison with the properties of polycrystalline sample. The magnetic data show existence the two magnetic phase transitions under cooling: the transition near 150 K occurs from the paramagnetic orthorhombic to C-type antiferromagnetic monoclinic phase with the charge/orbital ordering in some part of the crystal; and at 90 K the transition from the paramagnetic to G-type antiferromagnetic phase takes place in another part of the crystal with the orthorhombic structure. The magnetoresistance of the Ca 0.85 Eu 0.15 MnO 3 single crystal has features at temperatures of these phase transitions. Differences in the properties of single crystal and polycrystalline sample with the same content of Eu are associated with the ordering of oxygen vacancies that appear under the crystal growth. The reflection spectra in infrared range confirm the existence of the electron conductivity in a narrow band at room temperature.

  17. Thermoelectric properties of a Mn substituted synthetic tetrahedrite.

    Science.gov (United States)

    Chetty, Raju; D S, Prem Kumar; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Michor, Herwig; Suwas, Satyam; Puchegger, Stephan; Giester, Gerald; Mallik, Ramesh Chandra

    2015-01-21

    Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 μB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

  18. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2015-01-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III–V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III–V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III–V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III–V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components. (topical review)

  19. About kinetics of paramagnetic radiation malformations in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabinkin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petukhov, Yu.V.

    1999-01-01

    This paper [1] specifies that γ-radiation of the beryllium-oxide-based ceramics results in development of paramagnetic radiation malformations emerging the ESR spectrum in form of doublet with the splitting rate of oestrasid Δ∼1.6 and g-factor of 2.008. This report presents evaluation outcomes of dependence of paramagnetic radiation malformations concentration in beryllium ceramics on gamma-radiation dose ( 60 Co) within the range of 0-100 Mrad. Total paramagnetic parameters of beryllium ceramics in the range 0-100 Mrad of gamma-radiation dose varied slightly, and were specified by the first type of paramagnetic radiation malformations

  20. Spin-resolved photoelectron spectroscopy of Mn{sub 6}Cr single-molecule-magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Gryzia, Aaron; Dohmeier, Niklas; Mueller, Norbert; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University (Germany); Hoeke, Veronika; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University (Germany); Fonin, Mikhail; Ruediger, Ulrich [Department of Physics, University of Konstanz (Germany); Neumann, Manfred [Department of Physics, Osnabrueck University (Germany)

    2011-07-01

    The properties of the manganese-based single-molecule-magnet (SMM) Mn{sub 6}Cr are studied. This molecule exhibits a large spin ground state of S{sub T}=21/2. It contains six manganese centres arranged in two bowl-shaped Mn{sub 3}-triplesalen building blocks linked by a hexacyanochromate. The Mn{sub 6}Cr complex can be isolated with different counterions which compensate for its triply positive charge. The spin polarization of photoelectrons emitted from the manganese centres in Mn{sub 6}Cr SMM after resonant excitation with circularly polarized synchrotron radiation has been measured at selected energies corresponding to the prominent Mn L{sub 3}VV and L{sub 3}M{sub 2,3}V Auger peaks. Spin-resolved photoelectron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn(II)acetate recorded after resonant excitation at the Mn-L{sub 3}-edge around 640eV are presented as well. The spin polarization value obtained from MnO at room temperature in the paramagnetic state is compared to XMCD measurements of Mn(II)-compounds at 5K and a magnetic field of 5T.

  1. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-01-01

    Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756

  2. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Directory of Open Access Journals (Sweden)

    Feilong Gong

    2017-11-01

    Full Text Available Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D hierarchical structure in-situ coated with carbon.

  3. Effect of boron addition to the hard magnetic bulk Nd60Fe30Al10 amorphous alloy

    International Nuclear Information System (INIS)

    Kong, H.Z.; Li, Y.; Ding, J.

    2000-01-01

    A detailed study of the effect of boron addition to crystallinity, magnetic properties and thermal properties was carried out for alloys Nd 60-x Fe 30 Al 10 B x with x=0, 1, 3 and 5 produced by copper mold chill casting and melt-spinning. The cast rods of alloys Nd 60-x Fe 30 Al 10 B x were largely amorphous. Remanence up to 0.154 T and coercivity up to 355 kA/m were observed, which were higher than those of the bulk amorphous Nd 60 Fe 30 Al 10 rod of the same diameter. A step in hysteresis loop was observed for the hard magnetic cast rod and ribbon melt-spun at a low speed of 5 m/s of the alloys with boron addition. Consistent increase in the amplitude of the step and magnetic field (H) at which the step was observed as the boron content increased. A single magnetic phase with low coercivity was observed for fully amorphous ribbon melt-spun at high speed of 30 m/s. Full crystallization due to heat treatment resulted in transition of hard magnetic amorphous phase of Nd 55 Fe 30 Al 10 B 5 cast rod to paramagnetic crystalline phases. TEM results of the as-cast rods illustrated the existence of numerous minute Nd-crystallites in amorphous matrix

  4. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  5. Multigroup Boltzmann-Fokker-Planck approach for ion transport in amorphous media

    Energy Technology Data Exchange (ETDEWEB)

    Keen, N.D.; Prinja, A.K.; Dunham, G.D. [New Mexico Univ., Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    2001-07-01

    We present a MGMC approach for the transport of arbitrary mass ions having energies up to a few MeV. Specifically, we consider interactions with target atoms through Coulomb mediated elastic nuclear and inelastic electronic collisions and restrict considerations to ion implantation and energy deposition of primary ions in amorphous media. (orig.)

  6. Crystal structure and magnetic properties of Mn substituted ludwigite Co 3O 2BO 3

    Science.gov (United States)

    Knyazev, Yu. V.; Ivanova, N. B.; Kazak, N. V.; Platunov, M. S.; Bezmaternykh, L. N.; Velikanov, D. А.; Vasiliev, А. D.; Ovchinnikov, S. G.; Yurkin, G. Yu.

    2012-03-01

    The needle shape single crystals Co3-x MnxO2BO3 with ludwigite structure have been prepared. According to the X-ray diffraction data the preferable character of distinct crystallographic positions occupation by Mn ions is established. Magnetization field and temperature dependencies are measured. Paramagnetic Curie temperature value Θ=-100 K points out the predominance of antiferromagnetic interactions. Spin-glass magnetic ordering takes the onset at TN=41 K. The crystallographic and magnetic properties of Co3O2BO3:Mn are compared with the same for the isostructural analogs Co3O2BO3 and CoO2BO3:Fe.

  7. Solutions to defect-related problems in implanted silicon by controlled injection of vacancies by high-energy ion irradiation

    International Nuclear Information System (INIS)

    Roth, E.G.; Holland, O.W.; Duggan, J.L.

    1999-01-01

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Preamorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectrometry was used to profile the dopant distributions. copyright 1999 American Institute of Physics

  8. The microstructure of type 304 stainless steel implanted with titanium and carbon and its relation to friction and wear tests

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Pope, L.E.; Knapp, J.A.; Picraux, S.T.; Yost, F.G.

    1983-01-01

    The authors have used transmission electron microscopy to examine the microstructure of type 304 stainless steel which was ion implanted with high doses (2 X 10 17 atoms cm -2 ) of titanium and carbon. It is found that the resulting surface alloy is an amorphous phase similar to that observed when pure iron is identically implanted. This result is important for identifying the mechanisms by which the coefficient of friction and the wear depth are reduced in unlubricated pin-on-disc tests of type 304 stainless steel implanted with titanium and carbon. The effect of temperature on the amorphous alloy during annealing in the microscope has also been examined. It is found that devitrification begins after 15 min at 500 0 C and that the alloy fully crystallizes into f.c.c., b.c.c. and TiC phases after 15 min at 650 0 C. A comparison of mechanical test results from devitrified specimens with results from amorphous specimens demonstrates that the reduction in the coefficient of friction correlates with the presence of the amorphous layer, whereas the reduction in the wear depth is obtained for both amorphous and crystalline alloys. (Auth.)

  9. Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, O.D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gopalakrishnan, I.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: ikgopal@barc.gov.in; Sudakar, C. [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kulshreshtha, S.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2007-07-12

    We report a surfactant assisted synthesis of Mn doped ZnO polycrystalline samples showing robust room temperature ferromagnetism as characterized by X-ray diffraction analysis, transmission electron microscopy, electron paramagnetic resonance and DC magnetization measurements. This surfactant assisted synthesis method, developed by us, is found to be highly reproducible. Further, it can also be extended to the synthesis of other transition metal doped ZnO.

  10. Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Kleibeuker, Josée E.

    2011-01-01

    AlO3, SrTiO3, and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface...

  11. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  12. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Qu Ximei; Wang Liqin; Zhang Wenyi; Liu Zhongchao; Cui Songye; Feng Xin; Jiaoling

    2013-01-01

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  13. Implantation for tribological applications

    International Nuclear Information System (INIS)

    Leutenecker, R.; Cao-Minh, U.; Overbeck, R.

