WorldWideScience

Sample records for paramagnetic liposome nanoparticles

  1. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  2. Nanoparticle Stabilized Liposomes for Acne Therapy

    Science.gov (United States)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  3. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  4. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    Directory of Open Access Journals (Sweden)

    Jain PP

    2014-07-01

    Full Text Available Pritesh P Jain,1 Regina Leber,1,2 Chandran Nagaraj,1 Gerd Leitinger,3 Bernhard Lehofer,4 Horst Olschewski,1,5 Andrea Olschewski,1,6 Ruth Prassl,1,4 Leigh M Marsh11Ludwig Boltzmann Institute for Lung Vascular Research, 2Biophysics Division, Institute of Molecular Biosciences, University of Graz, 3Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology, and Embryology, 4Institute of Biophysics, 5Division of Pulmonology, Department of Internal Medicine, 6Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, AustriaAbstract: Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl-3-trimethylammonium-propane (DOTAP in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited

  5. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    Science.gov (United States)

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  6. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    International Nuclear Information System (INIS)

    Coene, A.; Dupré, L.; Crevecoeur, G.

    2015-01-01

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR

  7. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    Science.gov (United States)

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  8. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  9. Mucosal delivery of liposome-chitosan nanoparticles complexes

    OpenAIRE

    Carvalho, Edison Samir Mascarelhas; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can...

  10. Engineering Liposomes and Nanoparticles for Biological Targeting

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Feldborg, Lise Nørkjær; Andersen, Simon

    2011-01-01

    Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically...... to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug...

  11. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.

    Science.gov (United States)

    Thamphiwatana, Soracha; Fu, Victoria; Zhu, Jingying; Lu, Diannan; Gao, Weiwei; Zhang, Liangfang

    2013-10-01

    We report a novel pH-responsive gold nanoparticle-stabilized liposome system for gastric antimicrobial delivery. By adsorbing small chitosan-modified gold nanoparticles (diameter ~10 nm) onto the outer surface of negatively charged phospholipid liposomes (diameter ~75 nm), we show that at gastric pH the liposomes have excellent stability with limited fusion ability and negligible cargo releases. However, when the stabilized liposomes are present in an environment with neutral pH, the gold stabilizers detach from the liposomes, resulting in free liposomes that can actively fuse with bacterial membranes. Using Helicobacter pylori as a model bacterium and doxycycline as a model antibiotic, we demonstrate such pH-responsive fusion activity and drug release profile of the nanoparticle-stabilized liposomes. Particularly, at neutral pH the gold nanoparticles detach, and thus the doxycycline-loaded liposomes rapidly fuse with bacteria and cause superior bactericidal efficacy as compared to the free doxycycline counterpart. Our results suggest that the reported liposome system holds a substantial potential for gastric drug delivery; it remains inactive (stable) in the stomach lumen but actively interacts with bacteria once it reaches the mucus layer of the stomach where the bacteria may reside.

  12. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    Science.gov (United States)

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers.

  13. Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles

    Science.gov (United States)

    Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; Meglinski, I.

    2017-06-01

    The use of liposomal nanoparticles with an incorporated active substance is an innovative and promising approach to diagnostics and therapy. The application of liposomal nanoparticle-based drugs allows for targeted localized delivery, overcomes the natural barriers within the body effectively, and minimizes possible side effects. Liposomes are able to contain a variety of ingredients with practically no limitations to their chemical composition, chemical properties, or size of constituent molecules. This study evaluated the ability to control the passage of fluorescent dye-filled liposomes through the intestinal mucosal barrier after oral administration. For this purpose, the increase in transcutaneous registered fluorescence from tetrabromofluorescein dye was recorded and analysed. Fluorescence intensity was measured at the proximal end of the tail of an animal model after oral administration of the liposomes. Measurements were taken at the excitation wavelengths of 365 and 450 nm. The fluorescence intensity in the group treated with the fluorescent contrast agent encapsulated in liposomal particles increased 140% of the initial level, but in the group treated with pure contrast agent, the increase in detected fluorescence intensity did not exceed 110%. Mice that received empty liposomes as well as the control group did not demonstrate statistically significant changes in fluorescence intensity. A potential application of our results is an express laser optical method of monitoring the transport of orally administered liposomal particles. The results can be used to help create new optical tools for use in the development of new drugs and in high-throughput screening used during their testing.

  14. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    Science.gov (United States)

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  15. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications.

    Science.gov (United States)

    Panahi, Yunes; Farshbaf, Masoud; Mohammadhosseini, Majid; Mirahadi, Mozhdeh; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl

    2017-06-01

    Liposome is a new nanostructure for the encapsulation and delivery of bioactive agents. There are a lot of bioactive materials that could be incorporated into liposomes including cosmetics, food ingredients, and pharmaceuticals. Liposomes possess particular properties such as biocompatibility, biodegradability; accompanied by their nanosize they have potential applications in nanomedicine, cosmetics, and food industry. Nanoliposome technology offers thrilling chances for food technologists in fields including encapsulation and controlled release of food ingredients, also improved bioavailability and stability of sensitive materials. Amid numerous brilliant new drug and gene delivery systems, liposomes provide an advanced technology to carry active molecules to the specific site of action, and now days, various formulations are in clinical use. In this paper, we provide review of the main physicochemical properties of liposomes, current methods of the manufacturing and introduce some of their usage in food nanotechnology as carrier vehicles of nutrients, enzymes, and food antimicrobials and their applications as drug carriers and gene delivery agents in biomedicine.

  16. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.

    Science.gov (United States)

    Zanzoni, Serena; Pedroni, Marco; D'Onofrio, Mariapina; Speghini, Adolfo; Assfalg, Michael

    2016-01-13

    The successful application of nanomaterials in biosciences necessitates an in-depth understanding of how they interface with biomolecules. Transient associations of proteins with nanoparticles (NPs) are accessible by solution NMR spectroscopy, albeit with some limitations. The incorporation of paramagnetic centers into NPs offers new opportunities to explore bio-nano interfaces. We propose NMR paramagnetic relaxation enhancement as a new tool to detect NP-binding surfaces on proteins with increased sensitivity, also extending the applicability of NMR investigations to heterogeneous biomolecular mixtures. The adsorption of ubiquitin on gadolinium-doped fluoride-based NPs produced residue-specific NMR line-broadening effects mapping to a contiguous area on the surface of the protein. Importantly, an identical paramagnetic fingerprint was observed in the presence of a competing protein-protein association equilibrium, exemplifying possible interactions taking place in crowded biological media. The interaction was further characterized using isothermal titration calorimetry and upconversion emission measurements. The data indicate that the used fluoride-based NPs are not biologically inert but rather are capable of biomolecular recognition.

  17. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    Science.gov (United States)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  19. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations.

    Science.gov (United States)

    Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping

    2017-08-07

    A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2017-12-01

    Full Text Available Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.

  1. Experimental Aspects of Colloidal Interactions in Mixed Systems of Liposome and Inorganic Nanoparticle and Their Applications

    Directory of Open Access Journals (Sweden)

    Michael Gradzielski

    2012-09-01

    Full Text Available In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles and hard nanoparticles (NPs. In this context liposomes (vesicles may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

  2. Synthesis, structural and paramagnetic properties of SnO{sub 2} doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Islam, I., E-mail: ishtihadahislam@gmail.com; Dwivedi, Sonam; Dar, Hilal A.; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-05-06

    In this work, Sn doped NiO nanoparticles were synthesized by co-precipitation route to explore the impact of doping on lattice structure, dielectric constant and magnetization. X-ray diffraction analysis confirmed cubic (Fd-3m) structure of Sn doped NiO. Average crystallite size decreases from 78.2 nm (Ni{sub 0.95}Sn{sub 0.05}O) to 64.23 nm (Ni{sub 0.8}Sn{sub 0.2}O). Scanning electron microscopy images confirm that nanocrystals have agglomerated spherical morphology. The Raman spectrum exhibits a strong, broad peak at 410 cm{sup -1} and is attributed to the Ni-O stretching mode and doped samples show a blue shift. The dielectric constants at about 1 Hz are measured to be about 1.795, 1.030, 0.442, and 0.302 × 10{sup 3} Ni{sub 1-x}Sn{sub x}O (x = 0.05, 0.1, 0.15, 0.2), respectively. The dielectric constant in nanoparticles of doped Ni{sub 1-x}Sn{sub x}O is three orders of magnitude higher as compared to pure NiO ceramics. The nature of magnetization - applied field (M-H) infers paramagnetic behaviour for Sn doped NiO nanoparticles.

  3. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis.

    Science.gov (United States)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D; Manunta, Maria D; Hart, Stephen L; Khaw, Peng T

    2016-02-24

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  4. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.

    Science.gov (United States)

    Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana

    2013-03-01

    This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).

  5. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    Science.gov (United States)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  6. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-04-01

    Full Text Available Ying Liu,1,* Man He,1,* Mengmeng Niu,1 Yiqing Zhao,1 Yuanzhang Zhu,1 Zhenhua Li,2 Nianping Feng1 1Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2Cedars-Sinai Medical Center, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate

  7. Characterisation and quantification of liposome-type nanoparticles in a beverage matrix using hydrodynamic chromatography and MALDI–TOF mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Brouwer, L.; Weigel, S.

    2013-01-01

    This paper describes the characterisation of liposome-type nanoparticles (NPs) dispersed in a beverage matrix. Characterisation is based on a two-step procedure: first, liposomes are separated on the basis of size in the nanometre range by use of hydrodynamic chromatography (HDC); second, chemical

  8. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  9. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer

    Directory of Open Access Journals (Sweden)

    Xia J

    2017-03-01

    Full Text Available Jizhu Xia, Gang Feng, Xiaorong Xia, Lan Hao, Zhigang Wang Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: In this study, we have developed a biodegradable nanomaterial for photoacoustic imaging (PAI. Its biodegradation products can be fully eliminated from a living organism. It is a gas-generating nanoparticle of liposome-encapsulating ammonium bicarbonate (NH4HCO3 solution, which is safe, effective, inexpensive, and free of side effects. When lasers irradiate these nanoparticles, NH4HCO3 decomposes to produce CO2, which can absorb much of the light energy under laser irradiation with a specific wavelength, and then expand under heat to generate a thermal acoustic wave. An acoustic detector can detect this wave and show it as a photoacoustic signal on a display screen. The intensity of the photoacoustic signal is enhanced corresponding to an increase in time, concentration, and temperature. During in vivo testing, nanoparticles were injected into tumor-bearing nude mice through the caudal vein, and photoacoustic signals were detected from the tumor, reaching a peak in 4 h, and then gradually disappearing. There was no damage to the skin or subcutaneous tissue from laser radiation. Our developed gas-generating nanomaterial, NH4HCO3 nanomaterial, is feasible, effective, safe, and inexpensive. Therefore, it is a promising material to be used in clinical PAI. Keywords: Photoacoustic tomography, CO2, NH4HCO3, contrast agent, cancer

  10. Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium

    Directory of Open Access Journals (Sweden)

    Kinnunen Paavo KJ

    2010-12-01

    Full Text Available Abstract Background Treatment of inner ear diseases remains a problem because of limited passage through the blood-inner ear barriers and lack of control with the delivery of treatment agents by intravenous or oral administration. As a minimally-invasive approach, intratympanic delivery of multifunctional nanoparticles (MFNPs carrying genes or drugs to the inner ear is a future therapy for treating inner ear diseases, including sensorineural hearing loss (SNHL and Meniere's disease. In an attempt to track the dynamics and distribution of nanoparticles in vivo, here we describe manufacturing MRI traceable liposome nanoparticles by encapsulating gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA (abbreviated as LPS+Gd-DOTA and their distribution in the inner ear after either intratympanic or intracochlear administration. Results Measurements of relaxivities (r1 and r2 showed that LPS+Gd-DOTA had efficient visible signal characteristics for MRI. In vivo studies demonstrated that LPS+Gd-DOTA with 130 nm size were efficiently taken up by the inner ear at 3 h after transtympanic injection and disappeared after 24 h. With intracochlear injection, LPS+Gd-DOTA were visualized to distribute throughout the inner ear, including the cochlea and vestibule with fast dynamics depending on the status of the perilymph circulation. Conclusion Novel LPS+Gd-DOTA were visible by MRI in the inner ear in vivo demonstrating transport from the middle ear to the inner ear and with dynamics that correlated to the status of the perilymph circulation.

  11. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    Directory of Open Access Journals (Sweden)

    Raquel Martínez-González

    2016-07-01

    Full Text Available There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs as contrast agents (CAs for magnetic resonance imaging (MRI, due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA.

  12. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Zeng, Yongyi; Tang, Dianping

    2018-06-02

    The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B 1 (AFB 1 ) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB 1 using AFB 1 -bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi 2 MoO 6 . Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB 1 -BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB 1 ), the labeled AFB 1 -BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB 1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB 1 at a concentration as low as 0.1 pg·mL -1 within a linear response in the 0.3 pg·mL -1 to 10 ng·mL -1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB 1 ELISA kit as the reference, and well-matching results were obtained. Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB 1 . It is based on the use of Ce-doped Bi 2 MoO 6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.

  13. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery

    Directory of Open Access Journals (Sweden)

    Salem HF

    2016-01-01

    Full Text Available Heba F Salem,1 Sayed M Ahmed,2 Mahmoud M Omar3 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 2Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt; 3Department of Industrial Pharmacy, Faculty of Pharmacy, Deraya University, El-Minia, Egypt Abstract: Nanoliposomes have an organized architecture that provides versatile functions. In this study, liposomes were used as an ocular carrier for nanogold capped with flucytosine antifungal drug. Gold nanoparticles were used as a contrasting agent that provides tracking of the drug to the posterior segment of the eye for treating fungal intraocular endophthalmitis. The nanoliposomes were prepared with varying molar ratios of lecithin, cholesterol, Span 60, a positive charge inducer (stearylamine, and a negative charge inducer (dicetyl phosphate. Formulation F6 (phosphatidylcholine, cholesterol, Span 60, and stearylamine at a molar ratio of 1:1:1:0.15 demonstrated the highest extent of drug released, which reached 7.043 mg/h. It had a zeta potential value of 42.5±2.12 mV and an average particle size approaching 135.1±12.0 nm. The ocular penetration of the selected nanoliposomes was evaluated in vivo using a computed tomography imaging technique. It was found that F6 had both the highest intraocular penetration depth (10.22±0.11 mm as measured by the computed tomography and the highest antifungal efficacy when evaluated in vivo using 32 infected rabbits’ eyes. The results showed a strong correlation between the average intraocular penetration of the nanoparticles capped with flucytosine and the percentage of the eyes healed. After 4 weeks, all the infected eyes (n=8 were significantly healed (P<0.01 when treated with liposomal formulation F6. Overall, the nanoliposomes encapsulating flucytosine have been proven efficient in treating the infected rabbits’ eyes, which proves the efficiency of the

  14. Targeting Triple Negative Breast Cancer with a Small-sized Paramagnetic Nanoparticle

    Science.gov (United States)

    Zhang, Li; Varma, Nadimpalli RS; Gang, Zhang Z.; Ewing, James R.; Arbab, Ali S; Ali, Meser M

    2016-01-01

    There is no available targeted therapy or imaging agent for triple negative breast cancer (TNBC). We developed a small-sized dendrimer-based nanoparticle containing a clinical relevant MRI contrast agent, GdDOTA and a NIR fluorescent dye, DL680. Systemic delivery of dual-modal nanoparticles led to accumulation of the agents in a flank mouse model of TNBC that were detected by both optical and MR imaging. In-vivo fluorescence images, as well as ex-vivo fluorescence images of individual organs, demonstrated that nanoparticles accumulated into tumor selectively. A dual modal strategy resulted in a selective delivery of a small-sized (GdDOTA)42-G4-DL680 dendrimeric agent to TNBC tumors, avoiding other major organs. PMID:28018751

  15. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis

    NARCIS (Netherlands)

    Kluza, E.; Schaft, van der D.W.J.; Hautvast, P.A.I.; Mulder, W.J.M.; Mayo, K.H.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K.

    2010-01-01

    Effective and specific targeting of nanoparticles is of paramount importance in the fields of targeted therapeutics and diagnostics. In the current study, we investigated the targeting efficacy of nanoparticles that were functionalized with two angiogenesis-specific targeting ligands, an avß3

  16. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice.

    Science.gov (United States)

    Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A

    2017-11-01

    The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.

  17. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    Science.gov (United States)

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  18. Paramagnetic defects in KH{sub 2}PO{sub 4} crystals with high concentration of embedded TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Pritula, Igor M.; Bezkrovnaya, Olga N.; Kosinova, Anna V. [Institute for Single Crystals, NAS of Ukraine, Kharkiv (Ukraine)

    2016-01-21

    Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticles larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.

  19. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    He Y

    2014-08-01

    Full Text Available Yingna He,1 Linhua Zhang,2 Dunwan Zhu,2 Cunxian Song2 1Laboratory of Chinese Medicine Pharmacology, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China; 2Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China Abstract: Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs as a magnetic resonance imaging (MRI contrast agent and anticancer drug, mitoxantrone (Mit, were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH receptor overexpressing MCF-7 (Michigan Cancer Foundation-7 breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3 cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. Keywords: multifunctional liposome, magnetic resonance imaging, theranostic nanomedicine, mitoxantrone, gonadorelin

  20. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies†

    Science.gov (United States)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2016-01-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90–110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of –35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg–1 of NPs. In chronic studies, the biodistribution profile is tracked using low-level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach

  1. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    Science.gov (United States)

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach

  2. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.

    Science.gov (United States)

    Ceccon, Alberto; Marius Clore, G; Tugarinov, Vitali

    2016-09-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.

  4. EFFECTS OF SILVER NANOPARTICLES IN SOLUTION AND LIPOSOMAL FORM ON SOME BLOOD PARAMETERS IN FEMALE RABBITS DURING FERTILIZATION AND EARLY EMBRYONIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Vasyl Syrvatka

    2014-02-01

    Full Text Available Silver nanoparticles are the most rapidly growing classes of nanoproducts. In this study, we investigated the influence of subcutaneous injections of silver nanoparticles in solution and in liposomal form on hematological and biochemical parameters of blood of New Zealand White rabbits during hormonal treatment, fertilization and early embryonic development. The females treated by free silver nanoparticles and silver nanoparticles in liposomal form received silver at a dose of 10 µg/kg/day in 5 % glucose solution during 28 days. Blood sampling was done four times: the day before the compounds administration; on day 7 after the compounds administration; in the period after hormonal induction and fertilization and on the 14th day of pregnancy. Our results showed changes in some biochemical (lactate dehydrogenase activities, progesterone and estradiol concentration, malondialdehyde level, etc. and hematological (hematocrit, mean cell volume, mean corpuscular hemoglobin concentration, etc. parameters under the influence of hormonal treatment and pregnancy. The concentration of progesterone showed significantly higher values (P˂0.05 on GDs 1 in S group than in C group. The percentage of neutrophils was significantly higher in SG rabbits after 7 days of silver nanoparticles administration than that in the CG. There were no significant changes in red blood cells parameters, platelets, and activity of some ferments (ALP, AST, ALT, LDH, GGT between control and silver groups during the entire period of experiment. In conclusion, the hematological and biochemical values of blood obtained in the given study showed that free silver nanoparticles and silver nanoparticles in liposomal form in the investigated concentrations had no toxic effect on hormonal treatment, fertilization and early embryonic development in New Zealand White rabbits.

  5. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Size-induced effect upon the Neel temperature of the antiferro/paramagnetic transition in gadolinium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mutelet, B.; Martini, M.; Perriat, P. [Universite de Lyon, MATEIS, UMR 5510 CNRS, Villeurbanne (France); Keller, N. [Universite de Versailles-St-Quentin, GEMAC, UMR 8635 CNRS, Versailles (France); Roux, S. [Universite de Franche-Comte, UTINAM, UMR 6213 CNRS, Besanon (France); Flores-Gonzales, M.A.; Lux, F.; Tillement, O.; Billotey, C.; Janier, M. [Universite de Lyon, Universite Claude Bernard, LPCML, Villeurbanne (France); Villiers, C. [Institut Albert Bonniot, INSERM U823, La Tronche (France); Novitchi, Ghenadie; Luneau, Dominique [Universite de Lyon, Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces, Villeurbanne (France)

    2011-10-15

    In this paper, we demonstrate that cubic gadolinium oxide is paramagnetic and follows the Curie-Weiss law from 20 K to room temperature for particles size comprised between 3.5 and 60 nm. The largest particles (60 nm) possess the macroscopic behaviour of Gd oxide with a Neel temperature, T{sub N}, close to 18 K (Gd oxide is antiferromagnetic below T{sub N}, paramagnetic above). Then size-induced effects can be encountered only for particles smaller than 60 nm. We find that the finite-size scaling model used for describing the size evolution of the antiferro/paramagnetic transition is valid for sizes comprised between 3.5 and 35 nm with parameters in excellent agreement with those usually found for antiferromagnetic materials. The correlation length (3.6 nm) is of the order of magnitude of a few lattice parameters and the critical exponent {lambda} is found equal to 1.3, a value very close to that predicted by the three dimensional Heisenberg model ({lambda}=1.4). (orig.)

  7. Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.

    Science.gov (United States)

    Chen, Zeming; Liu, Fuyao; Chen, Yanke; Liu, Jun; Wang, Xiaoying; Chen, Ann T; Deng, Gang; Zhang, Hongyi; Liu, Jie; Hong, Zhangyong; Zhou, Jiangbing

    2017-12-08

    Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.

  8. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes.

    Science.gov (United States)

    Johnsen, Kasper Bendix; Moos, Torben

    2016-01-28

    An unmet need exists for therapeutic compounds to traverse the brain capillary endothelial cells that denote the blood-brain barrier (BBB) to deliver effective treatment to the diseased brain. The use of nanoparticle technology for targeted delivery to the brain implies that targeted liposomes encapsulating a drug of interest will undergo receptor-mediated uptake and transport through the BBB with a subsequent unfolding of the liposomal content inside the brain, hence revealing drug release to adjacent drug-demanding neurons. As transferrin receptors (TfRs) are present on brain capillary endothelial, but not on endothelial cells elsewhere in the body, the use of TfR-targeted liposomes - colloidal particulates with a phospholipid bilayer membrane - remains the most relevant strategy to obtain efficient drug delivery to the brain. However, many studies have failed to provide sufficient quantitative data to proof passage of the BBB and significant appearance of drugs inside the brain parenchyma. Here, we critically evaluate the current evidence on the use of TfR-targeted liposomes for brain drug delivery based on a thorough investigation of all available studies within this research field. We focus on issues with respect to experimental design and data analysis that may provide an explanation to conflicting reports, and we discuss possible explanations for the current lack of sufficient transcytosis across the BBB for implementation in the design of TfR-targeted liposomes. We finally provide a list of suggestions for strategies to obtain substantial uptake and transport of drug carriers at the BBB with a concomitant transport of therapeutics into the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy.

    Science.gov (United States)

    Li, Yanan; He, Dongsheng; Tu, Jiasheng; Wang, Ru; Zu, Chang; Chen, You; Yang, Wenqian; Shi, Di; Webster, Thomas J; Shen, Yan

    2018-04-26

    Since conventional chemotherapy is a systemic treatment that affects the body globally and will not concentrate inside the tumor, it causes adverse side effects to patients. In this study, doxorubicin (DOX) together with solid gold nanoparticles (GNPs) or hollow gold nanoparticles (HGNPs), respectively, is loaded inside thermosensitive liposomes (GNPs&DOX-TLs and HGNPs&DOX-TLs), where the GNPs and HGNPs act as a "nanoswitch" for killing tumor cells directly by hyperthermia and triggering DOX release from TLs in the tumor quickly by near infrared laser (NIR) illumination. In addition, this study investigated the photothermal transformation ability, NIR triggered drug release behavior, and the intracellular uptake and cytotoxicity of breast tumor cells and the thermo-chemotherapy mediated by the co-delivery of GNPs&DOX-TLs and HGNPs&DOX-TLs. GNPs and HGNPs had very different light-to-heat transduction efficiencies, while the hollow HGNPs had the advantage of NIR surface plasmon tunability, resulting in the photothermal ablation of tumors with 800 nm light penetration in tissue. The prepared HGNPs&DOX-TLs exhibited a spherical shape with a diameter of 190 nm and a ξ potential of -29 mV, which were steadily dispersed for at least one month. The co-encapsulated DOX was released under hyperthermia caused by NIR-responsive HGNPs and the local drug concentration increased along with the disintegration of the liposomal membrane. This co-delivery of HGNPs&DOX-TLs produced a synergistic cytotoxicity response, thereby enhancing anticancer efficacy 8-fold and increasing the survival time compared to GNPs&DOX-TLs. This work suggested that the co-delivery of HGNPs&DOX-TLs followed by burst-release of DOX using NIR-responsive HGNPs sensitized cancer cells to the chemotherapeutic compound, which provided a novel concept for the combination strategy of chemotherapy and photothermal therapy. These results suggest that the markedly improved therapeutic efficacy and decreased systemic

  10. Liposomes as carriers of imaging agents

    International Nuclear Information System (INIS)

    Caride, V.J.

    1985-01-01

    This review discusses the utilization of liposomes as imaging agents or as vehicles for contrast materials. The initial approach was the use of radiolabeled liposomes for scintigraphy. To this end liposomes were either labeled in the lipid membrane or aqueous radiotracers were incorporated inside the lipid vesicles. The lipid labeling provides a more stable association of the radioactive tracer and the lipid vesicles, while the use of water-soluble radiotracers provides a wider selection of compounds. Early attempts at selective tumor imaging using radiolabeled liposomes were unsuccessful. The use of monoclonal antibodies attached to liposomes offers new hopes. Several strategies have been proposed in this respect and several others can be envisioned. The use of liposomes permits the use of several administration routes for imaging agents. Of particular interest is the subcutaneous administration for lymph node visualization. Liposomes offer clear advantages over most radiocontrast agents for prolonged hepatosplenic contrast enhancement. This is particularly relevant in the diagnostic evaluation of the abdomen with computed tomography. Important research efforts are being conducted in this area. Two different approaches have been advanced: the incorporation of contrast agents into liposomes and the preparation of radiopaque liposomes from radiodense lipids. Nuclear magnetic resonance imaging can also benefit from contrast agents. Several centers are investigating this exciting field using liposomes loaded with paramagnetic elements.152 references

  11. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    OpenAIRE

    Raquel Martínez-González; Joan Estelrich; Maria Antònia Busquets

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T 2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these na...

  12. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    Science.gov (United States)

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  13. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    Science.gov (United States)

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  14. Novel liposomal technology applied in esophageal cancer treatment

    Science.gov (United States)

    Yeh, Chia-Hsien; Hsieh, Yei-San; Yang, Pei-wen; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Cisplatin (CDDP) has been commonly used as a chemotherapeutic drug, mainly used for the treatment of malignant epithelial cell tumors. We have developed a new method based on innovative lipid calcium phosphate, which encapsulated hydrophobic drugs to form liposomal nanoparticles. Esophageal cancer xenograft model was used to investigate the efficacy of liposomal nanoparticles. and it showed good therapeutic efficacy with lower side effects. Liposomal nanoparticles exhibited a better therapeutic effect than that of conventional CDDP.

  15. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    Science.gov (United States)

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  16. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    Energy Technology Data Exchange (ETDEWEB)

    Ceccon, Alberto; Marius Clore, G., E-mail: mariusc@mail.nih.gov; Tugarinov, Vitali, E-mail: vitali.tugarinov@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2016-09-15

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ{sub 2}{sup app}) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k{sub ex} between the species is fast on the PRE time scale (k{sub ex} ≫ Γ{sub 2}). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd{sup 3+}, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k{sub ex} ≫ Γ{sub 2}) the ratio of the apparent proton to carbon methyl PREs, ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ{sub Η}/γ{sub C}){sup 2}. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ{sub 2} is comparable in magnitude to k{sub ex}) the ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}) ratio provides a reliable measure of the ‘true’ methyl PREs.

