WorldWideScience

Sample records for paramagnetic lanthanide complexes

  1. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  2. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  3. Subnanodimensional thermometrical NMR-sensors on the basis of lanthanide(III) paramagnetic complexes with EDTA for temperature control in aqueous media and magnetoresonance tomography

    International Nuclear Information System (INIS)

    Babajlov, S.P.

    2008-01-01

    It is proposed that temperature dependence of paramagnetic lanthanide-induced shifts (LIS) in NMR spectra on nuclei of EDTA type synthetic organic complexes in kinetically unstable compounds with paramagnetic lanthanide(III) cations is used for ascertaining the temperature of samples placed directly into a NMR spectrometer and formed on the basis of aqueous solutions of diverse chemical substances. It was revealed that complex [Ho III (EDTA)] can be used as an internal or an external thermometric NMR-sensor. For identification and control of temperature in a sample one can make use of LIS for individual signals from CH 2 groups (taken in relation to water or inner DCC standard signals). A higher temperature measurement accuracy (≤0.08 K) is attained by using LIS difference corresponding to the relevant nonequivalent CH 2 groups [ru

  4. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Yokochi, Masashi; Kobashigawa, Yoshihiro; Inagaki, Fuyuhiko

    2009-01-01

    Paramagnetic lanthanide ions fixed in a protein frame induce several paramagnetic effects such as pseudo-contact shifts and residual dipolar couplings. These effects provide long-range distance and angular information for proteins and, therefore, are valuable in protein structural analysis. However, until recently this approach had been restricted to metal-binding proteins, but now it has become applicable to non-metalloproteins through the use of a lanthanide-binding tag. Here we report a lanthanide-binding peptide tag anchored via two points to the target proteins. Compared to conventional single-point attached tags, the two-point linked tag provides two to threefold stronger anisotropic effects. Though there is slight residual mobility of the lanthanide-binding tag, the present tag provides a higher anisotropic paramagnetic effect

  5. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin.

  6. Electron paramagnetic resonance and neutron activation study of lanthanide ions behaviour in fluorite. Application to the geochemical study of Montroc and Burc veins (Tarn)

    International Nuclear Information System (INIS)

    Meary, Alain

    1983-01-01

    In order to obtain a better understanding of fluorite deposits, rare earth impurities have been analyzed for a large number of samples taken from cross-sections of several low temperature hydrothermal veins; two types of measurements have been used: Electron Paramagnetic Resonance (EPR) and Neutron Activation Analysis (NAA). This enabled us to measure a 'deficit of spins' relative to the total lanthanide concentration, this deficit reveals that the paramagnetic center observed by EPR is not the only mode of incorporation. For Gd no marked deficit is observed; that is the ratio of spin concentrations to total concentration [Gd 3+ ]/[Gd total ] is close to 1 in all the samples; on the other hand, the ratios [Eu 2+ ]/[Eu total ], [Ce 3- F i - ]/[Ce total ], and [Yb 3+ ]/ [Yb total ] exhibit large variations. The first result suggests that the major part of the lanthanides in the samples is incorporated in the crystal lattice and that clustering of lanthanides ions is not important. Deficit of spins observed for Ce and Nd are probably due to the dissociation of paramagnetic complexes Ce 3+ -F i - and Nd 3+ -F i - ; for Eu, it may be attributed to the oxidized state Eu 3+ . Moreover, the sign and the amplitude of the anomaly exhibited by Eu in the normalized lanthanides spectra may be correlated with the majority valence state of Eu in the crystal: a marked positive anomaly belongs to a deficit of paramagnetic divalent Eu and, inversely, if divalent Eu is the majority valence state, the Eu anomaly appears to be negative. The results obtained for the Montroc vein are consistent with a model involving discontinuous injections of hydrothermal solutions. They may be connected to variations of oxygen fugacity arising from cooling of these solutions and from precipitation of sulfides during fluorite precipitation. (author) [fr

  7. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Madeleine [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Schwieters, Charles D. [National Institutes of Health, Office of Intramural Research, Center for Information Technology (United States); Göbl, Christoph [Technische Universität München, Department of Chemistry (Germany); Opina, Ana C. L. [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Strub, Marie-Paule [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Swenson, Rolf E.; Vasalatiy, Olga [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Tjandra, Nico, E-mail: tjandran@nhlbi.nih.gov [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States)

    2016-10-15

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using {sup 17}O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  8. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    International Nuclear Information System (INIS)

    Strickland, Madeleine; Schwieters, Charles D.; Göbl, Christoph; Opina, Ana C. L.; Strub, Marie-Paule; Swenson, Rolf E.; Vasalatiy, Olga; Tjandra, Nico

    2016-01-01

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using "1"7O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  9. Investigation of lanthanide ions and other paramagnetic impurities in natural fluorite by electron paramagnetic resonance: examples of application to mining exploration and geochemistry

    International Nuclear Information System (INIS)

    Chatagnon, B.

    1981-01-01

    This research thesis reports the application to geology, and more particularly to geochemistry and mining exploration, of a physical method: the electron paramagnetic resonance (EPR). After a report of a bibliographical investigation on mineralogy and geochemistry of fluorite and lanthanides, as well as on paramagnetic centres observed by physicists in synthetic fluorite, the author reports an experimental work, and describes two examples of application of EPR: firstly, the exploration of radioactive ores, and secondly, with the joint use of neutron activation analysis, the characterization of the redox status of the hydrothermal solution which is at the origin of fluorinated mineralisation

  10. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Hass, Mathias A. S.; Liu, Wei-Min; Agafonov, Roman V.; Otten, Renee; Phung, Lien A.; Schilder, Jesika T.; Kern, Dorothee; Ubbink, Marcellus

    2015-01-01

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements

  11. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Arppe, Riikka, E-mail: riikka.arppe@utu.fi; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamaeki, Terhi; Soukka, Tero [University of Turku, Department of Biotechnology (Finland)

    2013-09-15

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF{sub 4}: Yb{sup 3+}, Er{sup 3+}-nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them.

  12. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    International Nuclear Information System (INIS)

    Arppe, Riikka; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamäki, Terhi; Soukka, Tero

    2013-01-01

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF 4 : Yb 3+ , Er 3+ -nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them

  13. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  14. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    Science.gov (United States)

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  15. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  16. Thermometric nanosize NMR-sensors for temperature determination in weakly polar non-aqueous media on the base of ion pairs of paramagnetic complexes of lanthanides(III)

    International Nuclear Information System (INIS)

    Babajlov, S.P.

    2008-01-01

    For temperature determination in solutions it is suggested that the temperature dependence of the paramagnetic lanthanide-induced shifts (LIS) in the NMR spectra on the ligand nuclei be used for [Ln(PTA) 2 (18-crown-6)] + [Ln(PTA) 4 ] - complex ion pairs formed in CCl 4 , CDCl 3 , CD 2 Cl 2 , CD 3 C 6 D 5 , and C 2 D 3 N type low-polar solvents (Ln = La, Ce, Pr, Nd, Eu; PTA is the pivalyltrifluoroacetonate anion). It was found experimentally that the [Ln(PTA) 2 (18-crown-6)] + complex cation molecules (Ln = Ce and Pr) proved most suitable for use as nanosized (∼1.1 nm) probes for temperature determinations in nonaqueous solutions. A linear dependence of the LIS on the 1 H nuclei of different groups and the difference between the LIS corresponding to the CH 2 groups of the 18-crown-6 molecules and the CH groups of the PTA anions on the reciprocal temperature (1/T) was found. The LIS of the individual signals of different groups in Ln paramagnetic complexes (relative to the signals of the diamagnetic analogs, e.g., La or Lu) may be used for temperature control in the sample, although the temperature measurement error is smaller (≤0.04 K) when the difference between the LIS of the CH 2 and CH groups is used. Due to the high thermodynamic and kinetic stability combined with small sizes of [Ln(PTA) 2 (18-crown-6)] + [Ln(PTA) 4 ] - molecules in nonaqueous solutions, these compounds may be used as thermometric NMR sensors directly in reaction media for in situ control over temperature [ru

  17. Factors in the complexation of lanthanides

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The lanthanide cations are classified as hard acids and thus will coordinate strongly with oxygen and fluorine donor atoms. The electrostatic model is applied to lanthanide complexes with the dielectric constant as a parameter; the plot of ΔG vs sum of ionic radii confirm the ionic nature of the bonding. The enthalpy and entropy changes are shown to compensate each other to produce an almost linear variation in the free energy of complexation. Outer-sphere and inner-sphere complexation is discussed

  18. Lanthanide complexation in aqueous solutions

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1984-01-01

    The lanthanide elements form an extended series of cations with the same charge, slightly varying radii and useful magnetic and spectroscopic properties. Their use in technology is growing rapidly as their properties are more fully explored. The lanthanides also offer scientists valuable and often unique probes for investigating a variety of chemical and physical phenomena. This review has attempted to call attention to these latter uses without trying to provide a thorough discussion of all the relevant literature. Hopefully, awareness of the more interesting facets of present studies of lanthanide complexes in aqueous solution will spur even more advances in the use of these elements. (Auth.)

  19. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    Science.gov (United States)

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  20. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    Science.gov (United States)

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  1. Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.

    Science.gov (United States)

    Babailov, Sergey P

    2012-02-06

    (1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution.

  2. Lanthanide (III) complexes of 2-(N-salicylideneamino)-4-phenylthiazole

    International Nuclear Information System (INIS)

    Sasidharan, G.N.; Mohanan, K.; Lakshmi Prabha, A.N.

    2002-01-01

    Lanthanide(III) complexes of 2-(N-salicylideneamino)-4- phenylthiazole (HSAT) have been synthesised and characterised by elemental, analytical, thermogravimetric, molar conductance, UV- visible, IR and NMR spectral data. The ligand coordinates to the lanthanide(III) ion in a tridentate fashion without deprotonation, giving complexes of the type [Ln(HSAT) 2 (NO 3 ) 3 ] and [Ln(HSAT) 2 (H 2 0) 3 Cl 3 ]. The spectral data reveal that the ligand is bonded to the lanthanide ion through azomethine nitrogen, ring nitrogen and phenolic oxygen without deprotonation. The nitrate group acts in a bidentate fashion. The ligand and the metal complexes exhibit antibacterial and antifungal activities. (author)

  3. Determination of stability constants of lanthanide complexes with tetracycline

    International Nuclear Information System (INIS)

    Saiki, Mitiko

    1975-01-01

    The stability constants of complexes compounds formed with tetracycline and lanthanides elements were determined for all lanthanides except promethium. The experimental procedure used was solvent extraction of the lanthanides labelled with their radioactive isotopes. It was shown that the formed complexes are mononuclear and that no hydroxo complexes or negatively charged complexes are formed in the experimental conditions of this work. Four methods of calculation were used for all complexes studied: the method of the average number of ligands, the method of limiting value, the method of two parameters and the method of weighted least squares. A comparison was made of the graphical methods with the method of least squares, showing the convenience of preceding least squares calculation by the graphical methods, in order to verify eventual mistakes of numerical data. It was shown the advantage of using radioisotopes of the elements for such a study, specially if the solvent extraction technique is used to-get the experimental data. (author)

  4. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    Science.gov (United States)

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  5. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  6. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Studies on trivalent lanthanide complexes of bis-vanillin p-phenylenediamine

    International Nuclear Information System (INIS)

    Shahma, Abu; Ahmad, Naseer

    1983-01-01

    The coordination interaction of lanthanide(III) chlorides with bis-vanillin o-phenylenediamine was studied by Ansari and Ahmad (1977). It was thought fruitful to compare these with the complexes of trivalent lanthanide ions with bis-vanillin p-phenylenediamine. The newly synthesized complexes were subjected to elemental, thermogravimetric and differential thermal analyses and their melting points, magnetic susceptibilities, molar conductances determined and infrared and electronic spectra taken. (author)

  9. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  10. Handbook on the physics and chemistry of rare earths: Volume 19: Lanthanides/Actinides: Physics, 2

    International Nuclear Information System (INIS)

    Gschneidner, Karl A.; Eyring, LeRoy; Choppin, G.R.; Lander, G.H.

    1994-01-01

    This handbook comprises five chapters on the lanthanide and actinide materials. In the first chapter the inelastic neutron scattering behaviors of the lanthanides and actinides are compared. In the next chapter the focus is on neutron scattering by heavy fermion single crystal materials, including metallic materials with a paramagnetic ground state, superconductors, metallic and semiconducting antiferromagnets and nearly insulating paramagnets. In chapter three a comprehensive review of intermediate valence and heavy fermions in a wide variety of lanthanide and actinide compounds is given, ranging from metallic to insulating materials. In chapter four two issues on the high pressure behaviours of anomalous cerium, ytterbium and uranium compounds are dealt with. In the final chapter an extensive review is given the thermodynamic properties of lanthanide and actinide metallic systems

  11. Synthesis and characterization of lanthanide picrate complexes with 4-picoline-N-oxide (4-pic N O)

    International Nuclear Information System (INIS)

    Silva, E.M. da.

    1991-01-01

    The lanthanide picrate complexes with 4-picoline-N-oxide were obtained from ethanolic solutions of the hydrated lanthanide picrate and the ligand. The lanthanide content was determined by complexometric titration with EDTA. Carbon, Nitrogen and Hydrogen were determined by microanalytical procedures. Chemical analysis of the lanthanide picrate complexes are also presented. (author)

  12. 2,2',-bipyridine and 1,10-phenanthroline complexes of lanthanide(III) trifluoroacetates

    International Nuclear Information System (INIS)

    Misra, S.N.; Singh, M.

    1983-01-01

    The syntheses and characterization of lanthanide(III) triflloroacetate complexes with 2,2'-bipyridine and 1,10-phenanthroline are reported. Lanthanide(III) trifluoroacetates yield compounds of the type Ln(CF 3 COO) 3 .bipy or phen with 2,2'-bipyridine and 1,10-phenanthroline. Their properties and structures have been studied using chemical analyses. electronic and infrared spectra. Thermal analysis of a few complexes have also been done. The infrared data show that the trifluoroacetate group acts as a bidentate ligand making the coordination number of lanthanide eight. (author)

  13. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    Science.gov (United States)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  14. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides

    International Nuclear Information System (INIS)

    Flandin, J.L.

    2001-01-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties (Δ r G, Δ r H et Δ r S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties Δ r G et Δ r H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  15. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  16. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3- for protein structure analysis

    International Nuclear Information System (INIS)

    Yagi, Hiromasa; Loscha, Karin V.; Su, Xun-Cheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried

    2010-01-01

    Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA) 3 ] 3- , can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA) 3 ] 3- to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd 3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA) 3 ] 3- complexes of paramagnetic lanthanide (Ln 3+ ) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.

  17. Quantum chemical prediction of antennae structures in lanthanide complexes

    International Nuclear Information System (INIS)

    Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S.

    2008-01-01

    In this paper the quantum chemical semiempirical procedure recently proposed by us to predict ground- and excited-state geometries of lanthanide complexes, the pseudo coordination centre method (PCC), is preliminarily compared with the semiempirical sparkle model for the calculation of lanthanide complexes (SMLC). Contrary to the SMLC method, where the rare-earth ion is replaced by a reparameterized sparkle atom, in our approach we replace it with a metal ion which is already present in the chosen semiempirical parameterization. This implies that in the optimization of the geometry of the complexes a different weight is implicitly given to the complex region including the rare-earth ion and its neighbour atoms with respect to the region of the ligands aggregate. As a consequence our approach is expected to reproduce better than the SMLC one the geometry of the ligands aggregate embedded in the complex, while the contrary happens for the coordination distances

  18. Synthetic approaches to lanthanide complexes with tetrapyrrole type ligands

    International Nuclear Information System (INIS)

    Pushkarev, V E; Tomilova, L G; Tomilov, Yu V

    2008-01-01

    Approaches to the synthesis of single-, double- and triple-decker complexes of lanthanides with phthalocyanines and their analogues known to date are considered. Examples of preparation of sandwich-type complexes based on other metals of the Periodic system are given.

  19. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  20. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  1. Coordination symmetry determination of some lanthanide complexes by x-ray diffraction

    International Nuclear Information System (INIS)

    Oliveira Paiva Santos, C. de.

    1983-01-01

    The x-ray determination of the crystal and molecular structures of three lanthanide complexes is described. The work is a contribution to the study of the coordination chemistry of lanthanide ions with organic ligands and in particular, it aims to compare the observed point symmetry of the ion environment with spectroscopic predictions. (author)

  2. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides; Approche calorimetrique de la complexation et de l'extraction des lanthanides (3) par les malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Flandin, J.L

    2001-07-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties ({delta}{sub r}G, {delta}{sub r}H et {delta}{sub r}S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties {delta}{sub r}G et {delta}{sub r}H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  3. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  4. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  5. Engineering [Ln(DPA){sub 3}]{sup 3-} binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xinying; Yagi, Hiromasa; Su Xuncheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried, E-mail: gottfried.otting@anu.edu.au [Australian National University, Research School of Chemistry (Australia)

    2011-08-15

    Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and independent of cysteine residues. It relies on preferential binding of the complex between three dipicolinic acid molecules (DPA) and a lanthanide ion (Ln{sup 3+}), [Ln(DPA){sub 3}]{sup 3-}, to a pair of positively charged amino acids whose charges are not compensated by negatively charged residues nearby. This situation rarely occurs in wild-type proteins, allowing the creation of specific binding sites simply by introduction of positively charged residues that are positioned far from glutamate or aspartate residues. The concept is demonstrated with the hnRNPLL RRM1 domain. In addition, we show that histidine- and arginine-tags present binding sites for [Ln(DPA){sub 3}]{sup 3-}.

  6. Stability complexes of lanthanide ions with some macrocyclic polyethers

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Malinka, E.V.; Meshkova, S.B.; Bel'tyukova, S.V.; Danilkovich, M.M.

    1984-01-01

    Stability of lanthanide complexes with macrocyclic polyethers has been studied versus the number of f-electrons, spin- and orbital angular momenta of the Lu 3+ ion ground states. The following compounds were used as macrocyclic complexones: 12-crown-4 (12C4), tert-bulylbenzo-15-crown-5(BB15C5), 18-crown-6 (18C6), ditert-butylbenzo-18-crown-6(DBB18C6), dibenzo-30-crown-10 (DB30C10), cryptand [2, 2, 1] (Cr[2, 2, 1]). It is shoWn that the stability constants of the studied lanthanide complexes can be described rather satisfactorily by an expression suggested earlier that relates their values with the number of 4f-electrons and the S and L quantum numbers of the ground states of the lantharide ions

  7. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  8. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  9. Contribution to the study of pseudohalides complexes of tervalent, lanthanides and actinides in solution

    International Nuclear Information System (INIS)

    Cuillerdier, Christine.

    1981-10-01

    Some complexes formed with halides or pseudohalides (iodide, cyanide, azide and thiocyanate) and tervalent lanthanides and actinides have been studied in solution. Methods like solvent extraction, polarography have been used to measure inner plus outer sphere complexation and spectroscopic methods have been chosen to study inner sphere complexes only. It has been found that inner sphere complexe of americium and neodymium with cyanide exist in aqueous solutions. Tervalent actinides form stronger inner sphere complexes with azide than lanthanide in solution. Thiocyanate complexes appear to be inner sphere and N-bonded [fr

  10. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  11. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals

    Science.gov (United States)

    Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.

    2018-01-01

    Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.

  12. Structural biology of the lanthanides-mining rare earths in the Protein Data Bank.

    Science.gov (United States)

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-02-01

    With its about 100,000 three-dimensional structures, the Protein Data Bank is a copious source of information: it contains also some hundreds of structures of macromolecules complexed with lanthanide cations, which are examined here. These cations, which are found in a wide variety of protein types, were introduced to determine the structures, by exploiting their anomalous dispersion (in crystallographic studies, where they are also used as crystallization additives) or the paramagnetic pseudocontact shifts (in NMR analyses). The coordination numbers in the first coordination sphere are very variable, though they tend to be close to those that are observed in small molecules or in water solution. The coordination polyhedra are also quite variable as it can be expected for large cations. Interestingly, lanthanide cations are frequently observed in packing bridges between symmetry equivalent molecules in crystals, where they tend to form polynuclear complexes, with up to seven cations bridged by water/hydroxide ligands. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Complexes of light lanthanides with 2,4-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    WIESLAWA FERENC

    2000-01-01

    Full Text Available The complexes of light lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O43·nH2O where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III, Gd(IIII, and n = 3 for La(III, Gd(III, n = 2 for Sm(III, Eu(III, and n = 0 for Ce(III, Pr(III, Nd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies and X-ray diffraction measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd-white, Sm-cream, Pr-green, Nd-violet. The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the 2,4-dimethoxybenzoates of the light lanthanides decompose in various ways. The hydrated complexes decompose in two or three steps while those of anhydrous ones only in one or two. The trihydrate of lanthanum 2,4-dimethoxybenzoate first dehydrates to form the anhydrous salt, which then decomposes to La2O3via the intermediate formation of La2O2CO3. The hydrates of Sm(III, Eu(III, Gd(III decompose in two stages. First, they dehydrate forming the anhydrous salts, which then decompose directly to the oxides of the respective metals. The anhydrous complexes of Ce(III, Pr(III decompose in one step, while that of Nd(III in two. The solubilities of the 2,4-dimethoxybenzoates of the light lanthanides in water and ethanol at 293 K are in the order of: 10-3 mol dm-3 and 10-4-10-3 mol dm-3, respectively.

  14. Structural investigation of the complexation of uranyl and lanthanide ions by CMPO-functionalized calixarenes

    International Nuclear Information System (INIS)

    Cherfa, S.

    1998-12-01

    A way to reduce the volume of nuclear wastes is to make a simultaneous extraction of actinides and lanthanides for their ulterior separation. Historically, the two first series of extractants used for the reprocessing of these wastes are the phosphine oxides and the CMPO (carbamoyl methyl phosphine oxide). In order to better know the type of complexes formed during the extraction, have been carried out structural studies concerning these two series (uranyl complexes and lanthanide nitrates). These studies have been carried out by X-ray diffraction on monocrystals. More recently, a new series of extracting molecules of lanthanides (III) and actinides (III) have been developed. It has been shown that in functionalizing an organic macrocycle of calixarene type (cyclic oligomer resulting of the poly-condensation of phenolic units) by a ligand of CMPO type, the extracting power of these molecules in terms of yield and selectivity towards the lighter lanthanides was superior to those of the CMPO alone. This study, carried out by X-ray diffraction on monocrystals of complexes formed between these ligands calix[4]arenes-CMPO (with 4 phenolic units) with uranyl and lanthanides nitrates, has allowed to define the type of the formed complexes, that is to say to establish the stoichiometry and the coordination mode (monodentate or bidentate) of the CMPO functions. These different steps of characterization have allowed too to determine the correlations existing between the complexes structures in the one hand and the selectivity and the exacerbation of the extracting power measured in liquid phase on the other hand. (O.M.)

  15. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  16. Synthesis and study on complexes of some lanthanides to L-isoleucine

    International Nuclear Information System (INIS)

    Le Minh Tuan; Pham Minh Tuan; Tran The Dinh

    2007-01-01

    The formation of lanthanide (La, Pr and Nd) complexes with L-isoleucine have been studied as a function of pH values. The titrations were performed at 25 o C, and the ionic strength of the medium was maintained at 0.10 M by using potassium nitrate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The complexes were synthesized in the mixture of water-ethanol. The coordination of the complexes were determined by elements analysis, 13 C-NMR, 1 H-NMR and IR methods. These complexes are formulated as Ln(HIle) 3 .(NO 3 ) 3 .3H 2 O; (Ln: La, Pr and Nd,; L-Ile: L-isoleucine). Comparison of the IR, 13 C-NMR and 1 H-NMR spectra of the ligand with those of their complexes shows that isoleucine acts as a bidentate ligand bonding the lanthanide ions through the amino and carboxylate groups. (author)

  17. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  18. Polymetallic lanthanide (III) complexes for the design of new luminescent materials

    International Nuclear Information System (INIS)

    Marchal, C.

    2008-09-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecular chemistry and allows the combination of their nano-scopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecular lanthanide complexes quite challenging. In order to better understand the factors determining the assembly of lanthanide-based polymetallic arrays, we designed two different types of organic ligands, which favor, in one case, formation of infinite polymetallic complexes (coordination polymers), and in the case the assembly of discrete polymetallic architectures. Thus, we show that the use of flexible and multi-dentate picolinate-derivative ligands enables the formation of infinite and luminescent infinite frameworks which display very interesting luminescent properties. Geometry of the ligand has a great influence on the final network architecture. Particularly, implementation of four picolinate units within a tetrapodal ligand results in the controlled assembly of 1-D coordination polymers. Conversely to favor the controlled assembly of discrete polymetallic arrays we use dissymmetric ligands which displays low denticity. Complexation studies of a tridentate 8- hydroxyquinoline-derivative ligand as well as a tetradentate ligand possessing an oxazoline ring are presented. (author)

  19. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3)

    International Nuclear Information System (INIS)

    Philippini, V.

    2007-12-01

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An 3+ and Ln 3+ cations. The study of the solubility of double carbonates (AlkLn(CO 3 ) 2 ,xH 2 O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO 3 ) 4 5- whereas the heaviest (Eu and Dy) form Ln(CO 3 ) 3 3- in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO 3 ) 4 5- while Dy to Lu form Ln(CO 3 ) 3 3- . Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO 3 ) 3 3- complex, specially with Cs + . Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  20. Lanthanides(3)/ actinides (3) separation by nano-filtration-complexation in aqueous medium

    International Nuclear Information System (INIS)

    Chitry, F.; Pellet-Rostaing, S.; Gozzi, C.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Lanthanides(III)/actinides(III) separation is a major research subject in matter of treatment of high activity liquid effluents. Liquid-liquid extraction actually gives the best results for this separation. In order to demonstrate that nano-filtration (NF) is a valuable alternative to liquid-liquid extraction, we tried to separate different lanthanides(III) with a nano-filtration process combined with a selective complexation step. At first DTPA (diethylene-triamine-pentaacetic acid) combined with a Sepa MG-17 (Osmonics) gave a 95% retention of Gd 3+ and a 50% retention of La 3+ . Then new hydrosoluble and more selective ligands derived from DTPA were synthesized. One of them combined with a Sepa MG-17 membrane allowed a 87% retention of Gd 3+ and a 5% retention of La 3+ . The same nano-filtration-complexation system was experimented with an equimolar aqueous solution of Gd 3+ , Pr 3+ and La 3+ . Other experiments in the field of actinides(III)/lanthanides(III) separation were also performed. (authors)

  1. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  2. Complexes of trivalent lanthanide ions with schiff base derived from vanillin and triethylenetetraamine

    International Nuclear Information System (INIS)

    Shahma, A.; Athar, M.; Ahmad, N.

    1982-01-01

    Complexes of lanthanide(III) ions with the schiff base derived from vanillin and triethylenetetraamine have been synthesised and characterised on the basis of elemental analyses, molar conductance, magnetic moment, IR and thermal analysis data. The thermograms show the elimination (OH)(OCH 3 )C 6 H 3 CH-group at low temperatures before the elimination of triethylenetetraamine part corroborating the observation made on the basis of IR spectral data. This is a clear indication of the non-coordination of the phenolic hydroxyl groups. The lanthanide ions in the complexes exhibit eight coordination numbers. (author)

  3. Study of electron spectra of lanthanide complexes with carbonyl-containing reagents

    International Nuclear Information System (INIS)

    Tishchenko, M.A.; Gerasimenko, G.I.; Markina, A.I.; Tishchenko, V.V.; Rybalka, V.B.; Tsitko, A.S.

    1990-01-01

    Interaction of lanthanide complexes (Ln=Er, Nd, Ho) of 2-acetylindandione-1,3 with polyphenols was investigated by the methods of electron spectroscopy. Position, intensity, oscillator strengths of supersensitive transitions, formed in the system of different-ligand complexes were determined. 10 refs.; 4 figs.; 3 tabs

  4. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  5. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  6. Bis(pentamethylene)urea complexes of the lanthanide nitrates: synthesis, characterization, properties

    International Nuclear Information System (INIS)

    Souza, H.K.S. de; Pedrosa, A.M.G.; Marinho, E.P.M.; Batista, M.K.S.; Melo, D.M.A.; Zinner, K.; Zinner, L.B.; Zukerman-Schpector, J.; Vicentini, G.

    2003-01-01

    Lanthanide nitrate complexes of bis(pentamethylene)urea (BPMU) with general formula Ln(NO 3 ) 3 3BPMU, where Ln: La, Nd, Sm, Eu, Ho and Er have been prepared and characterized based on CHN elemental analyses, lanthanide titration with EDTA, molar conductivity, spectroscopic data and thermal studies. The infrared spectra show that ligands (BPMU) are bonded through the carbonyl oxygen, nitrate counter-ions are bidentate linked to the central ions. The structure of the neodymium complex was determined. The crystal is monoclinic, P2 1/c ,Z=4, with the following parameters: a=10.148(1) A, b=21.879(2), c=19.154(2) A, β=104.11(1) deg., V=4124.3(7) A 3 . The polyhedron is a distorted tricapped trigonal prism, coordination number nine

  7. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  8. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  9. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  10. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  11. NMR study of heteroligand lanthanide complexes. Structure and stoichiometry of chelates of cerium subgroup with 18-member polyethers

    International Nuclear Information System (INIS)

    Bajbalov, S.P.; Kriger, Yu.G.