    1992-08-01

    Empirical results on the strength enhancement of steels by N- and B-implantation should be explained from a materials science point of view. The methods applied were X-ray diffractometry and element depth profiling. The investigations of N-implanted steels focussed on the nitride formation in selected model materials and, with respect to applications, in: X90 CrMoV and S 6-5-2 tool steels, austenite X10 CrNiTi189 as well as in hard chromium plates. Main topic in B-implanted steels were the transformations: crystalline Fe-phase - amorphous Fe-B-phase - crystalline boride phases. The result is an improvement in process control by first an insight into the strength enhancing mechanisms and second in into their generation depending on the materials microstructure and the process parameter. (orig.). 101 figs., 16 tabs., 15 refs [de

  14. Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping

    Science.gov (United States)

    Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.

    2018-04-01

    The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.

  15. Change in the Magnetocapacity in the Paramagnetic Region in a Cation-Substituted Manganese Selenide

    Science.gov (United States)

    Aplesnin, S. S.; Sitnikov, M. N.; Zhivul'ko, A. M.

    2018-04-01

    The capacity and the dielectric loss tangent of a Gd x Mn1- x Se ( x ≤ 0.2) solid solution have been measured in the frequency range 1-300 kHz without a magnetic field and in a magnetic field of 8 kOe in the temperature range 100-450 K, and the magnetic moment of the solid solution has been measured in a field of 8.6 kOe. The magnetocapacity effect and the change in the magnetocapacity sign have been observed in room temperature in the paramagnetic region. A correlation of the changes in the dielectric permittivity and the magnetic susceptibility with temperature has been revealed. The magnetocapacity is described using the model with orbital electron ordering and the Maxwell-Wagner model.

  16. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  17. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  18. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  20. Theoretical predictions of the lateral spreading of implanted ions

    International Nuclear Information System (INIS)

    Ashworth, D.G.; Oven, R.

    1986-01-01

    The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)

  1. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  2. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2012-01-01

    degradation of near-surface mechanical properties with increasing fluorine fluence. Implications of these observations in the creation of amorphous near-surface layers by high-dose ion implantation are discussed in this paper.

  3. Helium ion damage in an amorphous Fe-Ni-Mo-B alloy

    International Nuclear Information System (INIS)

    Swijgenhoven, H. van; Stals, L.M.; Knuyt, G.

    1983-01-01

    Data are presented on helium gas bubble and helium blister formation for Metglas 2826MB during 5 keV He + -implantation in the temperature range 200K-600K and dose range 5.10 20 -10 22 He + /m 2 . It is concluded that amorphous alloys are less radiation resistant as has been thought earlier. (author)

  4. Charge order suppression, emergence of ferromagnetism and absence of exchange bias effect in Bi0.25Ca0.75MnO3 nanoparticles: Electron paramagnetic resonance and magnetization studies

    Science.gov (United States)

    Singh, Geetanjali; Bhat, S. V.

    2012-06-01

    We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.

  5. Mn{sup 2+} ions distribution in doped sol–gel deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Mariana, E-mail: mstefan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V. [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Plugaru, Rodica [National Institute for R & D in Microtechnologies (IMT), Erou Iancu Nicolae Str. 126A, 077190 Bucharest (Romania)

    2017-02-28

    Highlights: • Several Mn{sup 2+} centers observed by EPR in sol–gel ZnO films. • Mn{sup 2+} ions localized at Zn{sup 2+} sites in ZnO grains and disordered ZnO phase. • Sixfold coordinated Mn{sup 2+} ions localized in inter-grain region. • Aggregated Mn in insular-like regions between ZnO grains in the ZnO:5%Mn film. • Aggregated Mn phase presence and distribution observed by EPR and EDX-STEM. - Abstract: The localization and distribution of the Mn{sup 2+} ions in two sol–gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn{sup 2+} ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn{sup 2+} sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn{sup 2+} in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn{sup 2+} ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn{sup 2+} ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  6. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  7. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  8. Determination of Proton Relaxivities of Mn(II, Cu(II and Cr(III added to Solutions of Serum Proteins

    Directory of Open Access Journals (Sweden)

    Ali Yilmaz

    2009-04-01

    Full Text Available Relaxometric studies are still of scientific interest due to their use in medicine and biology. In this study, proton T1 and T2 relaxivities of Mn(II, Cu(II and Cr(III in water were determined in the presence and absence of various proteins (albumin, α-globulin, γ-globulin, lysozyme, fibrinogen. The 1/T1 and 1/T2 in all solutions are linearly proportional to the concentration of the paramagnetic ions. Mn(II has the great influence to alter relaxations in all protein solutions, while Cu(II and Cr(III have a poor influence on the relaxations. In addition, Mn(II and Cu(II are bound to each protein, but Cr(III is not bound to any protein.

  9. RBS characterization of Al2O3 films doped with Ce and Mn

    International Nuclear Information System (INIS)

    Martinez-Martinez, R.; Rickards, J.; Garcia-Hipolito, M.; Trejo-Luna, R.; Martinez-Sanchez, E.; Alvarez-Fregoso, O.; Ramos-Brito, F.; Falcony, C.

    2005-01-01

    Rutherford backscattering (RBS) with 4 He energies from 2 to 6 MeV has been used to study the properties of thin amorphous photoluminescent Al 2 O 3 :Ce,Mn films grown by spray pyrolysis on Corning 7059 glass substrates. The source solutions were AlCl 3 , CeCl 3 and MnCl 2 dissolved in deionized water. Different molar concentrations (Ce 10%; Mn 1%, 3%, 5%, 7% and 10%) were investigated under the same deposition conditions at a substrate temperature of 300 deg. C. The RBS spectra show a homogeneous depth profile of both Ce and Mn within the films, and the measured quantities are consistent with the original solution concentrations. An important amount of Cl, which plays a significant role in luminescent properties, was detected, in both the doped and undoped samples

  10. Electronic and magnetic properties of R0.5A0.5MnO3 compounds (R=Gd, Dy, Ho, Er; A=Sr, Ca)

    International Nuclear Information System (INIS)

    Terai, T.; Sasaki, T.; Kakeshita, T.; Fukuda, T.; Saburi, T.; Kitagawa, H.; Kindo, K.; Honda, M.

    2000-01-01

    Electronic and magnetic properties of the perovskitelike compounds of R 0.5 A 0.5 MnO 3 (R=Gd, Dy, Ho, Er; A=Sr, Ca) have been studied by measuring lattice parameter, electrical resistivity, magnetic susceptibility, and magnetization. All the Sr-doped compounds show a transition from a paramagnetic insulator to a spin-glass-like insulator at T g , even though the manganite La 0.5 Ca 0.5 MnO 3 , with nearly the same tolerance factor t, have been shown by others, to have different transitions. On the other hand, all the Ca-doped compounds show a charge-ordering transition at T CO and show a transition from a paramagnetic insulator to a canted antiferromagnetic insulator and/or a spin-glass-like insulator at T CA below T CO . These transition temperatures decrease with decreasing t. In the compound of Gd 0.5 Ca 0.5 MnO 3 , the collapse of the charge ordering has been observed under a pulsed high magnetic field of 45 T at 4.2 K. On the other hand, in the compound of Gd 0.5 Sr 0.5 MnO 3 , the magnetization process depends on the strength of magnetic field. These electronic and magnetic properties depend not only on the tolerance factor but also the variance (second moment) of the A-site ion radii distribution

  11. Magnetic and transport properties of amorphous Ce-Al alloy

    Science.gov (United States)

    Amakai, Yusuke; Murayama, Shigeyuki; Momono, Naoki; Takano, Hideaki; Kuwai, Tomohiko

    2018-05-01

    Amorphous (a-)Ce50Al50 has been prepared by DC high-rate sputter method. The structure of the obtained sample has been confirmed to have an amorphous structure because there are no Bragg peaks in the X-ray diffraction measurement and have a clear exothermic peak by the differential scanning calorimetry measurement. We have measured the resistivity ρ, magnetic susceptibility χ, specific heat Cp and thermoelectric power S for a-Ce50Al50. The temperature dependence of ρ exhibits a small temperature dependence less than 10% in the whole temperature region. χ follows a Curie-Weiss behavior in the high-temperature region of T>90 K. The effective paramagnetic moment peff, estimated from C is 2.18 μB/Ce-atom. The low-temperature Cp/T increases rapidly with decreasing temperature and tends to a saturation. S(T) exhibits negative values in a wide temperature region. A minimum of S appear at around 60 K, and S decreases linearly with decreasing temperature down to 10 K. The low-temperature S is almost 0 μV/K down to 2 K. From these results, we have pointed out that present a-Ce50Al50 would be an incoherent Kondo material.

  12. The effects of ion implantation on the tribology of perfluoropolyether-lubricated 440C stainless steel couples

    Science.gov (United States)

    Shogrin, Bradley; Jones, William R., Jr.; Wilbur, Paul J.; Pilar, Herrera-Fierro; Williamson, Don L.