  17. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    International Nuclear Information System (INIS)

    Ceccon, Alberto; Marius Clore, G.; Tugarinov, Vitali

    2016-01-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ_2"a"p"p) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k_e_x between the species is fast on the PRE time scale (k_e_x ≫ Γ_2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd"3"+, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k_e_x ≫ Γ_2) the ratio of the apparent proton to carbon methyl PREs, ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ_Η/γ_C)"2. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ_2 is comparable in magnitude to k_e_x) the ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p) ratio provides a reliable measure of the ‘true’ methyl PREs.

  18. TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.

    Directory of Open Access Journals (Sweden)

    Ana Christina L Opina

    Full Text Available Lanthanide DOTA-tetraglycinate (LnDOTA-(gly₄⁻ complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III, Dy(III, Tm(III and Yb(III were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.

  19. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  20. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  1. Charge order suppression, emergence of ferromagnetism and absence of exchange bias effect in Bi0.25Ca0.75MnO3 nanoparticles: Electron paramagnetic resonance and magnetization studies

    Science.gov (United States)

    Singh, Geetanjali; Bhat, S. V.

    2012-06-01

    We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.

  2. Disappearance of electron-hole asymmetry in nanoparticles of Nd1−xCaxMnO3(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence

    International Nuclear Information System (INIS)

    Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd 1−x Ca x MnO 3 in hole doped (x=0.4;NCMOH) and electron doped (x=0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at ∼250 K, an antiferromagnetic (AFM) transition at ∼150 K, and a transition to a canted AFM phase/mixed phase at ∼80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at ∼280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the “g” values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples

  3. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    Science.gov (United States)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  4. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR.

    Science.gov (United States)

    Misra, S K; Andronenko, S I; Tipikin, D; Freed, J H; Somani, V; Prakash, Om

    2016-03-01

    Detailed EPR investigations on as-grown and annealed TiO 2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120-300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti 3+ , O - , adsorbed oxygen (O 2 - ) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O 2 - ) and the Fe 3+ ions in both Ti 4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O - and O 2 - ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn 2+ and Mn 4+ ions in anatase.

  5. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  6. Levitation in paramagnetic liquids

    International Nuclear Information System (INIS)

    Dunne, P.A.; Hilton, J.; Coey, J.M.D.

    2007-01-01

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated

  7. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  9. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers.

    Science.gov (United States)

    Yue, Xiuli; Dai, Zhifei

    2014-05-01

    Liposomes have been extensively investigated as possible carriers for diagnostic or therapeutic agents due to their unique properties. However, liposomes still have not attained their full potential as drug and gene delivery vehicles because of their insufficient morphological stability. Recently, a super-stable and freestanding hybrid liposomal cerasome (partially ceramic- or silica-coated liposome) has drawn much attention as a novel drug delivery system because its atomic layer of polyorganosiloxane surface imparts higher morphological stability than conventional liposomes and its liposomal bilayer structure reduces the overall rigidity and density greatly compared to silica nanoparticles. Cerasomes are more biocompatible than silica nanoparticles due to the incorporation of the liposomal architecture into cerasomes. Cerasomes combine the advantages of both liposomes and silica nanoparticles but overcome their disadvantages so cerasomes are ideal drug delivery systems. The present review will first highlights some of the key advances of the past decade in the technology of cerasome production and then review current biomedical applications of cerasomes, with a view to stimulating further research in this area of study. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  11. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-09-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery applications. Herein, a novel method was devised for modification of liposomes with small molecules, polymers or nanoparticles to afford stimuli responsive systems that release on demand and stay relatively stable in the absence of the trigger.. This dissertation discusses thermosensitive, pH sensitive, light sensitive and magnetically triggered liposomes that have been prepared for controlled drug delivery application. RAFT polymerization was utilized for the preparation of thermosensitive liposomes (Cholesterol-PNIPAm) and acid-labile liposomes (DOPE-PAA). With low Mw Cholesterol-PNIPAm, the thermosensitive liposomes proved to be effective for controlled release and decreased the cytotoxicity of PNIPAm by eliciting the polymer doses. By crosslinking the DOPE-PAA on liposome surface with acid-labile diamine linkers, DOPE-PAA liposomes were verified to be sensitive at low pH. The effects of polymer structures (linear or hyperbranched) have also been studied for the stability and release properties of liposomes. Finally, a dual-responsive Au@SPIO embedded liposome hybrid (ALHs) was prepared with light-induced “on-and-off” function by photo-thermal process (visible light) and instant release properties triggered by alternating magnetic field, respectively. The ALH system would be further applied into the cellular imaging field as MRI contrast agent.

  12. Paramagnetic contrast material

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Paramagnetic contrast materials have certainly demonstrated clinical utility in a variety of organ systems for improved detection of various neoplastic, inflammatory, infectious, and physiologic abnormalities. Although the more commonly employed extracellular agents, such as Gd-DTPA, have been quite safe and useful, particularly in the CNS, it is almost certain that other substances will achieve more success in various other organs, such as iron oxides in the reticuloendothelial system and persisting extracellular agents in the cardiovascular system. Finally, as MRI technology continues to evolve, producing such exciting new sequences as gradient-echo fast scans, the roles of currently existing and newly discovered paramagnetic pharmaceuticals must be continuously reevaluated both to obtain maximum clinical benefit and to guide the search for newer agents that may further optimize the diagnostic efficacy of MRI

  13. Assembly of Liposomes Controlled by Triple Helix Formation

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2013-01-01

    Attachment of DNA to the surface of different solid nanoparticles (e.g. gold- and silica nanoparticles) is well established and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the non-covalent immobilizat...... analysis (NTA) and dynamic light scattering (DLS) show independently from ultraviolet spectroscopy experiments the formation of liposome aggregates.......-covalent immobilization of oligonucleotides on the surface of soft nanoparticles (e.g. liposomes) and the subsequent controlled assembly by DNA triple helix formation. The non-covalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology...... sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and proof the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking...

  14. pH-triggered echogenicity and contents release from liposomes.

    Science.gov (United States)

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  15. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  16. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    International Nuclear Information System (INIS)

    Lipinski, Michael J.; Albelda, M. Teresa; Frias, Juan C.; Anderson, Stasia A.; Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron; Arai, Andrew E.; Epstein, Stephen E.

    2016-01-01

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  17. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Michael J., E-mail: mjlipinski12@gmail.com [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Albelda, M. Teresa [GIBI2" 3" 0, Grupo de Investigación Biomédica en Imagen, IIS La Fe, Valencia (Spain); Frias, Juan C. [Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia (Spain); Anderson, Stasia A. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Arai, Andrew E. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Epstein, Stephen E. [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States)

    2016-03-15

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  18. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    magnetic characteristic for conduction of genes or drugs to target organs. Keywords: transfection efficiency, magnetic nanoparticles, luciferase, cationic liposome

  19. Liposome-encapsulated chemotherapy

    DEFF Research Database (Denmark)

    Børresen, B.; Hansen, A. E.; Kjær, A.

    2018-01-01

    Cytotoxic drugs encapsulated into liposomes were originally designed to increase the anticancer response, while minimizing off-target adverse effects. The first liposomal chemotherapeutic drug was approved for use in humans more than 20years ago, and the first publication regarding its use...... to inherent issues with the enhanced permeability and retention effect, the tumour phenomenon which liposomal drugs exploit. This effect seems very heterogeneously distributed in the tumour. Also, it is potentially not as ubiquitously occurring as once thought, and it may prove important to select patients...... not resolve the other challenges that liposomal chemotherapy faces, and more work still needs to be done to determine which veterinary patients may benefit the most from liposomal chemotherapy....

  20. Membrane-Mimic Nanoparticles for Drug and Gene Delivery

    KAUST Repository

    Alamoudi, Kholod

    2017-01-01

    -mimic nanoparticles are considered highly attractive materials for in vivo and in vitro applications. Synthetic membrane vesicles (liposomes) and nanoconstructs built with native cancer cellular membrane are excellent scaffolds to improve cellular delivery. Liposomes

  1. Distribution of technetium-99m PEG-liposomes during oligofructose-induced laminitis development in horses

    NARCIS (Netherlands)

    Underwood, Claire; Pollitt, Christopher C.; Metselaar, Josbert Maarten; Laverman, Peter; van Bloois, Louis; van den Hoven, Jolanda M.; Storm, Gerrit; van Eps, Andrew W.

    2015-01-01

    Liposomes are phospholipid nanoparticles used for targeted drug delivery. This study aimed to determine whether intravenous liposomes accumulate in lamellar tissue during laminitis development in horses so as to assess their potential for targeted lamellar drug delivery. Polyethylene-glycol (PEG)

  2. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  3. Improved paramagnetic chelate for molecular imaging with MRI

    International Nuclear Information System (INIS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-01-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent

  4. Improved paramagnetic chelate for molecular imaging with MRI

    Science.gov (United States)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  5. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  6. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann

    as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent‐like copolymers......This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete......‐life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A glycerolipid and a cholesteryl ether were synthesized with free primary alcohols and a series of their sulphonates (Ms, Ts, Tf) were...

  7. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  8. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    International Nuclear Information System (INIS)

    Rizos, Apostolos K.; Baritaki, Stavroula; Tsikalas, Ioannis; Doetschman, David C.; Spandidos, Demetrios A.; Krambovitis, Elias

    2007-01-01

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus production in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms

  9. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery.

    Science.gov (United States)

    Dai, Min; Wu, Cong; Fang, Hong-Ming; Li, Li; Yan, Jia-Bao; Zeng, Dan-Lin; Zou, Tao

    2017-06-01

    We prepared and characterised thermo-responsive magnetic liposomes, which were designed to combine features of magnetic targeting and thermo-responsive control release for hyperthermia-triggered local drug delivery. The particle size and zeta-potential of the thermo-responsive magnetic ammonium bicarbonate (MagABC) liposomes were about 210 nm and -14 mV, respectively. The MagABC liposomes showed encapsulation efficiencies of about 15% and 82% for magnetic nanoparticles (mean crystallite size 12 nm) and doxorubicin (DOX), respectively. The morphology of the MagABC liposomes was visualised using transmission electron microscope (TEM). The MagABC liposomes showed desired thermo-responsive release. The MagABC liposomes, when physically targeted to tumour cells in culture by a permanent magnetic field yielded a substantial increase in intracellular accumulation of DOX as compared to non-magnetic ammonium bicarbonate (ABC) liposomes. This resulted in a parallel increase in cytotoxicity for DOX loaded MagABC liposomes over DOX loaded ABC liposomes in tumour cells.

  10. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  11. Model for paramagnetic Fermi systems

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.

    1983-01-01

    We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields

  12. Dating by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.M.

    1984-01-01

    Some natural materials behave like dosimeters in front of the ionizing particle flux coming from environmental radioactivity and the cosmic radiation. This property is used for the dating by Electron Paramagnetic Resonance (EPR). Before presenting the basic principles of the EPR analysis and the dating method which uses such a phenomenous, it is reviewed several types of application currently in course of development. (L.C.) [pt

  13. trimethylammoniumpropane-based Liposomes

    African Journals Online (AJOL)

    mechanisms to introduce therapeutic agents into the body. Currently, the ... Liposomes are biodegradable and non-toxic and can elicit both ... buffered saline by dissolving a vial in 40 ml phosphate ... vaccines were processed using copper grids to adsorb the .... time-dependent fluctuations in the intensity of scattered light ...

  14. Paramagnetic moments in YBa2Cu3O7−δ nanocomposite films

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Silva, D.L.; Albino Aguiar, J.; Valadão, D.R.B.; Obradors, X.; Puig, T.; Wolff-Fabris, F.; Kampert, E.

    2014-01-01

    Highlights: • The paramagnetic Meissner effect was observed in a nanocomposite YBaCuO thin film. • The paramagnetic moments in FC experiments were observed up to 10 T. • The paramagnetic Meissner effect increases when the magnetic field is increased. • Results may be explained based on the flux compression scenario and vortex pinning. • An apparent saturation tendency of the paramagnetic moments could be observed. - Abstract: We report on magnetization studies in YBa 2 Cu 3 O 7−δ thin films with dispersed Ba 2 YTaO 6 nanoparticles. The magnetization measurements were made using a superconducting quantum interference device (SQUID) and a vibrating sample magnetometer (VSM). Magnetic moments were measured as functions temperature using zero-field cooling (ZFC) and field-cooled (FC) prescriptions for magnetic fields up to 10 T applied parallel and perpendicular to the ab planes. A paramagnetic response related to the superconducting state was observed during the FC experiments. This effect, known as paramagnetic Meissner effect (PME), apparently increases when the magnetic field is increased. We discuss our PME results in terms of the strong pinning scenario modulated by Ba 2 YTaO 6 nanoparticles dispersed into the superconducting matrix

  15. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  16. Electron paramagnetic resonance (EPR) of antiferromagnetic nanoparticles of La1-xSrxCrO3 (0.000 ≤ x ≤ 0.020) synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Franco, Adolfo; Santana, Ricardo C.

    2010-01-01

    Nanocrystalline particles of La 1-x Sr x CrO 3 (0.000 ≤ x ≤ 0.020) compounds were synthesized in order to investigate the antiferromagnetic (AFM) to paramagnetic (PM) phase transition temperature, g-factor, line width and intensity by electron paramagnetic resonance (EPR). All samples were synthesized by combustion reaction method using strontium nitrate, lanthanum nitrate, chromium nitrate and urea as fuel without subsequent heat treatment. X-ray diffraction patterns of all systems showed broad peaks consistent with orthorhombic structure of LaCrO 3 . The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The average crystallite sizes determined from the prominent (1 1 2) peak of the diffraction using Scherrer's equation was independent of the addition of Sr 2+ ions; being ca. 31-29 nm for x = 0.000 and 0.020, respectively. The EPR line width and intensity were found to be dependent on Sr 2+ addition and temperature. However, the AFM-PM transition temperature was found to be independent of strontium concentration, being ca. 296 K. In the PM phase, g-factor was nearly temperature independent with increasing of x. The EPR results indicated that the addition of Sr 2+ ions may induce creation of Cr 3+ -Cr 4+ clusters.

  17. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  18. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient liposomal system promotes extended anesthesia time.

    Directory of Open Access Journals (Sweden)

    Camila Morais Gonçalves da Silva

    Full Text Available Ropivacaine is a local anesthetic with similar potency but lower systemic toxicity than bupivacaine, the most commonly used spinal anesthetic. The present study concerns the development of a combined drug delivery system for ropivacaine, comprised of two types of liposomes: donor multivesicular vesicles containing 250 mM (NH42SO4 plus the anesthetic, and acceptor large unilamellar vesicles with internal pH of 5.5. Both kinds of liposomes were composed of hydrogenated soy-phosphatidylcholine:cholesterol (2:1 mol% and were prepared at pH 7.4. Dynamic light scattering, transmission electron microscopy and electron paramagnetic resonance techniques were used to characterize the average particle size, polydispersity, zeta potential, morphology and fluidity of the liposomes. In vitro dialysis experiments showed that the combined liposomal system provided significantly longer (72 h release of ropivacaine, compared to conventional liposomes (~45 h, or plain ropivacaine (~4 h (p <0.05. The pre-formulations tested were significantly less toxic to 3T3 cells, with toxicity increasing in the order: combined system < ropivacaine in donor or acceptor liposomes < ropivacaine in conventional liposomes < plain ropivacaine. The combined formulation, containing 2% ropivacaine, increased the anesthesia duration up to 9 h after subcutaneous infiltration in mice. In conclusion, a promising drug delivery system for ropivacaine was described, which can be loaded with large amounts of the anesthetic (2%, with reduced in vitro cytotoxicity and extended anesthesia time.

  19. Liposome based radiosensitizer cancer therapy

    DEFF Research Database (Denmark)

    Pourhassan, Houman

    Liposome-encapsulated chemotherapeutics have been used in the treatment of a variety of cancers and are feasible for use as mono-therapeutics as well as for combination therapy in conjunction with other modalities. Despite widespread use of liposomal drugs in cancer patient care, insufficient drug...... biomolecules. By modulating the liposomal membrane, liposomes can become sensitive towards enzymatically-driven destabilization and/or functionalization, thereby allowing control of the release of encapsulated therapeutics within the diseased tissue upon intrinsic stimulation from tumor-associated enzymes...... in tumor-bearing mice.The safety and efficacy of sPLA2-sensitive liposomal L-OHP was assessed in sPLA2-deficient FaDu hypopharyngeal squamous cell carcinoma and sPLA2-expressing Colo205 colorectal adenocarcinoma. Also, the feasibility of multimodal cancer therapy employing L-OHP encapsulated in MMP...

  20. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  1. Paramagnetic pharmaceuticals for functional studies

    International Nuclear Information System (INIS)

    Hall, L.D.; Hogan, P.G.

    1987-01-01

    It has been suggested that limitations of the Magnetic Resonance Imaging (MRI) method may be minimised by the use of ''image contrast'' agents. These are exogenous chemicals administered to the patient which, by influencing the magnetic resonance properties of the water in the region of the pathology, serve to heighten the contrast between that tissue and its surroundings. At present the most widely used agent is gadolinium-DTPA (Gd-DTPA). This appears to have many desirable features and its development provides a textbook example for the early stages of any future development. All compounds used so far can be subdivided into one of the following categories: Paramagnetic metal species; Ferromagnetic metal species; Stable free radicals; Oxygen carriers; Susceptibility agents; and Density substitution agents. The authors summarise briefly these chemical substances and their reported uses

  2. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  3. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  4. A spin labelling study of immunomodulating peptidoglycan monomer and adamantyltripeptides entrapped into liposomes.

    Science.gov (United States)

    Frkanec, Ruza; Noethig-Laslo, Vesna; Vranesić, Branka; Mirosavljević, Krunoslav; Tomasić, Jelka

    2003-04-01

    The interaction of immunostimulating compounds, the peptidoglycan monomer (PGM) and structurally related adamantyltripeptides (AdTP1 and AdTP2), respectively, with phospholipids in liposomal bilayers were investigated by electron paramagnetic resonance spectroscopy. (1). The fatty acids bearing the nitroxide spin label at different positions along the acyl chain were used to investigate the interaction of tested compounds with negatively charged multilamellar liposomes. Electron spin resonance (ESR) spectra were studied at 290 and 310 K. The entrapment of the adamantyltripeptides affected the motional properties of all spin labelled lipids, while the entrapment of PGM had no effect. (2). Spin labelled PGM was prepared and the novel compound bearing the spin label attached via the amino group of diaminopimelic acid was chromatographically purified and chemically characterized. The rotational correlation time of the spin labelled molecule dissolved in buffer at pH 7.4 was studied as a function of temperature. The conformational change was observed above 300 K. The same effect was observed with the spin labelled PGM incorporated into liposomes. Such effect was not observed when the spin labelled PGM was studied at alkaline pH, probably due to the hydrolysis of PGM molecule. The study of possible interaction with liposomal membrane is relevant to the use of tested compounds incorporated into liposomes, as adjuvants in vivo.

  5. Biological activity of liposomal vanillin.

    Science.gov (United States)

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  6. Liposome Technology for Industrial Purposes

    Directory of Open Access Journals (Sweden)

    Andreas Wagner

    2011-01-01

    Full Text Available Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.

  7. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  8. Decay of paramagnetic centers in polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.

    1994-01-01

    The time dependences of the relative concentration of spins in irradiated and unirradiated samples of polyacetylene have been studied. Similar courses of the decay of paramagnetic centers were observed in both types of samples. (author) 6 refs.; 1 fig

  9. Paramagnetic moments in YBa{sub 2}Cu{sub 3}O{sub 7−δ} nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T.; Vieira, V.N.; Silva, D.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, C.P. 354, 96010-900 Pelotas, RS (Brazil); Albino Aguiar, J. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Valadão, D.R.B., E-mail: danielavaladao.ufpe@gmail.com [Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus U.A. Barcelona, 08193 Bellaterra (Spain); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, HZ Dresden-Rossendorf , 01314 Dresden (Germany)

    2014-08-15

    Highlights: • The paramagnetic Meissner effect was observed in a nanocomposite YBaCuO thin film. • The paramagnetic moments in FC experiments were observed up to 10 T. • The paramagnetic Meissner effect increases when the magnetic field is increased. • Results may be explained based on the flux compression scenario and vortex pinning. • An apparent saturation tendency of the paramagnetic moments could be observed. - Abstract: We report on magnetization studies in YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films with dispersed Ba{sub 2}YTaO{sub 6} nanoparticles. The magnetization measurements were made using a superconducting quantum interference device (SQUID) and a vibrating sample magnetometer (VSM). Magnetic moments were measured as functions temperature using zero-field cooling (ZFC) and field-cooled (FC) prescriptions for magnetic fields up to 10 T applied parallel and perpendicular to the ab planes. A paramagnetic response related to the superconducting state was observed during the FC experiments. This effect, known as paramagnetic Meissner effect (PME), apparently increases when the magnetic field is increased. We discuss our PME results in terms of the strong pinning scenario modulated by Ba{sub 2}YTaO{sub 6} nanoparticles dispersed into the superconducting matrix.

  10. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  11. Phospholipid liposomes functionalized by protein

    Science.gov (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  12. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  13. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer.

    Science.gov (United States)

    Zhang, Rui; Song, Xuejiao; Liang, Chao; Yi, Xuan; Song, Guosheng; Chao, Yu; Yang, Yu; Yang, Kai; Feng, Liangzhu; Liu, Zhuang

    2017-09-01

    Aiming at improved therapeutic efficacies, the combination of chemotherapy and radiotherapy (chemo-radiotherapy) has been widely studied and applied in clinic. However, the hostile characteristics of tumor microenvironment such as hypoxia often limit the efficacies in both types of cancer therapies. Herein, catalase (CAT), an antioxidant enzyme, is encapsulated inside liposomes constituted by cisplatin (IV)-prodrug-conjugated phospholipid, forming CAT@Pt (IV)-liposome for enhanced chemo-radiotherapy of cancer. After being loaded inside liposomes, CAT within CAT@Pt (IV)-liposome shows retained and well-protected enzyme activity, and is able to trigger decomposition of H 2 O 2 produced by tumor cells, so as to produce additional oxygen for hypoxia relief. As the result, treatment of CAT@Pt (IV)-liposome induces the highest level of DNA damage in cancer cells after X-ray radiation compared to the control groups. In vivo tumor treatment further demonstrates a remarkably improved therapeutic outcome in chemo-radiotherapy with such CAT@Pt (IV)-liposome nanoparticles. Hence, an exquisite type of liposome-based nanoparticles is developed in this work by integrating cisplatin-based chemotherapy and catalase-induced tumor hypoxia relief together for combined chemo-radiotherapy with great synergistic efficacy, promising for clinical translation in cancer treatment. Copyright © 2017. Published by Elsevier Ltd.

  14. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  15. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    Functionalization of nanoparticles is a key element for improving specificity of drug delivery systems toward diseased tissue or cells. In the current study we report a highly efficient and chemoselective method for post-functionalization of liposomes with biomacromolecules, which equally well ca...

  16. Liposomal preparation by supercritical fluids technology | Zhong ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... technology (SCF) has been utilized in liposomal preparation because of its friendliness, nontoxicity to the environment and its possibility to achieve solvent-free liposomes and industrial-scale of liposome production under the conditions of current good manufacturing practice (cGMP).

  17. Octanol-assisted liposome assembly on chip

    NARCIS (Netherlands)

    Deshpande, S.R.; Caspi, Y.; Meijering, A.E.C.; Dekker, C.

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin

  18. Influence of cell-internalization on relaxometric, optical and compositional properties of targeted paramagnetic quantum dot micelles

    NARCIS (Netherlands)

    Starmans, L. W. E.; Kok, M. B.; Sanders, H. M. H. F.; Zhao, Y.; Donegá, C. de Mello; Meijerink, A.; Mulder, W. J. M.; Grüll, H.; Strijkers, G. J.; Nicolay, K.

    2011-01-01

    Quantum dot micelles (pQDs) with a paramagnetic coating are promising nanoparticles for bimodal molecular imaging. Their bright fluorescence allows for optical detection, while their Gd payload enables visualization with contrast-enhanced MRI. A popular approach in molecular MRI is the targeting of

  19. Preparation and Characterization of Escherichia coli Liposomes as a New Drug Delivery System to Colon Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2016-06-01

    Full Text Available Introduction: Liposomes are spherical vesicles composed of concentric phospholipid bilayers that can entrap hydrophilic, hydrophobic drugs. Liposomes can be prepared from natural phospholipids, synthetic lipids or bacterial lipids. The aim of this study was to formulate liposome from bacterial lipids and evaluate physicochemical properties. Materials and methods: This study was performed experimentally on E.coli. The lipids were extracted from E.coli. using chloroform and methanol. Film method was used for preparing nano-systems and methylene blue was used as a drug model. Then their particle sizes were determined using particle sizer. The release methylene blue was carried out using dialysis membrane. Also, trailing them in cancer cells was evaluated by using carboxyfluorescein. Results: The average particle size of E.coli. liposomal was 338 nm. Encapsulation efficiency was 53.33 ± 2.88% and the value of release after 24 h was 97.54% ± 0.00. Liposomes could deliver the carboxyfluorescein to cancer cells. Discussion and conclusion: The results of this study demonstrated that bacterial liposome has probably a suitable nano-particle such as particle size and desirable loading and it is possible to use them as drug delivery system.

  20. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging

    Science.gov (United States)

    Jung, Suk Hyun; Na, Kyunga; Lee, Seul A.; Cho, Sun Hang; Seong, Hasoo; Shin, Byung Cheol

    2012-08-01

    Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl- sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities ( r 1) of GdSL were 6.6 to 7.8 mM-1 s-1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.

  1. Buckling of paramagnetic chains in soft gels

    Science.gov (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  2. Paramagnetism: an alternative view. Pt. 1

    International Nuclear Information System (INIS)

    Oudet, X.

    1991-01-01

    A new calculation of the paramagnetic susceptibility χ is proposed on the basis of the statistical distribution of the thermal energy using the mean value U of this energy as statistical variable. This allows us to replace the molecular field by an equivalent energy barrier that the paramagnetic moment of an atom has to cross to contribute to χ. The variation of χ with U, or T as well, shows a maximum when there is no magnetic order. The asymptotic character of the Curie-Weiss law appears in close connection with that of the Dulong and Petit law. (orig.)

  3. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  4. Filter-extruded liposomes revisited

    DEFF Research Database (Denmark)

    Hinna, Askell; Steiniger, Frank; Hupfeld, Stefan

    2016-01-01

    (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light...... is suggested to prepare large (300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/ thaw-cycling and bench-top centrifugation....

  5. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    Science.gov (United States)

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity.

  6. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    conveniently investigated by means of electron paramagnetic resonance (EPR). In ... ion Ir2+ can experience the Jahn–Teller effect by means of vibration interaction, ... Similarly, k. (and k ) are the orbital reduction factors arising from the anisotropic interactions of the orbital angular momentum operator. From the cluster ...

  7. Recent results on some columnar paramagnetic metallomesogens

    Indian Academy of Sciences (India)

    A broader view on some physical properties of columnar paramagnetic ... was evident by X-ray crystal structure determination in the solid state on a homologous ... leading to interfacial polarization as described for other LC materials before [9]. ... dodecyloxy tail on the phenyl rings) was described to exhibit a Colho phase ...