    1993-01-01

    Different ligand complexes of lanthanides were studied by the method of 1 H NMR, the results being presented. The literature data on the study of complexes of the class in solution were generalized. Detection of lanthanide-induced splitting of group CH 2 diastereotopic proton signals of macrocyclic polyethers in the complexes is enough to identify kinetically stable complexes, having inclusive type structure. 16 refs., 2 figs., 2 tabs

  12. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  13. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    Science.gov (United States)

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  14. Studies of lanthanide complexes by a combination of spectroscopic methods

    Czech Academy of Sciences Publication Activity Database

    Krupová, Monika; Bouř, Petr; Andrushchenko, Valery

    2015-01-01

    Roč. 22, č. 1 (2015), s. 44 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] Institutional support: RVO:61388963 Keywords : lanthanide complexes * chirality sensing * chirality amplification * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    Science.gov (United States)

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  16. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I

    Directory of Open Access Journals (Sweden)

    Jill R. Hanna

    2017-05-01

    Full Text Available The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I. This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I.

  17. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    International Nuclear Information System (INIS)

    Peters, Fabian; Maestre-Martinez, Mitcheell; Leonov, Andrei; Kovačič, Lidija; Becker, Stefan; Boelens, Rolf; Griesinger, Christian

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very well with the protein structure. We show that Cys-Ph-TAHA can be used to label large proteins that are biochemically challenging such as the Lac repressor in a 90 kDa ternary complex with DNA and inducer.

  18. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  19. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  20. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    Science.gov (United States)

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes

    International Nuclear Information System (INIS)

    Barros, N.

    2007-06-01

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  3. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  4. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  5. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  6. Magnetic Circular Dichroism of Porphyrin Lanthanide M3+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, E.; Yamamoto, S.; Bouř, Petr

    2014-01-01

    Roč. 26, č. 10 (2014), s. 655-662 ISSN 0899-0042 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * lanthanides * porphyrin complexes * density functional theory * sum over state computations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.886, year: 2014

  7. Direct nano ESI time-of-flight mass spectrometric investigations on lanthanide BTP complexes in the extraction-relevant diluent 1-octanol

    International Nuclear Information System (INIS)

    Steppert, M.; Walther, C.; Geist, A.; Fanghanel, Th.

    2009-01-01

    The present work focuses on investigations of a highly selective ligand for Am(III)/Ln(III) separation: bis-triazinyl-pyridine (BTP). By means of nano-electro-spray mass spectrometry, complex formation of BTP with selected elements of the lanthanide series is investigated. We show that the diluent drastically influences complex speciation. Measurements obtained in the extraction-relevant diluent 1-octanol show the occurrence of Ln(BTP) i (i 1-3) species in different relative abundances, depending on the lanthanide used. Here, the relative abundances of the Ln(BTP) 3 complexes correlate with the distribution ratios for extraction to the organic phase of the respective lanthanide. (authors)

  8. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    Science.gov (United States)

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  9. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses

    International Nuclear Information System (INIS)

    Lenaerts, Philip; Ryckebosch, Eline; Driesen, Kris; Deun, Rik van; Nockemann, Peter; Goerller-Walrand, Christiane; Binnemans, Koen

    2005-01-01

    The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured

  10. Separation and estimation of lanthanides using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Vasudeva Rao, P.R.

    2012-01-01

    The separation efficiency of individual lanthanides depends on the stability constant of the metal-ligand complex. Therefore, stability constant data of lanthanide complexes is important in the development of high performance separation procedures. The dynamic ion exchange HPLC technique was employed at our laboratory to estimate the stability constant of lanthanides with various complexing agents. In these studies, the retention times as well as capacity factors of lanthanides and some actinides were measured as a function of CSA, complexing agent concentrations and mobile phase pH. From these studies, a correlation has been established between capacity factor of a metal ion, concentrations of ion-pairing reagent and complexing agent with the stability constant of lanthanide complex

  11. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  12. Lanthanide-based fluorescent tracers in complex media

    International Nuclear Information System (INIS)

    Brichart, Thomas

    2014-01-01

    Tracers are objects allowing the determination of the position or the distribution of a product; tracers are currently used in a great variety of domains. Despite the fact that each field has it's own specifications, it is possible to find tracers in medicine (contrast agents), anti-counterfeiting or geological exploration. We have developed lanthanide complex tracers for oil field injection waters. Those tracers, derived from the DOTA, have been detected at concentration lower than 1 ppb, thanks to a simple and compact apparatus. This detection has been made possible by the use of time-resolved fluorescence spectroscopy, this technique allows us to get rid of the background noise created by the intrinsic fluorescence of oil residues that are present in production waters. We also demonstrated how we can, through a reverse microemulsion synthesis, encapsulate several different dyes inside a single nanoparticle composed of a gold core and a silica shell. We showed as well, how those particles can be used as smart tracers to gather data, such as temperature, pH, solvents, etc. inside the well. Finally the use of lanthanides and scale inhibitors properties allowed us to create a simple and fast dosing protocol of such scale inhibitors in injection waters. This dosage will then allow the quick adjustment of their concentration inside each well. (author) [fr

  13. Synthesis and characterisation of some lanthanide perchlorate complexes of 4-nitrosoantipyrine

    International Nuclear Information System (INIS)

    Jayasankar, H.; Indrasenan, P.

    1988-01-01

    Seven lanthanide perchlorate complexes of 4-nitrosoantipyrine (NAP) of the general formula [Ln(NAP) 4 ClO 4 ](ClO 4 ) 2 (where Ln=La, Pr, Nd, Sm, Gd, Dy and Y), have been synthesised and characterised by elemental analyses, molecular weights, conductances, magnetic moments and infrared and electronic spectral data. In these nine-coordinated complexes, all the four NAP molecules are coordinated bidentately and one of the perchlorate groups is coordinated monodentately. (author). 12 refs

  14. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  15. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    International Nuclear Information System (INIS)

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-01-01

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en) 2 (dien)(η 2 -SbSe 4 )] (Ln=Ce(1a), Nd(1b)), [Ln(en) 2 (dien)(SbSe 4 )] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η 1 ,η 2 -SbSe 4 )] ∞ (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η 2 -SbSe 4 )] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe 4 ] 3- acts as a monodentate ligand mono-SbSe 4 , a bidentate chelating ligand η 2 -SbSe 4 or a tridentate bridging ligand μ-η 1 ,η 2 -SbSe 4 to the lanthanide(III) center depending on the Ln 3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E g between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: → Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. → The [SbSe 4 ] 3- anion acts as a mono-SbSe 4 , a η 2 -SbSe 4 or a μ-η 1 ,η 2 -SbSe 4 ligand to the Ln 3+ ions. → The soft base ligand [SbSe 4 ] 3- can be controlled to coordinate to the Ln 3+ ions with en+dien and en+trien as co-ligands.

  16. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    NARCIS (Netherlands)

    Peters, Fabian; Maestre-Martinez, M.; Leonov, A.; Kovacic, L.; Becker, S.; Boelens, R.; Griesinger, C.

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large

  17. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  18. Synthesis, characterization and properties of lanthanide trifluoroacetate complexes with N-(1-adamantyl) acetamide

    International Nuclear Information System (INIS)

    Miranda Junior, P.; Isolani, P.C.; Vicentini, G.; Zinner, L.B.

    1999-01-01

    Complexes of lanthanide trifluoacetates and N-(1-adamantyl) acetamide (ADA) with composition Ln (TFA) 3 .ADA (Ln=Nd, Sm, Eu, Gd, Tb, Dy; TFA trifluoroacetate) were synthesized by titration of lanthanides with EDTA and CHN microanalytical procedures. According to IR spectra the bonding of ADA occurs through the carbonyl oxygen. Compounds of Nd 3+ , Sm 3+ and Eu 3+ present two bands attributed to v aa COO and that of Gd 3+ Tb 3+ only one. In all cases only one band is attributed to v a -s COO. The absorption spectra of the neodymium and the emission spectra of the europium compounds were determined and interpreted. (author)

  19. NMR studies of structures of lanthanide dicarboxylate complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.; Kullberg, L.

    PMR pand 13 C shift data were measured for complexes of Pr(III), Eu(III) and Yb(III) with ethylene 1,2-dioxydiacetate (EDODA), ethylene 1,2-dithiodiacetate (EDSDA), and ethylene, 1,2-diaminodiacetate (EDDA). Solubility problems limited analysis of the EDSDA and EDDA data to qualitative evaluation. In the EDSDA complexes, the data indicate that the sulfur atoms do not participate in bonding to the lanthanide cations. Moreover, both carboxylate groups seem to bind Pr and Eu while Yb interacts with only a single carboxylate group. The EDDA complexes are tetradentate with long lived (NMR scale) Ln-N bonds. Shift theory allowed more quantitative analysis of the EDODA complexes. They are tetradentate with a puckered chelate ring and Ln-O(ether) distances of 2.3 A

  20. Thermodynamics of complexation of lanthanides with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, N.; Bhattacharyya, A.; Tomar, B.S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Ghosh, S.K.; Gadly, T. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.

    2011-07-01

    Solvent extraction studies on separation of trivalent actinides from lanthanides using 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl) pyridines have shown promising results with respect to separation factor and efficiency in acidic medium. In order to understand their complexation behavior, the stability constant (log {beta}) of trivalent lanthanides (La, Nd, Eu, Tb, Ho, Tm, Lu) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)pyridine (ethyl-BTP) have been determined in methanol medium (ionic strength 0.01 M) using spectrophotometric titrations. The stoichiometry of the complexes is found to vary with the ionic size of lanthanide ion. The variation in log {beta} across the lanthanide series is attributed to variation in solvation characteristics of the metal ion. Comparison of log {beta} for Ln(III)-ethyl-BTP complexes with other alkyl derivatives showed increase in the stability with increasing length of the alkyl group due to hydrophobic interaction. In the case of Eu(III), the speciation was also corroborated by time resolved fluorescence spectroscopy. The thermodynamic parameters ({delta} G, {delta} H, {delta} S) for complexation of Eu(III) with ethyl-BTP, were determined by microcalorimetry, which revealed strong metal ion-ligand interaction with the reactions driven mainly by enthalpy. (orig.)

  1. Using remote substituents to control solution structure and anion binding in lanthanide complexes

    DEFF Research Database (Denmark)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.

    2013-01-01

    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery ...

  2. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenzhong [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang Yu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: tangyu@lzu.edu.cn; Liu Weisheng; Tan Minyu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2008-09-15

    Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2'-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.

  3. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  4. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials.

    Science.gov (United States)

    Dutra, José Diogo L; Filho, Manoel A M; Rocha, Gerd B; Freire, Ricardo O; Simas, Alfredo M; Stewart, James J P

    2013-08-13

    The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present Sparkle Model parameters to be used with PM7 that allow the prediction of geometries of metal complexes and materials which contain lanthanide trications. Accordingly, we considered the geometries of 224 high-quality crystallographic structures of complexes for the parameterization set and 395 more for the validation of the parameterization for the whole lanthanide series, from La(III) to Lu(III). The average unsigned error for Sparkle/PM7 for the distances between the metal ion and its coordinating atoms is 0.063Å for all lanthanides, ranging from a minimum of 0.052Å for Tb(III) to 0.088Å for Ce(III), comparable to the equivalent errors in the distances predicted by PM7 for other metals. These distance deviations follow a gamma distribution within a 95% level of confidence, signifying that they appear to be random around a mean, confirming that Sparkle/PM7 is a well-tempered method. We conclude by carrying out a Sparkle/PM7 full geometry optimization of two spatial groups of the same thulium-containing metal organic framework, with unit cells accommodating 376 atoms, of which 16 are Tm(III) cations; the optimized geometries were in good agreement with the crystallographic ones. These results emphasize the capability of the use of the Sparkle Model for the prediction of geometries of compounds containing lanthanide trications within the PM7 semiempirical model, as well as the usefulness of such semiempirical calculations for materials modeling. Sparkle/PM7 is available in the software package MOPAC2012, at no cost for academics and can be obtained from http://openmopac.net.

  5. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  6. Application of lanthanide complexes for the purification of di-isobutyl-sulfoxide

    International Nuclear Information System (INIS)

    Osorio, V.K.L.; Martinez, S.A.Q.; Silva, R.M.X. da

    1984-01-01

    A new procedure for the purification of sulfoxides based on the selective precipitation of their complexes with class (a) metallic ions is reported. A commercial sample of di-isobutylsulfoxide containing about 5 - 10% of the corresponding sulfone was purified by precipitation with lanthanide perchlorates from alcoholic solutions. The recovery of the sulfoxide from the solid complex was accomplished by dissolving the complex in water and extracting the sulfoxide with chloroform. Alternatively the aqueous solution of the complex was passed successively through columns containing strongly acidic cation-exchanger resin in the H-cycle and strongly basic anionic-exchanger in the OH-cycle. T.L.C. homogeneous sulfoxide was obtained simply by evaporation of the solvent at reduced pressure. (Author) [pt

  7. Synthesis, structure and photoluminescence of novel lanthanide (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine carboxylate

    International Nuclear Information System (INIS)

    An Baoli; Gong Menglian; Cheah, Kok-Wai; Wong, Wai-Kwok; Zhang Jiming

    2004-01-01

    A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), and the corresponding lanthanide complexes, tris(6-diphenylamine carbonyl 2-pyridine carboxylato) terbium(III) (Tb-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato) gadolinium(III) (Gd-DPAP) have been designed and synthesized. The crystal structure and photoluminescence of Tb-DPAP and Gd-DPAP have been studied. The results showed that the lanthanide complexes have electroneutral structures, and the solid terbium complex emits characteristic green fluorescence of Tb(III) ions at room temperature while the gadolinium complex emits the DPAP ligand phosphorescence. The lowest triplet level of DPAP ligand was calculated from the phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide (DMF) dilute solution determined at 77 K, and the energy transfer mechanisms in the lanthanide complexes were discussed. The lifetimes of the 5 D 4 levels of Tb 3+ ions in the terbium complex were examined using time-resolved spectroscopy, and the values are 0.0153±0.0001 ms for solid Tb(DPAP) 3 ·11.5H 2 O and 0.074±0.007 ms for 2.5x10 -5 mol/l Tb-DPAP ethanol solution

  8. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine

    International Nuclear Information System (INIS)

    Riviere, Ch.

    2000-01-01

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  9. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    Science.gov (United States)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  10. The best and the brightest: exploiting tryptophan-sensitized Tb(3+) luminescence to engineer lanthanide-binding tags.

    Science.gov (United States)

    Martin, Langdon J; Imperiali, Barbara

    2015-01-01

    Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb(3+) has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers-one that is cleaved for selection and one that is cleaved for sequencing and characterization-has been used to develop lanthanide-binding tags (LBTs): peptides of 15-20 amino acids with low-nM affinity for Tb(3+). Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

  11. Studies on mixed ligand complexes of lanthanide (III) ions

    International Nuclear Information System (INIS)

    Rajendran, G.; Usha Devi, K.G.

    2002-01-01

    As part of our research programme, we have prepared and characterized a few nitrato, thiocyanato and perchlorato complexes of lanthanide(III) ions with ligands, viz., a Schiff base derived from p-anisidine and vanillin and diphenyl sulphoxide. The complexes were characterized by the measurement of electrical conductances and magnetic susceptibilities, molecular mass and metal percentage and spectral analysis. The thermal decompositions were studied by TG and DTG techniques. The thiocyanato complexes were prepared by substitution method from nitrato complexes. p-Anisidine-vanillin (HDDA) and diphenyl sulphoxide (DPSO) are coordinated to the metal ion in unidentate fashion. All the anions were involved in coordination in these complexes. Thus they were found to have non- electrolytic behaviour with composition [Ln(HDDA) 2 (DPSO)X 3 ] where X = NO 3 ) or SCN perchlorato complexes were prepared from metal perchlorate as done in the case of nitrato complexes. They were found to have electrical conductance which corresponds to 1 : 1 electrolyte. Hence one of the perchlorate ions is outside the coordination sphere. The composition of this complex is found to be [Ln(HDDA) 3 (DPSO)(ClO 4 ) 2 ]ClO 4 . (author)

  12. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  13. Behaviour of trivalent actinides and lanthanide elements in chloride solution; Comportement des lanthanides et transuraniens trivalents en milieu chlorhydrique

    Energy Technology Data Exchange (ETDEWEB)

    Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this work is to compare the complexation in chloride solutions of trivalent lanthanides and actinides. We have first studied the solvatation of these cations without complexation. We found a difference between Am, Cm and Rare Earths (we can separate lanthanides into Light and Heavy Rare Earths). For studying the complexation we choose the technic of electrophoresis on paper after establishing a simple theory of mobilities in complex solutions. The hydrolysis of these cations was studied and compared in chloride solutions. We have then studied the complexation with the Cl{sup -} ligand in some solutions: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. We have established that the complexation is the same in dilute HCl solutions but in concentrated solutions the trivalent actinides are more complexed. This difference is sharper in LiCl solutions. We also proposed the different models of complex in these solutions. (author) [French] Le but de ce travail est de comparer les transuraniens et lanthanides trivalents au point de vue de leur complexation en solution chlorhydrique. Nous avons ete amenes tout d'abord a etudier la solvatation de ces cations non complexes. C'est ainsi que nous pouvons constater une difference entre Am, Cm et les lanthanides. Ces derniers pouvant se separer en lanthanides legers et lanthanides lourds. Pour etudier la complexation nous avons utilise l'electrophorese sur papier apres avoir donne une theorie simple des mobilites en milieu complexant. Apres avoir etudie et compare l'hydrolyse de ces divers cations en solution chlorhydrique, nous avons etudie leur complexation avec l'ion Cl{sup -} dans dans divers milieux: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. ous avons note qu'en solution HCl les deux series se comportent de la meme facon pour des concentrations faibles en Cl{sup -} mais que les transuraniens se complexent plus fortement dans les solutions concentrees. Cette difference s'accroit encore dans les milieux

  14. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Shinoda, Satoshi; Tsukube, Hiroshi

    2008-01-01

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10 -1 to 1.0 x 10 -3 M, while the low detection limits of these electrodes were order of ∼10 -4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  15. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides

    International Nuclear Information System (INIS)

    Alexander, V.

    1995-01-01

    A review article which covers the various design and synthetic strategies developed to synthesize macrocyclic complexes of lanthanides and actinides, their structural features, quantitative studies on the stabilities of these complexes, their applications, and the structure-reactivity principle would be an asset for those who are actively engaged in this area of research. This review is also purported to give a comprehensive view of the current status of this area of research to the beginners and to highlight the application of this chemical research to emerging nonchemical applications to lure the potential workers. The coordination template effect provides a general strategy for the synthesis of a wide variety of discrete metal complexes. The principal conceptual and experimental development that have established and exploited this strategy are briefly outlined. A brief review of the coordination template effect and subsequent developments in the design of macrocyclic complexes of alkali, alkaline earth, and transition metal ions is presented as an essential basis for the rational design of new macrocyclic complexes of lanthanides and actinides. The exciting aspect of this chemistry is that in the majority of cases the molecules meet the design criteria very well. It is evident that in an increasing number of cases the driving force behind the synthetic effort is the desire to create a molecule which will enable the user to make specific applications. 506 refs

  16. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  17. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  18. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  19. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  20. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  1. Complexes of Y, La, and lanthanides with m-aminobenzoic acid

    International Nuclear Information System (INIS)

    Rzaczynska, Z.; Brzyska, W.

    1989-01-01

    m-Aminobenzoates of Y, La and lanthanides prepared in the reaction of the hydroxides of metal with m-aminobenzoic acid in solution have the general formula Ln(m-C 6 H 4 NH 2 COO) 3 .nH 2 O where n = 4 for Ho, Tm, n = 5 for Y, Sm, Dy, Er, Lu, and n = 6 for La, Nd, Eu, Gd, Tb, Yb. The water molecules in the hydrated compounds are in the outer coordination sphere. On heating in air at 350-410K dehydration occurs and anhydrous m-aminobenzoates Ln(m-C 6 H 4 NH 2 COO) 3 are formed. On the basis of the IR spectra it was found that the metal in hydrated m-aminobenzoate of lanthanides is simultaneously coordinated through amino- and carboxyl groups whereas in anhydrous m-aminobenzoates of lanthanides only trough the bidentate carboxyl group. From X-ray analysis it was stated that the hydrated m-aminobenzoates of lanthanides are isostructural in the whole range Y, La-Lu. (Author)

  2. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  3. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  4. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  5. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  6. Molecular dynamics simulations of ter-pyridine and bis-triazinyl-pyridine complexes with lanthanide cations; Etude de dynamique moleculaire de complexes de la bis-triazinyl-pyridine (BTP) et de la terpyridine avec des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, Ph. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    The search for ligands which specifically separate actinides(III) from lanthanides(III) by liquid-liquid extraction has prompted considerable research in the Process Design and Modeling Department ('Service d'Etude et de Modelisation des Procedes'- SEMP). Ligands with soft donor atoms AS) that are able to perform this separation have already been investigated and research is currently under way to improve their performance for high acidic feeds. Theoretical chemistry research is conducted in the Theoretical and Structural Chemistry Laboratory ('Laboratoire de Chimie Theorique et Structurale') to improve our understanding of the complexation and extraction of these cations with such ligands. Theoretical studies were first carried out for the ter-pyridine (TPY) and bis-triazinyl-pyridine (BTP) ligands that display fairly good ability to separate and extract actinide(III) from lanthanide(III) ions. Molecular dynamics simulations were performed on ter-pyridine and bis-triazinyl-pyridine complexes with three lanthanide cations (La{sup 3+}, Eu{sup 3+} and Lu{sup 3+}) for vacuum and for water solutions. These calculations were carried out without counter-ions, with three nitrate (NO{sub 3}{sup -}) ions, and, in the case of ter-pyridine, with three {alpha}-bromo-caprate anions that are likely to be used experimentally as synergistic agents for the separation and extraction of An(III) from Ln(III). Molecular dynamics simulations were first performed for vacuum to evaluate the distances between nitrogen and lanthanide atoms (Ln{sup 3+},N) and intrinsic interaction energies to poly-nitrogenous ligands with or without NO{sub 3} ions, and for both ligands. The (Ln{sup 3+},N) distances decrease and the cation/ligand interaction energies increase along the La{sup 3+}, Eu{sup 3+}, Lu{sup 3+} series, with decreasing Ln(III) ion radii. The introduction of nitrate counter-ions makes the (Ln{sup 3+},N) distances slightly higher, and the TPY/Ln{sup 3+} and BTP

  7. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  8. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  9. X-ray absorption and magnetic studies of trivalent lanthanide ions sorbed on pristine and phosphate-modified boehmite surfaces

    International Nuclear Information System (INIS)

    Yoon, Soh-Joung; Helmke, Philip A.; Amonette, James E.; Bleam, William F.

    2002-01-01

    The feasibility of immobilizing radionuclides on mineral surfaces was examined in the absence and the presence of phosphate anions, using trivalent lanthanide ions (Eu3+, Gd3+, and Dy3+) as chemical analogues of trivalent actinide radionuclides. The amount of the lanthanide ions (Ln3+) sorbed on boehmite (gamma-AlOOH) surfaces dramatically increased on the presence of phosphate below pH 5. The structure of the sorbed lanthanide was determined by X-ray absorption spectroscopy, magnetic susceptibility measurements, and electron paramagnetic resonance spectroscopy. We proved Dy3+ forms precipitates on boehmite surfaces in the presence of phosphate, and Gd3+ both in the presence and absence of phosphate. In the presence of phosphate, however, these rare-earth cations react to from ultrafine particles of LnPO4 surface precipitates on boehmite surfaces

  10. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. (Bates College, Lewiston, ME (United States))

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

  11. COMPLEXES POLYMETALLIQUES DE LANTHANIDES (III) POUR LE DEVELOPPEMENT DE NOUVEAUX MATERIAUX LUMINESCENTS

    OpenAIRE

    Marchal , Claire

    2008-01-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecularchemistry and allows the combination of their nanoscopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecu...

  12. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  13. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    Garcia M, F.G.

    2006-01-01

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI 3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  14. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  15. Intermolecular dynamics studied by paramagnetic tagging

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xingfu; Keizers, Peter H. J. [Leiden University, Institute of Chemistry (Netherlands); Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita [Universitaet des Saarlandes, Naturwissenschaftlich-Technische Fakultaet III, Institut fuer Biochemie (Germany); Ubbink, Marcellus [Leiden University, Institute of Chemistry (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2009-04-15

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media.

  16. Intermolecular dynamics studied by paramagnetic tagging

    International Nuclear Information System (INIS)

    Xu Xingfu; Keizers, Peter H. J.; Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita; Ubbink, Marcellus

    2009-01-01

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media

  17. Molecular orbital calculations of the unpaired electron distribution and electric field gradients in divalent paramagnetic Ir complexes

    International Nuclear Information System (INIS)

    Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.

    1988-01-01

    Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt

  18. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  19. Magneto, spectral and thermal studies of lanthanum and lanthanide(3) bromide and nitrate complexes of 2,2'bipyridine mono N-oxide

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    1988-01-01

    Lanthanide(3) bromide and nitrate complexes of 2,2'-bipyridine mono N-oxide (BipyNO) having the composition Ln(BipyNO) 3 Br 3 and Ln(BipyNO) 2 (NO 3 ) 3 (Ln=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Yb) have been prepared and characterized by means of conductance, molecular weight, magnetic and spectral studies. The ligand acts as a bidentate O,N-chelating agent. The coordination number nine or ten for lanthanide ions has been assigned to these complexes. 3 tabs., 25 refs. (author)

  20. Rationalization of Anomalous Pseudocontact Shifts and Their Solvent Dependence in a Series of C3-Symmetric Lanthanide Complexes.

    Science.gov (United States)

    Vonci, Michele; Mason, Kevin; Suturina, Elizaveta A; Frawley, Andrew T; Worswick, Steven G; Kuprov, Ilya; Parker, David; McInnes, Eric J L; Chilton, Nicholas F

    2017-10-11

    Bleaney's long-standing theory of magnetic anisotropy has been employed with some success for many decades to explain paramagnetic NMR pseudocontact shifts, and has been the subject of many subsequent approximations. Here, we present a detailed experimental and theoretical investigation accounting for the anomalous solvent dependence of NMR shifts for a series of lanthanide(III) complexes, namely [LnL 1 ] (Ln = Eu, Tb, Dy, Ho, Er, Tm, and Yb; L 1 : 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane), taking into account the effect of subtle ligand flexibility on the electronic structure. We show that the anisotropy of the room temperature magnetic susceptibility tensor, which in turn affects the sign and magnitude of the pseudocontact chemical shift, is extremely sensitive to minimal structural changes in the first coordination sphere of L 1 . We show that DFT structural optimizations do not give accurate structural models, as assessed by the experimental chemical shifts, and thus we determine a magnetostructural correlation and employ this to evaluate the accurate solution structure for each [LnL 1 ]. This approach allows us to explain the counterintuitive pseudocontact shift behavior, as well as a striking solvent dependence. These results have important consequences for the analysis and design of novel magnetic resonance shift and optical emission probes that are sensitive to the local solution environment and polarity.

  1. Lanthanide complexes of 2-aminoacetophenone and 2-acetylaminoacetophenone 2-thenoylhydrazone

    International Nuclear Information System (INIS)

    Singh, Praveen K.; Singh, B.

    1998-01-01

    The reaction of lanthanide chlorides with 2-aminoacetophenone-2-thenoyl- hydrazone and 2-acetylaminoacetophenone-2-thenoylhydrazone yield complexes of the type [Ln(aath) 2 Cl 2 (H 2 )O]Cl and [Ln(acaath) 2 Cl 2 ]Cl. These complexes have been characterized by molar conductance, magnetic susceptibility, TGA, DTA and various spectroscopic techniques such as mass, IR, NMR, UV - visible and emission spectra. Mass spectral data indicate the aath complexes to be monomeric. Thermal stability of the complexes and presence of one water molecule in aath complex is indicated by TGA and DTA studies. Electronic spectra of Pr(III) and Nd(III) complexes show the coordination number to be nine and eight around the metal ions in the aath and acaath complexes, respectively. This has also been inferred from the spectral features of the hypersensitive transition in the Nd(III) complexes. The lowering in coordination number from aath to acaath complexes may be attributed to increase in chelate ring size and/or steric/inductive effect of methyl group. Emission spectral studies of the [Eu(aath) 2 Cl 2 (H 2 O)]Cl and [Eu(acaath) 2 Cl 2 ]Cl suggest tricapped trigonal prismatic (D 3h ) and square antiprismatic (D 4d ) geometry, respectively. (author)

  2. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    International Nuclear Information System (INIS)

    Thorson, Megan K.; Ung, Phuc; Leaver, Franklin M.; Corbin, Teresa S.; Tuck, Kellie L.; Graham, Bim; Barrios, Amy M.