    1995-01-01

    The lubricating lifetime of thin films of a perfluoropolyether (PFPE) based on hexafluoropropene oxide in the presence of ion implanted 440C stainless steel is presented. Stainless steel discs, either unimplanted or implanted with N2, C, Ti, Ti + N2, or Ti + C had a thin film of PFPE (60-400 A) applied to them reproducibly (+/- 20 percent) and uniformly (+/- 15 percent) using a device developed for this study. The lifetimes of these films were quantified by measuring the number of sliding-wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unimplanted couple. The tests were performed in a dry nitrogen atmosphere (less than 1 percent RH) at room temperature using a 3 N normal load with a relative sliding speed of 0.05 m/s. The lubricated lifetime of the 440C couple was increased by an order of magnitude by implanting the disc with Ti. Ranked from most to least effective, the implanted species were: Ti; Ti+C; unimplanted; N2; C approximately equals Ti+N2. The mechanism postulated to explain these results involves the formation of a passivating or reactive layer which inhibits or facilitates the production of active sites. The corresponding surface microstructures induced by ion implantation, obtained using x-ray diffraction and conversion electron Mossbauer spectroscopy, ranked from most to least effective in enhancing lubricant lifetime were: amorphous Fe-Cr-Ti; amorphous Fe-Cr-Ti-C + TiC; unimplanted; epsilon-(Fe,Cr)(sub x)N, x = 2 or 3; amorphous Fe-Cr-C approximately equals amorphous Fe-Cr-Ti-N.

  13. Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3

    Science.gov (United States)

    Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.

    2011-10-01

    X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.

  14. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  15. Effects of ion implantation on the hardness and friction behaviour of soda-lime silica glass

    International Nuclear Information System (INIS)

    Bull, S.J.; Page, T.F.

    1992-01-01

    Ion implantation-induced changes in the near-surface mechanical properties of soda-lime silica glass have been investigated by indentation and scratch testing and have been found to be more complicated than changes in the corresponding properties of crystalline ceramic materials. Argon, nitrogen, carbon and potassium ions were used with energies in the range 45-300 keV. Hardness and scratch friction tests were performed under ambient laboratory conditions. At low doses, a decrease in hardness and an increase in both friction and surface stress are observed which are attributed to the electronic damage produced by ion implantation. At higher doses, the hardness increases again and a maximum is produced similar to the behaviour observed for crystalline materials. Similarly there is found to be a second stress and friction peak at this dose. This behaviour is shown to be due to the build-up of displacement damage produced by ion implantation and is thus very similar to the radiation hardening (and eventual amorphization) behaviour of ion-implanted crystalline ceramics. For glass, ''amorphization'' probably corresponds to some change in the existing amorphous state which, in turn, is responsible for the reduction in hardness, stress and friction at the highest doses. (author)

  16. The enhancement of the interdiffusion in Si/Ge amorphous artificial multilayers by additions of B and Au

    International Nuclear Information System (INIS)

    Park, B.; Spaepen, F.; Poate, J.M.; Jacobson, D.C.

    1990-01-01

    Amorphous Si/amorphous Ge artificial multilayers were prepared by ion beam sputtering. Boron or gold impurities were introduced into the Si/Ge multilayers by ion implantation or during the sputtering deposition. Diffusion coefficients were determined by measuring the decrease in the intensity of the first order X-ray diffraction peak resulting from the composition modulation. It was found that the interdiffusion of Si and Ge in their amorphous phase can be enhanced by doping. The enhancement factor is independent of the degree of structural relaxation, as observed by the decrease of diffusivity with annealing time, of the amorphous phase. A model is proposed that describes this behavior in terms of electronic effects, introduced by the dopants, on the pre-existing structural defects governing diffusion

  17. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    International Nuclear Information System (INIS)

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N.

    1989-01-01

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31 P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the δ protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31 P relaxation rates in E-MnADP and E-MnATP yields activation energies (ΔE) in the range 6-10 kcal/mol. Thus, the 31 P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and ΔE values in the range 1-2 kcal/mol; i.e., these rates depend upon 31 P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 angstrom, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1 H spin-lattice relaxation rate of the δ protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective τ C of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate (τ S1 ) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the δ protons was 10.9 ± 0.3 angstrom

  18. Toward a better understanding of the magnetocaloric effect: An experimental and theoretical study of MnFe{sub 4}Si{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, Olivier, E-mail: gourdono@lanl.gov [Los Alamos Neutron Scattering Center, National Laboratory, Los Alamos, NM 87545 (United States); Gottschlich, Michael; Persson, Joerg [Jülich Center for Neutron Science JCNS-2 and Peter Grünberg Institut PGI-4, JARA-FIT, Forschungszentrum Jülich 52425 Jülich (Germany); Cruz, Clarina de la [Quantum Condensed Matter Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Petricek, Vaclav [Institute of Physics ASCR v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); McGuire, Michael A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brückel, Thomas [Jülich Center for Neutron Science JCNS-2 and Peter Grünberg Institut PGI-4, JARA-FIT, Forschungszentrum Jülich 52425 Jülich (Germany)

    2014-08-15

    The intermetallic compound MnFe{sub 4}Si{sub 3} has been studied by high-resolution Time of Flight (TOF) neutron powder diffraction. MnFe{sub 4}Si{sub 3} crystallizes in the hexagonal space group P6{sub 3}/mcm with lattice constants of a=b=6.8043(4) Å and c=4.7254(2) Å at 310 K. Magnetic susceptibility measurements show clearly the magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. Magnetic structure refinements based on neutron powder diffraction data with and without external magnetic field reveal strong evidence on the origin of the large magnetocaloric effect (MCE) in this material as a partial reordering of the spins between ∼270 K and 300 K. In addition, electronic structure calculations using the self-consistent, spin-polarized Tight Binding-Linear MuffinTin Orbital (TB-LMTO) method were also accomplished to address the “coloring problem” (Mn/Fe site preference) as well as the unique ferromagnetic behavior of this intermetallic compound. - Graphical abstract: Theoretical and experimental reinvestigation of the magnetic structure of MnFe{sub 4}Si{sub 3} for a better understanding of its large magnetocaloric effect (MCE). - Highlights: • Strong magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. • MCE associated to a partial reordering of the spins between ∼270 K and 300 K. • DFT calculations show strong relation between MCE and spintronic materials.

  19. Development of double-pulse lasers ablation system and electron paramagnetic resonance spectroscopy for direct spectral analysis of manganese doped PVA polymer

    Science.gov (United States)

    Khalil, A. A. I.; Morsy, M. A.; El-Deen, H. Z.

    2017-11-01

    Series of manganese-co-precipitated poly (vinyl alcohol) (PVA) polymer were quantitatively and qualitatively analyzed using laser ablation system (LAS) based on double-pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR) spectroscopy. The collinear nanosecond laser beams of 266 and 1064 nm were optimized to focus on the surface of the PVA polymer target. Both laser beams were employed to estimate the natural properties of the excited Mn-PVA plasma, such as electron number density (Ne), electron temperature (Te), and Mn concentration. Individual transition lines of manganese (Mn), carbon (C), lithium (Li), hydrogen (H) and oxygen (O) atoms are identified based on the NIST spectral database. The results show better responses with DP-LIBS than the single-pulse laser induced breakdown spectroscopy (SP-LIBS). On the other hand, the EPR investigation shows characteristic broad peak of Mn-nano-particles (Mn-NPs) in the range of quantum dots of superparamagnetic materials. The line width (peak-to-peak, ΔHpp) and g-value of the observed Mn-EPR peak are ∼20 mT and 2.0046, respectively. The intensities of Mn-emission line at a wavelength 403.07 nm and the Mn-EPR absorption peak were used to accurate quantify the Mn-content in the polymer matrix. The results produce linear trends within the studied concentration range with regression coefficient (R2) value of ∼0.99, and limit of detection (LOD) of 0.026 mol.% and 0.016 mol.%, respectively. The LOD values are at a fold change of about -0.2 of the studied lowest mol.%. The proposed protocols of trace element detection are of significant advantage and can be applied to the other metal analysis.

  20. Effects of dopant ion and Mn valence state in the La{sub 1-x}A{sub x}MnO{sub 3} (A=Sr,Ba) colossal magnetoresistance films

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea, Republic of); Department of Display and Semiconductor Physics, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of); Department of Control and Instrumentation Engineering, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of)

    2010-01-15

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La{sub 0.7}Sr{sub 0.3}MnO{sub 3}, La{sub 0.7}Ba{sub 0.3}MnO{sub 3}, and La{sub 0.82}Ba{sub 0.18}MnO{sub 3} thin films with different contents of divalent cations and Mn{sup 3+}/Mn{sup 4+} ratios were deposited on amorphous SiO{sub 2}/Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn{sup 3+}/Mn{sup 4+} ratio controlling the Mn{sup 3+}-O{sup 2-}-Mn{sup 4+} conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn{sup 3+}/Mn{sup 4+} ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn{sup 3+}/Mn{sup 4+} ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  1. Study of paramagnetic contrast agents for NMR imaging: theoretical and experimental aspects (the case of Mn2+ ion)

    International Nuclear Information System (INIS)

    Chavoix, M.E.