  8. Microassembly using a Cluster of Paramagnetic Microparticles

    NARCIS (Netherlands)

    Khalil, I.S.M.; Brink, F.V; Sardan Sukas, Ö.; Misra, Sarthak

    2013-01-01

    We use a cluster of paramagnetic microparticles to carry out a wireless two-dimensional microassembly operation. A magnetic-based manipulation system is used to control the motion of the cluster under the influence of the applied magnetic fields. Wireless motion control of the cluster is implemented

  9. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  10. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  11. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  12. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Chiong, Hoe Siong; Yong, Yoke Keong; Ahmad, Zuraini; Sulaiman, Mohd Roslan; Zakaria, Zainul Amiruddin; Yuen, Kah Hay; Hakim, Muhammad Nazrul

    2013-01-01

    Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug. Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7. Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2) than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine. This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.

  13. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Qu Ximei; Wang Liqin; Zhang Wenyi; Liu Zhongchao; Cui Songye; Feng Xin; Jiaoling

    2013-01-01

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  14. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing

    NARCIS (Netherlands)

    Matuszak, J.; Baumgartner, J.; Zaloga, J.; Juenet, M.; Da Silva, A.E.; Franke, D.; Almer, G.; Texier, I.; Faivre, D.; Metselaar, Josbert Maarten; Navarro, F.P.; Chauvierre, C.; Prassl, R.; Dézsi, L.; Urbanics, R.; Alexiou, C.; Mangge, H.; Szebeni, J.; Letourneur, D.; Cicha, I.

    2016-01-01

    Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes,

  15. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  16. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qin Guoting; Li Zheng; Xia Rongmin; Li Feng; O' Neill, Brian E; Li, King C [Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Goodwin, Jessica T; Khant, Htet A; Chiu, Wah, E-mail: zli@tmhs.org, E-mail: kli@tmhs.org [National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-04-15

    A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 deg. C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.

  17. Titania and Zinc Oxide Nanoparticles: Coating with Polydopamine and Encapsulation within Lecithin Liposomes—Water Treatment Analysis by Gel Filtration Chromatography with Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Xuhao Zhao

    2018-02-01

    Full Text Available The interplay of metal oxide nanoparticles, environmental pollution, and health risks is key to all industrial and drinking water treatment processes. In this work we present a study using gel filtration chromatography for the analytical investigation of metal oxide nanoparticles in water, their coating with polydopamine, and their encapsulation within lecithin liposomes. Polydopamine prevents TiO2 and ZnO nanoparticles from aggregation during chromatographic separation. Lecithin forms liposomes that encapsulate the nanoparticles and carry them through the gel filtration column, producing an increase of peak area for quantitative analysis without any change in retention time to affect qualitative identification. To the best of our knowledge, this is the first report that demonstrates the potential application of lecithin liposomes for cleaning up metal oxide nanoparticles in water treatment. Encapsulation of graphene quantum dots by liposomes would allow for monitoring of nanoparticle-loaded liposomes to ensure their complete removal by membrane ultrafiltration from treated water.

  18. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  19. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    Science.gov (United States)

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  20. Preparation and ocular pharmacokinetics of ganciclovir liposomes

    OpenAIRE

    Shen, Yan; Tu, Jiasheng

    2007-01-01

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor con...

  1. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  2. The Role of Cavitation in Liposome Formation

    OpenAIRE

    Richardson, Eric S.; Pitt, William G.; Woodbury, Dixon J.

    2007-01-01

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decr...

  3. Liposomes - experiment of magnetic resonance imaging application

    International Nuclear Information System (INIS)

    Mathieu, S.

    1987-01-01

    Most pharmaceutical research effort with liposomes has been involved with the investigation of their use as drug carriers to particular target organs. Recently there has been a growing interest in liposomes not only as carrier of drugs but as a tool for the introduction of various substances into the human body. In this study, liposome delivery of nitroxyl radicals as NMR contrast agent for improved tissue imaging is experimented in rats [fr

  4. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  5. Paramagnetic form factors from itinerant electron theory

    International Nuclear Information System (INIS)

    Cooke, J.F.; Liu, S.H.; Liu, A.J.

    1985-01-01

    Elastic neutron scattering experiments performed over the past two decades have provided accurate information about the magnetic form factors of paramagnetic transition metals. These measurements have traditionally been analyzed in terms of an atomic-like theory. There are, however, some cases where this procedure does not work, and there remains the overall conceptual problem of using an atomistic theory for systems where the unpaired-spin electrons are itinerant. We have recently developed computer codes for efficiently evaluating the induced magnetic form factors of fcc and bcc itinerant electron paramagnets. Results for the orbital and spin contributions have been obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands. By using calculated spin enhancement parameters, we find reasonable agreement between theory and neutron form factor data. In addition, these zero parameter calculations yield predictions for the bulk susceptibility on an absolute scale which are in reasonable agreement with experiment in all treated cases except palladium

  6. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.

    Science.gov (United States)

    Zangabad, Parham Sahandi; Mirkiani, Soroush; Shahsavari, Shayan; Masoudi, Behrad; Masroor, Maryam; Hamed, Hamid; Jafari, Zahra; Taghipour, Yasamin Davatgaran; Hashemi, Hura; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.

  7. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  8. Multifrequency Electron Paramagnetic Resonance Theory and Applications

    CERN Document Server

    Misra, Sushil K

    2011-01-01

    Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.

  9. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura

    2012-03-01

    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.

  10. Liposome kinetics in infarcted canine myocardium

    International Nuclear Information System (INIS)

    Caride, V.J.; Twickler, J.; Zaret, B.L.

    1984-01-01

    To study the mechanisms and kinetics of liposome deposition in the region of the experimental myocardial infarction, the myocardial distribution of positive and negative liposomes was determined as a function of regional myocardial blood flow and time after administration. The study was performed in dogs at 1 and 24 h following experimental myocardial infarction. Twenty-four hours after coronary artery occlusion, the initial myocardial distribution of positive and negative liposomes (2 min) is directly proportional to regional myocardial blood flow. With time, there is reduction of the radiotracer associated with negative liposomes from all myocardial regions (p less than 0.01). In contrast, in areas of moderate and severe blood flow reduction, there is progressive accumulation of tracers entrapped or incorporated in positive liposomes. This increment becomes significant in 120 min (p less than 0.005). Similar findings are observed in studies performed 1 h after coronary artery occlusion. Dual-label liposomes [( 3 H]cholesterol and [99mTc]diethylenetriamine pentaacetic acid) were used to study the integrity of liposomes in normal and ischemic myocardium. Significant dissociation of the aqueous and lipid labels of positive liposomes is observed 1 h following coronary artery occlusion. In the 24-h myocardial infarction model, dissociation of the aqueous and lipid labels in ischemic myocardium is also observed. This phenomenon is more pronounced with positive than with negative liposomes (p less than 0.02)

  11. Photosensitization of liposomes by porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Grossweiner, L I; Goyal, G C

    1984-01-01

    Lipid peroxidation was photosensitized in egg phosphatidylcholine (EPC) liposomes by hematoporphyrin (HP), hematoporphyrin derivative (HpD) and uroporphyrin I (Uro-I). Photosensitization by HP was type II via singlet oxygen (/sup 1/O/sub 2/) for the monomeric and dimeric states and type I for aggregated HP. Uro-I was an efficient type II /sup 1/O/sub 2/ photosensitizer. The HpD fraction enriched in the active biological component (HpD-A) was a type II /sup 1/O/sub 2/ photosensitizer at high and low concentrations. The spectral differences between HpD-A in buffer and solubilized in small EPC liposomes are attributed to a conformation change of a key dimer constituent from a folded to a planar geometry. The implications of the results for the action mechanism in photoradiation therapy of tumors with these porphyrins are discussed. 73 references, 1 figure, 5 tables.

  12. Laccases stabilization with phosphatidylcholine liposomes

    OpenAIRE

    Martí, M.; Zille, Andrea; Paulo, Artur Cavaco; Parra, J. L.; Coderch, L.

    2012-01-01

    In recent years, there has been an upsurge of interest in enzyme treatment of textile fibres. Enzymes are globular proteins whose catalytic function is due to their three dimensional structure. For this reason, stability strategies make use of compounds that avoid dismantling or distorting protein 3D structures. This study is concerned with the use of microencapsulation techniques to optimize enzyme stabilization. Laccases were embedded in phophatidylcholine liposomes and their encaps...

  13. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  14. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  15. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  16. Astragaloside IV liposomes ameliorates adriamycin-induced ...

    African Journals Online (AJOL)

    Methods: The rats were given a single tail intravenous injection of adriamycin (6 mg/kg) within 1 week, and then divided into four groups including normal, model, benazepril and astragaloside IV liposomes group. They were all orally administered dosage of benazepril and astragaloside IV liposomes once daily for 8 weeks.

  17. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  18. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  19. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    Science.gov (United States)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  20. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  1. About kinetics of paramagnetic radiation malformations in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabinkin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petukhov, Yu.V.

    1999-01-01

    This paper [1] specifies that γ-radiation of the beryllium-oxide-based ceramics results in development of paramagnetic radiation malformations emerging the ESR spectrum in form of doublet with the splitting rate of oestrasid Δ∼1.6 and g-factor of 2.008. This report presents evaluation outcomes of dependence of paramagnetic radiation malformations concentration in beryllium ceramics on gamma-radiation dose ( 60 Co) within the range of 0-100 Mrad. Total paramagnetic parameters of beryllium ceramics in the range 0-100 Mrad of gamma-radiation dose varied slightly, and were specified by the first type of paramagnetic radiation malformations

  2. Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy.

    Science.gov (United States)

    Huang, Huei-Ling; Lu, Pei-Hsuan; Yang, Hung-Chih; Lee, Gi-Da; Li, Han-Ru; Liao, Kuo-Chih

    2015-01-01

    The aim of this research is to provide proof of principle by applying the fiber-optic triggered release of photo-thermally responsive liposomes embedded with gold nanoparticles (AuNPs) using a 200 μm fiber with 65 mW and 532 nm excitation for topical release in vivo. The tunable delivery function can be paired with an apoptosis biosensor based on the same fiber-optic configuration for providing real-time evaluation of chemotherapy efficacy in vivo to perform as a personalized chemotherapy system. The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes. In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements. Using the mouse xenograft studies, we first demonstrated that the encapsulation of fluorescein in liposomes resulted in a more substantial content retention (81%) in the tumor than for free fluorophores (14%) at 120 minutes after administration from in vivo fluorescence imaging. Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

  3. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHhuman skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to

  4. The Effect of Polymer Backbone Chemistry on the Induction of the Accelerated Blood Clearance in Polymer Modified Liposomes

    KAUST Repository

    Kierstead, Paul H.

    2015-06-18

    or PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles.

  5. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes.

    Science.gov (United States)

    Kierstead, Paul H; Okochi, Hideaki; Venditto, Vincent J; Chuong, Tracy C; Kivimae, Saul; Fréchet, Jean M J; Szoka, Francis C

    2015-09-10

    PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation and ocular pharmacokinetics of ganciclovir liposomes.

    Science.gov (United States)

    Shen, Yan; Tu, Jiasheng

    2007-12-07

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor concentration-time profiles of both liposomes and solution were well described by 2-compartmental pharmacokinetics with first-order absorption. The area under the curve of the aqueous humor concentration-time profiles of GCV liposomes was found to be 1.7-fold higher than that of GCV solution. Ocular tissue distribution of GCV from liposomes was 2 to 10 times higher in the sclera, cornea, iris, lens, and vitreous humor when compared with those observed after solution dosing. These results suggested that liposomes may hold some promise in ocular GCV delivery.

  7. Stabilization of liophilized liposomal products

    Directory of Open Access Journals (Sweden)

    2001-08-01

    Full Text Available Liposomes as a drug carrier have numerous dominancy. Liophilization is the most propr form of these products for long-term maintenance, but this procedure is affected by unstabilizing agent that results in destruction of membrane, release of content and change in size and microbial contamination; hence for prevention of the adverse effects, the protective role of sugars such as: Maltose, Fructose, Glucose, Galactose, Saccharose and Lactose were studied. For this purpose, after preparation of liposomal suspention, categorized in for duplicate groups and concentrations of 25, 50, 100 percent of these sugars were added to those. On the basis of color and consistency of products, the best method of freezing is as application of absolute alcohol and then chilling in-70 oc for 16 h. In survey of protective substances concentrations 0.7, 1.4, 2.8, and 5.6 percent of the mentioned sugars were used for calculating of leakage percent (Upon on the ratio of optical density of treated samples to untreated. In this study, released maltose had highest effect. Level of fusion and aggregation had any significant difference between pre and post lyophilized samples in centrifugation with 10000 rpm. Microbial state of recent samples were studied by culturing in SCD and SCDA media that indicated microbial growth in both samples.     

  8. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  9. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    International Nuclear Information System (INIS)

    Ingemann Jensen, A.T.

    2013-01-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  10. The role of cavitation in liposome formation.

    Science.gov (United States)

    Richardson, Eric S; Pitt, William G; Woodbury, Dixon J

    2007-12-15

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.

  11. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-02-01

    Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.

  12. Liposome fusion and lipid exchange on ultraviolet irradiation of liposomes containing a photochromic phospholipid

    International Nuclear Information System (INIS)

    Morgan, C.G.; Sandhu, S.S.; Mitchell, A.C.

    1995-01-01

    A photochromic phospholipid, 1,2-bis[4-n-butylphenylazo)phenylbutyroyl]phosphatidylcholine (Bis-Azo PC) has been incorporated inot liposomes of gel- and liquid-crystalline-phase phospholipids. Liposomes of gel-phase phospholipid are stable in the presence of the trans photostationary state Bis-Az0 PC and can encapsulate fluorescent marker dye. On photoisomerization to the cis photostationary state, trapped marker is rapidly released. Liposomes containing Bis-Azo PC can rapidly fuse together after UV isomerization, this process continuing in the dark. Exposure to white light causes reversion of Bis-Azo PC to the trans form and halts dye leakage and vesicle fusion. Both unilamellar and multilamellar liposomes are able to fuse together on UV exposure. On UV photolysis, liposomes containing Bis-Azo PC do not fuse with a large excess of unlabeled liposomes, but transfer of Bis-Azo PC can be demonstrated spectrophotometrically. Vesicles of pure gel-phase lipid containing trapped marker dye but initially no Bis-Azo PC become leaky as a result of this lipid transfer. Liposomes composed of liquid-crystalline-phase phosphatidylcholine-containing Bis-Azo PC neither leak trapped marker nor fuse together on photolysis, nor do liquid-crystalline-phase liposomes, fuse with gel-phase liposomes under these conditions. (Author)

  13. Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy

    Directory of Open Access Journals (Sweden)

    Huang HL

    2015-08-01

    Full Text Available Huei-Ling Huang,1 Pei-Hsuan Lu,1 Hung-Chih Yang,1 Gi-Da Lee,1,2 Han-Ru Li,1 Kuo-Chih Liao1 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, 2Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan Abstract: The aim of this research is to provide proof of principle by applying the fiber-optic triggered release of photo-thermally responsive liposomes embedded with gold nanoparticles (AuNPs using a 200 µm fiber with 65 mW and 532 nm excitation for topical release in vivo. The tunable delivery function can be paired with an apoptosis biosensor based on the same fiber-optic configuration for providing real-time evaluation of chemotherapy efficacy in vivo to perform as a personalized chemotherapy system. The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM fluorescein encapsulated in liposomes. In in vitro studies (in 37°C phosphate buffer saline, the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17% or AuNP-liposomes without excitation (21.92%±2.08% by spectroscopic measurements. Using the mouse xenograft studies, we first demonstrated that the encapsulation of fluorescein in liposomes resulted in a more substantial content retention (81% in the tumor than for free fluorophores (14% at 120 minutes after administration from in vivo fluorescence imaging. Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation. Keywords: fiber-optic guided excitation, light excitation triggered release, photo-thermal responsive liposome, gold nanoparticles, tunable release in vivo

  14. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  15. Magneto-Optical Properties of Paramagnetic Superrotors

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Floß, J.; Averbukh, I. Sh.; Milner, V.

    2015-07-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

  16. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    Science.gov (United States)

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  17. Thermal properties of paramagnetic solid helium 3

    International Nuclear Information System (INIS)

    Goldstein, L.

    1983-01-01

    It was shown in recent work that over a limited molar volume range and at asymptotically high temperatures the thermal modulations of the pressure along isochores of paramagnetic solid 3 He could be accounted for through the formalism of the Heisenberg model of an antiferromagnetically interacting localized spin- 1/2 system. The internal consistency of this formalism requires the characteristic exchange-interaction parameter of the model derived from pressure modulation data to be identical with that appearing in the other thermal properties of this quantum solid. In a restricted temperature region where the spin excitations are the dominant thermal excitations of the solid, heat capacity data yield exchange-interaction parameters in fair agreement with those derived from pressures along isochores of larger molar volume. At higher temperatures, within well-defined limitations, thermal excitations involve both spin and phononexcitations. Here, because of the opposite temperature variations of the spin and phonon heat capacity components, the ensuing heat capacity minimum determines exactly the exchange-energy parameter and the relevant limiting Debye temperature as a function of the measured temperature location and value of the heat capacity extremum along the experimentally explored isochore. The exchange-energy parameters so derived display larger deviations from their predicted pressure-based values than those resulting from the lower temperature but still asymptotic spin-only heat capacities. At the present time, ambiguities in the experimental determinations of the characteristic Weiss temperatures of the asymptotic paramagnetic susceptibilities prevent one from deriving exchange-energy parameters with them. The present work leads to the prediction, within the limitations of the model formalism, of thermal properties of magnetized solid 3 He

  18. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  19. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  20. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    International Nuclear Information System (INIS)

    Perez-Mayoral, Elena; Negri, Viviana; Soler-Padros, Jordi; Cerdan, Sebastian; Ballesteros, Paloma

    2008-01-01

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T 1 and T 2 of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH e ) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH e , independent of water relaxivity, diffusion or exchange

  1. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  2. Liposomal curcumin and its application in cancer.

    Science.gov (United States)

    Feng, Ting; Wei, Yumeng; Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.

  3. Radioprotective effectiveness of Adeturone incapsulated in liposomes

    International Nuclear Information System (INIS)

    Pantev, T.

    1989-01-01

    The radioprotective properties of the radioprotector Adeturone incapsulated in mono- and tricomponent liposomes were studied. Intraperitoneal administration of the radioprotector by means of monocomponent liposomes from egg lecithin, as well as its applicaton alone immediately (15-30 min) before irradiation of mice with 7,5 Gy gamma-quanta (LD 100/30 ) guaranteed high survival -80% and 75% accordingly. Orally introduced Adeturone, incapsulated in tricomponent liposomes (dipalmitoil lecithin, cholesterol, stearinamine - 7:2:1), protected for 0,5 to 4,5 hours lethally X-irradiated mice (7,8 Gy; LD 90/30 ). Under these conditions, Adeturone applied alone 4,5 hours before irradiation was ineffective. These results show the presence of prolonged radioprotective effect of Adeturone, when orally applied in the form of liposomal suspension. 2 tabs., 17 refs

  4. Progress involving new techniques for liposome preparation

    Directory of Open Access Journals (Sweden)

    Zhenjun Huang

    2014-08-01

    Full Text Available The article presents a review of new techniques being used for the preparation of liposomes. A total of 28 publications were examined. In addition to the theories, characteristics and problems associated with traditional methods, the advantages and drawbacks of the latest techniques were reviewed. In the light of developments in many relevant areas, a variety of new techniques are being used for liposome preparation and each of these new technique has particular advantages over conventional preparation methods. However, there are still some problems associated with these new techniques that could hinder their applications and further improvements are needed. Generally speaking, due to the introduction of these latest techniques, liposome preparation is now an improved procedure. These applications promote not only advances in liposome research but also the methods for their production on an industrial scale.

  5. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  6. Octanol-assisted liposome assembly on chip

    Science.gov (United States)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  7. Magnetic behavior of biosynthesized Co_3O_4 nanoparticles

    International Nuclear Information System (INIS)

    Diallo, A.; Doyle, T.B.; Mothudi, B.M.; Manikandan, E.

    2017-01-01

    This contribution reports for the 1st time on the magnetic behavior of CO_3O_4 nanoparticles synthesized by a “green” process using an Aspalathus linearis’ leaves natural extract. More accurately magnetic behavior of CO_3O_4 nanoparticles successfully biosynthesized was investigated using vibrating sample magnetometer. The magnetization behavior for the samples manifests a combination of size dependent antiferromagnetic and paramagnetic behaviors, respectively, for the core and shell of the nanoparticles. - Highlights: • 1"s"t report on magnetic behavior of Co3O4 nanoparticles via Aspalathus linearis. • Co_3O_4 nanoparticles manifest size-dependent antiferromagnetic & paramagnetic behaviors. • Antiferromagnetic & paramagnetic behaviors were confirmed by VSM.

  8. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  9. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Hawthorne, M. Frederick

    2005-01-01

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  10. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Boxi, Ankita; Ashe, Sarbani; Thathapudi, Neethi Chandra; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2017-04-01

    Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12 h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites. - Highlights: • Stavudine entrapped gelatin nanocarriers prepared with two step desolvation process • Linear and release of stavudine from liposomal formulations up to 12 h • All the SG nanoparticles and SG-LP formulations showed negligible

  11. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation

    International Nuclear Information System (INIS)

    Nayak, Debasis; Boxi, Ankita; Ashe, Sarbani; Thathapudi, Neethi Chandra; Nayak, Bismita

    2017-01-01

    Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12 h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites. - Highlights: • Stavudine entrapped gelatin nanocarriers prepared with two step desolvation process • Linear and release of stavudine from liposomal formulations up to 12 h • All the SG nanoparticles and SG-LP formulations showed negligible

  12. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  13. Paramagnetic centers in AlQ3

    International Nuclear Information System (INIS)

    Grecu, M. N.; Mirea, A.; Schwoerer, M.; Grecu, V. V.

    2004-01-01

    Since the discovery in 1987 of its electroluminescent properties, Alq 3 (tris(8-hydroxyquinoline)aluminum(III)) has become one of the most used material in OLEDs (organic light-emitting diodes). Many researches have been carried out for improving its quantum efficiency of light emission. In spite of these, rather many fundamental questions concerning its properties, their dependence on thermal and annealing treatments and crystalline structure remained unanswered. Recently, a significant blue shift of luminescent spectrum of a specially treated fraction (so called δ-phase) has been reported, increasing even more the interest in such a material. In this contribution we shall report on the existence of paramagnetic centers in different Alq 3 fractions formed by using the train sublimation method, as well as in those which have undergone various thermal treatments. Several centers have been observed by cw X- and Q-band EPR spectroscopy, corresponding to spin 1/2 and even spin 3/2. The spin Hamiltonian parameters are given, the temperature dependencies are reported and proposals for model structures are made. (author)

  14. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  15. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  16. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  17. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    Science.gov (United States)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  18. ANTISTAPHYLOCOCCAL ACTIVITY OF LIPOSOMAL FORMS OF LINCOMYCIN

    Directory of Open Access Journals (Sweden)

    Derkach SA

    2015-04-01

    Full Text Available Nowadays the vital problem of modern medicine is a tendency to emerging of both nosocomial and community-acquired strains before antibiotic resistance forming. The complexity of antibiotic therapy of diseases caused by methicillin resistant staphylococci having high poly resistance almost to every classes of antibacterial agents is of prime importance. One of the ways to improve antibacterial preparations still remains the development of their liposomal forms. This work studies antistaphylococcal activity (according to MIC of the liposomal form of lincomycin developed in the Institute of Dermatology and Venereology of Ukraine by Ivanova N. N., the Candidate of Сhemical Sciences.The purpose of this research work was to study liposomal inhibiting concentration of the liposomalny form of lincomycin and a commercial preparation lincomycin (produced by CJSC “Pharmaceutical firm "Darnitsa". Determination of the minimum inhibiting concentration was carried out by a tablet micromethod by consecutive cultivations of the samples under study.It is shown that MIC of liposomal lincomycin is eight times as low as usual lincomycin (0,23mkg/ml to 1,87 mkg/ml. Antibacterial activity of the liposomal form of lincomycin is studied concerning the patients selected from the different biotopes with pyo inflammatory diseases of staphylococcus strains (15 strains – methicillin sensitive, 12 strains - methicillin resistant.It is shown authentically the higher sensitivity of S. aureus strains to the liposomal form of lincomycin in comparison with usual lincomycin . Also 50.0% of MRSA strains were sensitive to the liposomalny form of lincomycin that shows the perspective for the development of the liposomal forms of antibiotics to cure staphylococcal infections.

  19. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  20. On superfluorescent generation of coherent radiation in a paramagnet

    International Nuclear Information System (INIS)

    Turaev, M.T.; Shumovsky, A.S.

    1988-08-01

    An exact definition is given of a superradiation intensity for a free system and for a system in cavity. The superradiant generation of the Zeeman transitions in proton paramagnet is described. (author). 7 refs, 2 figs

  1. Multifunctional liposomes for MRI and image-guided drug delivery

    NARCIS (Netherlands)

    Langereis, Sander; Hijnen, Nicole; Strijkers, Gustav; Nicolay, Klaas; Grüll, Holger

    2014-01-01

    Liposomes are a class of nanovesicles that have been explored extensively in the biomedical arena for early diagnosis and treatment of disease. In recent years, several liposomal drug formulations have been clinically approved in oncology. In a modular approach, the properties of liposomes can be

  2. Characterization of Diclofenac Liposomes Formulated with Palm Oil ...

    African Journals Online (AJOL)

    Purpose: To characterize diclofenac sodium (DS) liposomes prepared using palm oil fractions. Methods: Reverse-phase evaporation method was used to prepare liposomes containing 10, 20, 30 , 40 or 50% palm oil fractions. The effect of palm oil content on liposome formation, surface morphology, shape, size and zeta ...

  3. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  4. Liposomal curcumin and its application in cancer

    Directory of Open Access Journals (Sweden)

    Feng T

    2017-08-01

    Full Text Available Ting Feng,1,* Yumeng Wei,1,* Robert J Lee,2 Ling Zhao1 1Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA *These authors contributed equally to this work Abstract: Curcumin (CUR is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy. Keywords: curcumin, liposomes, drug delivery, bioavailability, cancer 

  5. Treatment of Digital Ischemia with Liposomal Bupivacaine

    Directory of Open Access Journals (Sweden)

    José Raul Soberón

    2014-01-01

    Full Text Available Objective. This report describes a case in which the off-label use of liposomal bupivacaine (Exparel in a peripheral nerve block resulted in marked improvement of a patient’s vasoocclusive symptoms. The vasodilating and analgesic properties of liposomal bupivacaine in patients with ischemic symptoms are unknown, but our clinical experience suggests a role in the management of patients suffering from vasoocclusive disease. Case Report. A 45-year-old African American female was admitted to the hospital with severe digital ischemic pain. She was not a candidate for any vascular surgical or procedural interventions. Two continuous supraclavicular nerve blocks were placed with modest clinical improvement. These effects were also short-lived, with the benefits resolving after the discontinuation of the peripheral nerve blocks. She continued to report severe pain and was on multiple anticoagulant medications, so a decision was made to perform an axillary nerve block using liposomal bupivacaine (Exparel given the compressibility of the site as well as the superficial nature of the target structures. Conclusions. This case report describes the successful off-label usage of liposomal bupivacaine (Exparel in a patient with digital ischemia. Liposomal bupivacaine (Exparel is currently FDA approved only for wound infiltration use at this time.

  6. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  7. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  8. Liposomal membrane disruption by means of miniaturized dielectric-barrier discharge in air: liposome characterization

    Science.gov (United States)

    Svarnas, P.; Asimakoulas, L.; Katsafadou, M.; Pachis, K.; Kostazos, N.; Antimisiaris, S. G.