    2015-01-01

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  3. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: kellie.tuck@monash.edu [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: bim.graham@monash.edu [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: amy.barrios@utah.edu [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  4. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  5. Lanthanide shift reagents, binding, shift mechanisms and exchange

    International Nuclear Information System (INIS)

    Boer, J.W.M. de

    1977-01-01

    Paramagnetic lanthanide shift reagents, when added to a solution of a substrate, induce shifts in the nuclear magnetic resonance (NMR) spectrum of the substrate molecules. The induced shifts contain information about the structure of the shift reagent substrate complex. The structural information, however, may be difficult to extract because of the following effects: (1) different complexes between shift reagent and substrate may be present in solution, e.g. 1:1 and 1:2 complexes, and the shift observed is a weighed average of the shifts of the substrate nuclei in the different complexes; (2) the Fermi contact interaction, arising from the spin density at the nucleus, contributes to the induced shift; (3) chemical exchange effects may complicate the NMR spectrum. In this thesis, the results of an investigation into the influence of these effects on the NMR spectra of solutions containing a substrate and LSR are presented. The equations describing the pseudo contact and the Fermi contact shift are derived. In addition, it is shown how the modified Bloch equations describing the effect of the chemical exchange processes occurring in the systems studied can be reduced to the familiar equations for a two-site exchange case. The binding of mono- and bifunctional ethers to the shift reagent are reported. An analysis of the induced shifts is given. Finally, the results of the experiments performed to study the exchange behavior of dimethoxyethane and heptafluorodimethyloctanedionato ligands are presented

  6. Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination.

    Science.gov (United States)

    Opherden, Lars; Oertel, Jana; Barkleit, Astrid; Fahmy, Karim; Keller, Adrian

    2014-07-15

    The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.

  7. Dependence of stability of lanthanide(3) complexes with coloured ligands on the element nature

    Energy Technology Data Exchange (ETDEWEB)

    Poluehktov, N S; Meshkova, S B; Rusakova, N V [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1984-07-01

    The change in the colour intensity of Ln(3) complexes with coloured ligands (methyl thymol blue, glycine cresol red, stilbazo, glycine thymol blue, methyl ortanyl S, ortanyl B, phthalexone S, semiphthalexone S, cresolphtalexone, sulfarsazen) in the natural series of lanthanoids is considered. A correlation equation is suggested that permits to describe the relative colour intensity (quenching molar coefficients, stability constants) of complexes in the series of lanthanide(3) ions versus the number of f-electrons, spin and orbital quantum numbers of the ground states. Using the ratio obtained it is possible to calculate the values of appropriate functions of complexes of elements for which such data are not available.

  8. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  9. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  10. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  11. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  12. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  13. A thermodynamical and structural study on the complexation of trivalent lanthanides with a polycarboxylate based concrete superplasticizer.

    Science.gov (United States)

    Fröhlich, Daniel R; Maiwald, Martin M; Taube, Franziska; Plank, Johann; Panak, Petra J

    2017-03-21

    The complexation of trivalent lanthanides with a commercial polycarboxylate based concrete superplasticizer (Glenium® 51) is investigated using different spectroscopic techniques. Time-resolved laser fluorescence spectroscopy (TRLFS) in combination with a charge neutralization model is used to determine temperature dependent conditional stability constants (log β'(T)) for the complexation of Eu(iii) with Glenium® 51 in 0.1 mol kg -1 NaCl solution in the temperature range of 20-90 °C. Only one complex species is observed, and log β'(T) (given in kg per mol eq) shows a very slight increase with temperature from 7.5 to 7.9. The related conditional molar reaction enthalpy (Δ r H' m ) and entropy (Δ r S' m ) obtained using the Van't Hoff equation show that the complexation reaction is slightly endothermic and entropy driven. The thermodynamic investigations are complemented by structural data for complexes formed with Gd(iii) or Tb(iii) and Glenium® 51 using extended X-ray absorption fine structure (EXAFS) spectroscopy. The results imply a non-chelate coordination of the trivalent metals through approximately three carboxylic functions of the polycarboxylate comb polymer which are attached predominantly in a bidentate fashion to the lanthanide under the given experimental conditions.

  14. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  15. Organometallic complex chemistry of plutonium and selected lanthanides

    International Nuclear Information System (INIS)

    Seemann, U.

    1987-01-01

    This study deals with the metallo-organic chemistry of plutonium and also with that of some lanthanides. For plutonium, the conversion of Cs 2 PuCl 6 with four equivalents KCp is investigated. In the series Sm, Gd, Dy and Er, compounds of the type Cp 2 LnX and the base adducts with acetonitrile are analysed. The ligand X passes the series Cl, N 3 , NCS and NCO. Both, the thermal and the vibrational spectroscopic behaviour is investigated. In addition, the effect of a changed ligand sphere on the optical spectrum is discussed. The adduct-free compounds are described by a ternary reaction not yet known from literature. For the first time, force constant calculations are carried out on metallo-organic compounds of lanthanides. With the exception of Cp 2 LnCl compounds, all compouds are presented for the first time in the framework of this study. (orig.) [de

  16. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  17. Photo-reactive charge trapping memory based on lanthanide complex

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  18. Spectrophotometric, potentiometric, and gravimetric determination of lanthanides with peri-dihydroxynaphthindenone

    International Nuclear Information System (INIS)

    Hassan, S.S.M.; Mahmoud, W.H.

    1982-01-01

    Sensitive and reasonably selective methods are described for the spectrophotometric, potentiometric, and gravimetric determination of lanthanides using peri-dihydroxynaphthindenone as a novel chromogenic and precipitating reagent. The reagent forms a stable 1:2 (metal:reagent) type of complex with light lanthanides at pH 2-7 in 1:1 ethanol-water mixture. Low metal concentrations ( 4 L mol -1 cm -1 ) which obey Beer's law. Quantitative precipitation of the complexes from metal solutions of concentrations > 100 μg/mL permits both gravimetric quantitation by igniting the precipitates to the metal oxides and potentiometric titration of the excess reagent. Results with an average recovery of 98% (standard deviation 0.7%) are obtainable for 0.1 μg to 200 mg of all light lanthanides. Many foreign ions naturally occurring or frequently associated with lanthanides do not interfere or can be tolerated

  19. Structural and thermodynamic aspects of aqueous solution of trivalent lanthanides complexation by hydrophobic compounds of tartaric acid, by gluconic acid and related molecules. Outlook for liquid-liquid extraction of these cations

    International Nuclear Information System (INIS)

    Giroux, Sebastien

    1999-01-01

    This work deals with the complexation of lanthanide(III) ions by different molecules and with the synthesis of hydrophobic molecules able to extract them of an aqueous solution. Its aim is to describe the systems obtained by the determination of the formation constants of the species and by the description of their structure. The aim of this work is also to obtain a selective complexation of lanthanides(III) towards actinides(III), because this aim presents a great interest in the reprocessing of radioactive wastes. The complexation studies have been followed by potentiometry, NMR, UV-visible spectroscopy and circular dichroism. The first mixtures studied are the couples: lanthanide(III)-gluconic acid (LH). The complexes system they formed has been described and the structures have been specified; a strong complexation has been revealed. The MLH -2 specie induces a selectivity between the lanthanides(III) equivalent to those obtained with EDTA and its uncharged character allows to consider the use of gluconic acid as extractant. The use of ligands as glucosaminic acid or glucamine slows the beginning of the complexation until pH= 6-7. The neutral specie MLH -2 is formed too. In order to use the complexing properties of gluconic acid and its selective character towards lanthanides(III), the synthesis of molecules derived containing a long alkyl chain with a hydrophobic character has been carried out for using them as extracting agents. An original method of the preparation of tartramides is presented. This preparation consists of an amidation of one of the carboxylic functions of the tartaric acid by a fatty amine. These molecules, surface-active, complex the lanthanides(III) and extract them in an organic phase using the tri-n-butyl phosphate as co-extractant. (O.M.)

  20. Spectral studies of Lanthanide interactions with membrane surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karukstis, K.K.; Kao, M.Y.; Savin, D.A.; Bittker, R.A.; Kaphengst, K.J.; Emetarom, C.M.; Naito, N.R.; Takamoto, D.Y. [Harvey Mudd College, Claremont, CA (United States)

    1995-03-23

    We have monitored the interactions of the series of trivalent lanthanide cations with the thylakoid membrane surface of spinach chloroplasts using two complementary spectral techniques. Measurements of the fluorescence emission of the extrinsic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) and the absorbance of the intrinsic chromophore chlorophyll provide two sensitive means of characterizing the dependence of the cation-membrane interaction on the nature of the cation. In these systems, added lanthanide cations adsorb onto the membrane surface to neutralize exposed segments of membrane-embedded protein complexes. The lanthanide-induced charge neutralization increases the proximity of added TNS anion to the membrane surface as evidenced by variations in the TNS fluorescence level and wavelength of maximum emission. Our results reveal a strong dependence of TNS fluorescence parameters on both lanthanide size and total orbital angular momentum L value. Lanthanides with greater charge density (small size and/or low L value) enhance the TNS fluorescence level to a greater extent. A possible origin for the lanthanide-dependent TNS fluorescence levels is suggested in terms of a heterogeneity in the number and type of TNS binding sites. The data are consistent with the proposal that larger lanthanides with smaller enthalpies of hydration induce more significant membrane appression. 59 refs., 9 figs., 2 tabs.

  1. On dependence of stability of lanthanide(3) complexes with coloured ligands on the element nature

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Meshkova, S.B.; Rusakova, N.V.

    1984-01-01

    The change in the colour intensity of Ln(3) complexes with coloured ligands (methyl thymol blue, glycine cresol red, stilbazo, glycine thymol blue, methyl ortanyl S, ortanyl B, phthalexone S, semiphthalexone S, cresolphtalexone, sulfarsazen) in the natural series of lanthanoids is considered. A correlation equation is suggested that permits to describe the relative colour intensity (quenching molar coefficients, stability constants) of complexes in the series of lanthanide(3) ions versus the number of f-electrons, spin and orbital quantum numbers of the ground states. Using the ratio obtained it is possible to calculate the values of appropriate functions of complexes of elements for which such data are not available

  2. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  3. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    Science.gov (United States)

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  4. Formation constants of lanthanide(III)- aminopolycarboxylate- ATP mixed ligand complexes and their systematics

    International Nuclear Information System (INIS)

    Verma, Sangeeta; Limaye, S.N.; Saxena, M.C.

    1993-01-01

    Formation constants (log Ksub(MAL)sup(MA), log Ksub(ML)sup(M) and log Ksub(ML)sup(ML) of mixed ligand lanthanide(III) complexes of the type [Ln(III).A.ATP[ 2 , where LN(III)=La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ or Dy 3+ ' A=NTA(nitrilotriacetate) or HEDTA (2-hydroxyethylethylenediamine triacetate) and ATP=adenosine 5'-triphosphate (L), and of the binary [Ln(III).ATP[ and [Ln(III).(ATP) 2 [ complexes have been determined by potentiometric pH titrations using the Irving-Rossotti approach at three temperatures 20, 30 and 40 degC and at a fixed ionic strength, I=0.2 mol dm -3 (NAclO 4 ). The solution stabilities (log Ksub(MAL)sup(MA) values) are influenced by the electrostatic effect involved in ternary complexation and increase with temperature. The enthalpy factor (ΔH) has been found to be small but unfavourable and the entropy factor (ΔS) large and favourable. The log Ksub(MAL)sup(MA) values lie in the order NTA>HEDTA with respect to A and La 3+ 3+ 3+ 3+ 3+ 3+ >Gd 3+ 3+ 3+ with respect to lanthanides. Tetrad effect is present in the formation constant values; its magnitude has been found to lie in the sequence f 7 >f 3 -f 4 ≅ f 10 -f 11 for the Ln(III) ions. Systematics in the formation constant values has been further studied by evaluating changes in the inter-electronic repulsion Racah parameters, extra stabilisation of specific 4f 9 -configurations and nephelauxetic ratio using experimental values of the formation constants. (author). 24 refs., 2 figs., 3 tabs

  5. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  6. Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Xiao, Hong-Ping; Wang, Ai-Ling; Liu, Cai-Ming; Zheng, Xianjun; Gao, Li-Jun; Yang, Xiao-Gang; Fang, Shao-Ming

    2013-11-21

    Reaction of the chiral ligand (-)-4,5-pinenepyridyl-2-pyrazine (L) with Ln(hfac)3·2H2O precursors [hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate, Ln = Sm(3+) (1), Eu(3+) (2), Tb(3+) (3) and Dy(3+) (4)] in methanol solution led to the formation of four noncentrosymmetric lanthanide complexes with the general formula [Ln(hfac)3L]n·H2O. The single-crystal X-ray diffraction analyses revealed that they are isostructural and take a one-dimensional (1D) chain structure based on the Ln(hfac)3L repeating units, in which the nine-coordinate Ln(3+) ions reside in a tricapped trigonal prism (TTP) environment never reported in previous 1D chain lanthanide complexes. The investigations of their photophysical properties showed that complexes 1, and 3 exhibit characteristic emissions of Sm(3+), Eu(3+) and Tb(3+) ions with respective luminescent lifetime values of 0.065, 1.066 and 0.129 ms, while complex 4 does not display any emission. The different luminescent intensities and lifetimes among them were further discussed in detail. Moreover, the magnetic properties of complexes 1-4 were assessed with a special emphasis on the Dy(3+) complex 4. Alternating-current (ac) magnetic susceptibility measurements indicated that field-induced two-step slow magnetic relaxation processes were observed in 4, indicating the single-molecule magnet (SMM) behavior of 4. In addition, the noncentrosymmetric complexes 1-4 crystallizing in the same polar point group (Cs) exhibit both ferroelectric and nonlinear optical properties at room temperature. All these features make them multifunctional crystalline molecule materials.

  7. Extended lanthanide-transition metal arrays with cyanide bridges: syntheses, structures, and catalytic applications

    International Nuclear Information System (INIS)

    Liu Shengming; Poplaukhin, Pavel; Ding Errun; Plecnik, Christine E.; Chen Xuenian; Keane, Mark A.; Shore, Sheldon G.

    2006-01-01

    Systematic synthetic procedures produced several different structural types of extended lanthanide-transition metal (group 10) complexes with cyanide bridges. Of these, one-dimensional ladder arrays containing a Yb-Pd combination have been converted to bimetallic heterogeneous catalysts on an oxide (SiO 2 ) surface that is more effective than supported Pd alone. Two lanthanide-Cu(I) complexes have been prepared. One type, an inclusion complex consists of lanthanide(III) cations encapsulated in the pockets of a three-dimensional anionic array that contains Cu(I)-CN-Cu(I) bridges. The second type, an extended layer complex, consists of joined five-membered rings in a 'tile-like' pattern with Ln-CN-Cu and Cu-CN-Cu bridges

  8. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    Science.gov (United States)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  9. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  10. Structural variability in uranyl-lanthanide hetero-metallic complexes with DOTA and oxalato ligands

    International Nuclear Information System (INIS)

    Thuery, P.

    2009-01-01

    Four novel 4f-5f hetero-metallic complexes could be obtained from the reaction of uranyl and lanthanide nitrates with DOTA (H 4 L) under hydrothermal conditions. In all cases, as in the previous examples reported, additional oxalato ligands are formed in situ. Variations in the stoichiometry of the final products and the presence of hydroxo ions in some cases appear to result in a large structural variability. In the two isomorphous complexes [(UO 2 ) 2 Ln 2 (L) 2 (C 2 O 4 )] with Ln = Sm(1) or Eu(2), the lanthanide ion is located in the N 4 O 4 site and is also bound to a carboxylate oxygen atom from a neighbouring unit, to give zigzag chains which are further linked to one another by [(UO 2 ) 2 (C 2 O 4 )] 2+ di-cations, resulting in the formation of a 3D framework. In [(UO 2 ) 4 Gd 2 (L) 2 (C 2 O 4 ) 3 (H 2 O) 6 ].2H 2 O (3), 2D bilayer subunits of the 'double floor' type with uranyl oxalate pillars are assembled into a 3D framework by other, disordered uranyl ions. [(UO 2 ) 2 Gd(L)(C 2 O 4 )(OH)].H 2 O (4) is a 2D assembly in which cationic {[(UO 2 ) 2 (C 2 O 4 )(OH)] + } n chains are linked to one another by the [Gd(L)] - groups. The most notable feature of this compound is the environment of the 4f ion, which is eight-coordinate and twisted square anti-prismatic (TSA'), instead of nine-coordinate mono-capped square anti-prismatic (SA), as generally observed in DOTA complexes of gadolinium(III) and similarly-sized ions. (author)

  11. Unexpected magnetism, and transport properties in mixed lanthanide compound

    Science.gov (United States)

    Pathak, Arjun; Gschneidner, Karl, Jr.; Pecharsky, Vitalij; Ames Laboratory Team

    For intelligent materials design it is desirable to have compounds which have multiple functionalities such as a large magnetoresistance, ferromagnetic and ferrimagnetic states, and field-induced first-order metamagnetic transitions. Here, we discuss one such example where we have combined two lanthanide elements Pr and Er in Pr0.6Er0.4Al2. This compound exhibits multiple functionalities in magnetic fields between 1 and 40 kOe. It undergoes only a trivial ferrimagnetism to paramagnetism transition in a zero magnetic field, but Pr0.6Er0.4Al2 exhibits a large positive magnetoresistance (MR) for H >=40 kOe, a small but non negligible negative MR for H field cooling from the paramagnetic state. These phenomena are attributed to the competition between single-ion anisotropies of Pr and Er ions coupled with the opposite nearest-neighbor and next-nearest-neighbor exchange interactions. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Material Sciences and Engineering. The research was performed at the Ames Laboratory. The Ames Laboratory is operated by Iowa State University for the US D.

  12. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  13. Modelling thermodynamic properties of lanthanide (LnL)3+ and actinide (AnL)3+ complexes with tridentate planar nitrogen ligands (L)

    International Nuclear Information System (INIS)

    Ionova, G.; Rabbe, C.; Charbonnel, M.C.; Hill, C.; Guillaumont, D.; Guillaumont, R.; Ionov, S.; Madic, C.

    2004-01-01

    We report here the results obtained from a systematic theoretical study on the thermodynamic properties of trivalent lanthanide (Ln) and actinide (An) complexes with chelating nitrogen tridentate ligands. The mechanism of chelation has been investigated and the role of cation dissolution is investigated through a comparison of the thermodynamic properties of solvated cations and complexes. The difference in thermodynamic properties of LnL and AnL complexes is analyzed. (authors)

  14. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  15. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  16. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  17. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  18. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  19. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  20. An enantiomerically pure siderophore type ligand for the diastereoselective 1 : 1 complexation of lanthanide(III ions

    Directory of Open Access Journals (Sweden)

    Markus Albrecht

    2009-12-01

    Full Text Available A facile synthesis of a highly preorganized tripodal enterobactine-type ligand 1a-H3 consisting of a chiral C3-symmetric macrocyclic peptide and three tridentate 2-amido-8-hydroxyquinoline coordinating units is presented. Complex formation with various metal ions (Al3+, Ga3+, Fe3+, La3+ and Eu3+ was investigated by spectrophotometric methods. Only in the case of La3+ and Eu3+ were well defined 1 : 1 complexes formed. On the basis of CD spectroscopy and DFT calculations the configuration at the metal centre of the La3+ complex was determined to show Λ helicity. The coordination compounds [(1aLn] presented should be prototypes for further lanthanide(III complexes with an enterobactine analogue binding situation.

  1. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Science.gov (United States)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  2. Lanthanide mixed ligand chelates for DNA profiling and latent fingerprint detection

    Science.gov (United States)

    Menzel, E. R.; Allred, Clay

    1997-02-01

    It is our aim to develop a universally applicable latent fingerprint detection method using lanthanide (rare-earth) complexes as a source of luminescence. Use of these lanthanide complexes offers advantages on several fronts, including benefits from large Stokes shifts, long luminescence lifetimes, narrow emissions, ability of sequential assembly of complexes, and chemical variability of the ligands. Proper exploitation of these advantages would lead to a latent fingerprint detection method superior to any currently available. These same characteristics also lend themselves to many of the problems associated with DNA processing in the forensic science context.

  3. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    Science.gov (United States)

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  4. Yttrium and lanthanide nitrate complexes of N,N1-bis(4-antipyryl methylidene) ethylenediamine

    International Nuclear Information System (INIS)

    Joseph, Siby; Radhakrishnan, P.K.

    1998-01-01

    Complexes of yttrium and lanthanide nitrates with a Schiff base, N, N 1 -bis(4-antipyrylmethylidene)ethylenediamine (BAME) having the general formula [Ln(BAME) 2 (NO 3 )](NO 3 ) 2 , where Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho and Er have been synthesised and characterised by elemental analyses, molar conductance in non-aqueous solvents, electronic, infrared and proton NMR spectra. BAME acts as a neutral bidentate ligand coordinating through both azomethine nitrogen atoms. One of the nitrate groups is coordinated in a bidentate manner. A coordination number of six may be assigned to the metal ion in these complexes. The covalency parameters evaluated from the solid state electronic spectra suggest weak covalent character of the metal-ligand bond. (author)

  5. Complexes of (III) lanthanides isothiocyanate and (III) yttrium with 2,6-lutidine-n-oxide (2,6-LNO)

    International Nuclear Information System (INIS)

    Arico, E.M.

    1990-01-01

    The preparation and characterization of the complexes of yttrium and some lanthanides isothiocyanate with 2,6-lutidine-N-oxide (2,6-LNO) are described. The ligand employed in the synthesis of the compounds were prepared by the reaction of 2,6-lutidine with hydrogen peroxide in glacial acetic acid. The complexes were prepared using the relation 1:3 salt-ligand. Their characterization was made by elemental analysis, electrolytic conductance measurements, X-ray powder patterns, infrared spectra, electronic absorption spectra of the neodymium and fluorescence spectra of the europium compounds. (author)

  6. Synthesis and characterization of metal soaps of lanthanides (III)

    International Nuclear Information System (INIS)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos

    2015-01-01

    The present study describes synthesis and partial characterization of Eu"3"+, Nd"3"+, Dy"3"+, Tb"3"+ and Yb"3"+ behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu"3"+, Nd"3"+ and Tb"3"+ complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh_3Eu, Bh_3Nd, Bh_3Dy, Bh_3Tb e Bh_3Yb (Bh = behenate anion). (author)

  7. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    International Nuclear Information System (INIS)

    Miller, J.H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first α-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25 0 C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA 3 (HA) 5 and (NdA 3 ) 2 (HA)/sub q/. Very small amounts of (NdA 3 ) 2 and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid

  8. 3,4,3-LI(1,2-HOPO): In Vitro Formation of Highly Stable Lanthanide Complexes Translates into Efficacious In Vivo Europium Decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Sturzbecher-Hoehne, Manuel; Ng Pak Leung, Clara; Daleo, Anthony; Kullgren, Birgitta; Prigent, Anne-Laure; Shuh, David K.; Raymond, Kenneth N.; Abergel, Rebecca J.

    2011-07-13

    The spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) was investigated for its ability to act as an antennae that sensitizes the emission of Sm{sup III}, Eu{sup III}, and Tb{sup III} in the Visible range (Φ{sub tot} = 0.2 - 7%) and the emission of Pr{sup III}, Nd{sup III}, Sm{sup III}, and Yb{sup III} in the Near Infra-Red range, with decay times varying from 1.78 μs to 805 μs at room temperature. The particular luminescence spectroscopic properties of these lanthanide complexes formed with 3,4,3-LI(1,2-HOPO) were used to characterize their respective solution thermodynamic stabilities as well as those of the corresponding La{sup III}, Gd{sup III}, Dy{sup III}, Ho{sup III}, Er{sup III}, Tm{sup III}, and Lu{sup III} complexes. The remarkably high affinity of 3,4,3-LI(1,2-HOPO) for lanthanide metal ions and the resulting high complex stabilities (pM values ranging from 17.2 for La{sup III} to 23.1 for Yb{sup III}) constitute a necessary but not sufficient criteria to consider this octadentate ligand an optimal candidate for in vivo metal decorporation. The in vivo lanthanide complex stability and decorporation capacity of the ligand were assessed, using the radioactive isotope {sup 152}Eu as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic metal chelating agent.

  9. Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein-protein complex structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Kobashigawa, Yoshihiro; Saio, Tomohide [Hokkaido University, Department of Structural Biology, Faculty of Advanced Life Science (Japan); Ushio, Masahiro [Hokkaido University, Graduate School of Life Science (Japan); Sekiguchi, Mitsuhiro [Astellas Pharma Inc., Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery (Japan); Yokochi, Masashi; Ogura, Kenji; Inagaki, Fuyuhiko, E-mail: finagaki@pharm.hokudai.ac.jp [Hokkaido University, Department of Structural Biology, Faculty of Advanced Life Science (Japan)

    2012-05-15

    Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein-protein and protein-ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination.

  10. Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination

    International Nuclear Information System (INIS)

    Kobashigawa, Yoshihiro; Saio, Tomohide; Ushio, Masahiro; Sekiguchi, Mitsuhiro; Yokochi, Masashi; Ogura, Kenji; Inagaki, Fuyuhiko

    2012-01-01

    Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein–protein and protein–ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination.

  11. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides; Modelisation thermodynamique de l'extraction de nitrates de lanthanides par le CMPO et par un calixarene-CMPO en milieu acide nitrique concentre. Application a l'optimisation de la separation des lanthanides et des actinides/lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Belair, S

    2003-07-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO{sub 3}){sub 3}-HNO{sub 3}-H{sub 2}O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  12. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    Evans, W.J.

    1979-10-01

    The new synthetic and catalytic reactions involving lanthanide metals which were discovered in the first years of this project have been examined in more detail in the past year. Synthetic and catalytic model systems have been theoretically developed and experimental testing of these hypotheses is in progress. New techniques are being applied to the lanthanide metals to further elucidate the chemistry of these complexes

  13. Extraction of lanthanides and actinides (III) by DI-2 ethyl dithiophosphoric acid and DI-2 ethyl hexyl monothiophosphoric acid. Structure of the complexes in the organic phase

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1986-09-01

    To operate a trivalent actinide-lanthanide (III) group chemical separation from low pH nitric solutions we studied the extractive properties of the di-2 ethyl hexyl dithiophosphoric acid (HDEHDTP); this bidentate ligand which possesses a sulfur donor atom is a good extractant of soft acids. We so expect a better selectivity for the actinides (III) extraction. We also have investigated extractive properties of di-2 ethyl hexyl monothiophosphoric acid (HDEHTP) for trivalent actinides and lanthanides; HDEHDTP is a bidentate ligand with one oxygen donor atom and so is a better extractant for hard acids like actinides and lanthanides (III); but its selectivity is weak. The addition of TBP (tri-n butyl phosphate) to HDEHDTP deals to strong synergistic organic complexes with a great selectivity for Am(III). We explicited this phenomenon. When the metal is macroconcentrated the organic complexes aggregate and form inverted micelles

  14. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M.; Hyder, Fahmeed

    2014-01-01

    Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  15. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  16. Giant exchange interaction in mixed lanthanides

    Science.gov (United States)

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  17. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  18. Low-voltage organic field-effect transistors based on novel high-κ organometallic lanthanide complex for gate insulating materials

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2014-08-01

    Full Text Available A novel high-κ organometallic lanthanide complex, Eu(tta3L (tta=2-thenoyltrifluoroacetonate, L = 4,5-pinene bipyridine, is used as gate insulating material to fabricate low-voltage pentacene field-effect transistors (FETs. The optimized gate insulator exhibits the excellent properties such as low leakage current density, low surface roughness, and high dielectric constant. When operated under a low voltage of −5 V, the pentacene FET devices show the attractive electrical performance, e.g. carrier mobility (μFET of 0.17 cm2 V−1 s−1, threshold voltage (Vth of −0.9 V, on/off current ratio of 5 × 103, and subthreshold slope (SS of 1.0 V dec−1, which is much better than that of devices obtained on conventional 300 nm SiO2 substrate (0.13 cm2 V−1 s−1, −7.3 V and 3.1 V dec−1 for μFET, Vth and SS value when operated at −30 V. These results indicate that this kind of high-κ organometallic lanthanide complex becomes a promising candidate as gate insulator for low-voltage organic FETs.

  19. Tetraphenylborate as a non - coordinating anion in hexamethyphosphoramine (HMPA) and tetramethylurea (TMU) lanthanide complexes

    International Nuclear Information System (INIS)

    Kuya, M.K.; Serra, O.A.