    1984-06-01

    The use of contrast enhancing agents and the evaluation of magnetic properties of tissues, extend the diagnostic usefulness of Nuclear Magnetic Resonance (NMR) imaging. From this point of view, proton T 1 (spin-lattice) relaxation times of rat tissue, following parenteral administration of Mn(II) to increase the relaxation rate (R 1 =1/T 1 ), have been studied at 20 MHz. Differenciation of free (MF) and bound (Mb) manganese in these tissues was thus determined by measuring, total exogenous Mn ++ ions by Atomic Absorption spectrometry and free (non protein complexed) ions by Electron Spin Resonance Analysis. From these results, the diffusion of Mn ++ into various organs, was evaluated 15 min. after injection. A significant difference in the fixation of manganese occured between the liver and the pancreas with uptakes of 50% and 1% of the administration dose respectively [fr

  2. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fangfang; Zhou, Chungen; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Zhang, Hu

    2017-01-15

    Highlights: • The corrosion and tribological properties of an aerospace bearing steel CSS-42L was investigated. • Carbon ion implantation was conducted and an amorphous layer formed at the near surface of CSS-42L steel. • The enhanced Cr diffusion and the decreased free electrons are contributed to the improvement of corrosion properties. • The external hard layer has positive effect on the wear resistance. - Abstract: The aerospace bearings steel CSS-42L was ion implanted by carbon with implantation fluxes of 5 × 10{sup 16} ions cm{sup −2}. The composition, microstructure and hardness of the carbon implanted samples were characterized using X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and nanoindentation tests. The corrosion and tribological properties were also evaluated in the present work. The results shown that carbon implantation produced an amorphous layer and graphitic bounds formed at the near surface of CSS-42L steel. In the electrochemical test, the carbon implanted samples suggested lower current densities and corrosion rates. Carbon ion implanted samples shown a relative Cr-enrichment at the surface as compared with nonimplanted samples. The improved corrosion resistance is believed to be related to the formed amorphous layer, the enhancement of Cr diffusion in the carbon implantation layer which contributed the formation of passive film on the surface, the decrease of free electrons which caused by the increase of carbon fraction. The external hard layer had positive effect on the wear resistance, reducing strongly the friction coefficient about 30% and the abrasive-adhesive mechanism present in the unimplanted samples was not modified by the implantation process.

  3. Critical phenomena and exchange interactions of an amorphous ferromagnet: gadolinium--gold

    International Nuclear Information System (INIS)

    Poon, S.J.; Durand, J.

    1976-07-01

    Magnetization was measured between 4 and 290 0 K in fields up to 70 kOe on liquid-quenched Gd 80 Au 20 amorphous alloys. The Curie temperature and critical exponents β, γ and delta are found to be 149.45 0 K, 0.439, 1.294 and 3.948 respectively. These values are compared with the Heisenberg and molecular field values. The data are fitted to an equation of state previously derived for second order phase transition in fluid systems. The results illustrate clearly a second order phase transition in the amorphous state. A discussion in terms of the Heisenberg model is presented. The effective magnetic moment in the paramagnetic state has a value of 9.37 μ/sub B/ per gadolinium atom. The saturation moment extrapolated to 0 0 K is 7.0 μ/sub B/ per gadolinium atom. The low temperature saturation magnetization observes the T/sup 3 / 2 / law from 0.13 T/sub c/ to 0.80 T/sub c/. The effective exchange integrals J/sub n/ determined from the Rushbrooke--Wood formula and spin-wave theory are found to be 2.28 and 1.34 0 K respectively. The differences in J/sub n/ and that between the effective moment and saturation moment are attributed to the nearest-neighbor antiferromagnetic couplings below T/sub c/. Possible effects of structural disorder on the magnetic properties of Gd in the amorphous state are discussed

  4. Damage accumulation in ceramics during ion implantation

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; Begun, G.M.; Williams, J.M.; White, C.W.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1985-01-01

    The damage structures of α-Al 2 O 3 and α-SiC were examined as functions of ion implantation parameters using Rutherford backscattering-channeling, analytical electron microscopy, and Raman spectroscopy. Low temperatures or high fluences of cations favor formation of the amorphous state. At 300 0 K, mass of the bombarding species has only a small effect on residual damage, but certain ion species appear to stabilize the damage microstructure and increase the rate of approach to the amorphous state. The type of chemical bonding present in the host lattice is an important factor in determining the residual damage state

  5. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    Science.gov (United States)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-11-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  6. Metal-insulator transition and magnetic properties of La - (Ba/Ca) - Mn - O compounds

    International Nuclear Information System (INIS)

    Anbarasu, V.; Manigandan, A.; Sathiyakumar, S.; Jayabalan, K.; Kaliyaperumal, L.K.

    2009-01-01

    The manganite compounds La 2 BaMn (3+x) P y (where x = 0, 0.5 and 1) and La 2 CaMn 3 O y have been prepared for the importance in the field of magneto resistance materials through solid-state reaction technique. From the Powder XRD patterns it was confirmed that both compounds were in single phase and the refined crystal system matches with superconducting perovskite structure and the lattice parameters were calculated as a = 3.892( 6) A, b = 3.899(3) A and c = 11.619(8) A for La 2 BaMn 3 O y ; a = 3.851(3) A, b = 3.891(9) A and c = 11.542(7) A for La 2 CaMn 3 O y . The low temperature resistivity measurement reveals that the compound La 2 BaMn 3 O y exhibiting M - I transition and the transition temperature was found to be 270 K. The study on magnetization nature of the La 2 BaMn 3+x Oy (where x = 0, 0.5 and I) compounds through vibrating sample magnetometer confirms the superparamagnetic nature at room temperature condition where as La 2 CaMn 3 O y exhibits paramagnetic nature. The structural relations between the prepared manganite systems La 2 BaMn 3 O y and La 2 CaMn 3 O y with superconducting perovskite compound LaBa 2 Cu 3 O 7-y was studied with the technological application of magneto resistive property of the prepared compounds. (author)

  7. Ion-beam doping of amorphous silicon with germanium isovalent impurity

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Ershov, A.V.; Mashin, N.I.; Ignat'eva, E.A.

    1988-01-01

    Experimental data on ion-beam doping of amorphous silicon containing minor germanium additions by donor and acceptor impurity are presented. Doping of a-Si:Ge films as well as of a-Si layers was performed by implantation of 40 keV energy B + ions or 120 keV energy phosphorus by doses from 3.2x10 13 up to 1.3x10 17 cm -2 . Ion current density did not exceed 1 μA/cm 2 . Radiation defect annealing was performed at 400 deg C temperature during 30 min. Temperature dependences of conductivity in the region of 160-500 K were studied. It is shown that a-Si:Ge is like hydrogenized amorphous silicon in relation to doping

  8. Synthesis and characterization of Co and Mn doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vallalperuman, Kaliyan; Parthibavarman, Mathivanan; Sathishkumar, Sekar; Durairaj, Manickam [Mahendra Engineering College, Tiruchengode (India); Thavamani, Kuppusamy [AVS Technical Campus,, Salem (India)

    2014-04-15

    Diluted magnetic semiconductors (DMS) are intensively studied for their potential spintronics applications, especially those with Curie temperature above the room temperature. Ni{sub 1-x}Mn{sub x}O and Ni{sub 1-x}Co{sub x}O (x=1% and 2%), nanoparticles with size around 40-50 nm, were prepared by co-precipitation method. An NiO single phase structure was confirmed by powder X-ray diffraction measurements. Also, diffraction peaks show a systematic shift towards higher angle with an increase in Mn concentration, which is associated with the lattice variation. The samples were pelleted and examined for its magnetic property using a vibrating sample magnetometer (VSM); it indicates paramagnetic-like behavior at room temperature. The increase in a.c conductivity with increasing temperature is attributed to the increase in drift mobility of the charge carriers.

  9. Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available High capacity Li2MnSiO4/C nanocomposite with good rate performance was prepared via a facile sol-gel method using ascorbic acid as carbon source. It had a uniform distribution on particle size of approximately 20 nm and a thin outlayer of carbon. The galvanostatic charge-discharge measurement showed that the Li2MnSiO4/C electrode could deliver an initial discharge capacity of 257.1 mA h g−1 (corresponding to 1.56 Li+ at a current density of 10 mA g−1 at 30°C, while the Li2MnSiO4 electrode possessed a low capacity of 25.6 mA h g−1. Structural amorphization resulting from excessive extraction of Li+ during the first charge was the main reason for the drastic capacity fading. Controlling extraction of Li+ could inhibit the amorphization of Li2MnSiO4/C during the delithiation, contributing to a reversible structural change and good cycling performance.

  10. Magnetic, transport, and optical properties of Ca{sub 0.85}Eu{sub 0.15}MnO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, S.V., E-mail: naumov@imp.uran.ru [Institute of Metal Physics, Ural Branch of RAS, Kovalevskaya Street 18, Ekaterinburg 620990 (Russian Federation); Loshkareva, N.N.; Mostovshchikova, E.V.; Solin, N.I.; Korolev, A.V.; Arbuzova, T.I.; Telegin, S.V.; Patrakov, E.I. [Institute of Metal Physics, Ural Branch of RAS, Kovalevskaya Street 18, Ekaterinburg 620990 (Russian Federation)

    2013-01-01

    Magnetic, transport and optical properties of the Ca{sub 0.85}Eu{sub 0.15}MnO{sub 3} single crystal are studied and discussed in comparison with the properties of polycrystalline sample. The magnetic data show existence the two magnetic phase transitions under cooling: the transition near 150 K occurs from the paramagnetic orthorhombic to C-type antiferromagnetic monoclinic phase with the charge/orbital ordering in some part of the crystal; and at 90 K the transition from the paramagnetic to G-type antiferromagnetic phase takes place in another part of the crystal with the orthorhombic structure. The magnetoresistance of the Ca{sub 0.85}Eu{sub 0.15}MnO{sub 3} single crystal has features at temperatures of these phase transitions. Differences in the properties of single crystal and polycrystalline sample with the same content of Eu are associated with the ordering of oxygen vacancies that appear under the crystal growth. The reflection spectra in infrared range confirm the existence of the electron conductivity in a narrow band at room temperature.