    2017-08-01

    The increasing interest of the plasma community in the application of atmospheric-pressure cold plasmas to bio-specimen treatment has led to the creation of the emerging field of plasma biomedicine. Accordingly, plasma setups based on dielectric-barrier discharges have already been widely tested for the inactivation of various cells. Most of these systems refer to the plasma jet concept where noble gases penetrate atmospheric air and are subjected to the influence of high electric fields, thus forming guided streamers. Following the original works of our group where liposomal membranes were proposed as models for studying the interaction between plasma jets and cells, we present herein a study on liposomal membrane disruption by means of miniaturized dielectric-barrier discharge running in atmospheric air. Liposomal membranes of various lipid compositions, lamellarities, and sizes are treated at different times. It is shown that the dielectric-barrier discharge of low mean power leads to efficient liposomal membrane disruption. The latter is achieved in a controllable manner and depends on liposome properties. Additionally, it is clearly demonstrated that liposomal membrane disruption takes place even after plasma extinction, i.e. during post-treatment, resembling thus an ‘apoptosis’ effect, which is well known today mainly for cell membranes. Thus, the adoption of the present concept would be beneficial for tailoring studies on plasma-treated cell-mimics. Finally, the liposome treatment is discussed with respect to possible physicochemical mechanisms and potential discharge modification due to the various compositions of the liquid electrode.

  9. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NARCIS (Netherlands)

    Teigell Beneitez, N.; Missinne, J.; Schleipen, J.J.H.B.; Orsel, J.G.; Prins, M.W.J.; Steenberge, Van G.; Cartwright, A.N.; Nicolau, D.V.

    2010-01-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample

  10. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection - IV. Fate of liposomes in regional lymph nodes

    NARCIS (Netherlands)

    Oussoren, C; Scherphof, G; van der Want, JJ; van Rooijen, N; Storm, G

    1998-01-01

    The ability of clodronate-containing liposomes to deplete lymph nodes of macrophages was used as a tool to investigate the fate of liposomes in regional lymph nodes after subcutaneous (s.c.) administration. Reduced lymph node localization of liposomes in macrophage-depleted lymph nodes confirmed

  11. Magnetic concentration of a retroviral vector using magnetite cationic liposomes.

    Science.gov (United States)

    Ito, Akira; Takahashi, Tetsuya; Kameyama, Yujiro; Kawabe, Yoshinori; Kamihira, Masamichi

    2009-03-01

    For tissue engineering purposes, retroviral vectors represent an efficient method of delivering exogenous genes such as growth factors to injured tissues because gene-transduced cells can produce stable and constant levels of the gene product. However, retroviral vector technology suffers from low yields. In the present study, we used magnetite nanoparticles and magnetic force to concentrate the retroviral vectors to enhance the transduction efficiency and to enable their magnetic manipulation. Magnetite nanoparticles modified with cationic liposomes were added to a solution containing a retroviral vector pseudotyped with vesicular stomatitis virus glycoprotein. The magnetic particles that captured the viral vectors were collected using a magnetic force and seeded into mouse neuroblastoma Neuro2a cells. The viral titer was up to 55 times greater (up to 3 x 10(8) infectious units/mL). Additionally, the magnetically labeled retroviral vectors can be directed to the desired regions for infection by applying magnetic fields, and micro-patterns of gene-transduced cell regions could be created on a cellular monolayer using micro-patterned magnetic concentrators. These results suggest that this technique provides a promising approach to capturing and concentrating viral vectors, thus achieving high transduction efficiency and the ability to deliver genes to a specific injured site by applying a magnetic field.

  12. Radioprotective effectiveness of Adeturone, incapsulated in liposomes

    International Nuclear Information System (INIS)

    Pantev, T.

    1990-01-01

    The radioprotective properties of Adeturone (S,2-aminoethyl isothiuronic adenosine-5-triphosphate), incapsulated in mono- and tricomponent lisosomes was studied. Intraperitoneal adminisration of the radioprotector by means of monocomponent liposomes from egg lecithins, as well as of the radioprotector alone shortly before (15-30 min) gamma irradiation of mice with 7.5 Gy (LD 100/30 ) provided high survival rate - accordingly 80% and 75%. Orally administered Adeturone incapsulated in tricomponent liposomes (dipalmitoil-DL-3-lecithin:cholesterine:stearilamine - 7:2:1) protected mice exposed to lethal X-irradiation (7.8 Gy, LD 90/30 ) for 0.5 to 4.5 hours. Adeturone, applied alone under these conditions 4.5 hours before irradiation, was ineffective. The results clearly demonstrated a prolonged radioprotective effect of Adeturone, administered per os as liposome suspension. 2 tabs., 17 refs

  13. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto

    2012-01-01

    In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes...... that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...

  14. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  15. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes

    Science.gov (United States)

    Li, Xuelian; Matthews, Shelton; Kohli, Punit

    2009-01-01

    Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene–carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor (Rad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For Rad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in Rad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET

  16. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  17. Liposomes for Use in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Daniel A. Balazs

    2011-01-01

    Full Text Available Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge.

  18. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...

  19. Liposomes and nanotechnology in drug development: focus on oncotargets

    Directory of Open Access Journals (Sweden)

    Kozako T

    2012-09-01

    antigen delivery vehicles to antigen-presenting cells. Oligomannose-coated liposomes (OML can eliminate established tumors in mouse cancer models. In addition, OMLs with an encased antigen can induce antigen-specific CTLs from peripheral blood mononuclear cells obtained from patients. Feasibility studies of OML-based vaccines have revealed their potential for clinical use as vaccines for diseases where CTLs act as effector cells. Furthermore, use of the hepatitis B core particle, in which tumor-antigen epitopes are set, has consistently been shown to induce strong CTL responses without the use of an adjuvant. Thus, nanoparticles may provide a new prophylactic strategy for infectious disease and therapeutic approaches for cancer via the induction of T-cell immunity.Keywords: adult T cell leukemia, cytotoxic T lymphocytes, oligomannose-coated liposomes, vaccine

  20. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition

    International Nuclear Information System (INIS)

    Chang, Won-Suk; Park, Jin-Won; Rawat, Vijay; Sands, Timothy; Lee, Gil U

    2006-01-01

    A means for synthesizing paramagnetic nanoparticles composed of an Au-Fe alloy is described using pulsed laser deposition (PLD) of the alloy into a mesoporous alumina membrane template. Nanoparticles 46 ± 13 nm in diameter and composed of a 17% Fe alloy have been created by depositing a 35% Fe alloy into a template with 65 nm diameter pores. These paramagnetic nanoparticles had a saturation magnetization of 11.5 emu g -1 at 2000 G, and their UV-visible extinction spectrum was dominated by strong absorption similar to that of Fe 3 O 4 nanoparticles. The surfaces of these nanoparticles were readily functionalized with a dense monolayer of DNA oligonucleotides that had a 5' thiol group. The Au-Fe nanoparticles appear to be well suited for biotechnological applications and single molecule measurements as they can be synthesized in a specific size range, are strongly paramagnetic, and may be easily functionalized with biological macromolecules

  1. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    Science.gov (United States)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  2. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    Science.gov (United States)

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  3. Electron paramagnetic resonance dosimetry in fingernails

    International Nuclear Information System (INIS)

    Romanyukha, Alex; Benevides, Luis A.; Reyes, Ricardo; Trompier, Francois; Clairand, Isabelle; Swartz, Harold M.

    2008-01-01

    Full text: Based on the capabilities of new instrumentation and the experience gained in the use of teeth for 'after-the-fact' dosimetry, we have undertaken a systematic electron paramagnetic resonance (EPR) study of irradiated fingernails. There have been only a modest number of previous studies of radiation-induced signals in fingernails. While these have given us some promising aspects, overall results have been inconsistent. The most significant problem of EPR fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to do dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically-induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. Having applied these methods, we were able to understand that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it looses water, it becomes deformed again. The same happens to fingernail tissue. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. Obtained results show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 minutes in water. This is an ongoing study but even at its present state of development, it has shown that it

  4. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  5. Construction of a Liposome Dialyzer for preparation of high-value, small-volume liposome formulations

    OpenAIRE

    Adamala, Katarzyna; Engelhart, Aaron E.; Kamat, Neha P.; Jin, Lin; Szostak, Jack W.

    2015-01-01

    The liposome dialyzer is a small-volume equilibrium dialysis device, built from commercially available materials, that is designed for rapid exchange of small volumes of an extraliposomal reagent pool against a liposome preparation. The dialyzer is prepared by modification of commercially available dialysis cartridges and consists of a reactor with two 300 µL chambers and a 1.56 cm2 dialysis surface area. The dialyzer is prepared in three stages: 1) disassembly of dialysis cartridges to obtai...

  6. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  7. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  8. Prospects of liposomes using for creating of new forms of the medicinal and preventive preparations

    Directory of Open Access Journals (Sweden)

    M. A. Kisjakova

    2010-07-01

    Full Text Available Information on the structure, physical and chemical characteristics of the phospholipid vesicles (liposomes – the effective natural drug delivery system is presented. Types of liposomes, procedures of its productions, penetration mechanisms into cells and functional features of liposomal drugs are described. Data on production of liposomes with lactobacilli acellular homogenates and the methods of the liposomes structure control asre demonstrated.

  9. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  10. Mechanical Division of Cell-Sized Liposomes

    NARCIS (Netherlands)

    Deshpande, S.R.; Kerssemakers, J.W.J.; Dekker, C.

    2018-01-01

    Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and

  11. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-08-01

    Full Text Available The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32% and F2(98%], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm, MS (357 nm and NS (813 nm], but with essentially similar encapsulation efficiencies (about 93%. Results indicated that the extent of bioavailability of griseofulvin was improved 1.7–2.0 times when given in the form of liposomes (F1 compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2, compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.

  12. Hydrothermal synthesis and physicochemical properties of ruthenium(0) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dikhtiarenko, A., E-mail: dikhtiarenkoalla@uniovi.es [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Khainakov, S.A.; Garcia, J.R.; Gimeno, J. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Pedro, I. de; Fernandez, J. Rodriguez [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Ruthenium nanoparticles were synthesized by hydrothermal technique. Black-Right-Pointing-Pointer The average size of the nanoparticles are depend on the reducing agent used. Black-Right-Pointing-Pointer The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the ruthenium(0) nanoparticles. - Abstract: The synthesis of ruthenium nanoparticles in hydrothermal conditions using mild reducing agents (succinic acid, ascorbic acid and sodium citrate) is reported. The shape of the nanoparticles depends on the type of the reducing agent, while the size is more influenced by the pH of the medium. The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the nanoparticles.

  13. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    Science.gov (United States)

    Song, Gina

    Nanotechnology has made significant advances in drug delivery system for the treatment of cancer. Among various nanoparticle (NP) platforms, liposomes have been most widely used as a NP drug carrier for cancer therapy. High variation in pharmacokinetics (PK) and pharmacodynamics (PD) of liposome-based therapeutics has been reported. However, the interaction of liposome-based therapeutics with the immune system, specifically the mononuclear phagocyte system (MPS), and underlying molecular mechanisms for variable responses to liposomal drugs remain poorly understood. The objective of this dissertation was to elucidate immune mechanisms for the variable responses to PEGylated liposomal doxorubicin (PLD; DoxilRTM), a clinically relevant NP, in animal models and in patients. In vitro, in vivo and clinical systems were investigated to evaluate the effects of chemokines (CCL2 and CCL5), heterogeneity of the tumor microenvironment, and genetic variations on PK and PD of PLD. Results showed that there was a significantly positive linear relationship between PLD exposure (AUC) and total amount of CCL2 and CCL5, most prevalent chemokines in plasma, in patients with recurrent ovarian cancer. Consistent with these findings, preclinical studies using mice bearing SKOV3 orthotopic ovarian cancer xenografts demonstrated that PLD induced the production and secretion of chemokines into plasma. In addition, in vitro studies using human monocytic THP-1 cells demonstrated that PLD altered monocyte migration towards CCL2 and CCL5. The PK and efficacy studies of PLD in murine models of breast cancer showed that heterogeneous tumor microenvironment was associated with significantly different tumor delivery and efficacy of PLD, but not small molecule doxorubicin between two breast tumor models. A candidate genetic locus that was associated with clearance of PLD in 23 inbred mouse strains contains a gene that encodes for engulfment adapter PTB domain containing 1 (Gulp1). By using

  14. Nanoparticles target early-stage breast cancer metastasis in vivo

    Science.gov (United States)

    Goldman, Evgeniya; Zinger, Assaf; da Silva, Dana; Yaari, Zvi; Kajal, Ashima; Vardi-Oknin, Dikla; Goldfeder, Mor; Schroeder, Josh E.; Shainsky-Roitman, Janna; Hershkovitz, Dov; Schroeder, Avi

    2017-10-01

    Despite advances in cancer therapy, treating cancer after it has metastasized remains an unmet clinical challenge. In this study we demonstrate that 100 nm liposomes target triple-negative murine breast-cancer metastases post intravenous administration. Metastatic breast cancer was induced in BALB/c mice either experimentally, by a tail vein injection of 4T1 cells, or spontaneously, after implanting a primary tumor xenograft. To track their biodistribution in vivo the liposomes were labeled with multi-modal diagnostic agents, including indocyanine green and rhodamine for whole-animal fluorescent imaging, gadolinium for magnetic resonance imaging (MRI), and europium for a quantitative biodistribution analysis. The accumulation of liposomes in the metastases peaked at 24 h post the intravenous administration, similar to the time they peaked in the primary tumor. The efficiency of liposomal targeting to the metastatic tissue exceeded that of a non-liposomal agent by 4.5-fold. Liposomes were detected at very early stages in the metastatic progression, including metastatic lesions smaller than 2 mm in diameter. Surprisingly, while nanoparticles target breast cancer metastasis, they may also be found in elevated levels in the pre-metastatic niche, several days before metastases are visualized by MRI or histologically in the tissue. This study highlights the promise of diagnostic and therapeutic nanoparticles for treating metastatic cancer, possibly even for preventing the onset of the metastatic dissemination by targeting the pre-metastatic niche.

  15. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  16. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  17. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Frieder Helm

    2015-04-01

    Full Text Available Treatments of central nervous system (CNS diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes.

  18. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  19. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  20. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  1. A paramagnetic nearly isodynamic compact magnetic confinement system

    International Nuclear Information System (INIS)

    Cooper, W.A.; Antonietti, J.M.; Todd, T.N.

    2001-01-01

    A coreless compact magnetic confinement system that consists of sets of helical windings and vertical magnetic field coils is investigated. The helical coils produce a small toroidal translation of the magnetic field lines and seed paramagnetism. The force-free component of the toroidal current strongly enhances the paramagnetism such that isodynamic conditions near the plasma centre can be approached. At β 5%, the configuration is stable to local MHD modes. Global MHD modes limit the toroidal current 2πJ to about 60kA for peaked J. Bootstrap-like hollow current profiles generate quasiaxisymmetric systems that require a close fitting conducting shell to satisfy external kink stability. (author)

  2. Modified Sucksmith balances for ferromagnetic and paramagnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, N; Myers, H P

    1962-02-15

    Two balances, one for measurement of ferromagnetic magnetisation, the other for paramagnetic susceptibility measurements, are described. Designs are based on Sucksmith's ring balance but the ring and optical lever system of the latter has been replaced by a strain gauge bridge, which allows the force on the magnetic specimens to be determined via potentiometer readings. The modified balances are very robust, insensitive to vibration and, if desired, suitable for direct recording. Relative accuracies of 0.3 % and 0.5 % are obtained respectively for the ferromagnetic and paramagnetic systems.

  3. Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy.

    Science.gov (United States)

    Pavlov, Alexander A; Denisov, Gleb L; Kiskin, Mikhail A; Nelyubina, Yulia V; Novikov, Valentin V

    2017-12-18

    Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

  4. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.

    Science.gov (United States)

    Santhosh, Poornima Budime; Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kulkarni, Mukta; Genova, Julia; Eleršič, Kristina; Iglič, Aleš; Kralj-Iglič, Veronika; Ulrih, Nataša Poklar

    2014-02-01

    The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Magnetic behavior of biosynthesized Co{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A., E-mail: abdoulayediallosn@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation,1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode 63721, Tamil Nadu (India); Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar (Senegal); Doyle, T.B. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation,1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001 (South Africa); Mothudi, B.M.; Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation,1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); and others

    2017-02-15

    This contribution reports for the 1st time on the magnetic behavior of CO{sub 3}O{sub 4} nanoparticles synthesized by a “green” process using an Aspalathus linearis’ leaves natural extract. More accurately magnetic behavior of CO{sub 3}O{sub 4} nanoparticles successfully biosynthesized was investigated using vibrating sample magnetometer. The magnetization behavior for the samples manifests a combination of size dependent antiferromagnetic and paramagnetic behaviors, respectively, for the core and shell of the nanoparticles. - Highlights: • 1{sup st} report on magnetic behavior of Co3O4 nanoparticles via Aspalathus linearis. • Co{sub 3}O{sub 4} nanoparticles manifest size-dependent antiferromagnetic & paramagnetic behaviors. • Antiferromagnetic & paramagnetic behaviors were confirmed by VSM.

  6. Smart thermosensitive liposomes for effective solid tumor therapy and in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Kevin Affram

    Full Text Available In numerous studies, liposomes have been used to deliver anticancer drugs such as doxorubicin to local heat-triggered tumor. Here, we investigate: (i the ability of thermosensitive liposomal nanoparticle (TSLnp as a delivery system to deliver poorly membrane-permeable anticancer drug, gemcitabine (Gem to solid pancreatic tumor with the aid of local mild hyperthermia and, (ii the possibility of using gadolinium (Magnevist® loaded-TSLnps (Gd-TSLnps to increase magnetic resonance imaging (MRI contrast in solid tumor. In this study, we developed and tested gemcitabine-loaded thermosensitive liposomal nanoparticles (Gem-TSLnps and gadolinium-loaded thermosensitive liposomal nanoparticles (Gd-TSLnps both in in-vitro and in-vivo. The TSLnps exhibited temperature-dependent release of Gem, at 40-42°C, 65% of Gem was released within 10 min, whereas < 23% Gem leakage occurred at 37°C after a period of 2 h. The pharmacokinetic parameters and tissue distribution of both Gem-TSLnps and Gd-TSLnps were significantly greater compared with free Gem and Gd, while Gem-TSLnps plasma clearance was reduced by 17-fold and that of Gd-TSLpns was decreased by 2-fold. Area under the plasma concentration time curve (AUC of Gem-TSLnps (35.17± 0.04 μghr/mL was significantly higher than that of free Gem (2.09 ± 0.01 μghr/mL whereas, AUC of Gd-TSLnps was higher than free Gd by 3.9 fold high. TSLnps showed significant Gem accumulation in heated tumor relative to free Gem. Similar trend of increased Gd-TSLnps accumulation was observed in non-heated tumor compared to that of free Gd; however, no significant difference in MRI contrast enhancement between free Gd and Gd-TSLnps ex-vivo tumor images was observed. Despite Gem-TSLnps dose being half of free Gem dose, antitumor efficacy of Gem-TSLnps was comparable to that of free Gem(Gem-TSLnps 10 mg Gem/kg compared with free Gem 20 mg/kg. Overall, the findings suggest that TSLnps may be used to improve Gem delivery and enhance

  7. Calcipotriol delivery into the skin with PEGylated liposomes

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Rønholt, Stine; Salte, Ragnhild Djønne

    2012-01-01

    The d-vitamin analogue calcipotriol is commonly used for topical treatment of psoriasis, but skin penetration is required for calcipotriol to reach its pharmacological target: the keratinocytes in the lower epidermis. Liposomes can enhance the delivery of drugs into the skin, but a major challenge...... of the liposomes and the ability to deliver membrane-intercalated calcipotriol into the skin. Inclusion of 0.5, l and 5mol% PEG-DSPE in the membrane enhanced the colloidal stability of the liposomes without compromising the delivery of calcipotriol from the vehicle into excised pig skin. Calcipotriol...... to large multilamellar vesicles, indicating that the liposomes to some extent migrate as intact vesicles into the stratum corneum. However, calcipotriol penetrated the skin better than the lipid component of the liposomes, suggesting that at least a fraction of the drug is released from the liposomes...

  8. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  9. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  10. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  11. Liposomes: structure, properties and methods of curative administration in organism

    Directory of Open Access Journals (Sweden)

    M. A. Kisyakova

    2010-07-01

    Full Text Available A review of data from scientific sources, devoted to problems of liposomes’ structure, properties and processes of formation was made. Advantages of liposomes used for medical purposes are shown. Methods of liposomes administration in an organism are characterised. Data on mechanisms of interaction between liposomes and cells, peculiarities of liposomes’ lipids composition and dependence of its tropism to definite organs and tissues are generalised.

  12. Dynamical magnetic response of paramagnetic CeFe-2

    International Nuclear Information System (INIS)

    Rainford, B.D.; McK Paul, D.; Warwick Univ., Coventry

    1988-01-01

    Inelastic neutron scattering has been used to study the energy dependence of the paramagnetic response from CeFe 2 . Our results, when integrated over energy, are in excellent agreement with the polarised neutron experiments of Deportes et al., but the correlation length obtained by fitting the data to a double Lorentzian scattering function is significantly smaller than that derived previously

  13. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  14. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  15. Some examples of utilization of electron paramagnetic resonance in biology

    International Nuclear Information System (INIS)

    Bemski, G.

    1982-10-01

    A short outline of the fundamentals of electron paramagnetic resonance (EPR) is presented and is followed by examples of the application of EPR to biology. These include use of spin labels, as well as of ENDOR principally to problems of heme proteins, photosynthesis and lipids. (Author) [pt

  16. WOHLLEBEN EFFECT (PARAMAGNETIC MEISSNER EFFECT) IN HIGH-TEMPERATURE SUPERCONDUCTORS

    NARCIS (Netherlands)

    KHOMSKII, D

    Recently a quite unexpected phenomenon was observed during the study of the magnetic properties of High-T(c) superconductors: In the field-cooled regime the magnetic response of some HTSC at very low fields (less than or similar to 1 Oe), instead of being diamagnetic, becomes paramagnetic. Such

  17. Magnon spin Hall magnetoresistance of a gapped quantum paramagnet

    NARCIS (Netherlands)

    Ulloa, Camilo; Duine, R.A.

    2018-01-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling

  18. A direct simulation method for flows with suspended paramagnetic particles

    NARCIS (Netherlands)

    Kang, T.G.; Hulsen, M.A.; Toonder, den J.M.J.; Anderson, P.D.; Meijer, H.E.H.

    2008-01-01

    A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a

  19. Nonequilibrium ensembles. 3. Spin 1/2 paramagnets

    International Nuclear Information System (INIS)

    Sobouti, Y.; Khajeh-Pour, M.R.H.

    1990-07-01

    The thermodynamic state of a paramagnetic substance in which the spin vectors precess coherently is investigated. The state is a time dependent one. The corresponding density matrix and the thermodynamics emerging from it is worked out. A laboratory preparation of such a system is discussed. (author). 3 refs

  20. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  1. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  2. Correlation induced paramagnetic ground state in FeAl

    Czech Academy of Sciences Publication Activity Database

    Mohn, P.; Persson, C.; Blaha, P.; Schwarz, K.; Novák, Pavel; Eschrig, H.

    2001-01-01

    Roč. 87, č. 19 (2001), s. 196401-1-196401-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z1010914 Keywords : FeAl * paramagnetic ground state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001

  3. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    Science.gov (United States)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  4. Liposomal Bupivacaine Injection Technique in Total Knee Arthroplasty.

    Science.gov (United States)

    Meneghini, R Michael; Bagsby, Deren; Ireland, Philip H; Ziemba-Davis, Mary; Lovro, Luke R

    2017-01-01

    Liposomal bupivacaine has gained popularity for pain control after total knee arthroplasty (TKA), yet its true efficacy remains unproven. We compared the efficacy of two different periarticular injection (PAI) techniques for liposomal bupivacaine with a conventional PAI control group. This retrospective cohort study compared consecutive patients undergoing TKA with a manufacturer-recommended, optimized injection technique for liposomal bupivacaine, a traditional injection technique for liposomal bupivacaine, and a conventional PAI of ropivacaine, morphine, and epinephrine. The optimized technique utilized a smaller gauge needle and more injection sites. Self-reported pain scores, rescue opioids, and side effects were compared. There were 41 patients in the liposomal bupivacaine optimized injection group, 60 in the liposomal bupivacaine traditional injection group, and 184 in the conventional PAI control group. PAI liposomal bupivacaine delivered via manufacturer-recommended technique offered no benefit over PAI ropivacaine, morphine, and epinephrine. Mean pain scores and the proportions reporting no or mild pain, time to first opioid, and amount of opioids consumed were not better with PAI liposomal bupivacaine compared with PAI ropivacaine, morphine, and epinephrine. The use of the manufacturer-recommended technique for PAI of liposomal bupivacaine does not offer benefit over a conventional, less expensive PAI during TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. FDA Approves Irinotecan Liposome to Treat Pancreatic Cancer

    Science.gov (United States)

    Patients with metastatic pancreatic cancer that has progressed after receiving gemcitabine-based chemotherapy now have a new treatment option: irinotecan liposome in combination with fluorouracil and leucovorin.

  6. Liposome as nanocarrier: Site targeted delivery in lung cancer

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2017-08-01

    Full Text Available Lung cancer is fatal and spreading rapidly worldwide. Different clinical strategies are applied to stop this cancer. As the lung is a delicate organ, special clinical applications must be used and nanodrugs delivery systems are the most important applications of all. This review discusses the lung problems such as lung cancer, lung inflammation and bronchi constrictions followed by repetitive intake of some drugs. The objective of this review is to study how nanodrug delivery systems were synthesized and used in lung disorder treatment especially in lung cancer. The authors studied some articles from 1989 to 2015. Liposome encapsulation was done in various ways for the delivery of different drugs such as metaproterenol into liposomes caused bronchodilation, immunoliposomes bearing antibodies for doxorubicin reduced 50% inhibitory effects, radioliposomes with high penetrating ability to peripheral airways, aerosol delivery systems with deep pulmonary deposition, polymeric drug delivery having potential to improve beneficial index of drug, solid lipid liposomes, liposomal gentamicin with altered different clinical susceptibilities of resistance, transferrin conjugated liposomes to deliver cytostatic drugs to site of lungs, anti-inflammatory drugs with mannosylated liposomes, liposomal suspensions with single stranded RNAs and peptide encapsulation of liposomes. This review indicates that many animals perished with intravenous administration of drugs but survived in liposomal targeting groups.

  7. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  8. Interaction of cationic drugs with liposomes.

    Science.gov (United States)

    Howell, Brett A; Chauhan, Anuj

    2009-10-20

    Interactions between cationic drugs and anionic liposomes were studied by measuring binding of drugs and the effect of binding on liposome permeability. The measurements were analyzed in the context of a continuum model based on electrostatic interactions and a Langmuir isotherm. Experiments and modeling indicate that, although electrostatic interactions are important, the fraction of drug sequestered in the double-layer is negligible. The majority of drug enters the bilayer with the charged regions interacting with the charged lipid head groups and the lipophilic regions associated with the bilayer. The partitioning of the drug can be described by a Langmuir isotherm with the electrostatic interactions increasing the sublayer concentration of the drug. The binding isotherms are similar for all tricyclic antidepressants (TCA). Bupivacaine (BUP) binds significantly less compared to TCA because its structure is such that the charged region has minimal interactions with the lipid heads once the BUP molecule partitions inside the bilayer. Conversely, the TCAs are linear with distinct hydrophilic and lipophilic regions, allowing the lipophilic regions to lie inside the bilayer and the hydrophilic regions to protrude out. This conformation maximizes the permeability of the bilayer, leading to an increased release of a hydrophilic fluorescent dye from liposomes.