    1979-01-01

    The synthesis of the HMPA and TMU complexes of rare earth ions using tetraphenylborate, a non-coordinating anion, as a precipitating agent is reported. The compounds obtained conform to the general formula LnL 6 (B PHI 4 ) 3 (Ln=Ce-Lu,Y, whe L=HMPA and Ln=nd, Sm,Eu,Er,Y when L=TMU). The characterization by conductance, infrared and visible measurements is consistent with the lack of donor capacity of tetraphenylborate ion, and with a coordination number six in a nearly octahedral site symmetry for both type of compounds. The TMU complexes seem to be more stable than the corresponding HMPA ones, indicating that the steric factor can be more important than the donor capacity of the ligands in this type of lanthanide compounds. (author) [pt

  20. Assignment of solid-state 13C and 1H NMR spectra of paramagnetic Ni(II) acetylacetonate complexes aided by first-principles computations

    DEFF Research Database (Denmark)

    Rouf, Syed Awais; Jakobsen, Vibe Boel; Mareš, Jiří

    2017-01-01

    Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin of the par......Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin...

  1. Photoluminescence and Coordination Behaviour of Lanthanide Complexes of Tris (Aminomethyl)Ethane-5-Oxine in Aqueous Solution.

    Science.gov (United States)

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2017-01-01

    Photophysical properties of a multidentate tripodal ligand, 5,5'-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La 3+ and Er 3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln 3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV - visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H 4 L)] 4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β 110  = 32-34 and pLn in the range of 14-20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.

  2. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides

    International Nuclear Information System (INIS)

    Belair, S.

    2003-01-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO 3 ) 3 -HNO 3 -H 2 O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  3. Structural, luminescence and biological studies of trivalent lanthanide complexes with N,N Prime -bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Al Momani, Waleed [Department of Allied Medical Sciences, Al Balqa Applied University (Jordan)

    2012-11-15

    New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis ({sup 1}H NMR, FT-IR, UV-vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate L{sub III} ligand. Tb-L{sub III} and Sm-L{sub III} complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The L{sub III} and Ln-L{sub III} complexes showed antibacterial activity against a number of pathogenic bacteria. - Highlights: Black-Right-Pointing-Pointer Ln(III) ion adopts an eight-coordinate geometry. Black-Right-Pointing-Pointer Luminescence spectra of Sm-L{sub III} and Tb-L{sub III} complexes display the metal centered line emission. Black-Right-Pointing-Pointer Energy transfer process from L{sub III} to Sm in Sm-L{sub III} complex is more efficient than to Tb in Tb-L{sub III} complex. Black-Right-Pointing-Pointer Ln(III) complexes may serve as models for biologically important species.

  4. Adducts compounds of lanthanides (III) trifluoreacetates and yttrium and the N,N - dimenthylformamide

    International Nuclear Information System (INIS)

    Silva, M. das G. da.

    1983-01-01

    Some studies on lanthanides, f transition elements, and yttrium are presented. Adducts of lanthanides trifluoroacetates and N,N -dimethylformamide are described. The characterization of complexes from elementar analysis, conductance measurements, X-ray patterns, vibrational, electronics and fluorescence spectra are analysed. (M.J.C.) [pt

  5. Citrate-based open-quotes Talspeakclose quotes actinide-lanthanide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    1997-01-01

    Lanthanide elements are produced in relatively high yield by fission of 235 U. Almost all the lanthanide isotopes decay to stable nonradioactive lanthanide isotopes in a relatively short time. Consequently, it is highly advantageous to separate the relatively small actinide fraction from the relatively large quantities of lanthanide isotopes. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. Previous work based on the use of lactic or glycolic acid has shown deleterious effects of some impurity ions such as zirconium(IV), even at concentrations on the order of 10 -4 M. Other perceived problems were the need to maintain the pH and reagent concentrations within a narrow range and a significant solubility of the organic phase at high carboxylic acid concentrations. The authors' cold experiments showed that replacing the traditional extractants glycolic or lactic acid with citric acid eliminates or greatly reduces the deleterious effects produced by impurities such as zirconium. An extensive series of batch tests was done using a wide range of reagent concentrations at different pH values, temperatures, and contact times. The results demonstrated that the citrate-based TALSPEAK can tolerate appreciable changes in pH and reagent concentrations while maintaining an adequate lanthanide extraction. Experiments using a three-stage glass mixer-settler showed a good lanthanide extraction, appropriate phase disengagement, no appreciable deleterious effects due to the presence of impurities such as zirconium, excellent pH buffering, and no significant loss of organic phase

  6. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  7. Separation of lanthanides through hydroxyapatite; Separacion de lantanidos mediante hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, F.G

    2006-07-01

    With the objective of obtaining from an independent way to each one of the lanthanides {sup 151} Pm, {sup 161} Tb, {sup 166} Ho and {sup 177} Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI{sub 3} (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because

  8. Three-Dimensional Protein Fold Determination from Backbone Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites

    KAUST Repository

    Yagi, Hiromasa

    2013-06-01

    Site-specific attachment of paramagnetic lanthanide ions to a protein generates pseudocontact shifts (PCS) in the nuclear magnetic resonance (NMR) spectra of the protein that are easily measured as changes in chemical shifts. By labeling the protein with lanthanide tags at four different sites, PCSs are observed for most amide protons and accurate information is obtained about their coordinates in three-dimensional space. The approach is demonstrated with the chaperone ERp29, for which large differences have been reported between X-ray and NMR structures of the C-terminal domain, ERp29-C. The results unambiguously show that the structure of rat ERp29-C in solution is similar to the crystal structure of human ERp29-C. PCSs of backbone amides were the only structural restraints required. Because these can be measured for more dilute protein solutions than other NMR restraints, the approach greatly widens the range of proteins amenable to structural studies in solution. © 2013 Elsevier Ltd. All rights reserved.

  9. Three phenoxo-bridged dinuclear lanthanide complexes. Syntheses, crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Chao; Dai, Rui-Peng; Yang, En-Cui [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Dong, Hui-Ming; Zhao, Xiao-Jun [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin (China)

    2018-03-15

    Three dinuclear lanthanide complexes [Ln{sub 2}(H{sub 2}L){sub 2}(NO{sub 3}){sub 4}] [Ln = Dy (1), Tb (2), and Gd (3)] [H{sub 3}L = 2-hydroxyimino-N'-[(2-hydroxy-3-methoxyphenyl)methylidene]- propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single-crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric Ln{sup III} ions aggregated by a pair of monodeprotonated H{sub 2}L{sup -} anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single-ion anisotropy. Additionally, the Dy{sup III}-based entity shows the strongest anisotropy exhibits field-induced single-molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic Gd{sup III} ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J.kg{sup -1}.K{sup -1} at 2.0 K and 70.0 kOe. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The electronic structure of adducts derived from tris(cyclopentadienyl)-lanthanide(III)

    International Nuclear Information System (INIS)

    Amberger, H.D.; Edelstein, N.M.

    1985-01-01

    On the basis of magneto-optical and optical data of adducts derived from tris (eta/sup 5/-cyclopentadienyl)-lanthanide(III) (Ln = Pr, Nd, Er) the underlying crystal field (CF) splitting patterns could be derived. Fitting the parameters of an empirical Hamiltonian to these CF splitting patterns, the CF eigenvalues and CF eigenfunctions were obtained. By means of these data the experimental temperature dependence of the paramagnetic susceptibility could be reproduced by choosing orbital reduction factors between 0.950 and 0.975, respectively. The contact contribution of the /sup 1/H-NMR shifts of the cyclopentadienide protons of Cp/sub 3/Pr . CNC/sub 6/H/sub 11/ could be simulated by adopting a hyperfine coupling parameter A/sub F/ = vertical bar 0.236 vertical bar MHz

  11. Actinide-lanthanide separation by bipyridyl-based ligands. DFT calculations and experimental results

    International Nuclear Information System (INIS)

    Borisova, Nataliya E.; Eroshkina, Elizaveta A.; Korotkov, Leonid A.; Ustynyuk, Yuri A.; Alyapyshev, Mikhail Yu.; Eliseev, Ivan I.; Babain, Vasily A.

    2011-01-01

    In order to gain insights into effect of substituents on selectivity of Am/Eu separation, the synthesis and extractions tests were undertaken on the series of bipyridyl-based ligands (amides of 2,2'-bipyridyl-6,6'-dicarboxylic acid: L Ph - N,N'-diethyl-N,N'-diphenyl amide; L Bu2 - tetrabutyl amide; L Oct2 - tetraoctyl amide; L 3FPh - N,N'-diethyl-N,N'-bis-(3-fluorophenyl) amide; as well as N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dibrom-2,2'-bipyridyl-6,6'-dicarboxylic acid and N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dinitro-2,2'-bipyridyl-6,6'-dicarboxylic acid) as well as structure and stability of their complexes with lanthanides and actinides were studied. The extraction tests were performed for Am, lanthanide series and transition metals in polar diluents in presence of chlorinated cobalt dicarbolide and have shown high distribution coefficients for Am. Also was found that the type of substituents on amidic nitrogen exerts great influence on the extraction of light lanthanides. For understanding of the nature of this effect we made QC-calculations at DFT level, binding constants determination and X-Ray structure determination of the complexes. The UV/VIS titration performed show that the composition of all complexes of the amides with lanthanides in solution is 1:1. In spite of the binding constants are high (lgβ about 6-7 in acetonitrile solution), lanthanide ions have binding constants with the same order of magnitude for dialkyl substituted extractants. The X-Ray structures of the complexes of bipyridyl-based amides show the composition of 1:1 and the coordination number of the ions being 10. The DFT optimized structures of the compounds are in good agreement with that obtained by X-Ray. The gas phase affinity of the amides to lanthanides shows strong correlation with the distribution ratios. We can infer that the bipyridyl-based amides form complexes with metal nitrates which have similar structure in solid and gas phases and in solution, and the DFT

  12. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  13. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report for period February 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Evans, W.J.

    1980-10-01

    Investigations are being conducted on two classes of lanthanide compounds: metal vapor co-condensation reactions with unsaturated hydrocarbons and homoleptic and heteroleptic alkyl lanthanide complexes. Three models have been considered for the interaction of erbium atoms with 3-hexyne. The structure of the heteroleptic alkynide [(C 5 H 5 ) 2 ErC triple bond CCMe 3 ] 2 was studied. Some new organolanthanides have been prepared

  14. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  15. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    Science.gov (United States)

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Recovery of lanthanides

    International Nuclear Information System (INIS)

    Tilley, G.L.; Doyle, W.E.

    1990-01-01

    This paper discusses a method for recovering a lanthanide and thorium from a material containing a fluorine compound and the lanthanide and thorium. It comprises a. obtaining the material from a roasted, acid-leached bastnasite ore; b. forming a mixture of the material with at least about ten weight percent of silica; c. contacting the mixture with sulfuric acid; d. heating the mixture and sulfuric acid to a temperature of at least about 150 degrees C for at least about 3 hours to cause most of the fluorine to be released as a volatile material containing silicon and fluorine; e. contacting the reacted mixture with an aqueous medium consisting essentially of water to solubilize the lanthanide and thorium while leaving an insoluble residue; and f. separating the aqueous solution of the lanthanide and thorium from the insoluble residue

  17. Studies on the Interaction of a Novel 6,6''-bis(1,2,4-triazin-3-yl)- 2,2':6',2''-terpyridine Ligand with Lanthanide(III) Ions and Americium(III)

    International Nuclear Information System (INIS)

    Lewis, Frank W.; Harwood, Laurence M.; Hudson, Michael J.; Drew, Michael G.B.; Modolo, Giuseppe; Sypula, Michal; Desreux, Jean F.; Bouslimani, Nouri; Vidick, Geoffrey

    2010-01-01

    The new solvent extraction reagent 6,6''-bis(5,5,8,8-tetramethyl- 5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-2,2':6',2''-terpyridine (CyMe 4 -BTTP) has been synthesized in 4 steps from 2,2':6',2''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1:2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1:1 complexes are formed with lanthanide(III) nitrates where the aliphatic rings are conformationally mobile. An optimized structure of the 1:2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-ray crystallographic structures of the ligand and of its 1:1 complex with Y(III) were also obtained. In the absence of a phase-modifier, CyMe 4 -BTTP in 1-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (±20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid solution. The metal(III) cations are extracted as the 1:1 complex from nitric acid solutions. The generally low distribution coefficients observed compared with the BTBPs arise because the 1:1 complex of CyMe 4 -BTTP is considerably less hydrophobic than the 1:2 complexes formed by the BTBPs. In M(BTTP) 3+ complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal. (authors)

  18. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Low-voltage organic field-effect transistors based on novel high-κ organometallic lanthanide complex for gate insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Li, Yi; Zhang, Yang; Song, You, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Wang, Xizhang, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Hu, Zheng [Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. High-Tech Research Institute of Nanjing University (Suzhou), Suzhou 215123 (China); Sun, Huabin; Li, Yun, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Shi, Yi [School of Electronic Science and Engineering and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, Nanjing University, Nanjing 210093 (China)

    2014-08-15

    A novel high-κ organometallic lanthanide complex, Eu(tta){sub 3}L (tta=2-thenoyltrifluoroacetonate, L = 4,5-pinene bipyridine), is used as gate insulating material to fabricate low-voltage pentacene field-effect transistors (FETs). The optimized gate insulator exhibits the excellent properties such as low leakage current density, low surface roughness, and high dielectric constant. When operated under a low voltage of −5 V, the pentacene FET devices show the attractive electrical performance, e.g. carrier mobility (μ{sub FET}) of 0.17 cm{sup 2} V{sup −1} s{sup −1}, threshold voltage (V{sub th}) of −0.9 V, on/off current ratio of 5 × 10{sup 3}, and subthreshold slope (SS) of 1.0 V dec{sup −1}, which is much better than that of devices obtained on conventional 300 nm SiO{sub 2} substrate (0.13 cm{sup 2} V{sup −1} s{sup −1}, −7.3 V and 3.1 V dec{sup −1} for μ{sub FET}, V{sub th} and SS value when operated at −30 V). These results indicate that this kind of high-κ organometallic lanthanide complex becomes a promising candidate as gate insulator for low-voltage organic FETs.

  20. Tetrahydropentalenyl-phosphazene constrained geometry complexes of rare-earth metal alkyls.

    Science.gov (United States)

    Hangaly, Noa K; Petrov, Alexander R; Elfferding, Michael; Harms, Klaus; Sundermeyer, Jörg

    2014-05-21

    Reactions of Cp™HPPh2 (1, diphenyl(4,4,6,6-tetramethyl-1,4,5,6-tetrahydropentalen-2-yl)phosphane) with the organic azides AdN3 and DipN3 (Ad = 1-adamantyl; Dip = 2,6-di-iso-propylphenyl) led to the formation of two novel CpPN ligands: P-amino-cyclopentadienylidene-phosphorane (Cp™PPh2NHAd; L(Ad)H) and P-cyclopentadienyl-iminophosphorane (Cp™HPPh2NDip; L(Dip)H). Both were characterized by NMR spectroscopy and X-ray structure analysis. For both compounds only one isomer was observed. Neither possesses any detectable prototropic or elementotropic isomers. Reactions of these ligands with [Lu(CH2SiMe3)3(thf)2] or with rare-earth metal halides and three equivalents of LiCH2SiMe3 produced the desired bis(alkyl) Cp™PN complexes: [{Cp™PN}M(CH2SiMe3)2] (M = Sc (1(Ad), 1(Dip)), Lu (2(Ad), 2(Dip)), Y (3(Ad), 3(Dip)), Sm (4(Ad)), Nd (5(Ad)), Pr (6(Ad)), Yb (7(Ad))). These complexes were characterized by extensive NMR studies for the diamagnetic and the paramagnetic complexes with full signal assignment. An almost mirror inverted order of the paramagnetic shifts has been observed for ytterbium complex 7(Ad) compared to 4(Ad), 5(Ad) and 6(Ad). For the assignment of the NMR signals [{η(1) : η(5)-C5Me4PMe2NAd}Yb(CH2SiMe3)2] 7 was synthesized, characterized and the (1)H NMR signals were compared to 7(Ad) and to other paramagnetic lanthanide complexes with the same ligand. 1(Ad), 2(Ad), 2(Dip), 3(Ad) and 3(Dip) were characterized by X-ray structure analysis revealing a sterically congested constrained geometry structure.

  1. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    -molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  2. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    Science.gov (United States)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  3. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  4. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    International Nuclear Information System (INIS)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A.

    2014-01-01

    The lanthanides(III) complexes [Ln(bza) 3 (H 2 O) n ]·mH 2 O, [Ln(ppa) 3 (H 2 O) n ]·mH 2 O and [Ln(abse) 3 (H 2 O) n ]·mH 2 O where Ln=Eu 3+ , Gd 3+ or Tb 3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm −1 between them. The [Eu(abse) 3 (H 2 O)] complex shows the higher degree of covalence which was verified by the centroid of 5 D 0 → 7 F 0 transition (17,248 cm −1 ). On the other hand the [Ln(abse) 3 (H 2 O) n ]·mH 2 O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa) 3 (H 2 O) n ]·mH 2 O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa) 3 ] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza) 3 (H 2 O) 2 ]·3/2(H 2 O) and [Eu(abse) 3 (H 2 O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ∼2000 cm −1 . The changes in the energy transfer rates from triplet state to europium(III) levels are not

  5. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  6. Spectroscopic studies of some lanthanide(III nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A.S. Sall

    2003-06-01

    Full Text Available The ligand 2,6-bis-(salicylaldehydehydrazone-4-chlorophenol (H5L and its binuclear lanthanide(III nitrate complexes {[Ln2(H4L3(NO3](NO32.mH2O} where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb and Y, have been synthesized. The complexes were characterized by chemical analysis, conductance, magnetic moment measurements and infrared spectra. Infrared study indicates that the ligand behaves both as neutral and ionic O donors and as neutral N donors.

  7. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  8. 'Americium(III)/trivalent lanthanides' separation using organothiophosphinic acids

    International Nuclear Information System (INIS)

    Hill, C.; Madic, C.; Baron, P.; Ozawa, Masaki; Tanaka, Yasumasa.

    1997-01-01

    The present paper describes the extraction of neodymium and other lanthanides by saponified Cyanex 301 acid. The saponification of commercial Cyanex 301 acid favoured the extraction of macro concentrations of neodymium from sodium nitrate aqueous solutions (pH eq ∼ 4). The amount of lanthanide extracted in the organic phase always reached the third of the initial concentration of saponified Cyanex 301 acid, which assumed a cation exchange mechanism to occur during the extraction. No nitrate anion took part in the complex formation. This paper also compares the abilities of purified Cyanex 301, Cyanex 302 and Cyanex 272 acids to extract and separate 241 Am(III) from 152 Eu(III). Very high separation factors S.F. Am/Eu were observed in the case of purified Cyanex 301 acid. Finally some studies are presented herein using tri-n-butylphosphate (TBP) as a synergistic extractant with Cyanex 301 acid to separate actinides from trivalent lanthanide. (author)

  9. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  10. Thermodynamics of complexation of lanthanides and some of transition metal ions by 5,5-dimethyl-cyclohexane-2-(2-hydroxyphenyl)-hydrazono-1,3-dione (DCPHD) and its derivatives

    International Nuclear Information System (INIS)

    Ramadan, A.A.T.; Abdel-Moez, M.S.; El-Shetary, B.A.; Seleim, H.S.

    1993-01-01

    Equilibrium between DCPHD, DC-4-Cl-PHD, and DC-4-Me-PHD and protons, transition, and lanthanide ions have been investigated at 30 o C by means of potentiometric titration in 75%(v/v) methanol-water mixture containing 0.10M KNO 3 as a constant ionic medium. Thermodynamic parameters(ΔG,ΔH and ΔS) referring to the formation of species HL - ,L -- ,ML +n-2 and ML 2 +n-4 (L -- denotes the ligand anion) have been determined in solutions. The solvent effects on the thermodynamic parameters of the complex formation are discussed in terms of differences in the donor ability of methanol and water solvents. The plots of thermodynamic parameters versus ionic potential (Z 2 /r) of the lanthanide elements is not linear as expected from ionic theory. The obtained curve can be resolved in an initial group (the lighter lanthanides), an intermediate group (Sm-Dy), and a final group (the heavier ones, Tb-Lu). This behavior was explained in terms of differences in the dehydration of lighter lanthanide(III) from that of heavier ones

  11. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    Science.gov (United States)

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  12. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    International Nuclear Information System (INIS)

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D.; Szabo, Monika; Swarbrick, James D.; Graham, Bim; Rizo, Josep

    2016-01-01

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca 2+ -dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  14. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D. [University of Texas Southwestern Medical Center, Department of Biophysics (United States); Szabo, Monika; Swarbrick, James D.; Graham, Bim [Monash Institute of Pharmaceutical Sciences, Monash University (Australia); Rizo, Josep, E-mail: Jose.Rizo-Rey@UTSouthwestern.edu [University of Texas Southwestern Medical Center, Department of Biophysics (United States)

    2016-12-15

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca{sup 2+}-dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  15. Analytical chemistry of lanthanides

    International Nuclear Information System (INIS)

    Al-Sowdani, K.H.

    1986-12-01

    Candoluminescence of the lanthanides and the development of instruments for monitoring the phenomenon are described. The use of fluorescence spectroscopy, spectrofluorometry and spectrophotometry for the quantitative chemical analysis of the lanthanides is described. (U.K.)

  16. Lanthanide-doped luminescent ionogels

    OpenAIRE

    Lunstroot, Kyra; Driesen, Kris; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Görller-Walrand, Christiane; Binnemans, Koen; Bellayer, Séverine; Viau, Lydie; Le Bideau, Jean; Vioux, André

    2009-01-01

    Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving anthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choli...

  17. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  18. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented

  19. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  20. Calix[6]arenes functionalized with malondiamides at the upper rim as possible extractants for lanthanide and actinide cations

    International Nuclear Information System (INIS)

    Almaraz, M.; Esperanza, S.; Magrans, O.; Mendoza, J. de; Pradus, P.

    2001-01-01

    Lipophilic malondiamides have been recently employed successfully as extractants for lanthanide and actinide cations from strongly acidic media. Many complexes between malondiamides and lanthanide-actinides cations have been studied by different techniques. For many of these complexes it has been observed that more than one malondiamide ligand participates in the complexation of each metallic cation. Incorporation of two or three malondiamide moieties into a calixarene platform would probably improve both extraction and selectivity with respect to the already tested malondiamides. According to CPK examination, a calix[6]arene substituted at the upper rim with two or three malondiamide moieties should constitute a promising ligand for lanthanide and actinide cations due to co-operative complexation with the malondiamides. Based on these considerations, we synthesised calix[6]arenes functionalized with malonic acid derivatives. (author)

  1. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  2. NMR-based Enantiodifferentiation of Chiral trans-2-Phenylcyclopropane Derivatives Using a Chiral Lanthanide Shift Reagent

    International Nuclear Information System (INIS)

    Cho, Nam Sook; Kim, Hyun Sook; Song, Mi Sook

    2011-01-01

    In contrast with optical methods, there is no need to characterize the pure enantiomers. Instead, the NMR method makes use of chiral reagents that convert a mixture of enantiomers into a mixture of diastereomeric complexes. Integration of the resulting NMR spectra yields a direct measurement of enantiomeric purity as long as there is a sufficiently large difference between the chemical shifts of the two diastereoisomeric complexes to produce baseline-resolved peaks. Absolute enantiomeric configurations can also be determined using this method. Chiral lanthanide shift reagents have been used since the 1970s to form addition complexes with various compounds through interactions with electron donor sites. Lanthanide-induced, pseudo-contact shifts (LIS) are a function of the distance, r, between the nuclei under observation and the lanthanide center, and the angle, θ, between the line connecting the metal ion with the observed nucleus and the line representing the CLSR magnetic axis

  3. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  4. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Du, H.S.; Wood, D.J.; Elshani, Sadik; Wai, C.M.

    1993-01-01

    Thorium and the lanthanides are extracted by α-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed. (author)

  5. Theoretical study of the structure and the reactivity of lanthanides and actinides complexes: Activation of small molecules

    International Nuclear Information System (INIS)

    Castro, Ludovic

    2012-01-01

    This PhD thesis presents a theoretical study of the structure and the reactivity of organometallic complexes of lanthanides and actinides at the DFT level. After a general introduction of the methods of theoretical chemistry used for the modelling of organometallic reactivity, a study of the participation of 5f electrons in uranium(IV) reactivity is presented. The results show that the large core ECP can be used safely in order to treat the actinide and so that 5f electrons can be treated implicitly. Then, the reactivity of uranium(III) complexes with CO 2 and other analogous molecules is studied via multiple examples from the literature. These studies show that the steric nature of the ligands is very important and controls the reactivity. This study is then extended to samarium(II) complex. Eventually, the reactivity of a hydride complex of cerium(III) with MeOSO 2 Me is investigated and theoretical results are compared with experimental observations. (author) [fr

  6. Effective core potential methods for the lanthanides

    International Nuclear Information System (INIS)

    Cundari, T.R.; Stevens, W.J.

    1993-01-01

    In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third-row transition metals which bracket them. A 46-electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ''outer'' core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even-tempered basis set calculations results from replacement of the large, even-tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes

  7. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  8. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Extraction chromatography of lanthanides, ch. 8

    International Nuclear Information System (INIS)

    Siekierski, S.; Fidelis, I.

    1975-01-01

    The extraction of lanthanides by chelate formation with acidic organophosphorous extractants, by solvation of salts, and in the form of ion pairs is reviewed. The double-double effect and its significance for the lanthanide as well as the actinide separation is discussed. A short survey of the existing data on the enthalpies of lanthanide extraction and on the influence of temperature on their separation factor is given. The resolution ability of columns used for the separation of lanthanides is briefly surveyed

  10. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  11. Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    Directory of Open Access Journals (Sweden)

    Alexei Bogdanov

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity (R1/Gd. The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1 imaging of nanomolar amounts of an oxidoreductase (peroxidase; (2 detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3 imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.

  12. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, Mert [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey); Yilmaz, M. Deniz, E-mail: deniz.yilmaz@gidatarim.edu.tr [Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya 42080 (Turkey); Kilbas, Benan, E-mail: benankilbas@duzce.edu.tr [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey)

    2017-02-15

    Highlights: • The nanosensors based on gold nanoparticles functionalized with lanthanide complexes were synthesized. • The nanosensors selectively and sensitively detected DPA, a biomarker of bacterial spores. • Ratiometric sensing of DPA by a ternary complex was achieved by ligand displacement strategy. - Abstract: Gold nanoparticles (GNPs) functionalized with ethylenediamine-lanthanide complexes (Eu-GNPs and Tb-GNPs) were used for the selective fluorescent detection of dipicolinic acid (DPA), a unique biomarker of bacterial spores, in water. Particles were characterized by transmission electron microscopy and zeta potential measurements. The coordination of DPA to the lanthanides resulted in the enhancement of the fluorescence. A selective response to DPA was observed over the nonselective binding of aromatic ligands. The ligand displacement strategy were also employed for the ratiometric fluorescent detection of DPA. 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedion (TFNB) was chosen as an antenna to synthesize ternary complexes. The addition of DPA on EuGNP:TFNB ternary complex quenched the initial emission of the complex at 615 nm and increased the TFNB emission at 450 nm when excited at 350 nm. The results demonstrated that the ratiometric fluorescent detection of DPA was achieved by ligand displacement strategy.

  13. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers.

    Science.gov (United States)

    Chyba, Jan; Novák, Martin; Munzarová, Petra; Novotný, Jan; Marek, Radek

    2018-04-05

    The potential of paramagnetic ruthenium(III) compounds for use as anticancer metallodrugs has been investigated extensively during the past several decades. However, the means by which these ruthenium compounds are transported and distributed in living bodies remain relatively unexplored. In this work, we prepared several novel ruthenium(III) compounds with the general structure Na + [ trans-Ru III Cl 4 (DMSO)(L)] - (DMSO = dimethyl sulfoxide), where L stands for pyridine or imidazole linked with adamantane, a hydrophobic chemophore. The supramolecular interactions of these compounds with macrocyclic carriers of the cyclodextrin (CD) and cucurbit[ n]uril (CB) families were investigated by NMR spectroscopy, X-ray diffraction analysis, isothermal titration calorimetry, and relativistic DFT methods. The long-range hyperfine NMR effects of the paramagnetic guest on the host macrocycle are related to the distance between them and their relative orientation in the host-guest complex. The CD and CB macrocyclic carriers being studied in this account can be attached to a vector that attracts the drug-carrier system to a specific biological target and our investigation thus introduces a new possibility in the field of targeted delivery of anticancer metallodrugs based on ruthenium(III) compounds.