  11. Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The effects of Mn-dopant on the formation of solid solutions α-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference α-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, δ OH and γ OH , were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin α-(Fe, Mn)OOH particles were observed. The length of these α-(Fe, Mn)OOH particles decreased, whereas their width increased. The α-Fe 2 O 3 phase was not detected in any of the samples prepared

  12. Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam

    Science.gov (United States)

    Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.

    2013-01-01

    Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.

  13. Critical parameters near the ferromagnetic-paramagnetic phase transition in La{sub 0.7}A{sub 0.3}(Mn{sub 1-x}b{sub x})O{sub 3} (A=Sr; B=Ti and Al; x=0.0 and 0.05) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Khiem, N.V. [Hongduc University, 307 Lelai Street, Thanhhoa City (Viet Nam)], E-mail: nvkhiem2002@yahoo.com; Phong, P.T. [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Bau, L.V. [Hongduc University, 307 Lelai Street, Thanhhoa City (Viet Nam); Nam, D.N.H.; Hong, L.V.; Phuc, N.X. [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)

    2009-07-15

    The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La{sub 0.7}A{sub 0.3}(Mn{sub 1-x}B{sub x})O{sub 3} (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature T{sub C} and the critical parameters {beta}, {gamma} and {delta}. With the values of T{sub C}, {beta} and {gamma}, we plot Mx(1-T/T{sub C}){sup -{beta}} vs. Hx(1-T/T{sub C}){sup -{gamma}}. All the data collapse on one of the two curves. This suggests that the data below and above T{sub C} obey scaling, following a single equation of state. Critical parameters for x=0 and x{sub Ti}=0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for x{sub Al}=0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.

  14. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  15. Electron spin resonance analysis of magnetic structures in La2/3Ca1/3MnO3

    International Nuclear Information System (INIS)

    Ding Tao; Zheng Weitao; Zang Jianfeng; Tian Hongwei; Zheng Bing; Wang Xin; Yu Shansheng; Wang Yuming

    2005-01-01

    Measurements of electron spin resonance (ESR) of La 2/3 Ca 1/3 MnO 3 (LCMO) in the ferromagnetic and paramagnetic phases were carried out. Phase transition and temperature dependence of the peak-to-peak ESR linewidth were determined. The transition temperature between ferromagnetic and paramagnetic phases was observed at 265 K. A prominent increase of the peak-to-peak linewidth with decreasing temperature below T c was observed. Using the dynamic scale theory and block spin transformation in critical phenomenon, the quantitative calculation of peak-to-peak linewidth at near T c was made, which was in good agreement with the experimental data. It was believed that the long interactions between the ferromagnetic microregions for LCMO played a key role in determining the ESR linewidth

  16. Detection of free radicals in γ-irradiated seasnail hard tissues by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Koeseoglu, Rahmi; Koeksal, Fevzi

    2003-01-01

    Gamma-irradiated seasnail (from family of Helix lukortium) hard tissues (CaCO 3 ) were investigated by electron paramagnetic resonance (EPR) at room temperature. The radicals produced by γ-irradiation in seasnail were attributed to orthorhombic C · O 2 - , freely rotating C · O 2 - , orthorhombic C · O 3 - , axial C · O 3 - , and axial C · O 3 3- free radicals. Unirradiated seasnail hard tissues also feature Mn 2+ ions in their EPR spectra. The hyperfine values were determined for the 13 C nucleus in the orthorhombic C · O 2 - and axial C · O 3 3- free radicals and for the manganese impurity ions. The g values of all the free radicals have been measured. The results were compared with the literature data for similar defects

  17. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  18. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  19. Temperature dependence of the ESR linewidth in the paramagnetic phase (T{gt}T{sub C}) of R{sub 1{minus}x}B{sub x}MnO{sub 3+{delta}} (R=La,Pr; B=Ca,Sr)

    Energy Technology Data Exchange (ETDEWEB)

    Rettori, C.; Rao, D.; Singley, J.; Kidwell, D.; Oseroff, S.B. [San Diego State University, San Diego, California 92182 (United States); Causa, M.T. [Centro Atomico Bariloche and Instituto Balseiro 8400, San Carlos de Bariloche (Argentina); Neumeier, J.J.; McClellan, K.J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cheong, S. [ATT Bell Laboratories, Murray Hill, New Jersey 07974 (United States); Schultz, S. [University of California, San Diego, California 92037 (United States)

    1997-02-01

    Electron spin resonance (ESR) experiments in the paramagnetic phase of R{sub 1{minus}x}B{sub x}MnO{sub 3+{delta}} (R=La,Pr; B=Ca,Sr) show, for 1.1 T{sub C}{approx_lt}T{approx_lt}2T{sub C}, a linear T increase of the resonance linewidth, {Delta}H, in powders, ceramic pellets, and single crystals. Above {approximately}2T{sub C} a slowdown in the T increase of {Delta}H is observed. The data resemble the results found in other ferromagnetic insulators where the spin-lattice relaxation involves a single-phonon process. We find that the one-phonon process may account for the linear T dependence of the linewidth observed up to {approximately}2T{sub C}. A large T dependence of the resonance intensity above T{sub C} was found in all the samples studied, suggesting the existence of {ital spin clusters} in these compounds over a wide range of temperature. {copyright} {ital 1997} {ital The American Physical Society}

  20. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Martensitic transformations in Ni-Mn-Ga system affected by external fields

    International Nuclear Information System (INIS)

    Chernenko, V.; Babii, O.; L'vov, V.; McCormick, P.G.

    2000-01-01

    The influence of hydrostatic pressure, uniaxial stress and magnetic field on the martensitic transformation temperatures for the ferromagnetic single crystalline Ni-Mn-Ga alloys is studied. It is shown that the experimental results are satisfactorily described by the Landau theory. Ni-Mn-Ga L2 1 -type ordered alloys exhibit a number of the first order and weak first order structural transformations in a ferromagnetic or paramagnetic parent phase depending on the alloy composition and being either thermally or stress activated. Most of these phase transformations are of the martensitic type, i.e., they are accompanied by the spontaneous elastic strains forming a multicomponent order parameter in the Landau expansion for the Gibbs potential. In this work we analyze the influence of the external fields (mechanical and magnetic) on the martensitic transformation (MT) from cubic parent phase (P) to five-layered martensitic one (5M-martensite) usually exhibited by the ferromagnetic ordered Ni-Mn-Ga alloys. In accordance with, we treat the 5M-martensite as a twinned tetragonal phase and, so, describe the experimental results in the framework of the theory of cubic-tetragonal MT. The original experimental data of high magnetic field influence on MT in near stoichiometric Ni 2 MnGa compound are presented to compare with the theoretical estimations. (orig.)

  2. Paramagnetic fluctuations in Pr0.65Ca0.35MnO3 around the charge-ordering temperature

    International Nuclear Information System (INIS)

    Daoud-Aladine, A; Roessli, B; Gvasaliya, S N; Perca, C; Pinsard-Gaudart, L; Rodriguez-Carvajal, J; Revcolevschi, A

    2006-01-01

    We have studied the ferromagnetic and antiferromagnetic fluctuations in the charge-ordered Pr 0.65 Ca 0.35 MnO 3 antiferromagnet by triple-axis neutron spectrometry. Whereas ferromagnetic fluctuations are observed above and below the charge-ordering transition (T CO ), the antiferromagnetic fluctuations develop only below T CO . The dynamical exponent z of both ferromagnetic and antiferromagnetic fluctuations are determined. The ferromagnetic fluctuations are not completely suppressed below T CO and their correlation lengths are short-ranged at all temperatures. The results are discussed with respect to the Zener polaron model recently introduced to describe the charge-ordered state of Pr 0.6 Ca 0.40 MnO 3

  3. Analysis of buried etch-stop layers in silicon by nitrogen-ion implantation

    International Nuclear Information System (INIS)

    Acero, M.C.; Esteve, J.; Montserrat, J.; Perez-Rodriguez, A.; Garrido, B.; Romano-Rodriguez, A.; Morante, J.R.

    1993-01-01

    The analysis of the etch-stop properties of layers obtained by substoichiometric nitrogen-ion implantation and annealing in silicon has been performed as a function of the implantation conditions. The analysis of the etching efficiency has been tested in TMAH-IPA systems. The results obtained show the need to implant at doses higher than 2 x 10 17 cm -2 to obtain etch-stop layers stable under high-temperature annealing. So, for implantation doses of 5 x 10 17 cm -2 , layers stand unetched for times longer than 2 h. The preliminary structural analysis of the samples suggests the presence of an amorphous silicon nitride layer for higher implantation doses. (author)

  4. Spin wave and percolation studies in epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ettayfi, A. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Colis, S.; Lenertz, M.; Dinia, A. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 UDS-CNRS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco)

    2016-07-01

    We investigate the magnetic and transport properties of high quality La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn–Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported. - Highlights: • The magnetic and transport properties of epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films are investigated. • The M(T) curve was modeled at low temperature, and several magnetic parameters were obtained using spin wave theory. • The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases.