  9. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  10. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  11. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice.

    Directory of Open Access Journals (Sweden)

    Chie Amano

    Full Text Available To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice.

  12. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging.

    Science.gov (United States)

    Jensen, Andreas I; Severin, Gregory W; Hansen, Anders E; Fliedner, Frederikke P; Eliasen, Rasmus; Parhamifar, Ladan; Kjær, Andreas; Andresen, Thomas L; Henriksen, Jonas R

    2018-01-10

    Liposomes are nanoparticles used in drug delivery that distribute over several days in humans and larger animals. Radiolabeling with long-lived positron emission tomography (PET) radionuclides, such as manganese-52 ( 52 Mn, T½=5.6days), allow the imaging of this biodistribution. We report optimized protocols for radiolabeling liposomes with 52 Mn, through both remote-loading and surface labeling. For comparison, liposomes were also remote-loaded and surface labeled with copper-64 ( 64 Cu, T½=12.7h) through conventional means. The chelator DOTA was used in all cases. The in vivo stability of radiometal chelates is widely debated but studies that mimic a realistic in vivo setting are lacking. Therefore, we employed these four radiolabeled liposome types as platforms to demonstrate a new concept for such in vivo evaluation, here of the chelates 52 Mn-DOTA and 64 Cu-DOTA. This was done by comparing "shielded" remote-loaded with "exposed" surface labeled variants in a CT26 tumor-bearing mouse model. Remote loading (90min at 55°C) and surface labeling (55°C for 2h) of 52 Mn gave excellent radiolabeling efficiencies of 97-100% and 98-100% respectively, and the liposome biodistribution was imaged by PET for up to 8days. Liposomes with surface-conjugated 52 Mn-DOTA exhibited a significantly shorter plasma half-life (T ½ =14.4h) when compared to the remote-loaded counterpart (T ½ =21.3h), whereas surface-conjugated 64 Cu-DOTA cleared only slightly faster and non-significantly, when compared to remote-loaded (17.2±2.9h versus 20.3±1.2h). From our data, we conclude the successful remote-loading of liposomes with 52 Mn, and furthermore that 52 Mn-DOTA may be unstable in vivo whereas 64 Cu-DOTA appears suitable for quantitative imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics].

    Science.gov (United States)

    Sun, Kao-xiang; Wang, Ai-ping; Huang, Li-jun; Liang, Rong-cai; Liu, Ke

    2006-11-01

    To prepare diclofenac sodium liposomes and observe its ocular pharmacokinetics in rabbits. The diclofenac sodium cationic liposomes were prepared by reverse-phase evaporation methods and the formula of liposome was optimized with uniform design. HPLC method was established and validated for the determination of diclofenac sodium in precornea, cornea and aqueous humor of rabbit eye. Liposome and eyedrop solution 50 microL with total 50 microg diclofenac sodium were instilled to eyes of rabbits, separately. Samples of tear, cornea and aqueous humor were collected at different time intervals after rabbits were sacrificed. The ocular pharmacokinetics was investigated by the concentration-time data of tear, cornea and aqueous humor. The mean particle size of the diclofenac sodium liposomes was 226.5 nm with zeta potential of + 18. 1 mV. The entrapment efficiency reached 63%. Compared with solution, liposome was characterized by slower clearance in precornea. The concentration of diclotenac in cornea and aqueous humor instilled with liposome were higher than that with eye-drop solution. Cmax of diclofenac sodium in aqueous humor instilled with liposome and eye-drop solution were (0.69 +/- 0.25) and (0.48 +/- 0.19) microg x mL(-1) and (36.68 +/- 11.7) and (21.82 +/- 8.6) microg x g(-1) in cornea, respectively. But no significant difference were found to Tmax in aqueous humor and cornea between liposome and eyedrop, T(1/2) of diclofenac in aqueous humor and cornea with liposoine were longer than that with eye-drop solution. The ocular bioavailability of liposome in aqueous humor was 211% compared with that of eyedrop. Diclofenac sodium cationic liposomes can increase the corneal contact time, enhance the corneal permeability of diclofenac sodium and improve its ocular bioavailability.

  14. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  15. Targeted drug delivery to the brain using magnetic nanoparticles.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-01-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

  16. Fluorescence studies on gamma irradiated egg lecithin liposomal membrane

    International Nuclear Information System (INIS)

    Pandey, B.N.; Mishra, K.P.

    1998-01-01

    Alterations in structure and organization of sonicated EYL liposomal vesicular membrane after irradiation was investigated by DPH fluorescence probe which is a well known reporter for the environment of hydrophobic interior of membrane. Results of present study have demonstrated that loss of DPH fluorescence in liposomal membrane is linked to free radical mediated structural alterations possibly rigidization in the lipid bilayer

  17. The clearance of liposomes administered by the intramuscular route

    International Nuclear Information System (INIS)

    Arrowsmith, M.; Mills, S.N.

    1982-01-01

    Iodine 131-labelled lecithin was used to label liposomes entrapping cortisone-21-palmitate. The lecithin was injected into the fascia latae muscles of rabbits and the percentage of the initial dose remaining at certain time intervals was calculated from gamma camera image data. Release from the intramuscular site occurs by diffusion from intact liposomes. (U.K.)

  18. Structural properties of liposomes from digital holographic microscopy

    Science.gov (United States)

    Di Maio, Isabelle L.; Carl, Daniel; Langehanenberg, Patrik; Valenzuela, Stella M.; Battle, Andrew R.; Al Khazaaly, Sabah; Killingsworth, Murray; Kemper, Bjorn; von Bally, Gert; Martin, Donald K.

    2006-01-01

    We have constructed liposomes from L alpha Phosphatidylcholine (PC) lipids, which are biomimetic lipids similar to those present in the membranes of mammalian cells. We propose an advance in the use of liposomes, such as for drug delivery, to incorporate into the liposomal membranes transport proteins that have been extracted from the lipid membranes of mammalian cells. In this paper, we describe the usage of a novel optical microscope to characterize the nanomechanical properties of these liposomes. We have applied the technique of digital holographic microscopy, using an instrument recently developed at the University of Münster, Germany. This system enabled us to measure quantitatively the structural changes in liposomes. We have investigated the deformations of these biomimetic lipids comprising these liposomes by applying osmotic stresses, in order to gain insight into the membrane environment prior to incorporation of cloned membrane transport proteins. This control of the nanomechanical properties is important in the stresses transmitted to mechanosensitive ion channels that we have incorporated into the liposomal membranes. These liposomes provide transporting vesicles that respond to mechanical stresses, such as those that occur during implantation.

  19. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential...

  20. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide

    Directory of Open Access Journals (Sweden)

    Ludmila Škorpilová

    2017-07-01

    Full Text Available Like thapsigargin, which is undergoing clinical trials, trilobolide is a natural product with promising anticancer and anti-inflammatory properties. Similar to thapsigargin, it has limited aqueous solubility that strongly reduces its potential medicinal applications. The targeted delivery of hydrophobic drugs can be achieved using liposome-based carriers. Therefore, we designed a traceable liposomal drug delivery system for trilobolide. The fluorescent green-emitting dye BODIPY, cholesterol and trilobolide were used to create construct 6. The liposomes were composed of dipalmitoyl-3-trimethylammoniumpropane and phosphatidylethanolamine. The whole system was characterized by atomic force microscopy, the average size of the liposomes was 150 nm in width and 30 nm in height. We evaluated the biological activity of construct 6 and its liposomal formulation, both of which showed immunomodulatory properties in primary rat macrophages. The uptake and intracellular distribution of construct 6 and its liposomal formulation was monitored by means of live-cell fluorescence microscopy in two cancer cell lines. The encapsulation of construct 6 into the liposomes improved the drug distribution in cancer cells and was followed by cell death. This new liposomal trilobolide derivative not only retains the biological properties of pure trilobolide, but also enhances the bioavailability, and thus has potential for the use in theranostic applications.

  1. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K

    2012-01-01

    Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating...

  2. Liposomal delivery of radionuclides for cancer diagnostics and radiotherapy

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa

    , an in vivo study is presented, where passive tumor accumulation of 64Cu loaded liposomes (64Cu-liposomes) in tumor-bearing mice was quantified directly by PET and computed tomography (CT) imaging. Furthermore, Article I present an evaluation and quantitative measurement of the biodistribution of 64Cu...

  3. Optimization and characterization of liposome formulation by mixture design.

    Science.gov (United States)

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  4. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    Science.gov (United States)

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Radiolabeling, biodistribution and tumor imaging of stealth liposomes containing methotrexate

    International Nuclear Information System (INIS)

    Subramanian, N; Arulsudar, N; Chuttani, K; Mishra, P; Sharma, R.K; Murthy, R.S.R

    2003-01-01

    To study the utility of sterically stabilized liposomes (stealth liposomes) in tumor scintigraphy by studying its biodistribution and accumulation in target tissue after radiolabeling with Technetium-99m (99mTC). Conventional and Stealth liposomes were prepared by lipid film hydration method using methotrexate as model anticancer drug. Radiolabeling of the liposomes was carried out by direct labeling using reduced 99mTc. Experimental conditions for maximum labeling yield were optimized. The stability studies were carried out to check binding strength of the radiolabeled complexes. The blood kinetic study was carried out in rabbits after giving the labeled complex by intravenous administration through ear vein. The biodistribution studies were carried out in the Ehrlich ascites tumor (EAT) bearing mice after intravenous administration through tail vein, showed prolonged circulation in blood and significant increase in the accumulation in tumor for the sterically stabilized liposomes compared to the conventional liposomes. The gamma scintigraphic image shows the distribution of the stealth liposomes in liver, spleen, kidney and tumor. The study gives precise idea about the use of stealth liposomes in tumor scintigraphy and organ distribution studies (Au)

  6. Programmable fusion of liposomes mediated by lipidated PNA

    DEFF Research Database (Denmark)

    Rabe, A; Löffler, P M G; Ries, O

    2017-01-01

    We recently reported a DNA-programmed fusion cascade enabling the use of liposomes as nanoreactors for compartmentalized chemical reactions. This communication reports an alternative and robust strategy based on lipidated peptide nucleic acids (LiPs). LiPs enabled fusion of liposomes with remarka...... with remarkable 31% efficiency at 50 °C with low leakage (5%)....

  7. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    Science.gov (United States)

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  8. Paramagnetic probes to study PrNi5?

    International Nuclear Information System (INIS)

    Hutchinson, W.D.; Harker, S.J.; Stewart, G.A.; Chaplin, D.H.; Kaplan, N.

    1996-01-01

    The Van-Vleck paramagnet PrNi 5 has been the focus of many studies in the past as a result of its usefulness as a nuclear cooling agent. Extensive continuous wave praseodymium NMR measurements have been carried out on this compound. However pulsed NMR and therefore precise relaxation measurements particularly at mK temperatures have proved elusive. In this work we have proposed to use radiative gamma-ray detection to indirectly measure Pr NMR in PrNi 5 via cross relaxation to suitable paramagnetic impurity probes placed at Ni lattice sites. 57 Co was chosen as the most compatible nuclear orientation isotope with an appropriate nuclear g-factor. The choice of 57 Co also allows the use of Moessbauer spectroscopy to check the site occupancy. This poster details the production of a 57 Co doped PrNi 5 single crystal specimen including the specimen preparation problems encountered, 57 Fe Moessbauer and preliminary nuclear orientation measurements

  9. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  10. Liposomal Formulations in Clinical Use: An Updated Review

    Directory of Open Access Journals (Sweden)

    Upendra Bulbake

    2017-03-01

    Full Text Available Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes.

  11. The Treatment of Breast Cancer Using Liposome Technology

    Directory of Open Access Journals (Sweden)

    Sarah Brown

    2012-01-01

    Full Text Available Liposome-based chemotherapeutics used in the treatment of breast cancer can in principle enhance the therapeutic index of otherwise unencapsulated anticancer drugs. This is partially attributed to the fact that encapsulation of cytotoxic agents within liposomes allows for increased concentrations of the drug to be delivered to the tumor site. In addition, the presence of the phospholipid bilayer prevents the encapsulated active form of the drug from being broken down in the body prior to reaching tumor tissue and also serves to minimize exposure of the drug to healthy sensitive tissue. While clinically approved liposome-based chemotherapeutics such as Doxil have proven to be quite effective in the treatment of breast cancer, significant challenges remain involving poor drug transfer between the liposome and cancerous cells. In this review, we discuss the recent advancements made in the development of liposome-based chemotherapeutics with respect to improved drug transfer for use in breast cancer therapy.

  12. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian

    2013-02-19

    The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types provide information about the environment and whether or not the spiropyran resides in the liposome membrane. By measuring LD on liposomes deformed and aligned by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran photoswitch. © 2013 American Chemical Society.

  13. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    Science.gov (United States)

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Science.gov (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  15. The paramagnetic effect in Type-I superconductors

    International Nuclear Information System (INIS)

    Rothen, F.; Lievre, C.

    1975-01-01

    The paramagnetic effect in superconductors was first observed by Steiner and Schoeneck in 1943. This effect takes place in a cylindrical wire if superconductivity is destroyed by a current J in the presence of a magnetic field He parallel to the axis: one notices that the average longitudinal magnetic induction inside the wire can greatly exceed He. An attempt is made to compute the maximal value of the longitudinal magnetic permeability of the current-carrying wire. (Auth.)

  16. Dynamic polarization in paramagnetic solids and microscopic correlation functions

    International Nuclear Information System (INIS)

    Boucher, Jean-Paul

    1972-01-01

    The different effects of Dynamic Nuclear Polarization in paramagnetic solids are described by means of a single thermodynamic formalism. In the case of large exchange interactions, the Overhauser effect correlated with nuclear relaxation time measurements can provide a way of studying correlation functions between electronic spins. This method is used to study the low-frequency behaviour of the microscopic spectral density which should diverge as ω → 0, in the case of a linear exchange chain. (author) [fr

  17. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    Science.gov (United States)

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  18. Paramagnetism and plasma beta in a screw-pinch

    International Nuclear Information System (INIS)

    Lehnert, B.; Scheffel, J.

    1991-02-01

    Anisotropic resistivity causes paramagnetic effects (B z ' (r) less then 0) in a screw pinch, being basically different to the self-relaxation described by Taylor. We compute, analytically and numerically, the resulting effect on equilibrium in a 1-D straight cylindrical plasma. In particular we compute paramagnetic effects on the plasma radius and on plasma beta. Ohm's law also contains diamagnetic terms; in this paper we consider radial particle diffusion and the Nernst effect. In a Tokamak or rector plasma these effects are shown to be negligible, whereas they may contribute in present ULQ, Extrap and RFP experiments. A basic result is an expression for the coupling between the poloidal and axial magnetic field components with the above effects included. A result of specific importance to the Extrap programme is that plasma current limitation can arise from lack of equilibrium when the plasma radius tends to exceed its upper limit, being defined by a magnetic or material limiter. The paramagnetic effect described in this work lowers the plasma beta further, making D-D reactor depending on safety factors q(a) bigger than 1 seems less attainable. (au)

  19. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  20. Clearance and localization of intravitreal liposomes in the aphakic vitrectomized eye

    International Nuclear Information System (INIS)

    Stern, W.H.; Heath, T.D.; Lewis, G.P.; Guerin, C.J.; Erickson, P.A.; Lopez, N.G.; Hong, K.L.

    1987-01-01

    The authors have examined the fate of intravitreally injected liposomes in the aphakic, vitrectomized eye of the rabbit. Liposomes labelled with 125 [I]-p-hydroxybenzimidylphosphatidylethanolamine were eliminated rapidly from the intraocular fluid. Nonetheless, a significant fraction of these liposomes were found to bind to various ocular tissues including the retina, iris, sclera, and cornea. Ultrastructural studies with gold colloid-loaded liposomes revealed that retinal bound liposomes were attached to the inner limiting lamina but did not penetrate to the internal cells of the retina. Epiretinal cells bound and internalized gold colloid-loaded liposomes suggesting that these cells may be very sensitive to liposome mediated drug delivery

  1. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  2. Development of Liposomal Bubbles with Perfluoropropane Gas as Gene Delivery Carriers

    Science.gov (United States)

    Maruyama, Kazuo; Suzuki, Ryo; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi

    2007-05-01

    Liposomes have some advantages as drug, antigen and gene delivery carriers. Their size can be easily controlled and they can be modified to add a targeting function. Based on liposome technology, we developed novel liposomal bubbles (Bubble liposomes) containing the ultrasound imaging gas, perfluoropropane. We assessed the feasibility of Bubble liposomes as carriers for gene delivery after cavitation induced by ultrasound. At first, we investigated their ability to deliver genes with Bubble liposomes and ultrasound to various types of cells such as mouse sarcoma cells, mouse melanoma cells, human T cell line and human umbilical vein endothelial cells. The results showed that the Bubble liposomes could deliver plasmid DNA to many cell types without cytotoxicity. In addition, we found that Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery in vivo. The gene transduction with Bubble liposomes was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery carriers in vitro and in vivo.

  3. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  4. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  5. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  6. Delivery of aerosolized drugs encapsulated in liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Lyons, C.R. [Univ. of New Mexico, Albuquerque, NM (United States); Schmid, M.H.

    1995-12-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.

  7. Delivery of aerosolized drugs encapsulated in liposomes

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Lyons, C.R.; Schmid, M.H.

    1995-01-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization

  8. High-Performance Liquid Chromatography (HPLC) Quantification of Liposome-Delivered Doxorubicin in Arthritic Joints of Collagen-Induced Arthritis Rats.

    Science.gov (United States)

    Niu, Hongqing; Xu, Menghua; Li, Shuangtian; Chen, Junwei; Luo, Jing; Zhao, Xiangcong; Gao, Chong; Li, Xiaofeng

    2017-04-14

    BACKGROUND Neoangiogenesis occurring in inflamed articular synovium in early rheumatoid arthritis (RA) is characterized by enhanced vascular permeability that allows nanoparticle agents, including liposomes, to deliver encapsulated drugs to arthritic joints and subsequently improve therapeutic efficacy and reduce adverse effects. However, the targeting distribution of liposomes in arthritic joints during RA has not been quantitatively demonstrated. We performed this study to evaluate the targeting distribution of PEGylated doxorubicin liposomes in the arthritic joints of collagen-induced arthritis (CIA) rats by high-performance liquid chromatography (HPLC). MATERIAL AND METHODS Two doxorubicin formulations were administered to CIA rats via tail intravenous injection at a single dose (50 mg/m²). CIA rats were sacrificed and the tissues of the inflamed ankle joints were collected. The content of doxorubicin in the arthritic joints was analyzed by a validated and reproducible HPLC method. A two-way ANOVA for 2×5 factorial design was used for statistical analysis. RESULTS The developed HPLC method was sensitive, precise, and reproducible. The method was successfully applied to quantify doxorubicin content in arthritic tissues. At each time point (6, 12, 24, 48, and 72 h), doxorubicin content in the arthritic joints of the doxorubicin liposome group (DOX-LIP group) was higher than in the free doxorubicin group (DOX group) (P<0.05). In the DOX-LIP group, doxorubicin levels in the arthritic joints increased gradually and significantly in the interval of 6-72 h post-administration. CONCLUSIONS PEGylated doxorubicin liposomes were targeted to, accumulated, and retained in the arthritic joints of CIA rats. The present study indicates that liposome encapsulation increases the therapeutic efficacy of antirheumatic drugs, presenting a promising therapeutic strategy for RA.

  9. Effect of Lipid Composition on In Vitro Release and Skin Deposition of Curcumin Encapsulated Liposomes

    Directory of Open Access Journals (Sweden)

    Geethi Pamunuwa

    2016-01-01

    Full Text Available Liposomal encapsulation improves numerous physiochemical and biological properties of curcumin. The aim of this work was to impart slow release and skin delivery of curcumin via liposomal encapsulation. Liposomes were made using egg yolk phosphatidylcholine as the staple lipid while incorporating polysorbate 80 and stearylamine to prepare hybrid liposomes and positively charged liposomes, respectively. Negatively charged liposomes exhibited the highest encapsulation efficiencies (87.8±4.3% and loading capacities (3.4±0.2%. The sizes of all formulations were about 250 nm, while stearylamine increased the polydispersity index. Positively charged liposomes showed lower degradation temperatures than negatively charged liposomes by 10–15°C, attributable to the presence of stearylamine. The melting temperatures of positively charged liposomes (40–50°C were much higher than those of negatively charged liposomes (14-15°C, which may have affected release and skin deposition behavior of liposomes. The positively charged liposomes exhibited the slowest release of curcumin in phosphate buffered saline (pH 6.8 and the release profiles of all liposomal formulations conformed to the Gompertz model. The negatively charged liposomes facilitated the highest skin deposition of curcumin as revealed by studies conducted using excised pig ear skin. Concisely, positively and negatively charged liposomes were optimal for slow release and skin deposition of curcumin, respectively.

  10. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb

    International Nuclear Information System (INIS)

    Blank, M.L.; Cress, E.A.; Byrd, B.L.; Washburn, L.C.; Snyder, F.

    1980-01-01

    Multilamellar liposomes possessing neutral positive or negative charges were tested for their capacity to encapsulate sodium ethylenediaminetetraacetate (EDTA) and for their selectivity in depositing in specific tissues after being injected into rats. Negative-charged liposomes had the greatest trapping efficiency over a wide range of lipid-to-aqueous phase ratios. In contrast, except for lung, liposomal charge had no significant effect on the tissue distribution of encapsulated EDTA; liver and spleen exhibited the highest uptake with all preparations. The proportion of encapsulated EDTA taken up by the liver decreased as the amount of injected liposomes was increased. Free zinc diethylenetriaminepentaacetate (Zn-DTPA) and multilamellar liposomes containing entrapped Zn-DTPA were administered to rats that had been injected with 169 Yb-citrate 24 hr earlier. At doses of 14 mg Zn-DTPA per kg body weight, both free Zn-DPTA and the liposomal-bound Zn-DTPA caused increased removal of 169 Yb from the animals. However, treatment with the liposomal Zn-DTPA caused significantly more of the 169 Yb to be removed than did the free Zn-DTPA treatment by itself. Our data indicate that lipophilic forms of chelators can effectively increase the removal rates of heavy metal contamination in tissues. (author)

  11. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    Science.gov (United States)

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  12. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  13. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    Science.gov (United States)

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Giant liposomes as delivery system for ecophysiological studies in copepods.

    Science.gov (United States)

    Buttino, Isabella; De Rosa, Giuseppe; Carotenuto, Ylenia; Ianora, Adrianna; Fontana, Angelo; Quaglia, Fabiana; La Rotonda, Maria Immacolata; Miralto, Antonio

    2006-03-01

    Giant liposomes are proposed as a potential delivery system in marine copepods, the dominant constituent of the zooplankton. Liposomes were prepared in the same size range as the food ingested by copepods (mean diameter of about 7 microm). The encapsulation of a hydrophilic and high molecular mass fluorescent compound, fluorescein isothiocyanate-dextran (FitcDx), within the liposomes provided a means of verifying copepod ingestion when viewed with the confocal laser-scanning microscope. Females of the calanoid copepod Temora stylifera were fed with FitcDx-encapsulated liposomes alone or mixed with the dinoflagellate alga Prorocentrum minimum. Control copepods were incubated with the P. minimum diet alone. Egg production rates, percentage egg-hatching success and number of faecal pellets produced were evaluated after 24 h and 48 h of feeding. Epifluorescence of copepod gut and faecal pellets indicated that the liposomes were actively ingested by T. stylifera in both experimental food conditions, with or without the dinoflagellate diet. Ingestion rates calculated using 3H-labelled liposomes indicated that females ingested more liposomes when P. minimum was added to the solution (16% vs 7.6% of uptake). When liposomes were supplied together with the algal diet, egg production rate, egg-hatching success and faecal pellet production were as high as those observed for the control diet. By contrary, egg production and hatching success were very low with a diet of liposomes alone and faecal pellet production was similar to that recorded in starved females. This results suggest that liposomes alone did not add any nutritive value to the diet, making them a good candidate as inert carriers to study the nutrient requirements or biological activity of different compounds. In particular, such liposomes are proposed as carriers for diatom-derived polyunsaturated aldehydes, which are known to impair copepod embryo viability. Other potential applications of liposomes as a delivery

  15. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    Science.gov (United States)

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  16. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors

    International Nuclear Information System (INIS)

    Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Unlu, Mehmet Burcin

    2015-01-01

    Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply. (paper)

  17. Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production

    Directory of Open Access Journals (Sweden)

    Elisabetta Bottaro

    2017-07-01

    Full Text Available In recent years, the development of nano- and micro-particles has attracted considerable interest from researchers and enterprises, because of the potential utility of such particles as drug delivery vehicles. Amongst the different techniques employed for the production of nanoparticles, microfluidic-based methods have proven to be the most effective for controlling particle size and dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study, we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often governed by diffusive mass transfer of chemical species at the liquid interface between a solvent (i.e., alcohol and a non-solvent (i.e., water. In this work, we developed a new approach for the analysis of mixing processes within microfluidic devices. The method relies on the use of a pH indicator, and we demonstrate its utility by characterizing the transfer of ethanol and water within two different microfluidic architectures. Our approach represents an effective route to experimentally characterize diffusion and advection processes governing the formation of vesicular/micellar systems in microfluidics, and can also be employed to validate the results of numerical modelling.

  18. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  19. The Paramagnetism of Dissolved Mn in {alpha} and {beta} Brasses

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1962-12-15

    Paramagnetic susceptibility measurements have been made on {alpha} and {beta} brasses containing {approx} 1 w/o Mn. The susceptibility varied with temperature according to the Curie Weiss law and the Curie constant and thereby the Bohr magneton number per Mn atom were determined. Interpreted in terms of valency, Mn monovalent in copper has a valency in {alpha} brass which decreases progressively with zinc content attaining the value 0.58 at the limiting of composition. Mn in {beta} brass exhibits a valency 0.8. These results are not in keeping with previous values for the valency of manganese as determined from phase boundary relationships and electron to atom ratios.

  20. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  1. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    International Nuclear Information System (INIS)

    Bertaina, S; Groll, N; Chen, L; Chiorescu, I

    2011-01-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  2. Moessbauer studies on the paramagnetic porton of alkidirat meteorite

    International Nuclear Information System (INIS)

    Kamal, Huda Mohamed

    1995-11-01

    This work was performed on a sample from alkidirat meteorite which fell west of Sudan by means of Moessbauer effect spectrometer. results showed the absence of transition temperature from the paramagnetic state to the magnetic state in the temperature range from 300K down to 16K. Also, it was found that olivine and ortho pyroxene exist together in site M 1 , while clinothyroxene exists alone in site M 2 . Formula for the composition of ortho pyroxene in the sample were also obtained and they were in good agreement with previous studies. The disorder parameter was also calculated and it showed that the pyroxene present in the sample is well-ordered.(Author)

  3. Optical and paramagnetic properties of Ti in LiF

    International Nuclear Information System (INIS)

    Krystek, M.

    1982-01-01

    Titanium replaces substitutionally Li + at its lattice site in LiF. The resulting deep impurity must be understood as TiF 6 -cluster. The symmetry of this cluster is octahedral in the case of the unoccupied impurity. If the impurity will be occupied by an electron, a trigonal distortion of the cluster results, whereby the orbital degeneracy of the ground state will be liftet. Since the occupied impurity is paramagnetic, the symmetry reduction could be proved by ENDOR measurements. Using a calculated term diagram of the impurity inside the crystal a model is offered to explain the photoluminescence and the thermoluminescence of LiF:Ti. (orig./HP) [de

  4. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  5. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet

    Science.gov (United States)

    Ulloa, Camilo; Duine, R. A.