  14. Electro-spray Ionization Mass Spectrometry Investigation of BTBP - Lanthanide(III) and Actinide(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, Ch. [Chalmers, Dept Chem and Biol Engn, SE-41296 Gothenburg, (Sweden); Berthon, L.; Zorz, N. [DEN DRCP SCPS LCSE, CEA Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid-liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6, 6'-bis(5, 6-dialkyl-1, 2, 4-triazin-3-yl)-2, 2'-bipyridines) was characterized using the Electro-spray Ionization Mass Spectrometry (ESI-MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5-BTBP and CyMe{sub 4}-BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L{sub 2}M(NO{sub 3}){sub 3}. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5-BTBP ligand has a labile hydrogen atom, which is a fragility point of C5-BTBP. (authors)

  15. Relaxační časy jader fluoru v chelátech s lanthanoidy

    OpenAIRE

    Bobrova, Yulia

    2018-01-01

    Contrast agents containing fluorine have great prospects for magnetic resonance imaging in medicine. Low representation of fluorine in human body and the suitable magnetic properties of its nucleus 19 F, provide great sensitivity. The slow relaxation of 19 F, can be shortened by using paramagnetic complexes.In this thesis, transversal and longitudinal 19 F relaxation times of chelates with different paramagnetic lanthanides (Ce, Yb,Tm, Dy, Ho) were measured in two different magnetic fields: 4...

  16. PARAssign-paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P., E-mail: skinnersp@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands); Moshev, Mois, E-mail: mois@monomon.me [Leiden University, Leiden Institute of Advanced Computer Science (Netherlands); Hass, Mathias A. S., E-mail: hassmas@chem.leidenuniv.nl; Ubbink, Marcellus, E-mail: m.ubbink@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands)

    2013-04-15

    The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47 kDa protein, and using both synthetic and experimental data for amide assignment of a 14 kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure.

  17. Uranium and lanthanide complexes with the 2-mercapto benzothiazolate ligand: Evidence for a specific covalent binding site in the differentiation of isostructural lanthanide(III) and actinide(III) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Roger, M.; Arliguie, T.; Thuery, P.; Ephritikhine, M. [CEA Saclay, DSM, DRECAM, Serv Chim Mol, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Belkhiri, L. [Univ Mentouri Constantine, Fac Sci, Dept Chim, Lab Chim Mol LACMOM, Constantine 25017, (Algeria); Boucekkine, A. [Univ Rennes 1, CNRS, UMR Sci Chim Rennes 6226, F-35042 Rennes, (France)

    2008-07-01

    Treatment Of [U(Cp*){sub 2}Cl{sub 2}] with KSBT in THF gave [U(Cp*){sub 2}(SBT){sub 2}], which exhibits the usual bent sandwich configuration in the solid state with the two SBT ligands adopting the bidentate ligation mode. The mono-cyclopentadienyl compound [U(Cp*)(SBT){sub 3}] was synthesized by reaction of [U(Cp*)(BH{sub 4}){sub 3}] with KSBT in THF, and its reduction with potassium amalgam in the presence of 18-crown-6 afforded the corresponding anionic complex [K(18-crown-6)(THF){sub 2}][U(Cp*)(SBT){sub 3}]. The lanthanide analogues [K(THF){sub 2}Ln(Cp*)(SBT){sub 3}] were obtained by treating [Ln(BH{sub 4}){sub 3}(THF){sub 3}] with KSBT and KCp*; isomorphous crystals of [K(15-crown-5){sub 2}] [Ln(Cp*)(SBT){sub 3}].THF [Ln = La, Ce, Nd] were formed upon addition of 15-crown-5. Comparison of the crystal structures of the pentagonal bipyramidal complexes [M(Cp*)(SBT){sub 3}]{sup -} reveals that the M-Nax distances are shorter than the M-Neq distances, whatever the metal, the phenomenon being enhanced in the U(III) compound versus the Ln(III) analogues. The structural data obtained by relativistic density functional theory (DFT) calculations reproduce experimental trends. Electronic population and molecular orbital analyses show that the structural differences in the series of [M(Cp*)(SBT){sub 3}]{sup -} anions are related to the uranium 5f orbital-ligand mixing, which is greater than the lanthanide 4f orbital-ligand mixing. Moreover, the consideration of the corresponding bond orders and the analysis of the bonding energy bring to light a strong and specific interaction between the uranium and apical nitrogen atoms. (authors)

  18. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  19. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    Science.gov (United States)

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  1. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  2. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  3. Coordination polymers of some lanthanide(III) nitrate with schiff bases

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Shukla, B.K.; Shukla, R.K.

    1991-01-01

    The Schiff bases derived from 2-hydroxy-1-naphthaldehyde and salicylaldehyde with o-dianisidine, p-phenylene diamine and benzidine and their lanthanide(III) complexes have been synthesized and characterized by elemental, I.R., thermal, magnetic and D.R.S. studies. (author). 7 refs

  4. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  5. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Li-Mei [College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001 (China); Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn [College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2017-01-15

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealed that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect.

  6. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  7. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  8. A study of the complex formation of bivalent lanthanides with tetraphenylborate-ion in organic solvents. Izuchenie kompleksoobrazovaniya dvukhvalentnykh lantanoidov s tetrafenilborat-ionom v organicheskikh rastvoritelyakh

    Energy Technology Data Exchange (ETDEWEB)

    Veleshko, I E; Mikheev, N B; Kulyukhin, S A

    1992-01-01

    Interaction of bivalent lanthanides with tetraphenylborate-ion (BPh[sub 4][sup -]) in solutions of CH[sub 3]CN and C[sub 2]H[sub 5]OH was studied by the methods of cocrystallization, conductometry and spectrophotometry.It is shown that no complexing between Ln[sup 2+] and BPh[sub 4][sup -] takes place in ethanol, wheras in CH[sub 3]CN formation of second sphere complexes of the composition [Ln(CH[sub 3]CN)[sub n

  9. Detection of phosphorylation states by intermolecular sensitization of lanthanide-peptide conjugates.

    Science.gov (United States)

    Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio

    2012-10-04

    The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.

  10. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  11. Lanthanides separation by counter - current electrophoretic using α - hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Alleluia, I.B.

    1975-01-01

    Studies about counter-current electrophoretic separation of rare earth metal ions using α-hydroxyisobutyric acid as complexing electrolyte are discussed. La, Pr, Nd, Sm and Eu were separated and fractions with purities better than 99,9% were obtained, using neutron activation analysis. A relation between the first stability constant of the α-hydroxyisobutyrate/lanthanide complexes and their migration velocities were observed. (M.J.C.) [pt

  12. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  13. Adducts of between lanthanide (III) trifluoromethanesulfonate and yttrium (III) and tetramethylene sulphoxide ligand

    International Nuclear Information System (INIS)

    Assis Araujo, F. de.

    1983-01-01

    The synthesis, characterization and spectroscopic properties of lanthanides trifluoromethanesulfonate complexes with tetramethylenesulfoxide (TMSO), are described. The interpretation of X-ray powder patterns show one isomorphous series. (M.J.C.) [pt

  14. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6

    DEFF Research Database (Denmark)

    Junker, Anne Kathrine Ravnsborg; Tropiano, Manuel; Faulkner, Stephen

    2016-01-01

    in a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction with azide-functionalized crown ethers. The resulting complexes were investigated using NMR and optical methods. Titrations with potassium chloride in methanol observing the sensititzed europium- and terbium-centered emissions were......-centered emission to report on the binding of potassium in an 18-crown-6 binding pocket. The responsive systems were made by linking a crown ether to a kinetically inert lanthanide binding pocket using a molecular building block approach. Specifically, an alkyne-appended Ln.DO3A was used as a building block...... used to investigate the response of the systems. The molecular reporters based on aliphatic crown ethers were found to have strongly inhibited binding of potassium, while the benzo-18-crown-6 derived systems had essentially the same association constants as the native crown ethers. The shape...

  15. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    International Nuclear Information System (INIS)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-01-01

    A 3D lanthanide MOF with formula [Sm 2 (abtc) 1.5 (H 2 O) 3 (DMA)]·H 2 O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  16. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  17. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  18. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)

    2017-03-01

    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  20. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  1. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  2. A Coordination Chemistry Approach to Fine-Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications.

    Science.gov (United States)

    Le Fur, Mariane; Molnár, Enikő; Beyler, Maryline; Kálmán, Ferenc K; Fougère, Olivier; Esteban-Gómez, David; Rousseaux, Olivier; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2018-03-02

    The geometric features of two pyclen-based ligands possessing identical donor atoms but different site organization have a profound impact in their complexation properties toward lanthanide ions. The ligand containing two acetate groups and a picolinate arm arranged in a symmetrical fashion (L1) forms a Gd 3+ complex being two orders of magnitude less stable than its dissymmetric analogue GdL2. Besides, GdL1 experiences a much faster dissociation following the acid-catalyzed mechanism than GdL2. On the contrary, GdL1 exhibits a lower exchange rate of the coordinated water molecule compared to GdL2. These very different properties are related to different strengths of the Gd-ligand bonds associated to steric effects, which hinder the coordination of a water molecule in GdL2 and the binding of acetate groups in GdL1. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Determination of the thermodynamic properties of complexation and extraction by micro-calorimetry; Determination de grandeurs thermodynamiques de complexation et d'extraction d'ions lanthanide(3) par microcalorimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, M.Ch.; Flandin, J.L. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    The CEA is currently developing the DIAMEX process, the first step in the strategy for the separation of minor actinides from high-level radioactive waste. The extractant belongs to the diamide family of molecules and is able to co-extract trivalent actinides and lanthanides. This study focuses on the thermodynamic properties ({delta}H, {delta}G, {delta}S) of lanthanide extraction by malonamide in order to better understand the mechanisms involved and to account for differences in the behavior of various diamide extractants. The main technique used is microcalorimetric titration. The Thermal Activity Monitor (TAM) microcalorimeter is a modular system with a highly stable ({+-} 0.1 mK) temperature-controlled bath containing up to four calorimetry vessel units. The sensor bulbs inserted in the reaction vessel can measure heat flows in static or dynamic conditions. Micro-calorimetry, and calorimetric titration in particular, is a fast growing field due to technical improvements in both hardware and software. In the case of an equilibrium reaction, titration allows both {delta}{sub r}G and {delta}{sub r}H (and thus {delta}{sub r}S) to be determined simultaneously. It was decided to initiate this thermochemical investigation with a homogeneous phase reaction, and the first study concerned the aqueous phase complexation of a trivalent lanthanide ion by a water-soluble diamide, tetraethyl-malonamide (TEMA: (C{sub 2}H{sub 5}){sub 2}NCO-CH{sub 2}CON(C{sub 2}H{sub 5}){sub 2}). In the test system, the heat of dilution of the diamide in water is preponderant over the heat arising from the complexation reaction; the result is a positive value corresponding to an endothermic reaction. However, the equilibration constant K and {delta} H are both very small, and cannot be calculated from the resulting Q{sub v}f(n{sub TEMA}) curves. Moreover, in aqueous phase, the reactions involved are different from those observed when neodymium(III) is extracted into an organic phase, and the

  4. Separation process for lanthanides based on solvation properties of non ionic surfactants

    International Nuclear Information System (INIS)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G.

    2004-01-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  5. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    Science.gov (United States)

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  6. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  7. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  8. The geochemistry and mobility of the lanthanides in marine sediments

    International Nuclear Information System (INIS)

    Elderfield, H.

    1988-07-01

    A study has been made to evaluate lanthanide mobility in sediments directly by measuring concentrations of 10 lanthanide elements in sediments and pore waters. Due to the very low concentrations of the lanthanides in sea water relative to marine sediments, evidence of lanthanide mobilization is usually difficult to detect from studies of solid-phase geochemistry. Results show that the lanthanides can be extremely mobile. Concentrations in pore waters up to 100 times sea water concentrations have been measured. The conclusions are tentative but the present data suggest that the lanthanides are mobilized during oxidation of organic-rich sediments and are relocated in part in association with secondary Fe-rich phases. The behaviour of Ce is, predictably, somewhat different from the other lanthanides and may be more mobile as a consequence of its redox chemistry. (author)

  9. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pei-Yao [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liao, Sheng-Yun [Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384 (China); Gu, Wen, E-mail: guwen68@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China)

    2016-12-15

    A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  10. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NMR study of rare earth and actinide complexes

    International Nuclear Information System (INIS)

    Villardi de Montlaur de, G.C.

    1978-01-01

    Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. Shift reagents for olefins are reported: Lnsup(III)(fod) 3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver 1-heptafluororobutyrate is used to complex the olefin. The preparation, properties and efficiency of such systems are described. Configurational aspects and exchange processes of Lnsup(III)(fod) 3 complexes with secondary and tertiary monoamines are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand exchange are discussed. At low temperature, ring inversion can be slow on an nmr time-scale for Lnsup(III)(fod) 3 -diamino chelates. Barriers to ring inversion in substituted ethylenediamines and propanediamines are obtained. Steric factors appear to play an important role in the stability and kinetics of these bidentate species. The synthesis of uranium-IV crown-ether and cryptate complexes is described. A conformational study of these compounds show evidence of an insertion of the paramagnetic cation as witnessed by the large induced shifts observed. The insertion of uranium in the macrocyclic ligand of a UCl 4 -dicyclohexyl-18-crown-6 complex is confirmed by an X-ray structural determination [fr

  12. Lanthanides, thorium, iodine in terrestrail invertebrates

    International Nuclear Information System (INIS)

    Zhulidov, A.V.; Pokarzhevskij, A.D.; Katargin, N.V.; AN SSSR, Moscow

    1991-01-01

    It is shown that among examined terrestrial invertebrates the highest levels on lanthanide and thorium concentration are typical for animals, feeding on plant tissues - earthworms, molluscs, diploid. It is shown that there are no reasons to hope, that regularities of migration of transuranium elements and lanthanides in tropic chains are identical

  13. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie

    1999-01-01

    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  14. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  15. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies.

    Science.gov (United States)

    Vanin, Anatoly F; Poltorakov, Alexander P; Mikoyan, Vasak D; Kubrina, Lyudmila N; Burbaev, Dosymzhan S

    2010-09-15

    Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (capital EM, Cyrillic-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin's red salt esters and can be prepared by treatment of aqueous solutions of Fe(2+) and thiols (small er, Cyrilliccapital EN, Cyrillic 7.4) with gaseous nitric oxide (NO) at the thiol:Fe(2+) ratio 1:1. capital EM, Cyrillic-DNICs are synthesized under identical conditions at the thiol:Fe(2+) ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)(2)}(7) at g(aver.)=2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at small er, Cyrilliccapital EN, Cyrillic 9-10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe(2+) ratio 1:2 results in their conversion into capital EM, Cyrillic-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-capital EM, Cyrillic-DNIC solutions results in cysteine oxidation-controlled conversion of capital EM, Cyrillic-DNICs first into cys-B-DNICs and then into the EPR-silent compound capital HA, Cyrillic able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound capital HA, Cyrillic is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe(2+) chelator small o, Cyrillic-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound capital HA, Cyrillic represents a polynuclear

  16. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  17. Diphenyl-phosphinyl-morpholide (DPPM) lanthanide trifluoroacetate adducts

    International Nuclear Information System (INIS)

    Carvalho, L.R.F. de; Kim, D.J.

    1984-01-01

    Preparation and properties of adducts of lanthanide salts and diphenyl-phosphinyl-morpholide (DPPM) have been described in the literature. Addition compounds containing lanthanide nitrates, isothiocyanates, perchlorates, chlorides, bromides with DPPM have been obtained. In this article, the preparation and characterization of the addition compounds of lanthanide trifluoroacetates (TFA) with DPPM are reported. The compounds of general formula Ln (TFA) 3 . 3DPPM, Ln= La-Lu, Y were characterized by elemental analysis, melting ranges, infrared spectra, absorption and emission visible spectra, X-ray powder patterns. (Author) [pt

  18. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  19. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    International Nuclear Information System (INIS)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C.; Lourenco, Ana V. S.; Brito, Hermi F.

    2009-01-01

    The importance of the luminescence of lanthanide ions and UO 2 2+ is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu 3+ and Tb 3+ ions, and now UO 2 2+ are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  20. Electron paramagnetic resonance and density-functional theory studies of Cu(II)-bis(oxamato) complexes.

    Science.gov (United States)

    Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias

    2008-08-04

    In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.

  1. Synthesis, magnetic and spectral studies of lanthanide(III) chloride complexes of hydrazones of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Prasad, Ram

    1996-01-01

    The synthesis, magnetic and spectral properties of trivalent lanthanide chlorides with N-isonicotinamidobenzalaldimine (INH-BENZ), N-isonicotinamidoanisalaldimine (INH-ANSL) and N-isonicotinamido-p-dimethylaminobenzalaldimine (INH-PDAB) are described. 13 refs., 2 tabs

  2. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  3. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  4. Advancing the scientific basis of trivalent actinide-lanthanide separations

    International Nuclear Information System (INIS)

    Nash, K.L.

    2013-01-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl - ). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  5. Lanthanide complexes with pivaloylacetone

    International Nuclear Information System (INIS)

    Eliseeva, S.V.; Chugarov, N.V.; Kuz'mina, N.P.; Martynenko, L.I.; Nichiporuk, R.V.; Ivanov, S.A.

    2003-01-01

    Complexes Ln(pa) 3 ·2H 2 O (Ln=La, Gd, Lu, Hpa - pivaloylacetone) are synthesized and investigated by the methods of element, IR spectroscopic and thermal analyses. Behaviour of the complexes during heating in vacuum is compared with such one for acetylacetonates and dipivaloylmethanates. Structure of the complexes in solution is studied by 1 H NMR and MALDI-MS [ru

  6. Development of ion imprinted polymers for the selective extraction of lanthanides from environmental samples

    International Nuclear Information System (INIS)

    Moussa, Manel

    2016-01-01

    The analysis of the lanthanide ions present at trace level in complex environmental matrices requires often a purification and preconcentration step. The solid phase extraction (SPE) is the most used sample preparation technique. To improve the selectivity of this step, Ion Imprinted Polymers (IIPs) can be used as SPE solid supports. The aim of this work was the development of IIPs for the selective extraction of lanthanide ions from environmental samples. In a first part, IIPs were prepared according to the trapping approach using 5,7-dichloroquinoline-8-ol as non-vinylated ligand. For the first time, the loss of the trapped ligand during template ion removal and sedimentation steps was demonstrated by HPLC-UV. Moreover, this loss was not repeatable, which led to a lack of repeatability of the SPE profiles. It was then demonstrated that the trapping approach is not appropriate for the IIPs synthesis. In a second part, IIPs were synthesized by chemical immobilization of methacrylic acid as vinylated monomer. The repeatability of the synthesis and the SPE protocol were confirmed. A good selectivity of the IIPs for all the lanthanide ions was obtained. IIPs were successfully used to selectively extract lanthanide ions from tap and river water. Finally, IIPs were synthesized by chemical immobilization of methacrylic acid and 4-vinylpyridine as functional monomers and either a light (Nd 3+ ) or a heavy (Er 3+ ) lanthanide ion as template. Both kinds of IIPs led to a similar selectivity for all lanthanide ions. Nevertheless, this selectivity can be modified by changing the nature and the pH of the washing solution used in the SPE protocol. (author)

  7. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 ... complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. .... considerable importance for their selectivity in killing.

  8. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  9. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana, E-mail: wassana.yantasee@pnl.gov [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Xu Jide; Raymond, Kenneth N. [Chemistry Department, University of California, Berkeley, CA 94720 (United States); LBNL, Berkeley, CA 94720 (United States)

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS{sup TM}), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 {mu}g/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  10. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    International Nuclear Information System (INIS)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu Jide; Raymond, Kenneth N.

    2009-01-01

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS TM ), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 μg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  11. Structural trends in a series of isostructural lanthanide-copper metallacrown sulfates (Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho): hexaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) heptaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) sulfate hexahydrate.

    Science.gov (United States)

    Pavlishchuk, Anna V; Kolotilov, Sergey V; Fritsky, Igor O; Zeller, Matthias; Addison, Anthony W; Hunter, Allen D

    2011-07-01

    The seven isostructural complexes, [Cu(5)Ln(C(2)H(4)N(2)O(2))(5)(SO(4))(H(2)O)(6.5)](2)(SO(4))·6H(2)O, where Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho, are representatives of the 15-metallacrown-5 family. Each dianion of glycinehydroxamic acid (GlyHA) links two Cu(II) cations forming a cyclic [CuGlyHA](5) frame. The Ln(III) cations are located at the centre of the [CuGlyHA](5) rings and are bound by the five hydroxamate O atoms in the equatorial plane. Five water molecules are coordinated to Cu(II) cations, and one further water molecule, located close to an inversion centre between two adjacent [Cu(5)Ln(GlyHA)(5)](2+) cations, is disordered around this inversion centre and coordinated to a Cu(II) cation of either the first or second metallacrown ether. Another water molecule and one of the two crystallographically independent sulfate anions are coordinated, the latter in a bidentate fashion, to the Ln(III) cation in the axial positions. The second sulfate anion is not coordinated to the cation, but is located in an interstitial position on a crystallographic inversion centre, thus leading to disorder of the O atoms around the centre of inversion. The Ln-O bond distances follow the trend of the lanthanide contraction. The apical Ln-O bond distances are very close to the sums of the ionic radii. However, the Ln-O distances within the metallacrown units are slightly compressed and the Ln(III) cations protrude significantly from the plane of the otherwise flat metallacrown ligand, thus indicating that the cavity is somewhat too small to accommodate the Ln(III) ions comfortably. This effect decreases with the size of the lanthanide cation from complex (I) (Ln(III) = Pr; 0.459) to complex (VII) (Ln(III) = Ho; 0.422), which indicates that the smaller lanthanide cations fit the cavity of the pentacopper metallacrown ring better than the larger ones. The diminished contraction of Ln-O distances within the metallacrown planes leads to an aniostropic contraction of the unit

  12. Lanthanide complexes with 2,3-dimethoxybenzoic acid and terpyridine. Crystal structures, thermal properties, and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Pan-Pan; Wu, Xiao-Hui; Zhang, Jian-Jun [Testing and Analysis Center, Hebei Normal University, Shijiazhuang (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China); Ren, Ning [College of Chemical Engineering and Material, Handane College (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China)

    2017-08-03

    The lanthanide coordination complexes Er(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O) (1) and [Nd(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O)]{sub 2} (2) (2,3-DMOBA = 2,3-dimethoxybenzoate; terpy = 2,2':6',2{sup ''}-terpyridine) were synthesized and characterized by IR spectroscopy, powder X-ray diffraction (XRD), single-crystal X-ray diffraction, and thermogravimetric analysis. Complex 1 crystallizes in the triclinic system, space group P1, and the mononuclear subunits form a 1D chain structure along the a axis by hydrogen bonds. Complex 2 crystallizes in the monoclinic system, space group P2{sub 1}/c, and the dinuclear subunits are further linked via the offset face-to-face π..π weak stacking interactions to form a supramolecular 2D layered structure. Thermal analysis showed that the complexes have three decomposition steps. The first step is the loss of coordination water molecules. The neutral terpy ligands and partial 2,3-DMOBA ligands are lost in the second step. The remaining 2,3-DMOBA ligands are lost in the third step. The 3D stacked plots for the FT-IR spectra of the evolved gases are recorded and the gaseous products are identified by the typical IR spectra obtained at different temperatures from the 3D stacked plots. Meanwhile, the results of the antibacterial action tests show that 1 and 2 have better antibacterial activities to Candida albicans than to Escherichia coli or Staphylococcus aureus. In addition, complex 2 has better antibacterial action to Candida albicans than complex 1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Cloud point extraction: an alternative to traditional liquid-liquid extraction for lanthanides(III) separation.

    Science.gov (United States)

    Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain

    2004-06-17

    Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

  14. Synthesis and characterization of metal soaps of lanthanides (III); Sintese e caracterizacao de saboes metalicos de lantanidios (III)

    Energy Technology Data Exchange (ETDEWEB)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Centro Universitario de Araraquara (UNIARA), Araraquara, SP (Brazil)

    2015-07-01

    The present study describes synthesis and partial characterization of Eu{sup 3+}, Nd{sup 3+}, Dy{sup 3+}, Tb{sup 3+} and Yb{sup 3+} behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu{sup 3+}, Nd{sup 3+} and Tb{sup 3+} complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh{sub 3}Eu, Bh{sub 3}Nd, Bh{sub 3}Dy, Bh{sub 3}Tb e Bh{sub 3}Yb (Bh = behenate anion). (author)

  15. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  16. Contribution for study on positron annihilation in tris (dipivaloilmethanates) lanthanides (III)

    International Nuclear Information System (INIS)

    Ribeiro e Silva, M.E.S.

    1988-01-01

    Some data on life time of positron and annihilation by Doppler effect in tris (dipivaloilmethanates) lanthanides (III), Ln (dpm) 3 , and Ln = Eu, Gd, Dy, Ho, Er, Tm and Yb are shown. Some results from positronium (Ps) in complexes except Eu (dpm) 3 , chemical aspects and properties of positron and positronium are evaluated. (M.J.C.) [pt

  17. Synthesis characterization and toxicity of lanthanide complexes with schiff bases derived from S-benzoyl dithiocarbazate and aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, K S; Tabassum, S; Zaidi, S A.A.; Kureshy, R I; Khan, N H [Aligarh Muslim Univ. (India). Dept. of Chemistry

    1989-12-01

    New O:N:S and N:S donor ligands namely, S-benzoyl-N-(o-hydroxybenzaldehyde) dithiocarbazate, S-benzoyl-N-(N,N-dimethylaminobenzaldehyde ) dithiocarbazate, S-benzoyl-N(N-thiophene-2-aldehyde) dithiocarbazate and their complexes with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III) have been synthesized and characterized on the basis of elemental analysis, IR, NMR and electronic spectroscopy. The nephelauxetic effect(1-{beta}overlined), bonding parameter, {beta}overlined, bsup(1/2) and Sinha covalency parameter {delta}, have been calculated. Their positive values indicate covalent nature of metal-ligand bond which is also supported by their molar conductances measured in nitrobenzene. Magnetic moment values exhibit paramagnetic nature of the complexes. Log K,{Delta}G, {Delta}H and {Delta}S values have also been ca lculated. Toxicity of the compounds has been evaluated against cockroaches and fungi(Aspergillus flavus and A. niger). The LD{sub 50} and % inhibition values demonstrate greater efficacy of the complexes than that of the free bases. (author). 4 tabs., 12 refs.

  18. Synthesis characterization and toxicity of lanthanide complexes with schiff bases derived from S-benzoyl dithiocarbazate and aldehydes

    International Nuclear Information System (INIS)

    Siddiqi, K.S.; Tabassum, S.; Zaidi, S.A.A.; Kureshy, R.I.; Khan, N.H.

    1989-01-01

    New O:N:S and N:S donor ligands namely, S-benzoyl-N-(o-hydroxybenzaldehyde) dithiocarbazate, S-benzoyl-N-(N,N-dimethylaminobenzaldehyde ) dithiocarbazate, S-benzoyl-N(N-thiophene-2-aldehyde) dithiocarbazate and their complexes with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III) have been synthesized and characterized on the basis of elemental analysis, IR, NMR and electronic spectroscopy. The nephelauxetic effect(1-βoverlined), bonding parameter, βoverlined, bsup(1/2) and Sinha covalency parameter δ, have been calculated. Their positive values indicate covalent nature of metal-ligand bond which is also supported by their molar conductances measured in nitrobenzene. Magnetic moment values exhibit paramagnetic nature of the complexes. Log K,ΔG, ΔH and ΔS values have also been ca lculated. Toxicity of the compounds has been evaluated against cockroaches and fungi(Aspergillus flavus and A. niger). The LD 50 and % inhibition values demonstrate greater efficacy of the complexes than that of the free bases. (author). 4 tabs., 12 refs

  19. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  20. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  1. Optimization of the radio lanthanides separation device

    International Nuclear Information System (INIS)

    Vera T, A. L.

    2009-01-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)

  2. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    Science.gov (United States)

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  3. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  4. Yb3+ can be much better than Dy3+: SMM properties and controllable self-assembly of novel lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes.

    Science.gov (United States)

    Gavrikov, Andrey V; Efimov, Nikolay N; Ilyukhin, Andrey B; Dobrokhotova, Zhanna V; Novotortsev, Vladimir M

    2018-05-01

    The first representatives of the binuclear lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes, namely isostructural compounds [Ln(dnbz)(acac)2(H2O)(EtOH)]2 (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), and Yb (8); dnbz - 3,5-dinitrobenzoate anion; acac - acetylacetonate (pentane-2,4-dionate) anion) were prepared and characterized. The SMM behavior of the Yb compound 8 was shown to be surprisingly less sensitive to the composition of the Yb3+ coordination environment in comparison with that of the Dy derivative. For Yb compound 8, the anisotropy barrier is Δeff/kB = 26 K under the dc field of 2000 Oe. This value is the highest one currently known for binuclear Yb complexes.