  5. Effect of Xe ion (167 MeV) irradiation on polycrystalline SiC implanted with Kr and Xe at room temperature

    International Nuclear Information System (INIS)

    Hlatshwayo, T T; Kuhudzai, R J; Njoroge, E G; Malherbe, J B; O’Connell, J H; Skuratov, V A; Msimanga, M

    2015-01-01

    The effect of swift heavy ion (Xe 167 MeV) irradiation on polycrystalline SiC individually implanted with 360 keV Kr and Xe ions at room temperature to fluences of 2  ×  10 16 cm −2 and 1  ×  10 16 cm −2 respectively, was investigated using transmission electron microscopy (TEM), Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Implanted specimens were each irradiated with 167 MeV Xe +26 ions to a fluence of 8.3  ×  10 14 cm −2 at room temperature. It was observed that implantation of 360 keV Kr and Xe ions individually at room temperature amorphized the SiC from the surface up to a depth of 186 and 219 nm respectively. Swift heavy ion (SHI) irradiation reduced the amorphous layer by about 27 nm and 30 nm for the Kr and Xe samples respectively. Interestingly, the reduction in the amorphous layer was accompanied by the appearance of randomly oriented nanocrystals in the former amorphous layers after SHI irradiation in both samples. Previously, no similar nanocrystals were observed after SHI irradiations at electron stopping powers of 33 keV nm −1 and 20 keV nm −1 to fluences below 10 14 cm −2 . Therefore, our results suggest a fluence threshold for the formation of nanocrystals in the initial amorphous SiC after SHI irradiation. Raman results also indicated some annealing of radiation damage after swift heavy ion irradiation and the subsequent formation of small SiC crystals in the amorphous layers. No diffusion of implanted Kr and Xe was observed after swift heavy ion irradiation. (paper)

  6. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  7. Ion implantation of CdTe single crystals

    International Nuclear Information System (INIS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2017-01-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (10"1"7 1/cm"2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  8. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  9. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  10. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  11. Micro- and macro-structure of implantation-induced disorder in Ge

    CERN Document Server

    Glover, C J; Byrne, A P; Yu, K M; Foran, G J; Clerc, C; Hansen, J L; Nylandsted-Larsen, A

    2000-01-01

    The structure of ion implantation-induced damage in Ge substrates has been investigated with a combination of ion- and photon-based techniques including Rutherford backscattering spectrometry (RBS), perturbed angular correlation (PAC) and extended X-ray absorption fine structure (EXAFS) spectroscopy. For MeV Ge ion implantation at -196 degrees C, the dose dependence of the decrease in local atomic order, determined from EXAFS and PAC, was compared to the number of displaced atoms determined from RBS measurements. An EXAFS determined damage fraction was shown to be a better estimate of amorphous fraction than the number of displaced atoms. PAC was used to elucidate the evolution of defective configurations, and was compared to the RBS and EXAFS results. A fit to the overlap model with the overlap of two ion cascades for complete amorphization best described the experimental results. (16 refs).

  12. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    Science.gov (United States)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  13. Doped ZnS:Mn nanoparticles obtained by sonochemical synthesis.

    Science.gov (United States)

    Korotchenkov, O A; Cantarero, A; Shpak, A P; Kunitskii, Yu A; Senkevich, A I; Borovoy, M O; Nadtochii, A B

    2005-10-01

    A study of sonochemically synthesized ZnS:Mn nanoparticles is presented. The particles prepared at low rf power (about 20 W) and room temperature coalesce to form morphologically amorphous large species (30-100 nm in diameter). As the power is increased in the range from 20 to 70 W, and the solution temperature is raised to 60 to 80 degrees C, finer particles are produced with the size ranging from 2 to 20 nm and improved crystallinity. The results indicate the dispersion of the Mn(2+) ions at near-surface sites in the particles. It is shown that the sonochemically fabricated particles approach the quality of the ones obtained by a standard chemical route and show a reasonable luminescence performance.

  14. Study of thermal treated a-Si implanted with Er and O ions

    CERN Document Server

    Plugaru, R; Piqueras, J; Tate, T J

    2002-01-01

    Visible luminescence of amorphous silicon layers either implanted with Er or co-implanted with Er and O and subsequently annealed in nitrogen has been investigated by cathodoluminescence (CL) in a scanning electron microscope. Co-implanted samples show a more intense luminescence, which is revealed by annealing at lower temperatures than the samples implanted only with erbium. Thermal treatments cause the formation of erbium oxide as well as Er-Si complexes or precipitates. Violet-blue luminescence has been found from CL images and spectra to be related to Er-Si precipitates. Emission in the green-red range is attributed to oxide species.

  15. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    Science.gov (United States)

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  16. Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo; Choi, Soo Chang; Kim, Yong Woo [Department of Nano Fusion Technology, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Chae Moon [Samsung Electro-Mechanics, Busan 618-721 (Korea, Republic of); Lee, Deug Woo [Department of Nano System and Process Engineering, Pusan National University, Miryang 627-706 (Korea, Republic of)], E-mail: dwoolee@pusan.ac.kr

    2008-02-27

    This paper demonstrates a micro/nanoscale surface patterning technology for brittle material using mechanical and chemical processes. Fused silica was scratched with a Berkovich tip under various normal loads from several mN to several tens of mN with various tip rotations. The scratched substrate was then chemically etched in hydrofluoric solution to evaluate the chemical properties of the different deformed layers produced under various mechanical scratching conditions. Our results showed that either protruding or depressed patterns could be generated on the scratched surface after chemical etching by controlling the tip rotation, the normal load and the etching condition. In addition, the mask effect of amorphous material after mechanical scratching was controlled by conventional mechanical machining conditions such as contact area, chip formation, plastic flow and material removal.

  17. Accelerating action of stresses on crystallization kinetics in silicon ion-implanted layers during pulsed heating

    International Nuclear Information System (INIS)

    Aleksandrov, L.N.

    1985-01-01

    Numerical simulation of the effect of stressed in ion-implanted layers on kinetics of amorphous phase transformations is performed. The suggested model of accounting stresses including concentration ones is based on the locality of action of interstitial addition atoms and on general structural inhomogeneity of amorphous semiconductor leading to the formation of areas of the facilitated phase transition. Accounting of effect of energy variation of silicon atoms interaction on probability of displacement events and atoms building in lattice points or atomic bonds disintegration allows one to trace the accelerating action of introduced by ion implantation stresses on the kinetics of layer crystallization during pulsed heating

  18. Paramagnetism: an alternative view. Pt. 1

    International Nuclear Information System (INIS)

    Oudet, X.

    1991-01-01

    A new calculation of the paramagnetic susceptibility χ is proposed on the basis of the statistical distribution of the thermal energy using the mean value U of this energy as statistical variable. This allows us to replace the molecular field by an equivalent energy barrier that the paramagnetic moment of an atom has to cross to contribute to χ. The variation of χ with U, or T as well, shows a maximum when there is no magnetic order. The asymptotic character of the Curie-Weiss law appears in close connection with that of the Dulong and Petit law. (orig.)

  19. Buckling of paramagnetic chains in soft gels

    Science.gov (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  20. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  1. Annealing temperature dependent structural and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles grown by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bhandare, S.V. [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Kumar, R.; Anupama, A.V.; Choudhary, H.K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jali, V.M., E-mail: vmjali@gmail.com [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-07-01

    Highlights: • Phase pure MnFe{sub 2}O{sub 4} samples were prepared by sol-gel auto-combustion method. • Annealing MnFe{sub 2}O{sub 4} below ∼500 °C, two spinel phases were observed indicating partial oxidation of Mn{sup 2+} to Mn{sup 3+}. • Oxidation of Mn{sup 2+} to Mn{sup 3+} results in decrease in lattice parameter of the spinel lattice. • Annealing at ≥ 600 °C, MnFe{sub 2}O{sub 4} decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} along with amorphous-FeO phase. - Abstract: Manganese ferrite (MnFe{sub 2}O{sub 4}) nanoparticles were synthesized by sol-gel auto-combustion method using manganese nitrate and ferric nitrate as precursors and citric acid as a fuel. Scanning electron micrographs show irregularly shaped morphology of the particles. The as-prepared samples were annealed at 400, 500, 600 and 800 °C for 2 h in air. The phase identification and structural characterizations were performed using powder X-ray diffraction technique along with Mössbauer spectroscopy. Magnetization loops and {sup 57}Fe Mössbauer spectra were measured at RT. After annealing the sample at or below ∼ 500 °C, we observed two different spinel phases corresponding to two different lattice parameters. This is originating due to the partial oxidation of Mn{sup 2+} to Mn{sup 3+}. At high annealing temperatures (∼ 600 °C or above) the spinel MnFe{sub 2}O{sub 4} phase decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} phases, and amorphous FeO phase.

  2. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Leroux, F.; Sigala, C.; Le Gal La Salle, A.; Piffard, Y. [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1996-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1Mn, Co). These oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  3. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D; Leroux, F; Sigala, C; Le Gal La Salle, A.; Piffard, Y [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1997-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1Mn, Co). These oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  4. Polarized Neutron Study of Ni-Mn-Ga Alloys: Site-Specific Spin Density Affected by Martensitic Transformation.