    2018-04-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  6. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    Science.gov (United States)

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  7. Retrospective dosimetry of nail by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2015-01-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified

  8. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  9. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Caruso, Giuseppe; Cavaliere, Chiara; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2010-01-01

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  10. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura

    2010-09-22

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  11. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier

    DEFF Research Database (Denmark)

    Dreier, Jes; Sørensen, Jens A; Brewer, Jonathan R

    2016-01-01

    In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS) to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human...... skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED) images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm...... liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers...

  12. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  13. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  14. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  15. Chemical meningitis related to intra-CSF liposomal cytarabine.

    Science.gov (United States)

    Durand, Bénédicte; Zairi, Fahed; Boulanger, Thomas; Bonneterre, Jacques; Mortier, Laurent; Le Rhun, Emilie

    2017-10-01

    Therapeutic options of leptomeningeal metastases include intra-cerebrospinal fluid (CSF) chemotherapy. Among intra-CSF agents, liposomal cytarabine has advantages but can induce specific toxicities. A BRAF-V600E-mutated melanoma leptomeningeal metastases patient, treated by dabrafenib and liposomal cytarabine, presented after the first injection of liposomal cytarabine with hyperthermia and headaches. Despite sterile CSF/blood analyses, extended intravenous antibiotics were given and the second injection was delayed. The diagnosis of chemical meningitis was finally made. Dose reduction and appropriate symptomatic treatment permitted the administration of 15 injections of liposomal cytarabine combined with dabrafenib. A confirmation of the diagnosis of chemical meningitis is essential in order (1) not to delay intra-CSF or systemic chemotherapy or (2) to limit the administration of unnecessary but potentially toxic antibiotics.

  16. Syntheses and characterization of liposome-incorporated adamantyl aminoguanidines.

    Science.gov (United States)

    Šekutor, Marina; Štimac, Adela; Mlinarić-Majerski, Kata; Frkanec, Ruža

    2014-08-21

    A series of mono and bis-aminoguanidinium adamantane derivatives has been synthesized and incorporated into liposomes. They combine two biomedically significant molecules, the adamantane moiety and the guanidinium group. The adamantane moiety possesses the membrane compatible features while the cationic guanidinium subunit was recognized as a favourable structural feature for binding to complementary molecules comprising phosphate groups. The liposome formulations of adamantyl aminoguanidines were characterized and it was shown that the entrapment efficiency of the examined compounds is significant. In addition, it was demonstrated that liposomes with incorporated adamantyl aminoguanidines effectively recognized the complementary liposomes via the phosphate group. These results indicate that adamantane derivatives bearing guanidinium groups might be versatile tools for biomedical application, from studies of molecular recognition processes to usage in drug formulation and cell targeting.

  17. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  18. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  19. Atmospheric-pressure guided streamers for liposomal membrane disruption

    International Nuclear Information System (INIS)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clément, F.; Antimisiaris, S. G.

    2012-01-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  20. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  1. Treatment of deep mycoses with liposomal amphotericin B.

    Science.gov (United States)

    Berenguer, J; Muñoz, P; Parras, F; Fernández-Baca, V; Hernández-Sampelayo, T; Bouza, E

    1994-06-01

    Amphotericin B is the mainstay of therapy of many deep mycoses, but its use is seriously hampered by dose-limiting nephrotoxicity. In this study a liposomal formulation of amphotericin B was administered to ten patients with proven deep mycoses: invasive aspergillosis (n = 4), deep candidiasis (n = 4) and zygomycosis (n = 2). The mean daily dosage of liposomal amphotericin B was 3.0 mg/kg (range 2.5 to 4 mg/kg), the mean total dosage of liposomal amphotericin B 2,781 mg (range 87 to 5,220 mg) and the mean duration of treatment 17 days (range 3 to 33 days). Treatment with liposomal amphotericin B was associated with little nephrotoxicity and an overall survival rate of 50%. The median increase of serum creatinine from baseline levels was 0.38 mg/dl (-1.2 to 2.6 mg/dl).

  2. Placing and shaping liposomes with reconfigurable DNA nanocages

    Science.gov (United States)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  3. Enzyme sensitive liposomes in chemotherapy and potentiation of immunotherapy

    DEFF Research Database (Denmark)

    Østrem, Ragnhild Garborg

    efficacy and induction of severe adverse effects. Interestingly, the pharmacokinetics and biodistribution of drugs can be substantially altered by encapsulation in liposomal drug delivery vehicles. The first chapter of this thesis gives a brief introduction to cancer followed by a discussion...... of the applicability of liposomes as drug delivery vehicles in cancer therapy. The second chapter describes the development of a liposome system with an inbuilt release mechanism triggered by secretory phospholipase A2 (sPLA2). This enzyme is expressed at elevated levels in many human cancers, and as such represents...... with an introduction to the cancer-immunity cycle and to how treatment approaches can aid this interplay. Subsequently it demonstrates that the presence of a functional immune system is important in the efficacy of liposomal oxaliplatin, and that this efficacy can be substantially enhanced by combination with...

  4. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2012-01-01

    efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry

  5. The Effect of Polymer Backbone Chemistry on the Induction of the Accelerated Blood Clearance in Polymer Modified Liposomes

    KAUST Repository

    Kierstead, Paul H.; Okochi, Hideaki; Venditto, Vincent J.; Chuong, Tracy C.; Kivimae, Saul; Frechet, Jean; Szoka, Francis C.

    2015-01-01

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG

  6. Transcutaneous drug delivery by liposomes using fractional laser technology.

    Science.gov (United States)

    Fujimoto, Takahiro; Wang, Jian; Baba, Kazuki; Oki, Yuka; Hiruta, Yuki; Ito, Masayuki; Ito, Shinobu; Kanazawa, Hideko

    2017-07-01

    Transdermal delivery of hydrophilic peptides remains a challenge due to their poor cellular uptake and transdermal penetration. We hypothesize that combination of a CO 2 fractional laser to enhance percutaneous absorption and liposomes as transdermal carriers would improve skin penetration of hydrophilic drugs. NA. Liposomes were prepared using membrane fusion lipid dioleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein (CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as model hydrophilic peptide drugs. Liposome size was estimated by dynamic light scattering. Liposome uptake into murine macrophage cells and penetration or permeation into Yucatan micropig skin after irradiation by CO 2 fractional laser at varying energy levels (laser power and exposure duration) were investigated using Franz cell and fluorescence microscopy. Oxidative damage to the irradiated mouse skin was assessed by electron spin resonance. Size of CF and OVA-FITC encapsulated liposomes was 324 ± 75 nm. Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher (1,370 relative fluorescence units, RFU) than delivered in solution form (130 RFU). Fractional laser irradiation increased skin permeation rate of CF liposomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent manner. Although peeling off the stratum corneum facilitated CF liposome penetration at low energy levels (2.69-3.29 J/cm 2 ; 10-20 W for 500 μs), drug permeation was similar (7-8%) in peeled or untreated skin at higher laser energy levels (6.06 J/cm 2 ; 20 W for 1,500 μs). FITC penetrated deeper in the skin after laser irradiation. However, OH, O2-, and VC reactive oxygen species were generated upon irradiation of the skin with a fractional CO 2 laser. Increasing laser power and irradiation, time increased liposome uptake by cells and penetration of peptide drugs across the skin in a dose-dependent manner. High-energy CO 2 fractional laser overcomes the

  7. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model.

    Directory of Open Access Journals (Sweden)

    Astrid Gasselhuber

    Full Text Available Various liposomal drug carriers have been developed to overcome short plasma half-life and toxicity related side effects of chemotherapeutic agents. We developed a mathematical model to compare different liposome formulations of doxorubicin (DOX: conventional chemotherapy (Free-DOX, Stealth liposomes (Stealth-DOX, temperature sensitive liposomes (TSL with intra-vascular triggered release (TSL-i, and TSL with extra-vascular triggered release (TSL-e. All formulations were administered as bolus at a dose of 9 mg/kg. For TSL, we assumed locally triggered release due to hyperthermia for 30 min. Drug concentrations were determined in systemic plasma, aggregate body tissue, cardiac tissue, tumor plasma, tumor interstitial space, and tumor cells. All compartments were assumed perfectly mixed, and represented by ordinary differential equations. Contribution of liposomal extravasation was negligible in the case of TSL-i, but was the major delivery mechanism for Stealth-DOX and for TSL-e. The dominant delivery mechanism for TSL-i was release within the tumor plasma compartment with subsequent tissue- and cell uptake of released DOX. Maximum intracellular tumor drug concentrations for Free-DOX, Stealth-DOX, TSL-i, and TSL-e were 3.4, 0.4, 100.6, and 15.9 µg/g, respectively. TSL-i and TSL-e allowed for high local tumor drug concentrations with reduced systemic exposure compared to Free-DOX. While Stealth-DOX resulted in high tumor tissue concentrations compared to Free-DOX, only a small fraction was bioavailable, resulting in little cellular uptake. Consistent with clinical data, Stealth-DOX resulted in similar tumor intracellular concentrations as Free-DOX, but with reduced systemic exposure. Optimal release time constants for maximum cellular uptake for Stealth-DOX, TSL-e, and TSL-i were 45 min, 11 min, and <3 s, respectively. Optimal release time constants were shorter for MDR cells, with ∼4 min for Stealth-DOX and for TSL-e. Tissue concentrations

  8. Engineering of an Inhalable DDA/TDB Liposomal Adjuvant

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle

    2013-01-01

    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB).......The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB)....

  9. Copper-64 labeled liposomes for imaging bone marrow

    International Nuclear Information System (INIS)

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction: Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [ 18 F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods: Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64 Cu incorporation into liposomes. Results: PET imaging and biodistribution studies with 64 Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69%ID/g for 90 nm liposomes and 7.01 ± 0.92%ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48%ID/g in tumor and 14.22 ± 8.07%ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49%ID/g and 2.23 ± 1.00%ID/g. Conclusion: Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents.

  10. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent

    2005-01-01

    is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug......, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where nontoxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part......Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...

  11. Deciphering the Functional Composition of Fusogenic Liposomes

    Science.gov (United States)

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  12. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    Science.gov (United States)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  13. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  14. Data acquisition system for electronic paramagnetic resonance spectrophotometer

    International Nuclear Information System (INIS)

    Pena Eguiluz, R.

    1992-01-01

    In the Atomic and Molecular Physics Laboratory at the Physics Department of the Instituto Nacional de Investigaciones Nucleares (ININ), there is in operation an electronic paramagnetic resonance spectrometer (EPR). This equipment is utilized for determine, the distribution of the absorbed energy intensity for a sample of paramagnetic substance by means of the study and analysis of its emission lines spectrum. The useful information is provided as a graphic result showing the spectrum corresponding to the analyzed sample. In similar devices like this, the researchers problem, trying to get the important information, is a hard and imprecise work, thus, this process of find the ordinate magnitudes of a approximately two hundred points, equal spaced in the spectrum, is carried out completely by hand. After this, the information is captured and processed in a personal computer. As a solution for this problem, an interface in both aspects, hardware and software adaptable to a personal computer, was designed and constructed. This interface is able to: a) To get and digitized the analogical signal, that represents the corresponding spectrum curve. b) It stores the digitized information in files and c) It displays in graphic mode the stored data, and then these are normalized in order to be transferred to a statistics and analytical software packets (Author)

  15. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Enzymatic degradation of polymer covered SOPC-liposomes in relation to drug delivery

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Vermehren, C.; Frøkjær, S.

    2001-01-01

    Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolam......Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide...

  17. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin

    Science.gov (United States)

    Mady, Mohsen M.; Elshemey, Wael M.

    2011-06-01

    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  18. The Role of Liposomal Bupivacaine in Value-Based Care.

    Science.gov (United States)

    Iorio, Richard

    Multimodal pain control strategies are crucial in reducing opioid use and delivering effective pain management to facilitate improved surgical outcomes. The utility of liposomal bupivacaine in enabling effective pain control in multimodal strategies has been demonstrated in several studies, but others have found the value of liposomal bupivacaine in such approaches to be insignificant. At New York University Langone Medical Center, liposomal bupivacaine injection and femoral nerve block were compared in their delivery of efficacious and cost-effective multimodal analgesia among patients undergoing total joint arthroplasty (TJA). Retrospective analysis revealed that including liposomal bupivacaine in a multimodal pain control protocol for TJA resulted in improved quality and efficiency metrics, decreased narcotic use, and faster mobilization, all relative to femoral nerve block, and without a significant increase in admission costs. In addition, liposomal bupivacaine use was associated with elimination of the need for patient-controlled analgesia in TJA. Thus, at Langone Medical Center, the introduction of liposomal bupivacaine to TJA has been instrumental in achieving adequate pain control, delivering high-level quality of care, and controlling costs.

  19. Modification of wool surface by liposomes for dyeing with weld.

    Science.gov (United States)

    Montazer, Majid; Zolfaghari, Alireza; Toliat, Taibeh; Moghadam, Mohammad Bameni

    2009-01-01

    In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30 minutes and, finally, dyed with weld at 75, 85, and 95 degrees C for 30, 45, and 60 minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75 degrees C for 60 min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.

  20. Liposome distribution after intravenous and selective intraarterial infusion in dogs

    International Nuclear Information System (INIS)

    Wright, K.C.; Kasi, L.P.; Jahns, M.S.; Hashimoto, S.; Wallace, S.

    1990-01-01

    In an effort to improve hepatic uptake of liposomes for drug delivery, empty vesicles were administered by means of selective arterial infusion. Negatively charged, multilamellar liposomes were labeled with technetium-99m and infused into healthy adult dogs. Each dog received 100 mg/m2 of lipid over 10 minutes at 2 mL/min. Liposomes were administered via the common hepatic artery after proximal occlusion of the gastroduodenal artery, via the cranial mesenteric artery, and via the cephalic vein. Distribution (liver, spleen, and lungs) was determined by computer-assisted external imaging techniques. On the average, after arterial infusion, 69.2% of the total activity was located in the liver, 3.6% in the spleen, 3.2% in the lungs, and 3.5% in the general circulation. Following venous injection, 50.7% of the radioactivity was found in the liver, 9.1% in the spleen, 8.6% in the lungs, and 6.7% in the peripheral blood. Once the liposomes entered the systemic circulation, they were cleared at the same rate (half-life beta = 21.5 hours) independent of their route of administration. Increased hepatic liposome uptake should translate into higher local and lower systemic liposomal drug levels

  1. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    Science.gov (United States)

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants.

    Science.gov (United States)

    Turánek, Jaroslav; Ledvina, Miroslav; Kasná, Andrea; Vacek, Antonín; Hríbalova, Vera; Krejcí, Josef; Miller, Andrew D

    2006-04-12

    The need for safe and structurally defined immunomodulators and adjuvants is increasing in connection with the recently observed marked increase in the prevalence of pathological conditions characterized by immunodeficiency. Important groups of such compounds are muramyl glycopeptides, analogs of muramyl dipeptide (MDP), glucosaminyl-muramyl dipeptide (GMDP), and desmuramylpeptides. We have designed and synthesized new types of analogs with changes in both the sugar and the peptide parts of the molecule that show a high immunostimulating and adjuvant activity and suppressed adverse side effects. The introduction of lipophilic residues has also improved their incorporation into liposomes, which represent a suitable drug carrier. The proliposome-liposome method is based on the conversion of the initial proliposome preparation into liposome dispersion by dilution with the aqueous phase. The description of a home-made stirred thermostated cell and its link-up with a liquid delivery system for a rapid and automated preparation of multilamellar liposomes at strictly controlled conditions (sterility, temperature, dilution rate and schedule) is presented. The cell has been designed for laboratory-scale preparation of liposomes (300-1000 mg of phospholipid per run) in a procedure taking less than 90 min. The method can be readily scaled up. Examples of adjuvant and immunostimulatory effect of liposomal preparation in mice model will be presented.

  3. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    ) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... OEP-Cu in the liquid or solid cores of the nanoparticles in the presence of a lipid sink. RESULTS: (1) The size of the nanoparticles was found to be strongly dependent on the Reynolds number and the initial concentration of components for the fast injection technique. At high Reynolds number (2181......), a minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  4. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Vogel, Stefan

    2016-01-01

    Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked...... assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes...... without the need for long spacers and the inherent mobility of membrane-anchored probes in lipid-bilayer membranes will be described for several different probe designs....

  5. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    Science.gov (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  6. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  7. From conventional to stealth liposomes: a new frontier in cancer chemotherapy.

    Science.gov (United States)

    Cattel, Luigi; Ceruti, Maurizio; Dosio, Franco

    2003-01-01

    Many attempts have been made to achieve good selectivity to targeted tumor cells by preparing specialized carrier agents that are therapeutically profitable for anticancer therapy. Among these, liposomes are the most studied colloidal particles thus far applied in medicine and in particular in antitumor therapy. Although they were first described in the 1960s, only at the beginning of 1990s did the first therapeutic liposomes appear on the market. The first-generation liposomes (conventional liposomes) comprised a liposome-containing amphotericin B, Ambisome (Nexstar, Boulder, CO, USA), used as an antifungal drug, and Myocet (Elan Pharma Int, Princeton, NJ, USA), a doxorubicin-containing liposome, used in clinical trials to treat metastatic breast cancer. The second-generation liposomes ("pure lipid approach") were long-circulating liposomes, such as Daunoxome, a daunorubicin-containing liposome approved in the US and Europe to treat AIDS-related Kaposi's sarcoma. The third-generation liposomes were surface-modified liposomes with gangliosides or sialic acid, which can evade the immune system responsible for removing liposomes from circulation. The fourth-generation liposomes, pegylated liposomal doxorubicin, were called "stealth liposomes" because of their ability to evade interception by the immune system, in the same way as the stealth bomber was able to evade radar. Actually, the only stealth liposome on the market is Caelyx/Doxil (Schering-Plough, Madison NJ, USA), used to cure AIDS-related Kaposi's sarcoma, resistant ovarian cancer and metastatic breast cancer. Pegylated liposomal doxorubicin is characterized by a very long-circulation half-life, favorable pharmacokinetic behavior and specific accumulation in tumor tissues. These features account for the much lower toxicity shown by Caelyx in comparison to free doxorubicin, in terms of cardiotoxicity, vesicant effects, nausea, vomiting and alopecia. Pegylated liposomal doxorubicin also appeared to be less

  8. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    Science.gov (United States)

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  9. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    Science.gov (United States)

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  10. Electron paramagnetic resonance of the ns1 centers in crystals

    International Nuclear Information System (INIS)

    Nistor, S.V.; Ursu, I.

    1993-05-01

    The results of the EPR studies concerning the paramagnetic centers with ns 1 (N=n>2) outer electronic configuration contained in crystals are reviewed. Such centers, with 2 S 1/2 ground state, are produced by electron trapping at impurities of the IB and IIB group or by hole trapping at impurities of the IIIB and IV group of elements. The production and structural properties of such centers consisting of ns 1 ions (atoms) at various sites in the crystal lattice with different configurations of neighbouring defects are discussed in connection with their EPR characteristics. Tables containing the spin Hamiltonian parameters of all ns 1 centers reported in the literature until the end of year 1992 are given. (author). 146 refs, 14 tabs

  11. Modified Mason number for charged paramagnetic colloidal suspensions

    Science.gov (United States)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  12. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  13. The paramagnetic properties of ferromagnetic mixed-spin chain system

    International Nuclear Information System (INIS)

    Hu, Ai-Yuan; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping

    2015-01-01

    The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods

  14. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  15. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  16. Moessbauer studies on the paramagnetic porton of alkidirat meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Huda Mohamed [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1995-11-01

    This work was performed on a sample from alkidirat meteorite which fell west of Sudan by means of Moessbauer effect spectrometer. results showed the absence of transition temperature from the paramagnetic state to the magnetic state in the temperature range from 300K down to 16K. Also, it was found that olivine and ortho pyroxene exist together in site M{sup 1}, while clinothyroxene exists alone in site M{sup 2}. Formula for the composition of ortho pyroxene in the sample were also obtained and they were in good agreement with previous studies. The disorder parameter was also calculated and it showed that the pyroxene present in the sample is well-ordered.(Author) 37 refs. , 2 tabs. , 19 figs.

  17. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  18. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: samanta@usp.br, e-mail: nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Medicina Tropical de Sao Paulo (IMTSP), Sao Paulo, SP (Brazil)], e-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia], e-mail: jaosso@ipen.br

    2009-07-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, {sup 122}Sb and {sup 124}Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  19. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    International Nuclear Information System (INIS)

    Borborema, Samanta E.T.; Nascimento, Nanci do; Osso Junior, Joao A.

    2009-01-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, 122 Sb and 124 Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  20. Histopathologic Study Following Administration of Liposome-Encapsulated Hemoglobin in the Normovolemic Rat

    National Research Council Canada - National Science Library

    Rudolph, Alan

    1995-01-01

    ... bovine hemoglobin in the normovolemic rat. We have also examined the administration of the liposome vehicle, tetrameric bovine hemoglobin, and liposome encapsulated bovine hemoglobin that had been lyophilized with 300 mM trehalose...

  1. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization.

    Science.gov (United States)

    Wang, Fan C; Acevedo, Nuria; Marangoni, Alejandro G

    2017-11-15

    Phytosterols and phytosterol esters were encapsulated within large unilamellar liposomes prepared with soy phospholipids using a microfluidizer. The average particle diameter of these liposomal vesicles increased with increasing amounts of encapsulated phytosterols, especially with increasing free sterol content. The phytosterol content, liposomal particle size, and phytosterol encapsulation efficiency started to plateau when liposomes were prepared with MOPS buffer dispersions that contained 50 mg ml -1 soy phospholipid and more than 4% phytosterol blend, suggesting the saturation of phytosterol encapsulation. We proposed an encapsulation mechanism of free sterols and phytosterol esters in liposomes, where free sterols were mainly encapsulated within the lumen of these liposomes as crystals, and sterol esters and some free sterols were incorporated within the phospholipid bilayer of the liposomal membrane. The results from this work could provide the pharmaceutical and nutraceutical industries a practical method to produce loaded liposomes using inexpensive phospholipid mixtures for the delivery of bioactive ingredients.

  2. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  3. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  4. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Hamzah M. Maswadeh

    2015-01-01

    Full Text Available Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS. Anticancer drug etoposide (ETP was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes. The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  5. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  6. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette

    2012-01-01

    precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine......, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition...

  7. APPLICATION OF NANOPARTICLES IN BIOMEDICINE

    Directory of Open Access Journals (Sweden)

    P. G. Telegeeva

    2013-04-01

    Full Text Available The advances in nanotechnology, particularly, application in biomedicine are described in the review. The characteristic of the new drug delivery systems is given including lipid, protein and polymer nanoparticles which provide stable delivery of drugs to the target of distribution in the body and prevent their rapid degradation. The advantages of nanometer scale vectors were analyzed. Due to their small size, structure and large surface area, nanoscale materials acquire necessary physico-chemical properties. These properties allow the nanoparticles, containing specific agents, to overcome the limitations existing for the forms of large sizes. This significantly facilitates the intracellular transport to specific cellular targets. Controlled deli very to the place of action and reduction of exposure time on non-target tissues increases efficacy and reduces toxicity and other side effects, which improves the patient's overall health. Use of different ways to deliver nanoparticles allows to deliver low-molecular drugs, proteins, peptides or nucleic acids to specific tissues. Various ways of nanodrugs delivery to a cell and the possibility of modifying their surface by target ligands are discussed in the review. Types of drug delivery systems: microsponges, viruses, imunoconjugates, liposomes, metal nanoparticles and quantum dots, dendrimers, natural and synthetic polymeric nanoparticles, etc are discussed. A large variety of nanovectors, as well as their modification, and loading of various drugs (the methods of inclusion and adsorption are examined, control of their release into the cell, opens prospects for their wide application for visualization of biological processes, diagnosis and therapy of wide range of diseases.

  8. Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies

    Science.gov (United States)

    Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.

    This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.

  9. Contribution à la formulation et à l'évaluation de liposomes d'ATP

    OpenAIRE

    Vincourt-Vitse, Véronique,

    2012-01-01

    ATP liposome incorporating hepatic ligands may contribute to improve the energetic status of the liver graft. In a first phase of development, it has been emphasized the great need of stabilizing the liposome (i) and of validating a cellular model with an altered energetic status in order to test the formulations of interest. To provide a stable liposomal preparation, different strategies have been carried out to freeze-dry liposome with or without ATP. Sucrose and trehalose better stabilize ...

  10. Smart polymer platforms for in vitro drug screening assays based on drug-loaded nanoparticles

    DEFF Research Database (Denmark)

    Faralli, Adele

    -electrodes for co-localization of drug-loaded nanoparticles (liposomes) and cancer cells. PEGDA hydrogels are widely used in different fields including tissue engineering and in vivo drug delivery. A home-made setup for the fabrication of PEGDA hydrogels through visible-light photopolymerization is described...

  11. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  12. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes

    Directory of Open Access Journals (Sweden)

    de Carvalho Varjão Mota A

    2013-12-01

    Full Text Available Aline de Carvalho Varjão Mota,1 Zaida Maria Faria de Freitas,1 Eduardo Ricci Júnior,1 Gisela Maria Dellamora-Ortiz,1 Ralph Santos-Oliveira,2 Rafael Antonio Ozzetti,3 André Luiz Vergnanini,3 Vanessa Lira Ribeiro,4 Ronald Santos Silva,4 Elisabete Pereira dos Santos11Faculty of Pharmacy, Federal University of Rio de Janeiro, 2Nuclear Engineering Institute, National Nuclear Energy Commission, 3Allergisa Dermatocosmetic Research, University of Campinas, São Paulo, 4Pharmacology and Toxicology Department, National Insitute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilAbstract: Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC liposomal nanosystem (liposome/OMC to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum.Methods: The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping.Results: The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in

  13. Poly(amino acid)s: next-generation coatings for long-circulating liposomes

    NARCIS (Netherlands)

    Romberg, B.

    2007-01-01

    Incorporation of a lipid conjugate of a water-soluble polymer into liposomes can reduce the adhesion of plasma proteins that would otherwise cause rapid recognition and removal of the liposomes by phagocytes. Such polymer-coated liposomes show prolonged circulation property and passive targeting to

  14. Effects of 5-nitro-2-furaldehyde on the radiation damage of liposomes

    International Nuclear Information System (INIS)

    Kuropteva, Z.V.; Sprinz, H.; Schaefer, H.; Winkler, E.

    1986-01-01

    By means of 1 H-NMR spectroscopy the influence of 5-nitro-2-furaldehyde (NF) on the permeation of Eu 3+ ions into irradiated liposomes of egg yolk lecithin was examined. In the presence of NF there was an increase in the permeability of irradiated liposomes. The damage of the liposomes was quantified spectrophotometrically in terms of diene conjugation. (author)

  15. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    Science.gov (United States)

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Pros and cons of the liposome platform in cancer drug targeting.

    Science.gov (United States)

    Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

    2006-01-01

    Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.

  17. Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.

    Science.gov (United States)

    Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish

    2012-09-04

    Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.

  18. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS

    DEFF Research Database (Denmark)

    Nguyen, Trinh Thi Nhu Tam; Ostergaard, Jesper; Stürup, Stefan

    2013-01-01

    An in vitro method for simultaneous assessment of platinum release and liposome stability of liposomal formulations in human plasma is demonstrated. The development and assessment of the method was performed on a PEGylated liposomal formulation containing cisplatin. Complete separation of free ci...

  19. Investigations of a new, highly negative liposome with improved biodistribution for imaging

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Clancy, B.