  5. 1,3-thiazole as suitable antenna ligand for lanthanide photoluminescence in [LnCl{sub 3}(thz){sub 4}].0.5thz, Ln = Sm, Eu, Gd, Tb, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Dannenbauer, Nicole; Mueller-Buschbaum, Klaus [Wuerzburg Univ. (Germany). Inst. for Inorganic Chemistry; Kuzmanoski, Ana; Feldmann, Claus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Inorganic Chemistry

    2014-02-15

    The series of luminescent monomeric lanthanide thiazole complexes [LnCl{sub 3}(thz){sub 4}].0.5thz (Ln = Sm, Eu, Gd, Tb, Dy; thz = 1,3-thiazole) has been synthesised and characterised by powder and single-crystal X-ray diffraction, IR and photoluminescence spectroscopy, DTA/TG as well as elemental analysis. The colourless compounds exhibit photoluminescence in the visible region with varying quantum efficiencies up to QY = 48 % for [LnCl{sub 3}(thz){sub 4}].0.5thz. Both, the lanthanide ions as well as the thiazole ligand contribute to the luminescence. Excitation can be achieved via intra-4f transitions and by exciting the ligand, emission is observed mainly from the lanthanide ions again by 4f transitions. Thiazole can transfer energy to the lanthanide ions, which further feeds the lanthanide emission by an efficient antenna effect even at room temperature. The lanthanide ions show pentagonal-bipyramidal coordination by three chloride anions and four N atoms of 1,3-thiazole, which leads to a strong {sup 5}D{sub 0} → {sup 7}F{sub 4} transition for europium. Significant differences arise as compared to thiophene complexes because no sulphur atom is involved in the metal coordination, as the thiazole ligand is solely coordinated via its nitrogen function. (orig.)

  6. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  7. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  8. Lanthanides in the frame of Molecular Magnetism

    Directory of Open Access Journals (Sweden)

    Gatteschi D.

    2014-07-01

    Full Text Available Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  9. Synthesis, density functional theory calculations and luminescence of lanthanide complexes with 2,6-bis[(3-methoxybenzylidene)hydrazinocarbonyl] pyridine Schiff base ligand.

    Science.gov (United States)

    Taha, Ziyad A; Ababneh, Taher S; Hijazi, Ahmed K; Abu-Salem, Qutaiba; Ajlouni, Abdulaziz M; Ebwany, Shroq

    2018-02-01

    A pyridine-diacylhydrazone Schiff base ligand, L = 2,6-bis[(3-methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X-ray diffraction. Lanthanide complexes, Ln-L, {[LnL(NO 3 ) 2 ]NO 3 .xH 2 O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra-red (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln-L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO 3 ) 2 ] + complexes were carried out at the B3LYP/6-31G(d) level of theory. The FT-IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln-L indicated that Tb-L and Eu-L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln-L complexes show higher antioxidant activity than the parent L ligand. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Some high coordination compounds of lanthanides(III derived from N-isonicotinamidosalicyaldimine

    Directory of Open Access Journals (Sweden)

    Ram K. Agarwal

    2000-12-01

    Full Text Available A new series of lanthanide(III nitrates, isothiocyanates and perchlorates coordination complexes of N-isonicotinamidosalicyaldimine (INH-SAL with the general composition LnX3.n(INH-SAL (Ln = La, Pr, Nd, Sm, Gd, Tb or Dy; X = NO3-, n = 2; X = NCS-, n = 2 or 3 and X = ClO4-, n = 4 have been reported. All the complexes were characterized by chemical analyses, conductance, molar weight, magnetic moment measurements, infrared and electronic spectra. IR spectra indicate that the ligand behaves as a neutral N,O-donors. Thermal properties of the complexes have also been studied.

  11. New strategies for the chemical separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Hudson, M.J.; Iveson, P.B.

    2002-01-01

    A general model is proposed for the effective design of ligands for partitioning. There is no doubt that the correct design of a molecule is required for the effective separation by separation of metal ions such as lanthanides(III) and actinides(III). Heterocyclic ligands with aromatic rings systems have a rich chemistry, which is only now becoming sufficiently well understood, in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with metal ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazol-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. Primary Coordination Sphere. One of the most critical features concerning whether a molecule is a suitable extraction reagent is the nature of the binding and co-ordination in the primary co-ordination sphere. This effect will be considered in depth for the selected heterocylic molecules. It will be shown how the bonding of the heterocyclic and nitrate ligands changes as the complete lanthanide series is traversed from lanthanum to lutetium. For effective solvent extraction, the ligand(s) should be able completely to occupy the primary co-ordination sphere of the metal ion to be extracted. Interactions in the secondary co-ordination sphere are of less importance. Inter-complex Hydrogen Bonding Interactions. Another feature that will be considered is the intermolecular binding between ligands when bound to the metal ion. Thus the intermolecular structures between complex molecules will be considered

  12. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  13. An insight into the complexation of trivalent americium vis-a-vis lanthanides with bis(1,2,4-triazinyl)bipyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arunasis; Mohapatra, Manoj; Mohapatra, Prasanta K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Gadly, Trilochan; Ghosh, Sunil K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.; Manna, Debashree; Ghanty, Tapan K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Theoretical Chemistry Section; Rawat, Neetika; Tomar, Bhupendra S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radioanalytical Chemistry Div.

    2017-01-26

    Complexation of Am{sup 3+} and Ln{sup 3+} (La{sup 3+}, Eu{sup 3+}, and Er{sup 3+}) with two bis(1,2,4-triazinyl)bipyridine (C{sub 2}BTBP, C{sub 5}BTBP) derivatives has been studied in acetonitrile medium with use of various experimental techniques such as electrospray ionization mass spectrometry (ESI-MS), time-resolved fluorescence spectroscopy (TRFS), UV/Vis spectrophotometry, and solution calorimetry. Metal-ligand stoichiometries and conditional stability constants of these complexes were determined. To the best of our knowledge, this is the first report on the complexation of Am{sup 3+} with any of the BTBP derivatives with use of UV/Vis spectrophotometric titration to determine the conditional stability constants. Density functional theory (DFT) calculations are carried out on the An{sup 3+} (U{sup 3+} and Am{sup 3+}) and Ln{sup 3+} (La{sup 3+}, Nd{sup 3+}, Eu{sup 3+}, Er{sup 3+}, and Lu{sup 3+}) complexes of BTBP in order to understand the difference between the bonding in actinide and lanthanide complexes. The results indicate a stronger covalent interaction in the An-N bonds as compared to the Ln-N bonds, which leads to an actinide selectivity of this class of ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  15. Molecular Fluoride-Bridged 3d-4f Complexes and Their Magnetic Properties

    DEFF Research Database (Denmark)

    Pedersen, K. S.; Bendix, J.

    2016-01-01

    trifluorides with very high lattice enthalpies, building block approaches are not limited to robust systems and use of labile transition metal fluoride complexes has met with unexpected success. The physical properties of fluoride-bridged 3d-4f systems are crucially dependent on coordination geometries, which...... be utilized efficiently in tailored synthesis of polynuclear complexes and extended structures. In particular, the strong affinity of the lanthanides for fluoride makes it a good choice for directed synthesis of mixed lanthanide-transition metal complexes. Despite the competition from formation of lanthanide...

  16. Analytical scheme for group separation of the lanthanides from biological materials before their determination by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Danko, B.; Samczynski, Z.; Dybczynski, R.

    2006-01-01

    The analytical procedure for the selective and quantitative isolation of the lanthanides as a group from biological materials has been developed on the basis of experiments with radio-tracers. Ion exchange and extraction column chromatography were used for the isolation of elements of interest from matrix and the other trace elements prior to irradiation in a nuclear reactor. The method enables quantitative separation of the lanthanide fraction, free from highly activating macro components, as well as from other trace elements including uranium, which can be the source of serious errors due to uranium 235 U fission reaction (n,f). In order to minimize the potential spectrometric interferences lanthanide fraction after neutron irradiation was divided into two sub-fractions, taking advantage of the different anion exchange affinities of individual lanthanide complexes with EDTA to strongly basic anion exchanger. The effective microwave digestion procedures for ca 500 mg biological samples was elaborated and the new, original method for checking the yield of the entire analytical procedure - including mineralization of the sample - was applied. Neutron activation analysis (NAA) of BCR 670 Aquatic Plant ? one of the only two CRMs of biological origin available on the market, which offers the certified values for all lanthanides was used for verification of performance of the proposed analytical scheme. (authors)

  17. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  18. Levitation in paramagnetic liquids

    International Nuclear Information System (INIS)

    Dunne, P.A.; Hilton, J.; Coey, J.M.D.

    2007-01-01

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated

  19. Use of tetracycline as complexing agent in radiochemical separations

    International Nuclear Information System (INIS)

    Saiki, M.; Nastasi, M.J.C.; Lima, F.W.

    1981-01-01

    The use of the antibiotic agent tetracycline (TC) for analytical purposes in solvent extraction procedures is presented. Individual extraction curves for the lanthanides, zinc, scandium, uranium, thorium, neptunium and protactinium were obtained. Separation of those elements from one another, and of uranium from selenium, bromine, antimony, barium, tantalum and tungsten was carried out. In all cases benzyl alcohol was the diluent used to dissolve tetracycline hydrochloride. Sodium chloride was used as supporting electrolyte for the lanthanide separations and sodium perchlorate for the other elements mentioned. Stability or formation constants for the lanthanide complexes as well as for thorium complex with tetracycline were determined by using the methods of average number of ligands, the limiting value (for thorium), the two parameters and the weighted least squares. For the lanthanides, the stability constants of the complexes Ln(TC) 3 go from 9.35+-0.22 for lanthanum up to 10.84+-0.11 for lutetium. For the Th(TC) 4 complex the formation constant is equal to 24.6+-0.3. Radioisotopes of the respective elements were used as tracers for the determinations. (author)

  20. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  1. High temperature vaporization/decomposition studies of lanthanide and actinide fluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1987-01-01

    Binary fluorides of the lanthanide and actinide elements comprise a fundamental class of compounds. The authors' investigations of their basic high temperature vaporization and/or decomposition behavior are aimed at elucidating more fully the thermal properties of selected tri- and tetrafluorides and extending such investigations to fluorides which have not been studied previously. Depending on the particular system and the specific experimental conditions, the authors' measurements can provide such information as the enthalpy associated with a congruent vaporization process and/or the relative stabilities of fluorides containing a lanthanide/actinide element in different oxidation states. The authors are also studying the congruent vaporization of selected lanthanide trifluorides with particular emphasis on two areas. The first concerns the variation in the enthalpies of sublimation of the trifluorides across the lanthanide series. Although this variation is rather small (δ5 kcal where ΔH/sub subl/ is approximately 100 kcal), it is larger than observed for other lanthanide trihalides and is unusually irregular. To examine this reported variation more closely, they are attempting to measure relative vapor pressures/enthalpies of vaporization by studying mixtures of two or more lanthanide trifluorides by the technique discussed above

  2. Synthesis and Characterization of Lanthanide(III Nitrate Complexes with Terdentate ONO Donor Hydrazone Derived from 2-Benzimidazolyl Mercaptoaceto Hydrazide and o-Hydroxy Aromatic Aldehyde

    Directory of Open Access Journals (Sweden)

    Vinayak M. Naik

    2011-01-01

    Full Text Available A few eight coordinated complexes of lanthanide(III nitrate with 2-benzimidazolyl mercaptoaceto hydrazone ligand (LH2 with the general formula [Ln(LH2NO2]H2O (where Ln = La, Pr, Nd, Sm and Gd have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, UV-Visible, IR and 1H NMR spectral studies. The experimental data sustain stoichiometry of 1:2 (metal/ligand for the complexes. The spectral data shows that the ligand reacts in keto form and behaves as monobasic terdentate in nature. The nitrate appears to coordinate in the bidentate fashion to the metal ion. The thermal stabilities of the complexes have been studied by TGA and their kinetic parameters were calculated using Coats-Redfern and MKN methods. The antimicrobial activity studies have been under taken and results are discussed.

  3. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  4. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  5. Luminescence and Magnetic Properties of Tb(III) Complexes with TETA and Synergistic Effect by 1,10-Phenanthroline

    International Nuclear Information System (INIS)

    Kang, Jung Youl; Shin, Su jeong; Kim, Jae Kwan; Park, Kyoung Chan

    2016-01-01

    Two Tb(III) complexes, [Tb(TETA)]− and [Tb(TETA)(phen)]− (TETA = 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate and phen=1,10-phenanthroline), were synthesized and their luminescence ("5D_4 → "7F_=_0_-_6 transitions) and magnetic properties were examined. The photoluminescence (PL) quantum yield of [Tb(TETA)(phen)]− (Q = 0.47) was significantly higher than that of [Tb(TETA)]− (Q = 0.006). The dramatic increase (78 x) in green luminescence was attributed to intramolecular energy transfer from phen to Tb(III). The energy transfer rate according to Dexter theory was found to be approximately 1011s−1. The temperature dependence of the molar susceptibilities confirmed that the two complexes behave as paramagnets obeying the Curie–Weiss law. In addition, the field-dependent magnetization of the two complexes measured in the −70 to + 70 kOe range at T=1.8K fitted well with the Brillouin function with the following values: g _e_f_f=1.5, μ B =9.27×10−21 emu, and J=6. These results provide new insights into the development of lanthanide metal complexes with tetraaza

  6. Luminescence and Magnetic Properties of Tb(III) Complexes with TETA and Synergistic Effect by 1,10-Phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Youl; Shin, Su jeong; Kim, Jae Kwan; Park, Kyoung Chan [Hanbat National University, Daejeon (Korea, Republic of)

    2016-09-15

    Two Tb(III) complexes, [Tb(TETA)]− and [Tb(TETA)(phen)]− (TETA = 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate and phen=1,10-phenanthroline), were synthesized and their luminescence ({sup 5}D{sub 4} → {sup 7}F{sub =0-6} transitions) and magnetic properties were examined. The photoluminescence (PL) quantum yield of [Tb(TETA)(phen)]− (Q = 0.47) was significantly higher than that of [Tb(TETA)]− (Q = 0.006). The dramatic increase (78 x) in green luminescence was attributed to intramolecular energy transfer from phen to Tb(III). The energy transfer rate according to Dexter theory was found to be approximately 1011s−1. The temperature dependence of the molar susceptibilities confirmed that the two complexes behave as paramagnets obeying the Curie–Weiss law. In addition, the field-dependent magnetization of the two complexes measured in the −70 to + 70 kOe range at T=1.8K fitted well with the Brillouin function with the following values: g {sub eff}=1.5, μ B =9.27×10−21 emu, and J=6. These results provide new insights into the development of lanthanide metal complexes with tetraaza.

  7. Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene

    2012-01-01

    This study is a large project initiated by the French Nuclear Agency, and concerns the development of a new electrolyte system for the separation of lanthanides by isotachophoresis. This new system is based on a leading electrolyte that incorporates 2-hydroxy-2-methylbutyric acid as complexing agent. The optimization of separation conditions (complexing agent concentration, pH, capillary dimensions, injection conditions, and current intensity) performed by experiments on a commercial capillary instrument with contactless conductivity detection, which allows to improve the separation of 13 lanthanides (La to Lu, except Pm and Ho). We have also directly coupled the isotachophoresis to an inductively coupled plasma mass spectrometer to visualize the mono-elementary elution bands and demonstrate the potentiality of the method for isotope ratio measurements. The application to a simulated solution representative of a fraction of fission products present in a MOX spent fuel is presented in this paper to demonstrate the possible application in future on nuclear fuel samples. (authors)

  8. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    Science.gov (United States)

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y

    Directory of Open Access Journals (Sweden)

    Vítězslav Jarý

    2015-10-01

    Full Text Available Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K. Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed.

  10. The structure determination of uranocene and the first COT lanthanide complexes

    International Nuclear Information System (INIS)

    Raymond, Kenneth N.

    2015-01-01

    This paper results from my introductory talk at the symposium 'Frontiers of Organo-f-Element Chemistry'. Although my active research in organo-actinide and -lanthanide chemistry ended early in my career, it led to an interest in actinide coordination chemistry that continues to this day; I am a member of the actinide research group of the Chemical Sciences Division of the Lawrence Berkeley National Laboratory. My remarks will be somewhat personal and are intended to provide a perspective on the history of this field, but I hope to connect it to what has become a new and very active area of research; this class of compounds is now associated with what are essentially quantum confined multiconfigurational molecules. (authors)

  11. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  12. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    Borai, E.H.; Hassan, R.S.; El- Dessouky, M.I.; Ghonem, A.

    2008-01-01

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  13. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  14. Assignment of hyperfine shifted haem methyl carbon resonances in paramagnetic low-spin met-cyano complex of sperm whale myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasuhiko

    1987-09-28

    The hyperfine shifted resonances arising from all four individual haem carbons of the paramagnetic low-spin met-cyano complex of sperm whale myoglobin have been clearly identified and assigned for the first time with the aid of /sup 1/H-/sup 13/C heteronuclear chemical shift correlated spectroscopy. Alteration of the in-plane symmetry of the electronic structure of haem induced by the ligation of proximal histidyl imidazole spreads the haem carbon resonances to 32 ppm at 22/sup 0/C, indicating the sensitivity of those resonances to the haem electronic/molecular structure. Those resonances are potentially powerful probes in characterizing the nature of haem electronic structure. 25 refs.; 2 figs.; 1 table.

  15. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  16. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    Science.gov (United States)

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  17. Synthesis, Structure, and Magnetism of Tris(amide) {Ln[N(SiMe3)2]3}1- Complexes of the Non-Traditional +2 Lanthanide Ions.

    Science.gov (United States)

    Ryan, Austin Jack; Darago, Lucy E; Balasubramini, Sree Ganesh; Chen, Guo P; Ziller, Joseph W; Furche, Filipp; Long, Jeffrey R; Evans, William J

    2018-02-28

    A new series of Ln2+ complexes has been synthesized that overturns two previous generalizations in rare-earth metal reduction chemistry: that amide ligands do not form isolable complexes of the highly-reducing non-traditional Ln2+ ions and that yttrium is a good model for the late lanthanides in these reductive reactions. Reduction of Ln(NR2)3 (R = SiMe3) complexes in THF under Ar with M = K or Rb in the presence of 2.2.2-cryptand (crypt) forms crystallographically-characterizable [M(crypt)][Ln(NR2)3] complexes not only for the traditional Tm2+ ion and the configurational crossover ions, Nd2+ and Dy2+, but also for the non-traditional Gd2+, Tb2+, Ho2+, and Er2+ ions. Crystallographic data as well as UV-visible, magnetic susceptibility, and density functional theory studies are consistent with the accessibility of 4fn5d1 configurations for Ln2+ ions in this tris(silylamide) ligand environment. The Dy2+ complex, [K(crypt)][Dy(NR2)3], has a higher magnetic moment than previously observed for any monometallic complex: 11.67 µB. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  19. The spectroscopy and structure of some lanthanide chlorides in amide solutions

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Bukietynska, K; Jezowsky-Trzebiatowska, B.

    1974-01-01

    The absorption spectra of Pr, Nd, Ho, and Er anhydrous and hydrated chlorides in formamide, methyl-, dimethyl-, and diethylformamide solutions have been investigated in the range of 8000 - 4200 cm -1 . By the Judd-Oefelt method of intensity analysis and by calculating the nepheloauxetic effect, the first coordination sphere of lanthanide ions and the approximate symmetry of amide solvates of anhydrous and hydrated lanthanide chlorides were determined. A difference between symmetry and coordination numbers for light and heavy lanthanide solvates has been found. Some considerations regarding the structure of lanthanide solvates and structure of amide molecules have been made. (B.T.)

  20. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  1. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  2. Lanthanide-doped nanoparticles as the active optical medium in polymer-based devices

    NARCIS (Netherlands)

    Stouwdam, J.W.

    2004-01-01

    The luminescence of lanthanide ions in organic environment is greatly reduced compared to inorganic materials. This thesis describes the doping of the lanthanide ions in the core of inorganic nanoparticles that are soluble in organic solvents as a way to shield the lanthanide ions from the organic

  3. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  4. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  5. Development of some new Aza and Thia complex as alternative tracers for oil reservoirs

    International Nuclear Information System (INIS)

    Silva, Lauris L.; Donnici, Claudio L.; Ayala, Jose D.

    2009-01-01

    A promising group of non-sorbing tracers are lanthanide ions complexed to organic anions, which yield a negatively charged complex. Besides, this lanthanide ion could be chosen which, in its non-complexed form, is very insoluble in groundwater and thus no severe background concentrations problem would arise. The lanthanide elements may be used as tracers since they present good solubility in water, when complexed, and the nuclides have high neutron cross sections, they may be used as activable tracers under neutron irradiation in order to evaluate the efficiency of the petroleum production processes. For this purpose, tracers must be soluble in the aqueous phase and be insoluble in the organic phase, they also must not be adsorbed on the internal microporous rock formations and be easily detectable. Lanthanide complexes with DTPA and thiodicarboxylic acid ligands are an alternative to the development of these novel tracers since their properties may be chemically adjusted. (author)

  6. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Munteanu

    2016-12-01

    Full Text Available In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III, Eu(III, Gd(III, Tb(III. The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H9O33(OH2(H2Ox]·nH2O, where Ln is the lanthanide cation and x = 0 for Sm(III, x = 1 for Eu(III, Gd(III, Tb(III and n = 0 for Sm(III, Gd(III, Tb(III, n = 1 for Eu(III, respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb ~ 104. Human serum albumin (HSA and transferrin (Tf binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra. The apparent association constants (Ka and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.

  7. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  8. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue.

    Science.gov (United States)

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2010-09-06

    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  9. Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex

    Science.gov (United States)

    Xu, Xiao-Hui; Kuang, Min-Quan

    2017-12-01

    The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.

  10. Paramagnetic contrast material

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Paramagnetic contrast materials have certainly demonstrated clinical utility in a variety of organ systems for improved detection of various neoplastic, inflammatory, infectious, and physiologic abnormalities. Although the more commonly employed extracellular agents, such as Gd-DTPA, have been quite safe and useful, particularly in the CNS, it is almost certain that other substances will achieve more success in various other organs, such as iron oxides in the reticuloendothelial system and persisting extracellular agents in the cardiovascular system. Finally, as MRI technology continues to evolve, producing such exciting new sequences as gradient-echo fast scans, the roles of currently existing and newly discovered paramagnetic pharmaceuticals must be continuously reevaluated both to obtain maximum clinical benefit and to guide the search for newer agents that may further optimize the diagnostic efficacy of MRI

  11. Synthesis, thermodynamic properties and antibacterial activities of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jun-Ru [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Shu-Xia [Material Science and Engineering School, Shijiazhuang Tiedao University, Shijiazhaung 050043 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Da-Hai [Department of Chemistry, Handan College, Handan 056005 (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2013-11-20

    Graphical abstract: Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline))were synthesized and characterized by elemental analysis, IR and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and Candida albicans were studied by filter paper approach. - Highlights: • Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} were synthesized and characterized. • The thermal decomposition processes of the title complexes were studied using the TG/DSC–FTIR coupling techniques. • The heat capacities of the complexes were measured by (DSC). • The antibacterial action of the four complexes on Escherichia coli, Staphylococcus aureus and Candida albicans were studied. - Abstract: Four lanthanide complexes with a general formula [Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, infrared spectra (IR), and thermogravimetric, differential scanning calorimetry techniques, combined with Fourier transform infrared (TG/DSC–FTIR) technology. The thermal decomposition processes of the four complexes were investigated by TG/DSC–FTIR techniques. Heat capacities were measured by DSC. The values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions (H{sub T} − H{sub 298.15} {sub K}), (S{sub T} − S{sub 298.15} {sub K}), and (G{sub T} − G{sub 298.15} {sub K}) were calculated. The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and

  12. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  13. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  14. Zero-field splitting in the isoelectronic aqueous Gd(III) and Eu(II) complexes from a first principles analysis

    Science.gov (United States)

    Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.

    2018-03-01

    The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.

  15. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-01-01

    The gas-phase reactivity of the fluorinated hydrocarbons CF 4 , CHF 3 , CH 3 F, C 2 F 6 , 1,1-C 2 H 4 F 2 , and C 6 F 6 with the lanthanide cations Ce + , Pr + , Sm + , Ho + , Tm + , and Yb + and the reactivity of C 6 H 5 F with all lanthanide cations Ln + (Ln = La-Lu, with the exception of Pm + ) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane, hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a 'harpoon'-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln + RF. The most reactive lanthanides La + , Ce + , Gd + , and Tb + and also the formal closed-shell species Lu + exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm + and Yb + the formation of neutral LnF 3 is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs

  16. Some aspects of synergistic extraction of actinides and lanthanides from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Shukla, J.P.; Subramanian, M.S.

    1981-01-01

    Various aspects of the synergistic extraction and separation of actinides and lanthanides from mixed aqueous-organic solutions (polar media) have been reviewed. Notable recent developments as well as its current status in solvent extraction systems where the aqueous acidic phase contains an organic solvent which is completely miscible with water, are presented briefly. In general, extraction increases in the presence of an organic component. The less polar the additive, the higher is the tendency to form neutral metal complexes which ultimately brings about an increase in the extraction. In a polar media, synergism has mostly been observed, though antagonism is not uncommon. An attempt has been made to classify the factors that play an important role in polar phase extractions. Also, their influence particularly on the extractability of actinides and lanthanides is discussed. The discussion is limited to the factors affecting the extraction equilibria, effect of dielectric constant of the polar medium, solvation of the extracting agent and to the composition and stability of the metal complex in the organic phase. Hydroxyl (OHsup(-)) bearing organic additives, e.g. alcohols, and solvents not containing the hydroxyl group such as acetone, dimethylsulphoxide, tetrahydrofuran, amides and acetonitrile etc. are the two major classes of organic additives considered in these studies. Generally, synergistic effect in extraction of the ion-association (TBP, TOPO, sulphoxides etc.) or anion exchange (amines etc.) type is relatively more pronounced compared to other extractions. A tabular summary concerning extraction of actinides and lanthanides from polar media is appended for ready reference. (author)

  17. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Abrao, A

    1975-06-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Nd, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH/sub 4/ solution buffered with acetic acid as eluant. The annoying problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu/sub 2/S and disruption of Cu-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity.

  18. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, A.

    1975-01-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Ns, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH 4 solution buffered with acetic acid as eluant. The annoy problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu 2 S and disruption of CU-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity

  19. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency...

  20. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  1. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  2. Rare earth [beta]-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Tu, Z.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kaul, A.R. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Girichev, G.V. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Giricheva, N.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Rykov, A.N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korenev, Y.M. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-08-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.).

  3. Rare earth β-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    International Nuclear Information System (INIS)

    Kuzmina, N.P.; Martynenko, L.I.; Tu, Z.A.; Kaul, A.R.; Girichev, G.V.; Giricheva, N.I.; Rykov, A.N.; Korenev, Y.M.

    1993-01-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.)

  4. Determination of the formation constant for the inclusion complex between Lanthanide ions and Dansyl chloride derivative by fluorescence spectroscopy: Theoretical and experimental investigation

    Science.gov (United States)

    Riahi, Siavash; Ganjali, Mohammad Reza; Hariri, Maryam; Abdolahzadeh, Shaghayegh; Norouzi, Parviz

    2009-09-01

    In this paper, a sensitive, easy, efficient, and suitable method for the calculation of Kf values of complexation between one derivative of Dansyl chloride [5-(dimethylamino) naphthalene-1-sulfonyl 4-phenylsemicarbazide] (DMNP) and Lanthanide(III) (Ln) ions is proposed, using both spectrofluorometric and spectrophotometric methods. Determination of Kf showed that DMNP was mostly selective towards the erbium (III) ion. The validity of the method was also confirmed calculating the Stern-Volmer fluorescence quenching constants ( Ksv) that resulted in the same consequence, obtained by calculating the Kf of complexation values. In addition, the UV-vis spectroscopy was applied for the determination of Kf only for the Ln ions that had interactions with DMNP. Finally, the DFT studies were done on Er 3+ and the DMNP complex for distinguishing the active sites and estimating the pair wise interaction energy. It can be concluded that this derivative of Dansyl chloride with inherent high fluorescence intensity is a suitable reagent for the selective determination of the Er 3+ ion which can be used in constructing selective Er 3+ sensors.

  5. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  6. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  7. Lanthanide Cofactors for Triphosphorylation Ribozymes

    Science.gov (United States)

    Sweeney, K. J.; Müller, U. F.

    2017-07-01

    RNA world organisms could have used trimetaphosphate as energy source for thermodynamically unfavorable RNA polymerization. Using in vitro selection we show here that Lanthanides can serve as cofactors for ribozyme-catalyzed RNA triphosphorylation.