    Science.gov (United States)

    Lázpita, P; Barandiarán, J M; Gutiérrez, J; Mondelli, C; Sozinov, A; Chernenko, V A

    2017-10-13

    Polarized neutron scattering has been used to obtain the magnetic moment at specific crystallographic sites of the austenitic and martensitic phases of two nonstoichiometric Ni-Mn-Ga single crystals with close composition. These alloys have been chosen because they exhibit different structures in the paramagnetic state and inverse positions of the respective martensitic transformation and Curie temperature. The diffraction analysis revealed a remarkable result: Despite the similar alloy composition, the magnetic moments of Mn are quite different for the two alloys at the same crystallographic position. Furthermore, such a difference enabled us to assess that the exchange coupling between Mn atoms switches from ferro- to antiferromagnetic at a distance between 2.92 and 3.32 Å in the martensite. These results are of great importance to guide first principles calculations that, up to now, have not been contrasted with experiments at the atomic level.

  5. Nano-structure and tribological properties of B+ and Ti+ co-implanted silicon nitride

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Noda, Katsutoshi; Yamauchi, Yukihiko

    2005-01-01

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 x 10 17 ions/cm 2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti + -implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti + -implanted sample was the lowest, followed by B + , Ti + co-implanted and B + -implanted samples

  6. EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method.

    Science.gov (United States)

    Gupta, Atul K; Kripal, Ram

    2012-10-01

    The structural properties of Mn doped CdS (Mn:CdS) nanoparticles (NPs) are studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-vis), Photoluminescence (PL), Raman and Electron paramagnetic resonance (EPR) spectroscopy. XRD analysis shows the nanostructure with 2-4 nm of average crystallite size. The planes (110), (103) and (112) in XRD pattern distinguish the wurtzite structure of the Mn:CdS NPs. The intensity of the plane (102) increases as the doping concentration of Mn(2+) increases. UV-vis absorption spectra show blue shift as compared to bulk CdS. The optical band gap energy of Mn(2+) (0, 0.35, 0.70 and 1.35 at.%) doped CdS NPs corresponding to absorption edge are found to be 5.29, 5.28, 5.25 and 5.21 eV, respectively. The intensity of luminescence is changing with the concentration of Mn(2+) doped in CdS NPs. Raman spectra show blue shift in fundamental optical phonon mode (1LO) as well as second optical phonon mode (2LO) as compared to bulk CdS. The intensity ratio of the 2LO to 1LO modes slightly decreases as Mn(2+) concentration increases. EPR shows the existence of Mn(2+) with different local structures in CdS nanoparticles. The values of spectroscopic splitting factor (g) and hyperfine interaction constant (A) decrease as Mn(2+) concentration increases in CdS NPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    Science.gov (United States)

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-10-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): G a1 -xM nxAs and I n1 -xM nxAs . In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strength of p-d coupling. On the insulating side of the transition, ferromagnetic signatures persist to higher temperatures in I n1 -xM nxAs compared to G a1 -xM nxAs with the same Mn concentration x . This substantiates theoretical suggestions that stronger p-d coupling results in an enhanced contribution to localization, which reduces hole-mediated ferromagnetism. Furthermore, the findings support strongly the heterogeneous model of electronic states at the localization boundary and point to the crucial role of weakly localized holes in mediating efficient spin-spin interactions even on the insulator side of the metal-insulator transition.

  8. Optical investigations of La0.7Ca0.3-xKxMnO3 (x = 0.00, 0.05 and 0.10 probed by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    N. Sdiri

    2012-07-01

    Full Text Available Using spectroscopic ellipsometry, we have studied the optical properties of doped manganites at the paramagnetic state in polycrystalline La0.7Ca0.3-xKxMnO3 samples for (x = 0.00, 0.05 and 0.10 in the energy range of 3.2-5.5 eV at room temperature. The surface morphology of the samples was obtained by using atomic force microscopy (AFM. Refractive indices, extinction coefficients, the transmission ellipsometric parameters Ψ and Δ are investigated at different wavelengths. The study of the optical conductivity σ reveals that optical behaviour and the activated transport in the paramagnetic state of these materials are consistent with Jahn-Teller small polaron. In addition, the spectrum of the complex dielectric constant ε reveals peaks for all samples, the results may be explained by the presence of space charges from the strongly dipole-allowed O(2p−Mn(3d transition.

  9. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  10. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  11. Nanocomposites formed by ion implantation: Recent developments and future opportunities

    International Nuclear Information System (INIS)

    Meldrum, A.; Boatner, L.A.; White, C.W.

    2001-01-01

    Ion implantation is a versatile and powerful technique for forming many types of nanocrystalline precipitates embedded in the near-surface region of a wide variety of crystalline and amorphous host materials. The unique optical, electronic and magnetic properties of these nanocomposites has stimulated considerable recent research interest. In this review, we discuss recent developments in the field as well as some of the problems that currently hinder the potential applications of nanocomposites formed by ion implantation

  12. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  13. Analysis of buried etch-stop layers in silicon by nitrogen-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Acero, M.C.; Esteve, J.; Montserrat, J. (Centro Nacional de Microelectronica (CNM-CSIC), Bellaterra (Spain)); Perez-Rodriguez, A.; Garrido, B.; Romano-Rodriguez, A.; Morante, J.R. (Barcelona Univ. (Spain). Dept. Fisica Aplicada i Electronica)

    1993-09-01

    The analysis of the etch-stop properties of layers obtained by substoichiometric nitrogen-ion implantation and annealing in silicon has been performed as a function of the implantation conditions. The analysis of the etching efficiency has been tested in TMAH-IPA systems. The results obtained show the need to implant at doses higher than 2 x 10[sup 17] cm[sup -2] to obtain etch-stop layers stable under high-temperature annealing. So, for implantation doses of 5 x 10[sup 17] cm[sup -2], layers stand unetched for times longer than 2 h. The preliminary structural analysis of the samples suggests the presence of an amorphous silicon nitride layer for higher implantation doses. (author).

  14. Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.3O3+δ

    International Nuclear Information System (INIS)

    Liu, X.J.; Li, Z.Q.; Yu, A.; Liu, M.L.; Li, W.R.; Li, B.L.; Wu, P.; Bai, H.L.; Jiang, E.Y.

    2007-01-01

    We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Fe-doped manganite LaMn 0.7 Fe 0.3 O 3+ δ prepared by sol-gel method. A typical cluster-glass feature is presented by DC magnetization and AC susceptibility measurements and a sharp but shallow memory effect was observed. Symmetrical Lorentzian lines of the Mn/Fe spectra were detected above 120 K, where the sample is a paramagnetic (PM) insulator. When the temperature decreases from 120 K, magnetic clusters contributed from ferromagnetic (FM) interaction between Mn 3+ and Mn 3+ /Fe 3+ ions develop and coexist with PM phase. At lower temperature, these FM clusters compete with antiferromagnetic (AFM) ones between Fe 3+ ions, which are associated with a distinct field-cooled (FC) effect in characteristic of cluster-glass state

  15. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    Science.gov (United States)

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  16. Magnetic and XMCD studies of Pr1−xSrxMnO3 manganite films

    International Nuclear Information System (INIS)

    Samoshkina, Yu.E.; Edelman, I.S.; Stepanova, E.A.; Neznakhin, D.S.; Ollefs, K.; Andreev, N.V.; Chichkov, V.I.

    2017-01-01

    Magnetic properties of the Pr 0.8 Sr 0.2 MnO 3 and Pr 0.6 Sr 0.4 MnO 3 polycrystalline films have been studied using temperature and magnetic field dependences of the static magnetization and X-ray magnetic circular dichroism (XMCD) spectroscopy. For the both compositions, the difference between the temperature dependences of magnetization obtained in the zero fields cooling (ZFC) and field cooling (FC) modes has been revealed. The ZFC curves demonstrate a pronounced maximum at temperature T m . It is shown that the T m value dependence on the magnetic field follows the Almeida-Thouless line typical for the classic spin glass, what allows us to assume the possible spin-glass behavior of the films. Effect of the disorder in a direction of the crystallites easy-axis on the difference between FC and ZFC curves has been discussed also. Magnetic field dependences of the sample magnetization are presented by the hysteresis loops with the shape changing upon temperature variation. This behavior has been attributed to the effect of crystallographic anisotropy and Pr ions. The spectra and magnetic field dependences of XMCD at the Pr L 2 - and Mn K-edges have been studied at 90 K. The magnetic field dependences of the XMCD at the Pr L 2 -edge had shown Van Vleck paramagnetism from Pr 3+ ions. - Highlights: • M (T) magnetization behavior indicates the presence of spin glass behavior in the films. • Shape of the hysteresis loops depends on temperature. • Magnetic field dependences of XMCD at T=90 K reveal Van Vleck paramagnetism from Pr 3+ ions.

  17. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  18. Observation of correlation effects in the hopping transport in amorphous silicon

    International Nuclear Information System (INIS)

    Voegele, V.; Kalbitzer, S.; Boehringer, K.

    1985-01-01

    Amorphous silicon films have been modified by the implantation of Au or Si ions. The d.c. conductivity, measured between 300 and 15 K, was found to exhibit hopping exponents m which increase with decreasing temperature. Depending on the varied defect densities, m ranges between the limits of 1/4 and 1. These results can be explained by variable-range-hopping theory, if a Coulomb correlation term is included. (author)

  19. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  20. Magnetic and ultrasonic studies on double layered CMR manganite La1.2Sr1.8Mn2O7

    International Nuclear Information System (INIS)

    Reddy, Y.S.; Vishnuvardhan Reddy, C.