    1980-01-01

    An attractive feature of liposomes is the wide range of lipid composition that can lead to liposome formation, coupled with the observation that liposome biodistribution may be altered by varying lipid composition. For instance, adding charged lipids to neutral lecithin will alter the biodistribution of the resulting charged liposomes. We have prepared highly negative liposomes by replacing lecithin with negatively charged cardiolipin. The liposomes have been labeled in the lipid phase with Ga-67 and Tc-99m oxine and their properties evaluated. The expected high negative charge of the resulting liposomes was confirmed by an ion-exchange chromatographic technique. Using paper chromatography, the stability of the label was determined during incubation in saline and serum. Finally, biodistributions were determined at 2 h in mice, and the results compared with those for negative lecithin liposomes. Accumulated activities in liver and spleen were reduced by factors of five and 20, respectively, over lecithin liposomes. Since preferential accumulation of activity in these organs constitutes the biggest limitation to the use of lecithin liposomes, cardiolipin liposomes may prove to be more useful carriers of radioactivity in imaging applications. More importantly, however, these results illustrate the value of studying novel liposome types as potential radiopharmaceuticals

  20. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, M.; Scheyda, K.M.; Warzecha, K.T.; Rizzo, L.Y.; Hittatiya, K.; Luedde, T.; Storm, Gerrit; Trautwein, C.; Lammers, Twan Gerardus Gertudis Maria; Tacke, F.

    2015-01-01

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  1. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, Matthias; Scheyda, Katharina M; Warzecha, Klaudia T; Rizzo, Larissa Y; Hittatiya, Kanishka; Luedde, Tom; Storm, G; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  2. Liposomal Drug Product Development and Quality: Current US Experience and Perspective.

    Science.gov (United States)

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  3. Improved permeability of acyclovir: optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay.

    Science.gov (United States)

    Naderkhani, Elenaz; Erber, Astrid; Škalko-Basnet, Nataša; Flaten, Gøril Eide

    2014-02-01

    The antiviral drug acyclovir (ACV) suffers from poor solubility both in lipophilic and hydrophilic environment, leading to low and highly variable bioavailability. To overcome these limitations, this study aimed at designing mucoadhesive ACV-containing liposomes to improve its permeability. Liposomes were prepared from egg phosphatidylcholine (E-PC) and E-PC/egg phosphatidylglycerol (E-PC/E-PG) and their surfaces coated with Carbopol. All liposomal formulations were fully characterized and for the first time the phospholipid vesicle-based permeation assay (PVPA) was used for testing in vitro permeability of drug from mucoadhesive liposome formulations. The negatively charged E-PC/E-PG liposomes could encapsulate more ACV than neutral E-PC liposomes. Coating with Carbopol increased the entrapment in the neutral E-PC liposomes. The incorporation of ACV into liposomes exhibited significant increase in its in vitro permeability, compared with its aqueous solution. The neutral E-PC liposomal formulations exhibited higher ACV permeability values compared with charged E-PC/E-PG formulations. Coating with Carbopol significantly enhanced the permeability from the E-PC/E-PG liposomes, as well as sonicated E-PC liposomes, which showed the highest permeability of all tested formulations. The increased permeability was according to the formulations' mucoadhesive properties. This indicates that the PVPA is suitable to distinguish between permeability of ACV from different mucoadhesive liposome formulations developed for various routes of administration. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Liposomal bupivacaine: a review of a new bupivacaine formulation

    Directory of Open Access Journals (Sweden)

    Chahar P

    2012-08-01

    Full Text Available Praveen Chahar, Kenneth C Cummings IIIAnesthesiology Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USAAbstract: Many attempts have been made to increase the duration of local anesthetic action. One avenue of investigation has focused on encapsulating local anesthetics within carrier molecules to increase their residence time at the site of action. This article aims to review the literature surrounding the recently approved formulation of bupivacaine, which consists of bupivacaine loaded in multivesicular liposomes. This preparation increases the duration of local anesthetic action by slow release from the liposome and delays the peak plasma concentration when compared to plain bupivacaine administration. Liposomal bupivacaine has been approved by the US Food and Drug Administration for local infiltration for pain relief after bunionectomy and hemorrhoidectomy. Studies have shown it to be an effective tool for postoperative pain relief with opioid sparing effects and it has also been found to have an acceptable adverse effect profile. Its kinetics are favorable even in patients with moderate hepatic impairment, and it has been found not to delay wound healing after orthopedic surgery. More studies are needed to establish its safety and efficacy for use via intrathecal, epidural, or perineural routes. In conclusion, liposomal bupivacaine is effective for treating postoperative pain when used via local infiltration when compared to placebo with a prolonged duration of action, predictable kinetics, and an acceptable side effect profile. However, more adequately powered trials are needed to establish its superiority over plain bupivacaine.Keywords: liposomal bupivacaine, postoperative pain, pharmacokinetics, pharmacodynamics, efficacy, safety

  5. Preparation and characterization of clove essential oil-loaded liposomes.

    Science.gov (United States)

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Application of Liposomes in Treatment of Rheumatoid Arthritis: Quo Vadis

    Directory of Open Access Journals (Sweden)

    Bhupinder Kapoor

    2014-01-01

    Full Text Available The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs, corticosteroids, disease modifying antirheumatic drugs (DMARDs, and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology.

  7. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    Science.gov (United States)

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    Directory of Open Access Journals (Sweden)

    Bahareh Sabeti

    2014-01-01

    Full Text Available The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox. The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4 at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  9. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules.

    Science.gov (United States)

    Jimah, John R; Schlesinger, Paul H; Tolia, Niraj H

    2017-08-05

    Proteins may have three dimensional structural or amino acid features that suggest a role in targeting and disrupting lipids within cell membranes. It is often necessary to experimentally investigate if these proteins and biomolecules are able to disrupt membranes in order to conclusively characterize the function of these biomolecules. Here, we describe an in vitro assay to evaluate the membrane lytic properties of proteins and biomolecules. Large unilamellar vesicles (liposomes) containing carboxyfluorescein at fluorescence-quenching concentrations are treated with the biomolecule of interest. A resulting increase in fluorescence due to leakage of the dye from liposomes and subsequent dilution in the buffer demonstrates that the biomolecule is sufficient for disrupting liposomes and membranes. Additionally, since liposome disruption may occur via pore-formation or via general solubilization of lipids similar to detergents, we provide a method to distinguish between these two mechanisms. Pore-formation can be identified and evaluated by examining the blockade of carboxyfluorescein release with dextran molecules that fit the pore. The methods described here were used to determine that the malaria vaccine candidate CelTOS and proapoptotic Bax disrupt liposomes by pore formation (Saito et al. , 2000; Jimah et al. , 2016). Since membrane lipid binding by a biomolecule precedes membrane disruption, we recommend the companion protocol: Jimah et al. , 2017.

  10. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  11. Benchmarking of Sterilizing grade filters with liposome Filtration.

    Science.gov (United States)

    Loewe, Thomas; Mundlamuri, Ramesh; Loewe, Thomas; Mundrigi, Ashok; Handt, Sebastian; Singh, Bhuwan

    2017-12-14

    Cytotoxic drugs can be encapsulated in liposomes vesicles, which act as drug delivery vehicles and reduce the risk of exposure of drug to healthy cells(1). The sterility of such liposome solutions is typically ensured using 0.2μm rated sterilizing grade membranes, but due to the high viscosity and low surface tension of these formulations, they can cause pre-mature blocking and increased risk of bacterial penetration through a 0.2μm sterilizing grade membrane(2). The low surface tension of liposome solutions affects the contact angle with membrane and reduces bubble point leading to bacterial penetration through the membrane. This poses a great challenge to select an appropriate sterilizing grade membrane for a given process and for filter manufacturers to develop a sterilizing grade membrane that specifically addresses these needs. In this study, the influence of different variables that could affect the total throughput and bacterial retention performance of different membranes types on processing of liposome solutions have been evaluated. Based on the results, we conclude that the membrane properties e.g., surface porosity, surface tension, pore size, symmetry/asymmetry, hydrophilicity and liposome properties e.g., composition, lipid size and concentration affect bacterial retention and total throughput capacity. Process parameters such as temperature, pressure and flow should also be optimized to improve process efficiency. Copyright © 2017, Parenteral Drug Association.

  12. Multivesicular liposomal bupivacaine at the sciatic nerve

    Science.gov (United States)

    McAlvin, J. Brian; Padera, Robert F.; Shankarappa, Sahadev A.; Reznor, Gally; Kwon, Albert H.; Chiang, Homer; Yang, Jason; Kohane, Daniel S.

    2014-01-01

    Clinical translation of sustained release formulations for local anesthetics has been limited by adverse tissue reaction. Exparel™ (DepoFoam bupivacaine) is a new liposomal local anesthetic formulation whose biocompatibility near nerve tissue is not well characterized. Exparel™ injection caused sciatic nerve blockade in rats lasting 240 minutes compared to 120 minutes for 0.5% (w/v) bupivacaine HCl and 210 minutes for 1.31% (w/v) bupivacaine HCl (same bupivacaine content as Exparel™). On histologic sections four days after injection, median inflammation scores in the Exparel™ group (2.5 of 4) were slightly higher than in groups treated with bupivacaine solutions (score 2). Myotoxicity scores in the Exparel™ group (2.5 of 6) were similar to in the 0.5% (w/v) bupivacaine HCl group (3), but significantly less than in the 1.31% (w/v) bupivacaine HCl group (5). After two weeks, inflammation from Exparel™ (score 2 of 6) was greater than from 0.5% (w/v) bupivacaine HCl (1) and similar to that from 1.31% (w/v) bupivacaine HCl (1). Myotoxicity in all three groups was not statistically significantly different. No neurotoxicity was detected in any group. Tissue reaction to Exparel™ was similar to that of 0.5% (w/v) bupivacaine HCl. Surveillance for local tissue injury will be important during future clinical evaluation. PMID:24612918

  13. Construction of a Liposome Dialyzer for preparation of high-value, small-volume liposome formulations

    Science.gov (United States)

    Adamala, Katarzyna; Engelhart, Aaron E.; Kamat, Neha P.; Jin, Lin; Szostak, Jack W.

    2016-01-01

    The liposome dialyzer is a small-volume equilibrium dialysis device, built from commercially available materials, that is designed for rapid exchange of small volumes of an extraliposomal reagent pool against a liposome preparation. The dialyzer is prepared by modification of commercially available dialysis cartridges and consists of a reactor with two 300 µL chambers and a 1.56 cm2 dialysis surface area. The dialyzer is prepared in three stages: 1) disassembly of dialysis cartridges to obtain required parts; 2) assembly of the dialyzer; and 3) sealing the dialyzer with epoxy. Preparation of the dialyser takes about 1.5 h, not including overnight epoxy curing. Each round of dialysis takes 1–24 h, depending on the analyte and membrane employed. We previously used the dialyzer for small-volume nonenzymatic RNA synthesis reactions inside fatty acid vesicles. In this protocol, we demonstrate other applications, including removal of unencapsulated calcein from vesicles, remote loading, and vesicle microscopy. PMID:26020615

  14. Transtuzumab-conjugated liposome-coated fluorscent magnetic namoparticles to target breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Mi Jung; Lee, Hak Jong; Hwang, Sung Il; Yun, Bo La; Kim, Sun Mi [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Yoon, Young Il; Kwon, Yong Soo [Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of); Yoon, Tae Jong [NanoBio Materials Chemistry Lab., Dept. of Applied Bioscience, CHA University, Pocheon (Korea, Republic of)

    2014-08-15

    To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNPm-SiO{sub 2}]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNPm-SiO{sub 2}]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. The physiochemical characteristics of Lipo[MNPm-SiO{sub 2}] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNPm-SiO{sub 2}] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin)-conjugated Lipo[MNPm-SiO{sub 2}] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. We obtained uniformly-sized and evenly distributed Lipo[MNPm-SiO{sub 2}] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] was observed by in vitro fluorescence and MR imaging. Trastuzumab-conjugated Lipo[MNPm-SiO{sub 2}] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.

  15. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    Science.gov (United States)

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  16. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Urquhart, Andrew; Thormann, Esben

    2016-01-01

    Liposomes for medical applications are often administered by intravenous injection. Once in the bloodstream, the liposomes are covered with a "protein corona", which impacts the behavior and eventual fate of the liposomes. Currently, many aspects of the liposomal protein corona are not well...

  17. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  18. Lipophilic drug transfer between liposomal and biological membranes

    DEFF Research Database (Denmark)

    Fahr, Alfred; van Hoogevest, Peter; Kuntsche, Judith

    2006-01-01

    This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction...... is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral...... lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics...

  19. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    International Nuclear Information System (INIS)

    Mandal, T.K.; Chatterjee, S.N.

    1980-01-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A 233 /A 215 , and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  20. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  1. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  2. Exchangeable pulmonary water space evaluation using giant liposomes

    International Nuclear Information System (INIS)

    Santos, A.C.; Ribeiro, M.J.; Ferreira, N.; De Lima, J.J.P.

    1998-01-01

    The present work aims to study the potential use of liposomes for the evaluation of pulmonary exchangeable water space, important parameter in some pulmonary oedema situations. This study is based upon the delivery of a diffusible water radiotracer into pulmonary capillary network, which equilibrates with interstitial water space of the lung and returns to the blood circulation. The time constant of this phenomena depends on the magnitude of the water space under study. The release of the diffusible radiotracer in lung capillaries is performed using liposomes with specific formulation. The giant liposomes (15-30μm diameter) used in this study are instable at 37 deg. C. They are biocompatible, biodegradable, with low toxicity and showed no immunogenicity. A water tracer labelled with 99m Tc, encapsulated in the aqueous phase of giant liposomes, has been used. Liposomes were prepared in sterile conditions and with apyrogenic materials. The lipid films composition is L-α-diestearoylphosphatidylcholine (DSPC), L-α-phosphatidyl-DL-glycerol (EPG) and cholesterol (CHOL) (60%/10%/30% mass ratio). After iv injection at +-20 deg. C in the femoral vein of Wistar rats (300g-600g) or albine rabbits (4.5-5Kg), the thermolabile liposomes will be entrapped in lung capillaries and release the radiotracer locally. When the radiodrug is diffusible we will evaluate the volume of the exchangeable pulmonary water analyzing the activity/time curves. These curves are slower for greater water spaces. When the radiotracer is non-diffusible, the disappearance curves are not influenced by the extravascular water space. (author)

  3. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B

    2014-09-01

    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  4. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  5. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  6. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  7. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  8. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  9. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Lung [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe{sub 3}O{sub 4} magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field. - Highlights: • rtPA and Fe{sub 3}O{sub 4} MNP were encapsulated in thermosensitive magnetic liposome (TML). • RSM could predict the drug encapsulation efficiency and temperature-sensitive drug release from TML. • Temperature-sensitive release of rtPA was confirmed from in vitro thrombolysis experiments. • TML-rtPA will be useful as a magnetic targeted nanodrug to improve clinical thrombolytic therapy.

  10. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Carey K Anders

    Full Text Available Breast cancer brain metastases (BCBM are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK and efficacy of PEGylated liposomal doxorubicin (PLD with non-liposomal doxorubicin (NonL-doxo in an intracranial model of BC.Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing mice were administered PLD or NonL-doxo at 6 mg/kg IV × 1 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were administered IV weekly as single agents (6 mg/kg or in combination (4.5 mg/kg with the PARP inhibitor, ABT-888, PO 25 mg/kg/day. Efficacy was assessed by survival and bioluminescence.Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31-38, which was significantly longer than controls (26d [CI 25-28]; p = 0.0012 or NonL-doxo treatment (23.5d [CI 18-28], p = 0.0002. Combination treatment with PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31-38] versus 29.5d [CI 25-34]; p = 0.006.PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM. The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for patients with BCBM.

  11. Nature of the magnetic susceptibility of dysprosium. Paramagnetic susceptibility of dysprosium - yttrium alloys

    International Nuclear Information System (INIS)

    Demidov, V.G.; Levitin, R.Z.; Chistyakov, O.D.

    1976-01-01

    The paramagnetic susceptibility of single crystals of dysprosium-yttirum alloys is measured in the basal plane and along the hexagonal axis. It is shown that the susceptibility of the alloys obeys the Curie-Weiss law, the effective magnetic moments allong the different directions being the same and the paramagnetic Curie temperatures being different. The difference between the paramagnetic Curie temperatures in the basal plane and along the hexagonal axis is independent of the dysprosium concentration in the alloy. As a comparison with the theoretical models of magnetic anisotropy shows, this is an indication that the magnetic anisotropy of dysprosium - yttrium alloys is of a single-ion nature

  12. Ferro-paramagnetic coupled resonant modes in GdEuCuO4

    International Nuclear Information System (INIS)

    Fainstein, A.; Tovar, M.

    1990-01-01

    Two paramagnetic resonances were observed in compound GdEuCuO 4 : one was originated in trivalent gadolinium paramagnetism, while the other is associated to a weak ferromagnetic mode in Cu-O planes. In this work, experimental results are presented that show an anisotropy and a strongly anomalous temperature dependence of Gd 3+ . A theoretical model was introduced which explains the data in terms of coupled ferro-paramagnetic resonant modes originated in spin exchange coupling of Cu and Gd. (Author). 9 refs., 4 figs

  13. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  14. Assessing NLRP3 Inflammasome Activation by Nanoparticles.

    Science.gov (United States)

    Sharma, Bhawna; McLeland, Christopher B; Potter, Timothy M; Stern, Stephan T; Adiseshaiah, Pavan P

    2018-01-01

    NLRP3 inflammasome activation is one of the initial steps in an inflammatory cascade against pathogen/danger-associated molecular patterns (PAMPs/DAMPs), such as those arising from environmental toxins or nanoparticles, and is essential for innate immune response. NLRP3 inflammasome activation in cells can lead to the release of IL-1β cytokine via caspase-1, which is required for inflammatory-induced programmed cell death (pyroptosis). Nanoparticles are commonly used as vaccine adjuvants and drug delivery vehicles to improve the efficacy and reduce the toxicity of chemotherapeutic agents. Several studies indicate that different nanoparticles (e.g., liposomes, polymer-based nanoparticles) can induce NLRP3 inflammasome activation. Generation of a pro-inflammatory response is beneficial for vaccine delivery to provide adaptive immunity, a necessary step for successful vaccination. However, similar immune responses for intravenously injected, drug-containing nanoparticles can result in immunotoxicity (e.g., silica nanoparticles). Evaluation of NLRP3-mediated inflammasome activation by nanoparticles may predict pro-inflammatory responses in order to determine if these effects may be mitigated for drug delivery or optimized for vaccine development. In this protocol, we outline steps to monitor the release of IL-1β using PMA-primed THP-1 cells, a human monocytic leukemia cell line, as a model system. IL-1β release is used as a marker of NLRP3 inflammasome activation.

  15. Acute Pancreatitis by liposomal amphotericin B.

    Directory of Open Access Journals (Sweden)

    Rafael Hernández

    2016-11-01

    Full Text Available BACKGROUND: The most frequently observed adverse reactions of a liposomal formulation of amphotericin B (LAB on the first dose of fever and rigors are, hypokalemia and renal toxicity. Acute pancreatitis is not listed in the Summary of Product Characteristics of LAB, although some non-severe cases of pancreatitis toxicity after LAB are described in the literature. CASE SUMMARY: We present the case of an 88-year-old male with not known allergies and diagnosed with arterial hypertension and Grade III chronic kidney disease. One month before was admitted because of pneumonia, acute kidney injury, atrial fibrillation and pancytopenia; he was discharged on January 13, 2016, and two weeks later, he returned to the Urgency Department with severe deterioration of the general condition, fever, and a skin rash , these symptoms were attributed to a delayed allergic reaction to levofloxacin. During his first admission, he was treated with acetylsalicylic acid 100 mg, digoxin, metamizole, pantoprazole, valsartan/amlodipine. The Lab results showed pancytopenia. It was performed a bone marrow aspiration, suggesting a case of leishmaniasis. It was initiated intravenous treatment with LAB at 3 mg / kg / day. The first day of treatment, the patient showed a severe bronchospasm, exacerbation of the previous rash possibly caused by quinolones treatment, was treated with corticosteroids, antihistamines, aerosol therapy and oxygen therapy until full recovery. During the following days, LAB was administrated at a slow infusion rate and premedication with appropriate tolerance. On the fifth day of the treatment, the patient started with a diffuse abdominal pain, anorexia, and vomiting. The amylase lab result was 431 IU/L. An abdominal scanner showed edematous pancreatitis. After 48 hours the amylase and lipase lab values were normal. And the abdominal Scanner was repeated with no changes. The evolution of patient was aggravating until reaching multiple organs failure a

  16. Melanin nanoparticles derived from a homology of medicine and food for sentinel lymph node mapping and photothermal in vivo cancer therapy.

    Science.gov (United States)

    Chu, Maoquan; Hai, Wangxi; Zhang, Zheyu; Wo, Fangjie; Wu, Qiang; Zhang, Zefei; Shao, Yuxiang; Zhang, Ding; Jin, Lu; Shi, Donglu

    2016-06-01

    The use of non-toxic or low toxicity materials exhibiting dual functionality for use in sentinel lymph node (SLN) mapping and cancer therapy has attracted considerable attention during the past two decades. Herein, we report that the natural black sesame melanin (BSM) extracted from black sesame seeds (Sesamum indicum L.) shows exciting potential for SLN mapping and cancer photothermal therapy. Aqueous solutions of BSM under neutral and alkaline conditions can assemble into sheet-like nanoparticles ranging from 20 to 200 nm in size. The BSM nanoparticles were encapsulated by liposomes to improve their water solubility and the encapsulated and bare BSM nanoparticles were both non-toxic to cells. Furthermore, the liposome-encapsulated BSM nanoparticles (liposome-BSM) did not exhibit any long-term toxicity in mice. The liposome-BSM nanoparticles were subsequently used to passively target healthy and tumor-bearing mice SLNs, which were identified by the black color of the nanoparticles. BSM also strongly absorbed light in the near-infrared (NIR) range, which was rapidly converted to heat energy. Human esophagus carcinoma cells (Eca-109) were killed efficiently by liposome-BSM nanocomposites upon NIR laser irradiation. Furthermore, mouse tumor tissues grown from Eca-109 cells were seriously damaged by the photothermal effects of the liposome-BSM nanocomposites, with significant tumor growth suppression compared with controls. Given that BSM is a safe and nutritious biomaterial that can be easily obtained from black sesame seed, the results presented herein represent an important development in the use of natural biomaterials for clinical SLN mapping and cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bleomycin-Loaded pH-Sensitive Polymer–Lipid-Incorporated Liposomes for Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2018-01-01

    Full Text Available Cancer chemotherapeutic systems with high antitumor effects and less adverse effects are eagerly desired. Here, a pH-sensitive delivery system for bleomycin (BLM was developed using egg yolk phosphatidylcholine liposomes modified with poly(ethylene glycol-lipid (PEG-PE for long circulation in the bloodstream and 2-carboxycyclohexane-1-carboxylated polyglycidol-having distearoyl phosphatidylethanolamine (CHexPG-PE for pH sensitization. The PEG-PE/CHexPG-PE-introduced liposomes showed content release responding to pH decrease and were taken up by tumor cells at a rate 2.5 times higher than that of liposomes without CHexPG-PE. BLM-loaded PEG-PE/CHexPG-PE-introduced liposomes exhibited comparable cytotoxicity with that of the free drug. Intravenous administration of these liposomes suppressed tumor growth more effectively in tumor-bearing mice than did the free drug and liposomes without CHexPG-PE. However, at a high dosage of BLM, these liposomes showed severe toxicity to the spleen, liver, and lungs, indicating the trapping of liposomes by mononuclear phagocyte systems, probably because of recognition of the carboxylates on the liposomes. An increase in PEG molecular weight on the liposome surface significantly decreased toxicity to the liver and spleen, although toxicity to the lungs remained. Further improvements such as the optimization of PEG density and lipid composition and the introduction of targeting ligands to the liposomes are required to increase therapeutic effects and to reduce adverse effects.

  18. Application of electron paramagnetic resonance to identify irradiated soybean

    International Nuclear Information System (INIS)

    Bhaskar, S.; Behere, Arun; Sharma, Arun

    2006-01-01

    Full text: Electron paramagnetic resonance spectroscopy was applied to study free radicals in soy bean seed after gamma irradiation and to establish the potential of these radiation induced free radicals as the indicator of the radiation treatment. The radiation doses administered to the samples were 1 to 30 kGy. A stable doublet signal was detected at g = 2.0279 with hyperfine coupling constant of 2.8 mT, produced only by radiolysis. This signal can be used to identify irradiated soy bean seed samples. With the increase of the radiation dose the central line intensity and the intensities of the satellite lines showed almost a linear rise having linear correlation factors of 0.99724 and 0.99996, respectively. Thermal treatment at 373 deg K in air was studied. No line specific to thermolysis was observed. The spectrometer was operated with power 0.253 mW, microwave frequency 9.74 GHz, modulation frequency 100 kHz and scan range 10 mT. To study the stability of the signal, EPR spectra were obtained from the irradiated skin part of soy bean seeds samples following 1 and 90 days of storage after radiation treatment. The two satellite lines of g left = 2.0279 and g right 1.99529 were detected in all samples. This suggests that the signal is associated with a stable radical and therefore, the detection of a particular free radical as a marker of irradiation is proposed

  19. Thermophysical properties of paramagnetic Fe from first principles

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  20. Effects of water on fingernail electron paramagnetic resonance dosimetry.

    Science.gov (United States)

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-09-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Using an electron paramagnetic resonance method for testing motor oils

    Energy Technology Data Exchange (ETDEWEB)

    Krais, S; Tkac, T

    1982-01-01

    Using an ER-9 spectrometer from the Karl Zeiss company, the relative effectiveness is studied of antioxidation additives. Motor oils of the E group, M6AD, 465, M6AD, 466, M6AD 467, 15 W/40, S-3/2 M/4, R-950, which contain the antioxidation additive were tested in Petter AV-1 motors at a temperature of 50 degrees for 120 hours and Petter AVB at a temperature of 90 degrees for 53 hours. To measure the concentration of free radicals of the antioxidation additives one part of 2,2-diphenyl-1-picrylhydrazine (I), which forms stable dimagnetic products with the radicals of the antioxidation additives was introduced into each three parts of the oil. The reduction in the intensity of the signal of I was the measure of the radical concentration. The spectrum was taken for 1 to 2 minutes. The graphs of the dependence of the electron paramagnetic resonance on the test time and the concentration of I are built. The beginning and end of the induction period of oxidation of the oils and the change in the hourly activity of the PP was recorded.

  2. Spin dynamics of EuS in the paramagnetic phase

    International Nuclear Information System (INIS)

    Chaudhury, R.; Shastry, B.S.

    1988-07-01

    The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first neighbour shell, anti-ferromagnetic interaction in the second neighbour shell and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1 T c using the Monte-Carlo molecular dynamics technique. The important quantities calculated are the dynamic structure function S(q-vector,ω) and the spin auto-correlation function i (O)·S-vector i (t)>. Our results for S(q-vector,ω) show the existence of purely diffusive modes in the low q regime. For q-vector close to the zone boundary, our calculated S(q-vector,ω) shows multi-peaked structure, signifying damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry and also of Lindgard. Our results for S(q-vector,ω) in the entire q-vector-space are in good qualitative and quantitative agreement with the recent neutron scattering experiments of Boni et al. and also Bohn et al. Our calculated auto-correlation function shows a diffusive behaviour temporally. (author). 15 refs, 5 figs

  3. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  4. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  5. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  6. Biophysical dose measurement using electron paramagnetic resonance in rodent teeth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    Electron paramagnetic resonance (EPR) dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. However, there are situations that do not involve a human victim (e.g. tests for suspected environmental overexposures, measurements of doses to experimental animals in radiation biology research, or chronology of archaeological deposits). For such cases we have developed an EPR dosimetry technique making use of enamel of teeth extracted from mice. Tooth enamel from both previously irradiated and unirradiated mice was extracted and cleaned by processing in supersaturated KOH aqueous solution. Teeth from mice with no previous irradiation history exhibited a linear EPR response to the dose in the range from 0.8 to 5.5 Gy. The EPR dose reconstruction for a preliminarily irradiated batch resulted in the radiation dose of (1.4±0.2) Gy, which was in a good agreement with the estimated exposure of the teeth. The sensitivity of the EPR response of mouse enamel to gamma radiation was found to be half of that of human tooth enamel. The dosimetric EPR signal of mouse enamel is stable up at least to 42 days after exposure to radiation. Dose reconstruction was only possible with the enamel extracted from molars and premolars and could not be performed with incisors. Electron micrographs showed structural variations in the incisor enamel, possibly explaining the large interfering signal in the non-molar teeth

  7. Kinetic Targeting of pegylated liposomal Doxorubicin: a new Approach to Reduce Toxicity during Chemotherapy (CARL-trial

    Directory of Open Access Journals (Sweden)

    Jansen Martin

    2011-08-01

    Full Text Available Abstract Background The therapeutic success of chemotherapeutic agents is often limited by severe adverse effects. To reduce toxicity of these drugs, nanoscale particle-based drug delivery systems (DDS are used. DDS accumulate to some extent in tumor tissues, but only a very small portion of a given dose reaches this target. Accumulation of DDS in tumor tissues is supposed to be much faster than in certain other tissues in which side effects occur ("Kinetic Targeting". Once saturation in tumor tissue is achieved, most of the administered DDS still circulate in the plasma. The extracorporeal elimination of these circulating nanoparticles would probably reduce toxicity. Methods For the CARL-trial (Controlled Application and Removal of Liposomal chemotherapeutics, pegylated liposomal doxorubicin (PLD was used as chemotherapeutic agent and double filtration plasmapheresis (DFPP was performed for extracorporeal elimination of liposomes. PLD was given as 40 mg/m2 every 3 weeks in combination with vinorelbine 2 × 25 mg/m2 (neoadjuvant treatment of breast cancer, 12 patients, or as 40 mg/m2 every 4 weeks (recurrent ovarian cancer, 3 patients. Primary endpoints were the efficiency and safety profile of DFPP, and secondary endpoints were side effects and tumor response. Results DFPP eliminated ~62% of circulating PLD, corresponding to ~45% of the total dose (n = 57 cycles. AUC of doxorubicin was reduced by 50%. No leakage of doxorubicin was detected during elimination, and no relevant DFPP-related side effects occurred. Reduction in tumor size > 30% occurred in 10/12 (neoadjuvant and in 1/3 patients (recurrent. Only five grade 2 events and one grade 3 event (mucositis, neutropenia or leucopenia and a single palmar-plantar erythrodysesthesia grade 2 were reported. Conclusion Extracorporeal elimination of PLD by DFPP is safe and efficient. CARL can diminish the main dose-limiting side effects of PLD, and probably many different DDS alike. Trial

  8. Visualization of liposomes by magnetic resonance imaging: an opportunity to improve antitumoral liposome therapies

    International Nuclear Information System (INIS)

    Martinez Bedoya, Darel

    2012-01-01

    Controlled release of drugs at the tumor site and the development of non-invasive monitoring techniques are two of the main challenges currently facing antitumoral therapies. The paper analyzes some of the potential uses of liposomes as vehicles for the transport of drugs to the tumors, particularly directionalized variants to tumor antigens through antibody coupling (immunoliposomes). These vesicles may also be used in combination with magnetic resonance, one of the most widely used imaging techniques, and one exhibiting great visualization potential at molecular level. Joint use of these two techniques makes it possible to control the amount of drug administered, as well as predict the efficacy of the treatment and monitor its progress

  9. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome

    DEFF Research Database (Denmark)

    Wibroe, Peter P; Ahmadvand, Davoud; Oghabian, Mohammad Ali

    2016-01-01

    follow-on products DOXOrubicin (approved by the US Food and Drug Administration) and SinaDoxosome (produced in Iran) by cryogenic transmission electron microscopy, dynamic light scattering and Nanoparticle Tracking Analysis, and assess their potential in activating the complement system in human sera. We...... found subtle physicochemical differences between the tested liposomal products and even between the tested batches of Doxil® and Caelyx®. Notably, these included differences in vesicular population aspect ratios and particle number. Among the tested products, only SinaDoxosome, in addition...

  10. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  11. Investigation of lanthanide ions and other paramagnetic impurities in natural fluorite by electron paramagnetic resonance: examples of application to mining exploration and geochemistry

    International Nuclear Information System (INIS)

    Chatagnon, B.

    1981-01-01

    This research thesis reports the application to geology, and more particularly to geochemistry and mining exploration, of a physical method: the electron paramagnetic resonance (EPR). After a report of a bibliographical investigation on mineralogy and geochemistry of fluorite and lanthanides, as well as on paramagnetic centres observed by physicists in synthetic fluorite, the author reports an experimental work, and describes two examples of application of EPR: firstly, the exploration of radioactive ores, and secondly, with the joint use of neutron activation analysis, the characterization of the redox status of the hydrothermal solution which is at the origin of fluorinated mineralisation

  12. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available respectively from Raman spectroscopy study. These particle sizes are known be affected by substrate temperature during the deposition. Electron spin resonance (ESR) results demonstrated a strange antiferromagnetic to paramagnetic transition at a room...

  13. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl

    2014-05-01

    Highlights: • New phase transition for DMPC was found. • FT-IR method is an important addition to the DSC studies. • The proposed method for determining the T{sub C} give very consistent results. - Abstract: In this work, alternatives to differential scanning calorimetry (DSC) as a method of determining the main phospholipid phase transition temperature are presented. The bilayer phase transitions from the ripple gel phase (P{sub β{sup ′}}) to the liquid-crystal phase (L{sub α}) of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) methods. In this work, two correlations between the DSC and FT-IR methods, and NMR and EPR methods are shown. The proposed methods allow for determining the T{sub C} temperature with a high degree of accuracy. Furthermore, a comparison of results obtained using the DSC and FT-IR methods allowed for an observation of a new DMPC phase transition. The liposomes analyzed in this work were obtained by the modified reverse-phase evaporation method (mREV)

  14. Formulation optimization and in vivo proof-of-concept study of thermosensitive liposomes balanced by phospholipid, elastin-like polypeptide, and cholesterol.

    Directory of Open Access Journals (Sweden)

    Sun Min Park

    Full Text Available One application of nanotechnology in medicine that is presently being developed involves a drug delivery system (DDS employing nanoparticles to deliver drugs to diseased sites in the body avoiding damage of healthy tissue. Recently, the mild hyperthermia-triggered drug delivery combined with anticancer agent-loaded thermosensitive liposomes was widely investigated. In this study, thermosensitive liposomes (TSLs, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000] (DSPE-PEG, cholesterol, and a fatty acid conjugated elastin-like polypeptide (ELP, were developed and optimized for triggered drug release, controlled by external heat stimuli. We introduced modified ELP, tunable for various biomedical purposes, to our thermosensitive liposome (e-TSL to convey a high thermoresponsive property. We modulated thermosensitivity and stability by varying the ratios of e-TSL components, such as phospholipid, ELP, and cholesterol. Experimental data obtained in this study corresponded to results from a simulation study that demonstrated, through the calculation of the lateral diffusion coefficient, increased permeation of the lipid bilayer with higher ELP concentrations, and decreased permeation in the presence of cholesterol. Finally, we identified effective drug accumulation in tumor tissues and antitumor efficacy with our optimized e-TSL, while adjusting lag-times for systemic accumulation.

  15. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...... of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB)....

  16. Distribution of local anesthetics between aqueous and liposome phases

    Czech Academy of Sciences Publication Activity Database

    Ruokonen, S. K.; Duša, Filip; Rantamäki, A. H.; Robciuc, A.; Holma, P.; Holopainen, J. M.; Abdel-Rehim, M.; Wiedmer, S. K.

    2017-01-01

    Roč. 1479, JAN (2017), s. 194-203 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : liposome electrokinetic chromatography * distribution constants * EOF markers Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  17. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  18. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes

    Czech Academy of Sciences Publication Activity Database

    Wolf, E. V.; Seybold, M.; Hadravová, Romana; Stříšovský, Kvido; Verhelst, S. H. L.

    2015-01-01

    Roč. 16, č. 11 (2015), s. 1616-1621 ISSN 1439-4227 R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : activity-based protein profiling * chemical probes * inhibitors * intramembrane proteases * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2015

  19. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives

    Directory of Open Access Journals (Sweden)

    Federico C

    2012-11-01

    Full Text Available Cinzia Federico, Valeria M Morittu, Domenico Britti, Elena Trapasso, Donato CoscoDepartment of Health Sciences, Building of BioSciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, Germaneto, ItalyAbstract: This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil®, Caelyx®.Keywords: gemcitabine, liposomes, multidrug, poly(ethylene glycol, tumors

  20. Rapid Quantification and Validation of Lipid Concentrations within Liposomes

    Directory of Open Access Journals (Sweden)

    Carla B. Roces

    2016-09-01

    Full Text Available Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics. The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, cholesterol, dimethyldioctadecylammonium (DDA bromide, and ᴅ-(+-trehalose 6,6′-dibehenate (TDB. The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested. The corresponding limit of detection (LOD and limit of quantification (LOQ were 0.11 and 0.36 mg/mL (DMPC, 0.02 and 0.80 mg/mL (cholesterol, 0.06 and 0.20 mg/mL (DDA, and 0.05 and 0.16 mg/mL (TDB, respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes.

  1. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian; Beke-Somfai, Tamá s; André asson, Joakim; Nordé n, Bengt

    2013-01-01

    by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran

  2. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Y. E.; Hanson, W. R.; Bharucha, J.; Ainsworth, E. J.; Jaroslow, B.

    1977-01-01

    The antitumor drug Actinomycin D is effective against the growth of some human solid tumors but its use is limited by its extreme toxicity. The development of a method of administering Act. D to reduce its systemic toxicity by incorporating the drug within liposomes reduced its toxicity but its tumoricidal activity was retained.

  3. pH-sensitive liposomes: characterization and application

    International Nuclear Information System (INIS)

    Connor, J.

    1986-01-01

    It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of target cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. 31 P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development

  4. Some factors affecting the valinomycin-induced leak from liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Gier, J. de; Deenen, L.L.M. van

    1974-01-01

    Experiments dealing with the valinomycin-induced K+ leak from egg lecithin liposomes have demonstrated the importance of the enclosed anion. Except when lipophilic anions are enclosed, the addition of both valinomycin and a uncoupler, e.g. carbonylcyanide p-trifluoromethoxyphenylhydrazone, is

  5. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes.

    Science.gov (United States)

    Sekowski, Szymon; Ionov, Maksim; Dubis, Alina; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2016-04-01

    We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.

  6. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  7. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  8. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  9. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Insufficient dietary intake and low iron bio- availability in foods ... pared with common iron supplements, iron liposomes can obviously ... to inhibit iron absorption in humans and in cell culture models11. ..... ical nutrition issues. The effects of .... of approximately 2-100 nm could play an active role in mediating ...

  10. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  11. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  12. Two-frequency radiospectrometer for studying paramagnetics under a strong magnetic field

    International Nuclear Information System (INIS)

    Vertii, A.A.; Gudym, I.Y.; Ivanchenko, I.V.

    1994-01-01

    A two-frequency radiospectrometer for studying electron paramagnetic resonance in the 120-150-GHz band and nuclear magnetic resonance in the 180-200-MHz band is described. The spectrometer is used to measure the properties of paramagnetics by a double-resonance technique in a magnetic field of up to 5 T at a temperature ranging from 1.7 to 20 degrees K

  13. Electrically-detected electron paramagnetic resonance of point centers in 6H-SiC nanostructures

    Czech Academy of Sciences Publication Activity Database

    Bagraev, N.T.; Gets, D.S.; Kalabukhova, E.N.; Klyachkin, L.E.; Malyarenko, A.M.; Mashkov, V.A.; Savchenko, Dariia; Shanina, B.D.

    2014-01-01

    Roč. 48, č. 11 (2014), s. 1467-1480 ISSN 1063-7826 R&D Projects: GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * electrically- detected electron paramagnetic resonance * 6H -SiC nanostructures * nitrogen-vacancy defect * point defect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.739, year: 2014

  14. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    Science.gov (United States)

    Lamichhane, Narottam

    Platinum based chemotherapy is amongst the mainstream DNA-damaging agents used in clinical cancer therapy today. Agents such as cisplatin, carboplatin are clinically prescribed for the treatment of solid tumors either as single agents, in combination, or as part of multi-modality treatment strategy. Despite the potent anti-tumor activity of these drugs, overall effectiveness is still hampered by inadequate delivery and retention of drug in tumor and unwanted normal tissue toxicity, induced by non-selective accumulation of drug in normal cells and tissues. Utilizing molecular imaging and nanoparticle technologies, this thesis aims to contribute to better understanding of how to improve the profile of platinum based therapy. By developing a novel fluorinated derivative of carboplatin, incorporating a Flourine-18 (18F) moiety as an inherent part of the molecule, quantitative measures of drug concentration in tumors and normal tissues can be directly determined in vivo and within the intact individual environment. A potential impact of this knowledge will be helpful in predicting the overall response of individual patients to the treatment. Specifically, the aim of this project, therefore, is the development of a fluorinated carboplatin drug derivative with an inherent positron emission tomography (PET) imaging capability, so that the accumulation of the drug in the tumor and normal organs can be studied during the course of therapy . A secondary objective of this research is to develop a proof of concept for simultaneous imaging of a PET radiolabeled drug with a SPECT radiolabeled liposomal formulation, enabling thereby bi-modal imaging of drug and delivery vehicle in vivo. The approach is challenging because it involves development in PET radiochemistry, PET and SPECT imaging, drug liposomal encapsulation, and a dual-modal imaging of radiolabeled drug and radiolabeled vehicle. The principal development is the synthesis of fluorinated carboplatin 19F-FCP using 2

  15. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    Science.gov (United States)

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  16. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  17. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  18. Paramagnetic relaxation enhancements in NMR peptide-membrane interaction studies

    International Nuclear Information System (INIS)

    Kosol, S.

    2011-01-01

    Small membrane-bound proteins or peptides are involved in numerous essential biological processes, like cellular recognition, signaling, channel formation, and cytolysis. The secondary structure, orientation, mode of interaction and dynamics of these peptides can be as varied as their functions. Their localization in the membrane, the immersion depth, and their binding mode are factors critical to the function of these peptides. The atomic 3D solution structure of peptides bound to micelles can be determined by NMR spectroscopy. However, by employing paramagnetic relaxation enhancements (PREs) information on the complete topology of peptide bound to a micelle can be obtained. The antimicrobial peptide maximin H6, fst, a bacterial toxin, and the human peptide hormone ghrelin served as membrane-bound model peptides of similar sizes but strongly differing amino acid sequences. Their structures and binding behavior were determined and compared.The measured PREs provided suitable data for determining and distinguishing the different topologies of the investigated peptides bound to micelles. Maximin H6 and fst fold into α-helices upon insertion into a membrane, whereas the unstructured ghrelin is freely mobile in solution and interacts only via a covalently bound octanoyl group with the lipids. Maximin H6 is oriented parallel to the membrane surface, enabling the peptide to aggregate at the membrane water interface. Fst binds in transmembrane orientation with a protruding intrinsically disordered region near the C-terminus. Aside from determining the orientation of the bound peptides from the PREs, the moieties critical for membrane binding could be mapped in ghrelin. If suitable relaxation-edited spectra are acquired, the complete orientation and immersion depth of a peptide bound to a micelle can readily be obtained. (author) [de

  19. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  20. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  1. A Novel Paramagnetic Substrate for Detecting Myeloperoxidase Activity in Vivo

    Directory of Open Access Journals (Sweden)

    Mohammed S. Shazeeb

    2012-09-01

    Full Text Available Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT with 5-hydroxytryptophan (HTrp. Characterization of the resulting probe (bis-HTrp-DTPA(Gd in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd (1 improves solubility in water; (2 acts as a substrate for both horseradish peroxidase and MPO enzymes; (3 induces cross-linking of proteins in the presence of MPO; (4 produces oxidation products, which bind to plasma proteins; and (5 unlike bis-5HT-DTPA(Gd, does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MR! in mice demonstrated that bis-HTrp-DTPA(Gd was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd from MPO-negative sites. Bis-HTrp-DTPA(Gd should offer improvements for MR! of MPO-mediated inflammation in vivo, especially in high-field MR!, which requires a higher dose of contrast agent.

  2. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

    Science.gov (United States)

    Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A

    2012-01-01

    Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.

  3. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore ...

  4. Platinum dendritic nanoparticles with magnetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenxian, E-mail: wl240@uowmail.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Solar Energy Technologies, School of Computing, Engineering, and Mathematics, University of Western Sydney, Penrith NSW 2751 (Australia); Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Tian, Dongliang [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and the Environment, Beihang University, Beijing 100191 (China)

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  5. Platinum dendritic nanoparticles with magnetic behavior

    International Nuclear Information System (INIS)

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-01-01

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  6. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier.

    Directory of Open Access Journals (Sweden)

    Jes Dreier

    Full Text Available In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers that transport their cargo directly through the skin barrier, but mainly burst and fuse with the outer lipid layers of the stratum corneum. It was also found that the flexible liposomes showed a greater delivery of the fluorophore into the stratum corneum, indicating that they functioned as chemical permeability enhancers.

  7. Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Xue; Lin, Congcong; Lu, Aiping; Lin, Ge; Chen, Huoji; Liu, Qiang; Yang, Zhijun; Zhang, Hongqi

    2017-11-01

    A main hurdle for the success of tumor-specific liposomes is their inability to penetrate tumors efficiently. In this study, we incorporated a cell-penetrating peptide BR2 onto the surface of a liposome loaded with the anticancer drug cantharidin (CTD) to create a system targeting hepatocellular carcinoma (HCC) cells more efficiently and effectively. The in vitro cytotoxicity assay comparing the loaded liposomes' effects on hepatocellular cancer HepG2 and the control Miha cells showed that CTD-loaded liposomes had a stronger anticancer effect after BR2 modification. The cellular uptake results of HepG2 and Miha cells further confirmed the superior ability of BR2-modified liposomes to penetrate cancer cells. The colocalization study revealed that BR2-modified liposomes could enter tumor cells and subsequently release drugs. A higher efficiency of delivery by BR2 liposomes as compared to unmodified liposomes was evident by evaluation of the HepG2 tumor spheroids penetration and inhibition. The biodistribution studies and anticancer efficacy results in vivo showed the significant accumulation of BR2-modified liposomes into tumor sites and an enhanced tumor inhibition. In conclusion, BR2-modified liposomes improve the anticancer potency of drugs for HCC.

  8. Physicochemical aspects of the liposome-wool interaction in wool dyeing.

    Science.gov (United States)

    Martí, Meritxell; Barsukov, Leonid I; Fonollosa, Jordi; Parra, José Luis; Sukhanov, Stanislav V; Coderch, Luisa

    2004-04-13

    Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

  9. A Liposomal Formulation Able to Incorporate a High Content of Paclitaxel and Exert Promising Anticancer Effect

    Directory of Open Access Journals (Sweden)

    Pei Kan

    2011-01-01

    Full Text Available A liposome formulation for paclitaxel was developed in this study. The liposomes, composed of naturally unsaturated and hydrogenated phosphatidylcholines, with significant phase transition temperature difference, were prepared and characterized. The liposomes exhibited a high content of paclitaxel, which was incorporated within the segregated microdomains coexisting on phospholipid bilayer of liposomes. As much as 15% paclitaxel to phospholipid molar ratio were attained without precipitates observed during preparation. In addition, the liposomes remained stable in liquid form at 4∘C for at least 6 months. The special composition of liposomal membrane which could reduce paclitaxel aggregation could account for such a capacity and stability. The cytotoxicity of prepared paclitaxel liposomes on the colon cancer C-26 cell culture was comparable to Taxol. Acute toxicity test revealed that LD50 for intravenous bolus injection in mice exceeded by 40 mg/kg. In antitumor efficacy study, the prepared liposomal paclitaxel demonstrated the increase in the efficacy against human cancer in animal model. Taken together, the novel formulated liposomes can incorporate high content of paclitaxel, remaining stable for long-term storage. These animal data also demonstrate that the liposomal paclitaxel is promising for further clinical use.

  10. Liposomes as potential carrier system for targeted delivery of polyene antibiotics.

    Science.gov (United States)

    Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M

    2013-09-01

    The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.

  11. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qianqian; Zhao, Tingting; Liu, Yanping; Xing, Shanshan; Li, Lei; Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Yanshan University, Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer (China)

    2016-02-15

    Therapy of solid tumors mediated by nano-drug delivery has attracted considerable interest. In our previous study, ursolic acid (UA) was successfully encapsulated into PEGylated liposomes. The study aimed to evaluate the tumor inhibition effect and cytotoxicity of the PEGylated UA liposomes by U14 cervical carcinoma-bearing mice. The liposomes were spherical particles with mean particle diameters of 127.2 nm. The tumor inhibition rate of PEGylated UA liposomes was 53.60 % on U14 cervical carcinoma-bearing mice, which was greater than those of the UA solution (18.25 %) and traditional UA liposome groups (40.75 %). The tumor cells apoptosis rate of PEGylated UA liposomes was 25.81 %, which was significantly higher than that of the traditional UA liposomes (13.37 %). Moreover, the kidney and liver did not emerge the pathological changes in UA therapeutic mice by histopathological analysis, while there were significant differences on tumor tissues among three UA formulation groups. The PEGylated UA liposomes exhibited higher anti-tumor activity and lower cytotoxicity, and the main reason was that the coating PEG layer improved UA liposome properties, such as enhancing the stability of liposomes, promoting the effect of slow release, and prolonging the time of blood circulation. This may shed light on the development of PEGylated nano-vehicles.

  12. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    International Nuclear Information System (INIS)

    Xi Xiaoyu; Zhang Dong; Yang Fang; Gu Ning; Chen Di; Wu Junru; Luo Yi

    2008-01-01

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process

  13. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Planeta, Josef; Wiedmer, S. K.

    2013-01-01

    Roč. 1317, SI (2013), s. 159-166 ISSN 0021-9673 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : monolithic silica capillary column * immobilized liposomes * biomimicking stationary phase Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  14. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    Science.gov (United States)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  15. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    Science.gov (United States)

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  17. Advances in nanotheranostics I design and fabrication of theranosic nanoparticles

    CERN Document Server

    2016-01-01

    This book highlights the recent advances in nanotheranostics from basic research to potential applications, and discusses the modular design and engineering of multiplex nanoparticles including gold nanostructures, luminescent nanoparticles, dendrimers and liposomes. Each chapter demonstrates multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy as new modalities for cancer theranostics. This comprehensive book presents expert views on the latest developments in theranostic nanomedicine. It focuses on potential theranostic applications of multifunctional nanoparticles ranging from identifying noninvasively cancer cells by molecular detection, and visualizing in vivo drug delivery by means of contrast enhanced imaging, to destroying cancer cell s with minimal side effects via selective accumulation at tumor sites, and real-time monitoring therapeutic effectiveness. It also presents an interdisciplinary survey of nanotheranostics and as such is a valuable reso...

  18. Advances in nanotheranostics I. Design and fabrication of theranosic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhifei (ed.) [Peking Univ., Beijing (China). College of Engineering

    2016-07-01

    This book highlights the recent advances in nanotheranostics from basic research to potential applications, and discusses the modular design and engineering of multiplex nanoparticles including gold nanostructures, luminescent nanoparticles, dendrimers and liposomes. Each chapter demonstrates multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy as new modalities for cancer theranostics. This comprehensive book presents expert views on the latest developments in theranostic nanomedicine. It focuses on potential theranostic applications of multifunctional nanoparticles ranging from identifying noninvasively cancer cells by molecular detection, and visualizing in vivo drug delivery by means of contrast enhanced imaging, to destroying cancer cell s with minimal side effects via selective accumulation at tumor sites, and real-time monitoring therapeutic effectiveness. It also presents an interdisciplinary survey of nanotheranostics and as such is a valuable resource for researchers and students in related fields.

  19. What nanomedicine in the clinic right now really forms nanoparticles?

    Science.gov (United States)

    Svenson, Sonke

    2014-01-01

    Some researchers believe nanomedicine will revolutionize healthcare and medicine through transformative new therapeutic tools. Nanocarriers, utilized to transport actives to the target site, are constructed from a wide range of materials. Nanocarriers can be grouped into self-assembling (liposomes, micelles), processed (nanoparticles, emulsions), and chemically bound (dendrimers, silica-based carriers, carbon nanotubes) structures. A review of nanomedicines on the market and in clinical translation reveals that the vast majority is based on liposomes, polymeric micelles, and nanoparticles. The increasing presence of these novel nanomedicines raises the question what nanomedicines in the clinic right now really form nanoparticles, i.e., are improvements we see from nanomedicines structure-related or do they result from improved formulations? Do we even have sufficient data to address this question? The formation of nanocarriers is usually confirmed in vitro but little if any in vivo (let alone clinical) information is available. Given the large number of nanomedicines on the market and under clinical evaluation one clearly cannot expect to find a 'one size fits all' answer. Therefore, two case studies are discussed: the paclitaxel formulation Taxol® and its nanomedicine companions LEP-ETU (liposome), Genexol®-PM and NK105 (micelles), and Abraxane® (nanoparticle). Published pharmacokinetic data is utilized to find differences indicating nanocarrier delivery. The second case study involves structurally related camptothecin-polymer conjugates CRLX101 (nanoparticles) and XMT-1001 (prodrug). Structural differences are evaluated to discuss the different aggregation behavior. This opinion can only serve as first attempt to find a more general answer; clearly more data is needed from future studies. © 2014 Wiley Periodicals, Inc.

  20. Electron paramagnetic resonance study of Ce doped partially stabilized ZrO2 crystals

    Directory of Open Access Journals (Sweden)

    Mikhail А. Borik

    2017-09-01

    Full Text Available ZrO2 (PSZ solid solutions crystals stabilized with yttrium and cerium oxides have been studied using electron paramagnetic resonance (EPR in the X and Q ranges. Zr3+ have been observed centers in the as-annealed ZrO2 crystals stabilized only by yttrium oxide (2.8 mol% Y2O3. Another type of paramagnetic-O-centers appear as a result of CeO2 addition to ZrO2 crystals along with yttrium oxide. To estimate the concentration of Ce3+ ions in PZS crystals, we recorded the EPR spectra in the presence of a reference at 7 K. Paramagnetic Ce3+ ions have been identified and their relative amount in the PSZ crystals before and after high-temperature heat treatment has been assessed. Annealing in air leads decreases the concentration of Ce3+ ions for all the test compositions and changes the color of the crystals from red to white. After annealing of the sample 2.0Y0.8Ce3Zr, the amount of paramagnetic Ce3+ ions decreased approximately twofold. Paramagnetic centers from Ce3+ have not been detected in the specimen with a low cerium content of 0.1 mol% after annealing which indicates the complete transition of Ce3+ to the Ce4+ state. We show that the forming cerium paramagnetic centers are bound by strong exchange interactions. No angular dependence of the EPR lines of the paramagnetic Ce3+ cations on the applied external magnetic field has been observed. Probable origin of the absence of angular dependence is that the impurity rare-earth ions are located close to one another, forming impurity clusters with an effective spin of Seff=1/2.