  8. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Cheon, J.S.; Lee, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2017-02-15

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  9. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo; Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  10. Synthesis, crystal structures and thermodynamic properties of two novel lanthanide complexes based on 3,4-diethoxybenzoic acid and 2,2′-bipyridine

    International Nuclear Information System (INIS)

    Jin, Cheng-Wei; Wang, Ye; Ren, Ning; Geng, Li-Na; Zhang, Jian-Jun

    2016-01-01

    Highlights: • Two novel complexes crystal structures are obtained. • The 1-D chain and 2D layer structures were formed via π–π stacking interactions. • The pathway of thermal decomposition for title complexes were investigated. • The molar heat capacities and thermodynamic functions were calculated. - Abstract: Two binuclear lanthanide complexes [Ln(3,4,-DEOBA) 3 DIPY] 2 DIPY (Ln = Tb (1), Dy (2); 3,4,-DEOBA = 3,4-diethoxybenzoate; DIPY = 2,2′-bipyridine) have been synthesized and characterized. The single crystals of complexes 1 and 2 were obtained. And the two complexes are isostructural with a coordination number of eight to form a distorted square antiprism. Carboxylic groups adopt two modes coordinating with Ln(III) ions: bidentate chelate, and bridging bidentate. Binuclear complexes 1 and 2 are stitched together via π–π stacking interactions to form 1D chain and 2D layer supramolecular structures. The two complexes were characterized by elemental analysis, IR spectra, and powder X-ray diffraction. The luminescence spectra of complexes 1 and 2 show the characteristic emissions of Tb 3+ ( 5 D 4 → 7 F 6-3 ) and Dy 3+ ( 4 F 9/2 → 6 H 15/2 , 6 H 13/2 ). The thermal decomposition mechanisms for title complexes were studied by the technology of TG-FTIR. And the heat capacities of two complexes were measured by DSC in the temperature range from 258.15 to 343.15 K. The smoothed heat capacities and thermodynamic functions for complexes 1 and 2 were calculated by fitted polynomial and thermodynamic equations.

  11. About kinetics of paramagnetic radiation malformations in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabinkin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petukhov, Yu.V.

    1999-01-01

    This paper [1] specifies that γ-radiation of the beryllium-oxide-based ceramics results in development of paramagnetic radiation malformations emerging the ESR spectrum in form of doublet with the splitting rate of oestrasid Δ∼1.6 and g-factor of 2.008. This report presents evaluation outcomes of dependence of paramagnetic radiation malformations concentration in beryllium ceramics on gamma-radiation dose ( 60 Co) within the range of 0-100 Mrad. Total paramagnetic parameters of beryllium ceramics in the range 0-100 Mrad of gamma-radiation dose varied slightly, and were specified by the first type of paramagnetic radiation malformations

  12. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  13. α-, β-, and δ-Hydrogen Abstraction in the Thermolysis of Paramagnetic Vanadium(III) Dialkyl Complexes

    NARCIS (Netherlands)

    Hessen, Bart; Buijink, Jan-Karel F.; Meetsma, Auke; Teuben, Jan H.; Helgesson, Göran; Håkansson, Mikael; Jagner, Susan; Spek, Anthony L.

    1993-01-01

    Electron deficient paramagnetic vanadium(III) diakyls CpV(CH2CMe2R)2(PMe3) (14 electron, R = Me (2), Ph (3)) and CpV[CH(SiMe3)2]2 (12 electron, 4) have been synthesized. At ambient temperature 2 decomposes through α-hydrogen abstraction to produce, in the presence of dmpe

  14. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  15. Interaction between diethylenetrithiodiacetic acid (H2T) derivatives and trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Matos, J.E.X.; Melo, S.M.; Fontenele, E.M.G.

    1984-01-01

    Thiopolycarboxylic acids are a class of ligands which contain, besides carboxi-groups, sulfur atoms showing a distinct affinity towards certain solft metals. Stability constant measurements were made for metaldithiocarboxylic acid systems and performed by several authors. Some soLid complexes with 1:1 and 1:2 metal-ligand ratios were isolated and their structures determined by spectroscopic and magnetic methods. Solid complexes between some lanthanides and ethylenedithiodiacetic acid were prepared and characterized by Holanda and Giesbrecht. Investigations of the crystal structure of Zn (II), Cd (II), and Nd (III) complexes with thiodiacetic acid showed, besides coordination to carboxylic groups, the ligand being linked to the metal through the sulfur atom. (Author) [pt

  16. Preparation and structural characterization of the intermediate complex [Er{H2C8H16N4(CH2COO)3(CH2(Ph)PO2)}(H2O)2]2Cl2.xH2O in the reaction of Er3+ and the dota-type ligand. An interesting example of two stereoforms of a lanthanide complex

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek, P.; Rohovec, Jan

    2006-01-01

    Roč. 71, č. 2 (2006), s. 264-278 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z30130516 Keywords : x-ray diffraction * lanthanoids * lanthanide complexes * erbium * stereochemistry Subject RIV: DD - Geochemistry Impact factor: 0.881, year: 2006

  17. Lanthanide light for biology and medical diagnosis

    International Nuclear Information System (INIS)

    Bünzli, Jean-Claude G.

    2016-01-01

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  18. Lanthanide light for biology and medical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Bünzli, Jean-Claude G., E-mail: jean-claude.bunzli@epfl.ch [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-02-15

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  19. Investigations for the influence of geochemical parameters on the sorption and desorption of lanthanides and uranium onto opalinus clay as potential host rock for a repository

    International Nuclear Information System (INIS)

    Moeser, Christina

    2010-01-01

    The development of a disposal in deep geological formations for radioactive waste is a very important task for the future. The safety assessment for more than a hundred thousand years needs a full understanding of all processes of interaction between the radioactive waste and the surrounded formations. This work contributes to this understanding. The interaction between lanthanides (homologues of the actinides americium, curium and berkelium) / uranium and the host rock opalinus clay under influence of organic substances (NOM) have been analyzed and discussed. The complex system was split into 3 binary basic systems with the following interactions - Interactions between lanthanides / uranium and NOM - Interactions between lanthanides / uranium and the opalinus clay - Interactions between NOM and opalinus clay All binary systems can be influenced by geological parameters like pH, ion strength and competing cations. The sorption / desorption of the lanthanides onto the opalinus clay is analyzed via inductively coupled plasma mass spectrometry. For the investigation of the complexation behavior of metals with NOM we used capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. Under these conditions the chosen model organic humic acid affected the sorption of the lanthanides onto opalinus clay favorably. The smaller organic compounds, which dominate in the composition of the clay organics, remobilized the metals after sorption onto clay and the sorption can be inhibited by NOM. Due to the reduced metal sorption onto Opalinus clay by NOM, a migration through the clay may be possible.

  20. Assembly and luminescence properties of lanthanide-polyoxometalates/polyethyleneimine/SiO{sub 2} particles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@yahoo.com.cn; Fan, Shaohua; Zhao, Weiqian; Zhang, Hongyan

    2013-01-01

    In this paper, two lanthanide-polyoxometalate (LnW{sub 10}) complexes were bonded on the surface of the polyethyleneimine (PEI)-modified silica nanoparticles with different sizes, resulting in the formation of LnW{sub 10}/PEI/SiO{sub 2} particles. The hybrid core–shell particles were characterized by infrared, luminescent spectra, scanning electronic microscope, and transmission electronic microscope. The particles obtained exhibit the fine spherical core–shell structure and the excellent luminescence properties. The luminescence spectra studies revealed that the formation of LnW{sub 10}/PEI/SiO{sub 2} particles and the size of particle have an influence on the luminescence properties of lanthanide ions. - Highlights: ► SiO{sub 2}/polyethyleneimine (PEI) shows the chemisorption for Ln-polyoxometalates (LnW{sub 10}). ► The core-shell LnW{sub 10}/PEI/SiO{sub 2} nanoparticles with different sizes were fabricated. ► The hybrid particles exhibit the excellent luminescence properties. ► The sizes of particles affect the luminescence properties of lanthanide ions.

  1. Co-ordination properties of diglycol-amide (DGA) to trivalent curium and lanthanides studied by XAS, XRD and XPS methods

    International Nuclear Information System (INIS)

    Yaita, T.; Hirata, M.; Narita, H.; Tachimori, S.; Yamamoto, H.; Edelstein, N.M.; Bucher, J.J.; Shuh, D.K.; Rao, L.

    2001-01-01

    Co-ordination properties of diglycol-amide (DGA) to trivalent curium and to the trivalent lanthanides were studied by the EXAFS, the XRD and the XPS methods. The structural determinations by both the crystal XRD and the solution EXAFS methods showed that the DGA co-ordinated to the trivalent lanthanide ion in a tridentate fashion: co-ordination of three oxygen atoms of each ligand to the metal ion. The bond distances of Er-O (carbonyl) and Er-O (ether) in the Er-DGA complex were 2.35 Angstrom, and 2.46 Angstrom, respectively, while the atom distances of Cm-O (carbonyl) and Cm-O (ether) in the Cm-DGA complex were 2.42 Angstrom and 3.94 Angstrom, respectively from the EXAFS data for the Cm-DGA complex. Accordingly, the DGA would behave only as a semi-tridentate in the co-ordination to trivalent curium in solution. We determined the valence band structures of the Er-DGA complex by the XPS in order to clarify the bond properties of the complex, and assigned the XPS spectrum by using the DV-DS molecular orbital calculation method. (authors)

  2. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng; Han, Yu; Lim, Chinseong; Lu, Yunhao; Wang, Juan; Xu, Jun; Chen, Hongyu; Zhang, Chun; Hong, Minghui; Liu, Xiaogang

    2010-01-01

    or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal

  3. Theory of the normal modes of vibrations in the lanthanide type crystals

    Science.gov (United States)

    Acevedo, Roberto; Soto-Bubert, Andres

    2008-11-01

    For the lanthanide type crystals, a vast and rich, though incomplete amount of experimental data has been accumulated, from linear and non linear optics, during the last decades. The main goal of the current research work is to report a new methodology and strategy to put forward a more representative approach to account for the normal modes of vibrations for a complex N-body system. For illustrative purposes, the chloride lanthanide type crystals Cs2NaLnCl6 have been chosen and we develop new convergence tests as well as a criterion to deal with the details of the F-matrix (potential energy matrix). A novel and useful concept of natural potential energy distributions (NPED) is introduced and examined throughout the course of this work. The diagonal and non diagonal contributions to these NPED-values, are evaluated for a series of these crystals explicitly. Our model is based upon a total of seventy two internal coordinates and ninety eight internal Hooke type force constants. An optimization mathematical procedure is applied with reference to the series of chloride lanthanide crystals and it is shown that the strategy and model adopted is sound from both a chemical and a physical viewpoints. We can argue that the current model is able to accommodate a number of interactions and to provide us with a very useful physical insight. The limitations and advantages of the current model and the most likely sources for improvements are discussed in detail.

  4. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Qu Ximei; Wang Liqin; Zhang Wenyi; Liu Zhongchao; Cui Songye; Feng Xin; Jiaoling

    2013-01-01

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  5. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  6. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  7. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  8. A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Davide; Giachetti, Andrea; Luchinat, Claudio, E-mail: luchinat@cerm.unifi.it; Rosato, Antonio, E-mail: rosato@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-11-15

    The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great interest in the use of lanthanide(III) ions to induce PCSs in diamagnetic proteins, e.g. through the replacement native calcium(II) ions. By preparing multiple samples in each of which a different ion of the lanthanide series is introduced, it is possible to obtain multiple independent PCS datasets that can be used synergistically to generate protein structure ensembles (typically called bundles). For typical NMR-based determination of protein structure, it is necessary to perform an energetic refinement of such initial bundles to obtain final structures whose geometric quality is suitable for deposition in the PDB. This can be conveniently done by using restrained molecular dynamics simulations (rMD) in explicit solvent. However, there are no available protocols for rMD using multiple PCS datasets as part of the restraints. In this work, we extended the PCS module of the AMBER MD package to handle multiple datasets and tuned a previously developed protocol for NMR structure refinement to achieve consistent convergence with PCS restraints. Test calculations with real experimental data show that this new implementation delivers the expected improvement of protein geometry, resulting in final structures that are of suitable quality for deposition. Furthermore, we observe that also initial structures generated only with traditional restraints can be successfully refined using traditional and PCS restraints simultaneously.

  9. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  10. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  11. Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Mozzati, Maria Cristina; Azzoni, Carlo Bruno; Capsoni, Doretta; Bini, Marcella; Massarotti, Vincenzo

    2003-01-01

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu 3 Ti 4 O 12 have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO 4 -TiO 6 -CuO 4 complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested

  12. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zeng, Zhi [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng Cheng [Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas (United States)

    2014-08-11

    Graphical abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been reported. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. - Highlights: • The pH probe offers a very wide working range in water (pH 1–14). • The emission changes have multiple colors. • Long-lived excited state lifetimes of Eu(III) has been used. • Two types of pH sensitive hydrogels were fabricated. - Abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex = 427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future.

  13. Dispersive liquid-liquid microextraction followed by flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) determination of 14 lanthanides from ground water

    International Nuclear Information System (INIS)

    Chandrasekaran, K.; Karunasagar, D.; Arunachalam, J.

    2011-01-01

    The aim of the present work was to develop a dispersive liquid-liquid microextraction (DLLME) method for the sensitive determination of REEs at a few parts per billion in groundwater by flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS). In the developed method, methanol (500 μl) and chloroform (200μl) were used as the disperser and extractant respectively. The REEs were complexed with 4-(2-pyridylazo resorcinol) (PAR) at a pH of 7. Acetate ion was added as an auxiliary ligand for neutralization of the charge on the lanthanide-PAR complex. The disperser (MeOH) - extraction solvent (CHCl 3 ) mixture was rapidly injected using a disposable syringe, thereby forming a cloudy solution. The lanthanide-PAR complex was extracted into the fine droplets of the chloroform dispersed in the aqueous phase. The solution was centrifuged and the aqueous layer at the top was discarded. The REEs were back extracted from the chloroform layer with nitric acid for determination by ICPMS. Important parameters for complex formation and extraction, such as volume of extraction/disperser solvent, extraction time, pH and concentration of the chelating agent and the auxiliary ligand are being optimized using ICP-MS. The optimization is being carried out at 5 μg L -1 concentration level of REE in the initial water sample. Preliminary studies have shown an extraction recovery of 80-85% for all the 14 lanthanide elements and these will be presented

  14. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  15. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  16. Tuning facial-meridional isomerisation in monometallic nine-co-ordinate lanthanide complexes with unsymmetrical tridentate ligands.

    Science.gov (United States)

    Le Borgne, Thierry; Altmann, Peter; André, Nicolas; Bünzli, Jean-Claude G; Bernardinelli, Gérald; Morgantini, Pierre-Yves; Weber, Jacques; Piguet, Claude

    2004-03-07

    The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.

  17. Determination of stability constants of lanthanides (III) with amino acids (Preprint No. AL-07)

    International Nuclear Information System (INIS)

    Patel, N.M.; Patel, P.M.; Patel, M.N.; Joshi, J.D.

    1989-01-01

    The present paper reports the stability constants of La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) with amino acids valine, serine, threonine, methionine and aspartic acid. The coordination of valine and aspartic acid have been discussed. The stability constants of trivalent lanthanide amino acid complexes were found to be in the order, La < Ce < Pr < Nd < Sm < Gd. (author). 5 refs

  18. Complexation of trivalent cationic lanthanides by N.O donor ligands: physico-chemical studies of the association and selectivity in solution

    International Nuclear Information System (INIS)

    Bravard, F.

    2004-01-01

    The aim of this work is to study the complexation of f-elements in solution by ligands incorporating N-heterocyclic donors. These ligands display interesting properties for the selective separation of An(III)/Ln(III) have been studied to obtain a better understanding of the coordination properties with f-elements and to develop more selective extractants. The hepta-dentate ligand tpaam shows an affinity for Ln(III) similar to the tetradentate ligand tpa in water even when the three additional amide groups are bonded to the metal. Even though the complexation with tpa is exothermic, that with tpaam is endothermic with a more positive entropy. The dehydration of the cation disfavours the formation of Ln(III) complexes with ligands containing weak donors. The analysis of the solution paramagnetic relaxation times of the tpaam complexes is in agreement with data in the solid-state. There is little difference between the formation constants of the Ln 3+ complexes with different ligands (tpaam, tpzen, tpa and tpza) as determined by UV-vis spectrophotometry in anhydrous acetonitrile. The limitations encountered during this study are intrinsic to the ligands studied. The preliminary study of two tetrapodal ligands containing acid and pyridine groups (L py )or pyrazine (L pz ) show the formation of 1:1 complexes in water. Analysis of the formation constants of the corresponding Gd(III) complexes shows that replacement of a pyridine group by pyrazine result in a loss of stability of 1.6 logarithmic units. (author) [fr

  19. Thermodecomposition of lanthanides (III) and ytrium (III) glucoheptonates

    International Nuclear Information System (INIS)

    Giolito, J.

    1987-01-01

    The lanthanides (III) and yttrium (III) glucoheptonates as well the D-glucoheptono 1-4 lactone were studied using common analytical methods, elemental microanalysis of carbon and hydrogen, thermogravimetry and differential scanning calorimetry. These compounds were prepared from the reaction between the lanthanides (III) and yttrium (III) hydroxides and glucoheptonic acid aqueous solution obtained by means of the delta lactone hydrolysis of this acid. After stoichiometric reaction the compounds were precipitated by the addition of absolute ethanol, washed with the same solvent and dried in desiccator. Thermogravimetric the (TG) curves of the lanthanides glucoheptonates of the ceric group present thermal profiles with enough differences permitting an easy caracterization of each compound and the yttrium (III) glucoheptonate TG curve showed a great similarity with the erbium (III) compound TG curve. The differential scanning calometry (DSC) curves showed endothermic and exothermic peaks by their shape, height and position (temperature) permit an easy and rapid identification of each compound specially if DSC and TG curves were examined simultaneously. (author) [pt

  20. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  1. Thermodynamical properties of liquid lanthanides-A variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H. P. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  2. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    Science.gov (United States)

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  3. High-field paramagnetic Meissner effect up to 14 T in melt-textured YBa_2Cu_3O_7_–_δ

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C.P.; Campos, A.P.C.; Archanjo, B.S.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J.J.; Sahoo, B.K.

    2016-01-01

    Highlights: • A persistent paramagnetic Meissner effect up to 14 T. • The PME with a slight tendency to saturate in high magnetic fields. • Strong time effects causing a paramagnetic relaxation dependent on the cooling rate. - Abstract: We have performed magnetization experiments in a melt-textured YBa_2Cu_3O_7_-_δ (Y123) sample with Y_2BaCuO_5 (Y211) inclusions, under magnetic fields up to 14 T applied parallel or perpendicular to the ab plane. Magnetic anisotropy and paramagnetic moments were observed in both FC (field-cooling) and FCW (field-cooled warming) procedures and these features correspond to the so-called High-Field Paramagnetic Meissner Effect (HFPME). The HFPME effect increases monotonically as the magnetic field rises and a strong paramagnetic relaxation, toward increasing paramagnetic moment was additionally observed as a function of time. Microscopy analysis revealed a complex and correlated microstructure of the Y211 particles. These correlated defects are well known to cause strong flux pinning. Our results suggest a scenario of strong flux compression within weak or non-superconducting regions of the samples, developed as a consequence of the Meissner effect and assisted by strong flux pinning by the Y211 particles. This scenario is observed up to 14 T and clearly persists beyond.

  4. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    Science.gov (United States)

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  5. Separation of Am from lanthanides by a synergistic mixture of purified Cyanex 301 and TBP

    International Nuclear Information System (INIS)

    Xinghai Wang; Yongjun Zhu; Rongzhou Jiao

    2002-01-01

    The dependence of the distribution ratios of 241 Am and lanthanides between purified Cyanex 301 (HBTMPDTP)-TBP-kerosene/nitrate solution on pH, lanthanide concentration in aqueous phase and degree of saponification of HBTMPDTP was investigated. The distribution ratios of 241 Am and lanthanides increase with pH and degree of saponification of HBTMPDTP and decrease with lanthanides concentration. Countercurrent multistage extraction consisting of 7 extraction, 3 washing and 2 stripping stages showed that more than 99,99% of 241 Am and less than 0.04% of lanthanides were extracted. The pH 1/2 value of Am was 2.45 compared to 3.16 in case of HBTMPDTP-kerosene extraction. (author)

  6. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  7. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    Science.gov (United States)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  8. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants.

    Science.gov (United States)

    Grimes, Travis S; Heathman, Colt R; Jansone-Popova, Santa; Ivanov, Alexander S; Roy, Santanu; Bryantsev, Vyacheslav S; Zalupski, Peter R

    2018-02-05

    The novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+ , Cm 3+ , and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+ , Cm 3+ ) and trivalent lanthanide chelates (La 3+ -Lu 3+ ) are observed in liquid-liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by

  9. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  10. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Physiochemical and spectroscopic behavior of actinides and lanthanides in solution, their sorption on minerals and their compounds formed with macromolecules

    International Nuclear Information System (INIS)

    Jimenez R, M.

    2010-01-01

    From the chemical view point, the light actinides has been those most studied; particularly the uranium, because is the primordial component of the nuclear reactors. The chemical behavior of these elements is not completely defined, since they can behave as transition metals or metals of internal transition, as they are the lanthanides. The actinides are radioactive; between them they are emitters of radiation alpha, highly toxic, of live half long and some very long, and artificial elements. For all this, to know them sometimes is preferable to use their chemical similarity with the lanthanides and to study these. In particular, the migration of emitters of radiation alpha to the environment has been studied taking as model the uranium. It is necessary to mention that actinides and lanthanides elements are in the radioactive wastes of the nuclear reactors. In the Chemistry Department of the Instituto Nacional de Investigaciones Nucleares (ININ) the researches about the actinides and lanthanides began in 1983 and, between that year and 1995 several works were published in this field. In 1993 the topic was proposed as a Department project and from then around of 13 institutional projects and managerial activity have been developed, besides 4 projects approved by the National Council of Science and Technology. The objective of the projects already developed and of the current they have been contributing knowledge for the understanding of the chemical behavior of the lanthanides and actinides, as much in solution as in the solid state, their behavior in the environment and the chemistry of their complexes with recurrent and lineal macromolecules. (Author)

  12. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Lanthanide and actinide separation studies using liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Gradient elution procedure for isolation of individual lanthanides was studied extensively at our laboratory using monolith support. A large number of gradients were developed by varying the concentrations of CSA, α-HIBA, mobile phase pH and mobile phase flow rate. In a typical gradient run, the concentration of CSA and mobile phase flow rate were kept constant and only α-HIBA concentration was varied. Based on these studies, a binary gradient elution method was developed for the rapid separation of lanthanides, from La to Lu in about 2.8 min, with a mobile phase CSA, α-HIBA and pH being 0.03M, 0.05 to 0.15M and 3.4-3.8 respectively. The direct injection of dissolver solution from FBTR spent fuel into HPLC was investigated and the results are shown. The lanthanides present in dissolver solution were mutually separated as well as resolved from uranium and plutonium under dynamic ion exchange conditions using the monolithic column. The concentration of La, Ce, Pr, Nd and Sm were determined in the dissolver solution using a calibration plot

  14. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  15. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  16. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  17. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  18. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  19. Interaction of trivalent actinides and lanthanides with the water/mineral interface

    International Nuclear Information System (INIS)

    Stumpf, Thorsten

    2008-07-01

    The behavior of radionuclides in the natural environment (geo-, hydro- and biosphere) is determined by interface reactions like sorption and incorporation processes. In general natural geochemical systems are very complex. This complexity is a result of a combination of several single reactions on the molecular scale. For the understanding of complex systems and for the prediction of radionuclide behavior in the natural environment it is of cardinal importance to clarify the individual reaction mechanisms at the solid/solution interface. The establishment of clarification requires the application of modern spectroscopic and microscopic methods. The presented studies, which are summarized in this professional dissertation, deal with investigations concerning the interaction of lanthanides and trivalent actinides with mineral surfaces. Several single reactions were deduced from these investigations. In particular the combination of time resolved laser fluorescence spectroscopy (TRLFS) with x-ray absorption spectroscopy (XAS) was proven to be very effective for the elucidation of complex geochemical reactions at the water/mineral interface. (orig.)

  20. Novel open-framework architectures in lanthanide phosphonates

    Science.gov (United States)

    Groves, John A.; Stephens, Nicholas F.; Wright, Paul A.; Lightfoot, Philip

    2006-03-01

    Two novel three-dimensional lanthanide coordination polymers have been prepared hydrothermally with the phosphonic acid N,N-piperazine bis(methylenephosphonic acid), H 2O 3PCH 2N(C 2H 4) 2NCH 2PO 3H 2 ( LH 4). The structures of Gd 2( LH 2) 3ṡ3H 2O (I) and Nd 2( LH 2) 3ṡ9H 2O (II) have been characterised by single crystal X-ray techniques. One-dimensional 'lanthanide-phosphate' chains are a key feature in both structures, although there are major structural differences between the chains, with (I) displaying octahedral GdO 6 coordination and (II) showing eight-coordinate NdO 8 polyhedra. In each case, three-dimensional connectivity is completed by coordination of the phosphonate group resulting in open framework structures encapsulating loosely bound water molecules. Isostructural Y 3+ and Yb 3+ analogues of (I) have been prepared, suggesting that cation size is a key factor in controlling the differing reaction products. In the case of Y 2( LH 2) 3ṡ5H 2O, isostructural to (I), it is shown that the extra-framework water molecules may be removed reversibly without framework collapse. Structural relationships to other known lanthanide phosphonates are discussed.

  1. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  2. Paramagnetism: an alternative view. Pt. 1

    International Nuclear Information System (INIS)

    Oudet, X.

    1991-01-01

    A new calculation of the paramagnetic susceptibility χ is proposed on the basis of the statistical distribution of the thermal energy using the mean value U of this energy as statistical variable. This allows us to replace the molecular field by an equivalent energy barrier that the paramagnetic moment of an atom has to cross to contribute to χ. The variation of χ with U, or T as well, shows a maximum when there is no magnetic order. The asymptotic character of the Curie-Weiss law appears in close connection with that of the Dulong and Petit law. (orig.)

  3. Buckling of paramagnetic chains in soft gels

    Science.gov (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  4. Static and dynamic modelling of lanthanide and actinide cations in solution

    International Nuclear Information System (INIS)

    Marjolin, A.

    2012-01-01

    We propose a theoretical approach, based on both quantum analyses (energy decomposition analysis and topological analysis of the chemical bond) and classical molecular dynamics, for the study of f-element complexes. First, we introduce the different QM methods adapted to the study of f-elements and use them for geometry optimization and interaction energy calculations of the model system [M-(OH 2 )] m+ where M is a lanthanide or actinide cation. We then perform energy decomposition analysis to quantify the physical nature of the metal-ligand interaction in terms of the different contributions. Furthermore, the different energy contributions will be used as reference curves for the parameterization of the polarizable force fields AMOEBA and SIBFA. Next, starting from the optimized geometries, we establish the reference diabatic dissociation curves at high level of theory so as to take into account the multi-reference nature of the systems. These dissociation curves will also be used for parameterization of the AMOEBA potential. We then propose a three step validation protocol as well as a first application, it being the computation of Gibbs hydration free energies for the f-element cations. We also propose an extension of the SIBFA force field to trivalent lanthanide ions and tetravalent actinide ions. Last, we use the topological analysis approaches of ELF and NCI to investigate the nature of the different interactions in Gadolinium(III) model and real systems. The aim of the whole study was to develop and apply different theoretical approaches so as to be able to discriminate between lanthanide and actinide cations. Indeed, despite their similar chemical behavior, they still feature a selective character that we wish to be able to both explain and predict. (author) [fr

  5. Detection of Fluorescence for Lanthanides in LiCl-KCl Molten Salt Medium

    International Nuclear Information System (INIS)

    Im, Hee Jung; Kim, Tack Jin; Song, Kyu Seok; Jee, Kwang Yong

    2007-01-01

    In the electrorefining step of the pyrochemical process, actinide ions dissolved in the LiCl-KCl eutectic salt are recovered as pure actinide metals at a cathode for a re-use as a nuclear fuel from the aspect of its nonproliferation of the nuclear fuel cycles. The lanthanide species dissolved in the LiCl-KCl eutectic salt play an important role in an effective metal purification during the electrorefining step, so it is necessary to understand the chemical and physical behaviors of lanthanides in molten salt. The in situ spectroscopic measurement system and studies according to temperature changes are essential for better understandable information. To our knowledge, the absorption studies of lanthanides at high temperatures have been reported before, but the fluorescence studies of those at high temperature are not reported yet. We will discuss here the fluorescence behaviors of lanthanides in LiCl-KCl molten salt medium according to a changing temperature

  6. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  7. Preparation, spectroscopic studies and X-ray structure of homobinuclear lanthanide(III complexes derived from 2,6-diformyl-4-chlorophénol-bis-(2’-hydroxy-benzoylhydrazone

    Directory of Open Access Journals (Sweden)

    Pepe Marcel Haba

    2006-06-01

    Full Text Available Reaction of the 2,6-diformyl-4-chlorophenol-bis-(2'-hydroxy-benzoylhydrazone with Ln(NO33.nH2O (n = 5 or 6 and Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er and Yb produces homobinuclear complexes. These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also found to be ionic in all the complexes. An X-ray structure determination of [C66H48N12O15Cl3Er2]Cl2NO3.5H2O confirms the conclusion from the spectroscopic studies and show that the erbium is at the centre of a tricapped trigonal prism with coordination number nine. In all the complexes the lanthanide ions have substantially similar coordination.

  8. Uranyl complexes as scaffolding or spacers for cucurbit[6]uril molecules in homo- and heterometallic species, including a uranyl-lanthanide complex

    Energy Technology Data Exchange (ETDEWEB)

    Thuery, Pierre [NIMBE, CEA, CNRS, Universite Paris-Saclay, CEA Saclay, Gif-sur-Yvette (France)

    2017-06-16

    The reaction of uranyl nitrate with cucurbit[6]uril (CB6) and carboxylic or sulfonic ligands under hydrothermal conditions and in the presence of additional metal cations (K{sup I} or Ce{sup III}) or cosolvents provided four complexes, which were crystallographically characterized. The compound [(UO{sub 2}){sub 2}K{sub 2}(CB6)(adc){sub 2}(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}].5H{sub 2}O (1), where H{sub 2}adc is 1,3-adamantanedicarboxylic acid, crystallizes in the form of a central K{sub 2}(CB6){sup 2+} column surrounded by two one-dimensional (1D) polymeric UO{sub 2}(adc)(NO{sub 3}){sup -} chains attached to the column by nitrate bridges, with a perfect match of the repeat lengths in the two subunits. The longer 1,3-adamantanediacetic acid (H{sub 2}adac) gives the complex [(UO{sub 2}){sub 2}(adac){sub 2}(HCOOH){sub 2}].CB6.6H{sub 2}O (2), in which the 1D uranyl-containing polymer and columns of CB6 molecules form a layered arrangement held by weak CH..O hydrogen bonds. The complex formed with the dipotassium salt of methanedisulfonic acid (K{sub 2}mds), [(UO{sub 2}){sub 2}K{sub 2}(CB6)(mds){sub 2}(OH){sub 2}(H{sub 2}O){sub 8}].4H{sub 2}O (3), is a 1D polymer, in which K{sub 2}(CB6){sup 2+} units are connected to one another by doubly hydroxide-bridged uranyl dimers in which the disulfonates are terminal, chelating ligands; connection between the two subunits is solely through potassium oxo-bonding to uranyl. The complex [(UO{sub 2}){sub 2}Ce{sub 2}(CB6)(C{sub 2}O{sub 4}){sub 3}(NO{sub 3}){sub 4}(H{sub 2}O){sub 6}].2H{sub 2}O (4) is a 1D polymer containing bridging oxalate ligands formed in situ, in which CB6 is coordinated to the lanthanide cations only; one nitrate ligand and one water ligand, hydrogen-bonded to each other, are included in the CB6 cavity, with the possible occurrence of interactions between nitrate oxygen atoms and ureido carbon atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  10. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  11. Predictive thermodynamic models for liquid--liquid extraction of single, binary and ternary lanthanides and actinides

    International Nuclear Information System (INIS)

    Hoh, Y.C.

    1977-03-01

    Chemically based thermodynamic models to predict the distribution coefficients and the separation factors for the liquid--liquid extraction of lanthanides-organophosphorus compounds were developed by assuming that the quotient of the activity coefficients of each species varies slightly with its concentrations, by using aqueous lanthanide or actinide complexes stoichiometric stability constants expressed as its degrees of formation, by making use of the extraction mechanism and the equilibrium constant for the extraction reaction. For a single component system, the thermodynamic model equations which predict the distribution coefficients, are dependent on the free organic concentration, the equilibrated ligand and hydrogen ion concentrations, the degree of formation, and on the extraction mechanism. For a binary component system, the thermodynamic model equation which predicts the separation factors is the same for all cases. This model equation is dependent on the degrees of formation of each species in their binary system and can be used in a ternary component system to predict the separation factors for the solutes relative to each other

  12. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  13. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  14. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  15. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  16. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  17. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    International Nuclear Information System (INIS)

    Saiki, M.

    1988-01-01

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author) [pt

  18. Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate.

    Science.gov (United States)

    Rudovský, Jakub; Cígler, Petr; Kotek, Jan; Hermann, Petr; Vojtísek, Pavel; Lukes, Ivan; Peters, Joop A; Vander Elst, Luce; Muller, Robert N

    2005-04-08

    A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid

  19. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heathman, Colt R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jansone-Popova, Santa [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Alexander S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roy, Santanu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zalupski, Peter R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-01-05

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am3+, Cm3+, and Ln3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL(aq) complexes at the same aqueous acidity. The denticity change observed for Eu3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL(aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am3+, Cm3+) and trivalent lanthanide chelates (La3+–Lu3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA

  20. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  1. Bioaccumulation pattern of lanthanides in pteridophytes and magnoliophytes species from Atlantic Forest

    International Nuclear Information System (INIS)

    Andre Luis Lima de Araujo; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Elvis Joacir De Franca

    2012-01-01

    The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C plant :C soil ) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C soil -b ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii. (author)

  2. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    Science.gov (United States)

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  3. Complexes between lanthanide (III) and yttrium (III) picrates and tetra methylene sulfoxide as ligand

    International Nuclear Information System (INIS)

    Silva, M.A.A. da.

    1991-01-01

    The preparation and characterization of addition compounds between lanthanide (III) and yttrium (III) picrates and tetra methylene sulfoxide as ligand were described. The adducts were prepared in the molar relation 1 (salt): 3(ligand) in ethanol. They are microcrystalline with more intense color than those of their respective hydrated salts. At room temperature conditions they are non hygroscopic and do not present perceptible alterations. They became slightly opalescent, when heated between 363 and 423 K. At higher temperatures under several heating ratios, the behavior shown is the same: melting between 439 and 472 K. The characterization of the compounds was made by elemental analysis, electrolytic conductance measurements, X-ray powder patterns, infrared spectroscopy, visible electronic absorption and emission spectra of the neodymium (III) and europium (III), respectively. (author). 116 refs., 17 tabs., 11 figs

  4. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    International Nuclear Information System (INIS)

    Chan, Sammy H. S.; Waudby, Christopher A.; Cassaignau, Anaïs M. E.; Cabrita, Lisa D.; Christodoulou, John

    2015-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15 N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1 H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ∼1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.Graphical Abstract

  5. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    Science.gov (United States)

    Yao, Mingzhen

    2011-12-01

    luminescence. Nanocompounds formed with CdTe quantum dots and LaF3:Ce nanoparticles optimize both stopping power and scintillation efficiency based on energy transfer from LaF3:Ce to CdTe. Hybrid matrix materials such as ORMOSIL have superior mechanical properties and a better processability than pure molecular material which could be used as carrier of radiation material. Moreover, embedding a lanthanide complex in a hybrid matrix enhances its thermal stability and luminescence output. LaF3:Ce doped ORMOSIL was synthesized by using two different LaF3:Ce, the nanoparticle doping concentration can reach up to 15.66% while its transparency and luminescent properties were maintained. These materials are very promising for radiation detection.

  6. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  7. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    Science.gov (United States)

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  8. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  9. The commercial production of compounds of the lanthanides and yttrium as CRT phosphor precursors

    International Nuclear Information System (INIS)

    Kilbourn, B.T.

    1987-01-01

    The consumer acceptance of color television at the start of the 60's was triggered by the phosphor industry's discovery and production of a satisfactory red phosphor using the element europium. This element, in the middle of the lanthanide series, had until that time been an academic curiosity, prepared only in gram quantities for research. The large-scale production by the lanthanide industry, in order to meet the demand for commercial quantities of high purity europium oxide, required the introduction of new technology. Lanthanide elements other than europium, such as cerium and terbium, are also needed as the active ions for many phosphors. In addition, the inert host lattice for those emitting ions can be provided by compounds of yttrium, the element above the lanthanides in the periodic table, with comparable properties. The lanthanide industry has developed processes to produce compounds of such elements in the required quantities and purities. For commercial separation of these elements a technology known as counter-current liquid-liquid extraction has been developed. This technique, commonly called solvent extraction, is illustrated and described. The initial ore preparation steps, together with the final high purity oxide production is also mentioned

  10. TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.

    Directory of Open Access Journals (Sweden)

    Ana Christina L Opina

    Full Text Available Lanthanide DOTA-tetraglycinate (LnDOTA-(gly₄⁻ complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III, Dy(III, Tm(III and Yb(III were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.

  11. Development of a chromatographic separation method hyphenated to electro-spray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS): application to the lanthanides speciation analysis

    International Nuclear Information System (INIS)

    Beuvier, Ludovic

    2015-01-01

    This work focuses on the development of a chromatographic separation method coupled to both ESI-MS and ICP-MS in order to achieve the comprehensive speciation analysis of lanthanides in aqueous phase representative of back-extraction phases of advanced spent nuclear fuel treatment processes. This analytical method allowed the separation, the characterization and the quantitation of lanthanides complexes holding poly-aminocarboxylic ligands, such as DTPA and EDTA, used as complexing agents in these processes. A HILIC separation method of lanthanides complexes has been developed with an amide bonded stationary phase. A screening of a wide range of mobile phase compositions demonstrated that the adsorption mechanism was predominant. This screening allowed also obtaining optimized separation conditions. Faster analysis conditions with shorter amide column packed with sub 2 μm particles reduced analysis time by 2.5 and 25% solvent consumption. Isotopic and structural characterization by HILIC ESI-MS was performed as well as the development of external calibration quantitation method. Analytical performances of quantitation method were determined. Finally, the development of the HILIC coupling to ESI-MS and ICP-MS was achieved. A simultaneous quantitation method by ESI-MS and ICP-MS was performed to determine the species quantitative distribution in solution. Analytical performances of quantitation method were also determined. (author) [fr

  12. A comparative study of the structure and luminescence of mono- and dinuclear crown-ether lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Keyla M.N. de [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Batista, Hélcio J., E-mail: helciojb@gmail.com [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Belian, Mônica F. [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Silva, Wagner E. [Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 54510-000 Cabo de Santo Agostinho, Pernambuco (Brazil); Silva, Juliana A.B. da [Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru, Pernambuco (Brazil)

    2016-02-15

    Using as precursor the mononuclear lanthanide (Ln) macrocyclic complex, based on the 15-crown-5 ether (C) ligand and coordinated water (W) molecules, [LnCW{sub 4}]{sup 3+}, four novel analogous complexes for each of the three Ln(III) ions (Ln=Eu, Tb and Gd) were synthesized through systematic substitution of water molecules by the antenna-type ligands: 2,2′-dipyridyl (D), 1,10-phenanthroline (P) and 2,2′;6',2′′-terpyridine (T). The corresponding formulae of the complexes, obtained in a trichloride salt form, were the following: [LnCW{sub 4}]{sup 3+}, [LnCP{sub 2}]{sup 3+}, [LnCDW]{sup 3+}, [LnCDP]{sup 3+}, and [LnCT]{sup 3+}. The compounds were characterized by elemental analysis, UV and infrared spectroscopy and investigated through luminescence spectroscopy. For the Eu(III) and Tb(III) complex series, the most luminescent ones were [EuCDP]{sup 3+} and [TbCT]{sup 3+}, respectively. Motivated by this fact, two dinuclear analogous Eu(III) and Tb(III) complexes, based on the two-site coordinating macrocyclic ligand lariat-silacrown ether (S), as well as analogous Gd(III) complexes, were obtained as hexachloride salts with the following formulae: [Eu{sub 2}SD{sub 2}P{sub 2}]{sup 6+}, [Gd{sub 2}SD{sub 2}P{sub 2}]{sup 6+}, [Tb{sub 2}ST{sub 2}]{sup 6+} and [Gd{sub 2}ST{sub 2}]{sup 6+}. Also, [Eu{sub 2}SW{sub 8}]{sup 6+}, [Tb{sub 2}SW{sub 8}]{sup 6+} and [Gd{sub 2}SW{sub 8}]{sup 6+} complexes were prepared and used as reference non-antenna type dinuclear compounds. Comparing the luminescence between the antenna mononuclear complexes with the analogous dinuclear ones, for Eu(III) and Tb(III) ions, almost no change was observed. On the other hand, in the particular case of Eu(III), comparing the mono- and dinuclear non-antenna reference complexes [EuCW{sub 4}]{sup 3+} and [Eu{sub 2}SW{sub 8}]{sup 6+}, a surprisingly much higher luminescence intensity was observed for the dinuclear complex (~ one order of magnitude). The proposed cause for this behavior is the

  13. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  14. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  15. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  16. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet.

    Science.gov (United States)

    Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina

    2017-12-12

    Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.

  17. Dinitrogen and Related Chemistry of the Lanthanides: A Review of the Reductive Capture of Dinitrogen, As Well As Mono- and Di-aza Containing Ligand Chemistry of Relevance to Known and Postulated Metal Mediated Dinitrogen Derivatives

    Directory of Open Access Journals (Sweden)

    Damien N. Stringer

    2010-02-01

    Full Text Available This paper reviews the current array of complexes of relevance to achieving lanthanide mediated nitrogen fixation. A brief history of nitrogen fixation is described, including a limited discussion of successful transition metal facilitated nitrogen fixation systems. A detailed discussion of the numerous lanthanide-nitrogen species relevant to nitrogen fixation are discussed and are related to the Chatt cycle for nitrogen fixation.

  18. Model for paramagnetic Fermi systems

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.

    1983-01-01

    We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields

  19. Studies on the electrochemical behavior of heavy lanthanide ions and the synthesis, characterization of heavy metal chelate complexes

    International Nuclear Information System (INIS)

    Kang, Sam Woo; Chang, Choo Hwan; Son, Byung Chan; Suh, Moo Yul; Kim, Chae Kyun

    1991-01-01

    Electrochemical behavior of some heavy lanthanide ions(Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ and Lu 3+ ) in various supporting electrolytes has been investigated by dc polarography, differential pulse polarography and cyclic voltammetry. The peak potentials and the peak currents, their dependency on the concentration and pH effects, the reversibility of the electrode reactions are described. The reduction of Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Lu 3+ ions in 0.1M lithium chloride solution proceeds by a three-electron change directly to the metallic state, whereas the reduction of Yb 3+ proceeds by a one-electron change followed by a two-electron change. It was found that, in differential pulse polarography and cyclic voltammetry, the peak potential, peak current and current function showed constant value in the pH range of 4.0-6.0 by varying pH and scan rates. And also the current function is found to decrease as the sweep rate is increased when the pH reaches 4.0. This fact may indicate a chemical reaction coupled with the electrochemical reaction at lower pH values(pH 3+ ion is possible to determine voltammetrically within the error of ±3.5% in the presence of other competitive lanthanide ions. (Author)

  20. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.

  1. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  2. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  3. High-field paramagnetic Meissner effect up to 14 T in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7–δ}

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P.; Campos, A.P.C.; Archanjo, B.S. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain); Sahoo, B.K. [Goverment College (Autonomous), Angul, 759143 Odisha (India)

    2016-06-15

    Highlights: • A persistent paramagnetic Meissner effect up to 14 T. • The PME with a slight tendency to saturate in high magnetic fields. • Strong time effects causing a paramagnetic relaxation dependent on the cooling rate. - Abstract: We have performed magnetization experiments in a melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) sample with Y{sub 2}BaCuO{sub 5} (Y211) inclusions, under magnetic fields up to 14 T applied parallel or perpendicular to the ab plane. Magnetic anisotropy and paramagnetic moments were observed in both FC (field-cooling) and FCW (field-cooled warming) procedures and these features correspond to the so-called High-Field Paramagnetic Meissner Effect (HFPME). The HFPME effect increases monotonically as the magnetic field rises and a strong paramagnetic relaxation, toward increasing paramagnetic moment was additionally observed as a function of time. Microscopy analysis revealed a complex and correlated microstructure of the Y211 particles. These correlated defects are well known to cause strong flux pinning. Our results suggest a scenario of strong flux compression within weak or non-superconducting regions of the samples, developed as a consequence of the Meissner effect and assisted by strong flux pinning by the Y211 particles. This scenario is observed up to 14 T and clearly persists beyond.

  4. Dietary intake and burden of lanthanide in main organs and tissues for Chinese man

    International Nuclear Information System (INIS)

    Zhu Hongda; Liu Qingfeng; Ouyang Li; Liu Husheng; Wang Naifen; Liu Yaqiong; Zhang Yongbao; Wang Ke; Chen Rusong

    2004-01-01

    Objective: To determine lanthanide concentrations in dietary foods and main organs or tissues for Chinese adult man and to estimate their daily intakes by ingestion and organ or tissue burdens. Methods: Ten kinds of organ or tissue samples collected in autopsy from 21 supplemental subjects of 4 areas with different dietary types in China who died suddenly, and had been healthy and normal before death. The concentrations of 11 lanthanide in foods and 14 lanthanide in these organ or tissue samples, including those collected from 31 subjects in the past, were analyzed by using ICP-MS or INAA technique as well as necessary QC measures. With uses of the local diet composition and relevant organ or tissue weights for Chinese Reference Man, their daily intakes and organ or tissue burdens were estimated. Results: The concentrations of 14 lanthanide in 12 categories of foods and 10 kinds of organ or tissue samples, their dietary daily intakes and organ or tissue burdens for Chinese adult men were obtained. Conclusion: Besides updating the relevant data of La, Ce and Eu in 5 kinds of organ or tissue and diet, this research obtained data on concentrations of other 11 lanthanide in Chinese foods and 10 kinds of organ or tissue, their daily intakes and burdens for the first time in China. The results provide more systematic bases for developing the parameters of Chinese Reference Man than before. This study provides also comparative data for different kinds of lanthanide, foods, organs or tissues and also the background values of Chinese soil

  5. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  6. Ferro-paramagnetic coupled resonant modes in GdEuCuO4

    International Nuclear Information System (INIS)

    Fainstein, A.; Tovar, M.

    1990-01-01

    Two paramagnetic resonances were observed in compound GdEuCuO 4 : one was originated in trivalent gadolinium paramagnetism, while the other is associated to a weak ferromagnetic mode in Cu-O planes. In this work, experimental results are presented that show an anisotropy and a strongly anomalous temperature dependence of Gd 3+ . A theoretical model was introduced which explains the data in terms of coupled ferro-paramagnetic resonant modes originated in spin exchange coupling of Cu and Gd. (Author). 9 refs., 4 figs

  7. Complexing of lanthanides with adenosine-5'-triphosphate

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Smirnova, N.S.; Dobrynina, N.A.; Martynenko, L.I.; Evseev, A.M.

    1988-01-01

    REE complexing with adenozine-5-triphosphoric acid in aqueous solutions at 25 deg C is studied by the method of pH metric titration using mathematical simulation. Ranges of existence are found, the composition is determined, stability constants of complexes of different composition are calculated

  8. A dynamic model to explain hydration behaviour along the lanthanide series

    International Nuclear Information System (INIS)

    Duvail, M.; Spezia, R.; Vitorge, P.

    2008-01-01

    An understanding of the hydration structure of heavy atoms, such as transition metals, lanthanides and actinides, in aqueous solution is of fundamental importance in order to address their solvation properties and chemical reactivity. Herein we present a systematic molecular dynamics study of Ln 3+ hydration in bulk water that can be used as reference for experimental and theoretical research in this and related fields. Our study of hydration structure and dynamics along the entire Ln 3+ series provides a dynamic picture of the CN behavioural change from light (CN=9 predominating) to heavy (CN=8 predominating) lanthanides consistent with the exchange mechanism proposed by Helm, Merbach and co-workers. This scenario is summarized in this work. The hydrated light lanthanides are stable TTP structures containing two kinds of water molecules: six molecules forming the trigonal prism and three in the centre triangle. Towards the middle of the series both ionic radii and polarizabilities decrease, such that first-shell water-water repulsion increases and water-cation attraction decreases. This mainly applies for molecules of the centre triangle of the nine-fold structure. Thus, one of these molecules stay in the second hydration sphere of the lanthanide for longer average times, as one progresses along the lanthanide series. The interchange between predominantly CN=9 and CN=8 is found between Tb and Dy. Therefore, we propose a model that determines the properties governing the change in the first-shell coordination number across the series, confirming the basic hypothesis proposed by Helm and Merbach. We show that it is not a sudden change in behaviour, but rather that it results from a statistical predominance of one first hydration shell structure containing nine water molecules over one containing eight. This is observed progressively across the series. (O.M.)

  9. Disorder and intermolecular interactions in a family of tetranuclear Ni(II) complexes probed by high-frequency electron paramagnetic resonance.

    Science.gov (United States)

    Lawrence, Jon; Yang, En-Che; Edwards, Rachel; Olmstead, Marilyn M; Ramsey, Chris; Dalal, Naresh S; Gantzel, Peter K; Hill, Stephen; Hendrickson, David N

    2008-03-17

    High-frequency electron paramagnetic resonance (HFEPR) data are presented for four closely related tetranuclear Ni(II) complexes, [Ni(hmp)(MeOH)Cl]4.H2O (1a), [Ni(hmp)(MeOH)Br]4.H2O (1b), [Ni(hmp)(EtOH)Cl]4.H2O (2), and [Ni(hmp)(dmb)Cl]4 (3) (where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3'-dimethyl-1-butanol), which exhibit magnetic bistability (hysteresis) and fast magnetization tunneling at low temperatures, properties which suggest they are single-molecule magnets (SMMs). The HFEPR spectra confirm spin S = 4 ground states and dominant uniaxial anisotropy (DSz(2), D SMM. The individual fine structure peaks (due to zero-field splitting) for complexes 1a, 1b, and 2 are rather broad. They also exhibit further (significant) splitting, which can be explained by the fact that there exists two crystallographically distinct Ni 4 sites in the lattices for these complexes, with associated differences in metal-ligand bond lengths and different zero-field splitting (ZFS) parameters. The broad EPR lines, meanwhile, may be attributed to ligand and solvent disorder, which results in additional distributions of microenvironments. In the case of complex 3, there are no solvate molecules in the structure, and only one distinct Ni 4 molecule in the lattice. Consequently, the HFEPR data for complex 3 are extremely sharp. As the temperature of a crystal of complex 3 is decreased, the HFEPR spectrum splits abruptly at approximately 46 K into two patterns with very slightly different ZFS parameters. Heat capacity data suggest that this is caused by a structural transition at 46.6 K. A single-crystal X-ray structure at 12(2) K indicates large thermal parameters on the terminal methyl groups of the dmb (3,3-dimethyl-1-butanol) ligand. Most likely there exists dynamic disorder of parts of the dmb ligand above 46.6 K; an order-disorder structural phase transition at 46.6 K then removes some of the motion. A further decrease in temperature (<6 K) leads to further fine

  10. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  11. Electron paramagnetic resonance investigation of polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mozzati, Maria Cristina [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Azzoni, Carlo Bruno [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Capsoni, Doretta [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Bini, Marcella [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Massarotti, Vincenzo [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy)

    2003-11-05

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO{sub 4}-TiO{sub 6}-CuO{sub 4} complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested.

  12. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants

    International Nuclear Information System (INIS)

    Toulemonde, V.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1995-01-01

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author)

  13. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function

    International Nuclear Information System (INIS)

    Toulemonde, V.

    1995-01-01

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.)

  14. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  15. Detection of helium-containing paramagnetic complex at decay of tritium incorporated in HTO and DTO

    International Nuclear Information System (INIS)

    Legasov, V.A.; Usatyj, A.F.; Ibragimov, R.A.; Myasoedov, N.F.

    1979-01-01

    EPR technique was used to study the paramagnetic centers appearing during long-term storage of frozen (77 K) non-deoxygenated light (H 2 O) and heavy (D 2 O) water containing 3.5% vol. highly active HTO (29 ci/cm 3 ), so that the resulting activity of the sample (0.1 ml) was about 100 mci. For comparison, the same samples containing no HTO but irradiated by Co-60 rays were studied under identical conditions. A schematic of the processes involved in tritium decay in DTO (or HTO) in the aqueous matrix frozen at low temperatures was suggested

  16. Synthesis, structure and luminescence properties of binary and ternary complexes of lanthanide (Eu{sup 3+}, Sm{sup 3+} and Tb{sup 3+}) with salicylic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen-Qi; Yan, Tian-Lu; Wang, Yi-Ting; Ye, Zi-Jun; Xu, Cun-Jin, E-mail: cjxu@hznu.edu.cn; Zhou, Wen-Jun

    2017-04-15

    A series of binary and ternary complexes of lanthanide (Eu{sup 3+}, Sm{sup 3+} and Tb{sup 3+}) with salicylic acid (Hsal) and 1,10-phenanthroline (phen) were synthesized, and characterized by element analysis, coordination titration analysis, IR, UV and TG-DTA. Their compositions were (NH{sub 4})[Ln(sal){sub 4}(H{sub 2}O){sub 2}] (Ln=Eu (1), Sm (2), Tb (3)) and (NH{sub 4})[Ln(sal){sub 4}(phen){sub 2}] (Ln=Eu (4), Sm (5), Tb (6)), respectively. In particular, the ternary complex of Eu{sup 3+}, 4, was characterized by X-ray diffraction, and luminescence intensities of binary and ternary complexes were compared. In case of Eu{sup 3+} and Sm{sup 3+} complexes, ternary complexes emitted stronger luminescence than corresponding binary complexes of salicylic acid and Ln{sup 3+}. On the other hand, the ternary Tb{sup 3+} complex had weaker luminescence than the binary complex because of back energy transfer from Tb{sup 3+} to phen. The CIE coordinates of 1–6 were calculated as (0.65, 0.35), (0.52, 0.48), (0.33, 0.59), (0.67, 0.33), (0.62, 0.38) and (0.36, 0.58), respectively, which enable these complexes to be promising candidates for red, green, or yellow component in OLEDs.

  17. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: synthesis, crystal structure, and photophysical properties.

    Science.gov (United States)

    Zhou, Xianju; Zhao, Xiaoqi; Wang, Yongjie; Wu, Bing; Shen, Jun; Li, Li; Li, Qingxu

    2014-12-01

    Two new lanthanide complexes with general formula [Ln2(carprofen)6(DMF)2] (Ln = Eu (1), Tb (2), DMF = N,N-dimethylformamide, carprofen = 6-chloro-α-methylcarbazole-2-acetic acid) have been synthesized by a hydrothermal method. Complex 1 was characterized by single-crystal X-ray diffraction (XRD), and it was found to crystallize in the monoclinic space group C2/c. The coordination of the ligand to the lanthanide ion has been investigated by Fourier-transform infrared (FTIR) spectra and ultraviolet-visible (UV-vis) absorption spectra. Complex 1 emits red light, but the antenna effect of the ligand is not effective, whereas complex 2 presents intense green emission with effective energy transfer from the ligand. The different performance of the two complexes is related to the energy matching between the excited states of the lanthanide ion and the triplet state of the ligand. The intramolecular energy transfer mechanisms are also discussed.

  18. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  19. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  20. Towards an interpretation of the mechanism of the actinides(III)/lanthanides(III) separation by synergistic solvent extraction with nitrogen-containing polydendate ligands; Vers une interpretation des mecanismes de la separation actinides(III)/lanthanides(III) par extraction liquide-liquide synergique impliquant des ligands polyazotes

    Energy Technology Data Exchange (ETDEWEB)

    Francois, N [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification, (DRRV), 30 - Marcoule (France); Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France)

    2000-07-01

    In the field of the separation of long-lived radionuclides from the wastes produced by nuclear fuel reprocessing, aromatic nitrogen-containing polydendate ligands are potential candidates for the selective extraction, alone or in synergistic mixture with acidic extractants, of trivalent actinides from trivalent lanthanides. The first part of this work deals with the complexation of trivalent f cations with various nitrogen-containing ligands (poly-pyridine analogues). Time-resolved laser-induced fluorimetry (TRLIF) and UV-visible spectrophotometry were used to determine the nature and evaluate the stability of each complex. Among the ligands studied, the least basic Me-Btp proved to be highly selective towards americium(III) in acidic solution. In the second part, two synergistic systems (nitrogen-containing polydendate ligand and lipophilic carboxylic acid) are studied and compared in regard to the extraction and separation of lanthanides(III) and actinides(III). TRLIF and gamma spectrometry allowed the nature of the extracted complexes and the optimal conditions of efficiency of both systems to be determined. Comparison between these different studies showed that the selectivity of complexation of trivalent f cations by a given nitrogen-containing polydendate ligand could not always be linked to the Am(III)Eu(III) selectivity reached in synergistic extraction. The latter depends on the 'balance' between the acid-basic properties on the one hand, and on the hard-soft characteristics on the other hand, of both components of synergistic system. (author)