    2014-01-01

    Magnetic and ultrasonic studies were done on La 1.2 Sr 1.8 Mn 2 O 7 to understand the correlation between its magnetic and ultrasonic transitions. The sample transforms from paramagnetic-insulator to ferromagnetic-metallic state at T c ≈124 K. The significant hardening in longitudinal sound velocity measurements (below T c ) is attributed to the coupling between ferromagnetic spins and longitudinal acoustic phonons. (author)

  1. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  2. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangkun [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Bao, Jianguo, E-mail: bjianguo@cug.edu.cn [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Liu, Ying; Ling, Haibo; Zheng, Han [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-12-15

    Highlights: Manganese catalyst was immobilized on Fe{sub 3}O{sub 4}/graphene hybrids to facilitate magnetic separation. Magnetic manganese catalyst exhibited high efficacy and long-term stability for catalytic PMS activation. The minerlization efficiency and the biotoxicity of BPA byproducts were evaluated. The degradation pathways of BPA and the possible activation mechanism of PMS were proposed. - Abstract: A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO{sub 4} by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system. Regardless of the initial pH, the solution pH significantly dropped after the reaction, which was caused by catalytic PMS activation. The production of sulfate radicals and hydroxyl radicals was validated through radical quenching and electron paramagnetic resonances (EPR) tests. BPA degradation pathways were proposed on the basis of LC-MS and GC-MS analyses. Finally, a possible mechanism of catalytic PMS activation was proposed that involved electron transfer from MnO or Mn{sub 2}O{sub 3} to PMS with the generation of sulfate radicals, protons and MnO{sub 2}, as well as the simultaneous reduction of MnO{sub 2} by PMS.

  3. Ion-implantation induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sekiguchi, T.; Suzuki, R.

    2004-01-01

    Introduction and annealing behavior of defects in Al + -implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al + -implantation. With increasing ion dose above 10 14 Al + /cm 2 the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  4. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Satoru; Honda, Joji [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Sawayama, Tomohiro; Niikura, Seiji [SINLOIHI Company, Limited, 2-19-12 Dai, Kamakura 247-8550 (Japan)

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing the aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.

  5. Distribution of implanted hydrogen in amorphous silicon dioxide a-SiO2

    International Nuclear Information System (INIS)

    Mokrushin, A.D.; Agafonov, Yu.A.; Zinenko, V.I.; Pustovit, A.N.

    2004-01-01

    Hydrogen SIMS distributions are measured in quartz glasses implanted by different doses of H 2 + ions with energy 40 keV. There are two features in distributions: the availability of intensive peak close to the surface and near-constant dependence at large depth up to ions range. These peculiarities are perhaps attributable to the radiation induced diffusion of hydrogen atoms back to the surface via which ions are implanted [ru

  6. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  7. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesha Angadi, V. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Anupama, A.V.; Choudhary, Harish K.; Kumar, R. [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India); Somashekarappa, H.M. [Center for Application of Radioisotopes and Radiation Technology, Mangalore University, Mangalore 574199 (India); Mallappa, M. [Department of Chemistry, Government Science College, Bangalore 560001 (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India)

    2017-02-15

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable ZnFe{sub 2}O

  8. Distribution and characterization of iron in implanted silicon carbide

    International Nuclear Information System (INIS)

    Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J.

    1991-01-01

    Analytical electron microscopy (AEM) and Rutherford backscattering spectroscopy-ion channeling (RBS-C) have been used to characterize single crystal α-silicon carbide implanted at room temperature with 160 keV 57 Fe ions to fluences of 1, 3, and 6 x 10 16 ions/cm 2 . Best correlations among AEM, RBS, and TRIM calculations were obtained assuming a density of the amorphized implanted regions equal to that of crystalline SiC. No iron-rich precipitates or clusters were detected by AEM. Inspection of the electron energy loss fine structure for iron in the implanted specimens suggests that the iron is not metallically-bonded, supporting conclusions from earlier conversion electron Moessbauer spectroscopy (CEMS) studies. In-situ annealing surprisingly resulted in crystallization at 600 degrees C with some redistribution of the implanted iron

  9. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    Science.gov (United States)

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  10. Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica

    International Nuclear Information System (INIS)

    Barba, D; Martin, F; Ross, G G

    2008-01-01

    Silicon nanocrystals (Si-nc) and amorphous silicon (α-Si) produced by silicon implantation in fused silica have been studied by micro-Raman spectroscopy. Information regarding the Raman signature of the α-Si phonon excitation was extracted from Raman depth-probing measurements using the phenomenological phonon confinement model. The spectral deconvolution of the Raman measurements recorded at different laser focusing depths takes into account both the Si-nc size variation and the Si-nc spatial distribution within the sample. The phonon peak associated with α-Si around 470 cm -1 is greatest for in-sample laser focusing, indicating that the formation of amorphous silicon is more important in the region containing a high concentration of silicon excess, where large Si-nc are located. As also observed for Si-nc systems prepared by SiO x layer deposition, this result demonstrates the presence of α-Si in high excess Si implanted Si-nc systems

  11. Electrical and magnetic behavior of La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/La{sub 0.7}Sr{sub 0.2}Ca{sub 0.1}MnO{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.v [Nhatrang Pedagogic College, Khanhhoa (Viet Nam); Institute of Material Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Dai, N.V.; Manh, D.H.; Thanh, T.D. [Institute of Material Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Khiem, N.V. [Department of Natural Sciences, Hongduc University, Thanhhoa (Viet Nam); Hong, L.V.; Phuc, N.X. [Institute of Material Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam)

    2010-09-15

    The electrical transport properties and the magnetoresistance of La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/La{sub 0.7}Sr{sub 0.2}Ca{sub 0.1}MnO{sub 3} composites are investigated as a function of sintering temperature. On the basis of an analysis by X-ray powder diffraction and scanning electron microscopy we suggest that raising the sintering temperature enhanced the interfacial reaction and creates interfacial phases at the boundaries of the La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and La{sub 0.7}Sr{sub 0.2}Ca{sub 0.1}MnO{sub 3}. Results also show that in 3 kOe, and at the Curie temperature, the magnetoresistance value of 14% was observed for the composite sintered at 1300 {sup o}C. Based on the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental resistivity-temperature data from 50-300 K and find that the activation barrier decreases as temperature is increased.

  12. Dislocation loops in spinel crystals irradiated successively with deep and shallow ion implants

    International Nuclear Information System (INIS)

    Ai, R.X.; Cooper, E.A.; Sickafus, K.E.; Nastasi, M.; Bordes, N.; Ewing, R.C.

    1993-01-01

    This study examines the influence of microstructural defects on irradiation damage accumulation in the oxide spinel. Single crystals of the compound MgAl 2 O 4 with surface normal [111] were irradiated under cryogenic temperature (100K) either with 50 keV Ne ions (fluence 5.0 x 10 12 /cm 2 ), 400 keV Ne ions (fluence 6.7 x 10 13 /cm 2 ) or successively with 400 keV Ne ions followed by 50 keV Ne ions. The projected range of 50 keV Ne ions in spinel is ∼50 mn (''shallow'') while the projected range of 400 keV Ne ions is ∼500 mn (''deep''). Transmission electron microscopy (TEM) was used to examine dislocation loops/defect clusters formed by the implantation process. Measurements of the dislocation loop size were made using weak-beam imaging technique on cross-sectional TEM ion-implanted specimens. Defect clusters were observed in both deep and shallow implanted specimens, while dislocation loops were observed in the shallow implanted sample that was previously irradiated by 400 keV Ne ions. Cluster size was seen to increase for shallow implants in crystals irradiated with a deep implant (size ∼8.5 nm) as compared to crystals treated only to a shallow implant (size ∼3.1 nm)

  13. Optical and structural properties of undoped and Mn2+ doped Ca–Li hydroxyapatite nanopowders using mechanochemical synthesis

    International Nuclear Information System (INIS)

    Ravindranadh, K.; Babu, B.; Pushpa Manjari, V.; Thirumala Rao, G.; Rao, M.C.; Ravikumar, R.V.S.S.N.

    2015-01-01

    Undoped and Mn 2+ doped calcium–lithium hydroxyapatite (CLHA) nanopowders were prepared by mechanochemical synthesis. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, transmission electron microscope, optical absorption, photoluminescence, electron paramagnetic resonance and FT-IR spectroscopy techniques. From powder XRD pattern, lattice cell parameters and average crystallite sizes were evaluated. The morphologies of prepared samples were analyzed by using SEM and TEM studies. Optical and EPR data confirmed that the doped Mn 2+ enter into the host material as distorted octahedral site. Photoluminescence spectra of undoped and Mn 2+ doped CLHA nanopowders exhibited blue, blue-green emission bands at 425, 443, 468 nm and green, strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for undoped and Mn 2+ doped CLHA nanopowders. Vibrational bands related to phosphate molecules, P–O–H and hydroxyl ions are observed in FT-IR spectra. - Highlights: • PXRD pattern of prepared undoped and Mn 2+ doped CLHA nanopowders are in nanosize. • Optical and EPR studies reveal site symmetry of Mn 2+ doped CLHA nanopowders are distorted octahedral symmetry. • FT-IR spectra exhibits the various vibrational modes of phosphate ions, P–O–H and water molecules

  14. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase