Determination of the element-specific complex permittivity using a soft x-ray phase modulator
Kubota, Y.; Hirata, Y.; Miyawaki, J.; Yamamoto, S.; Akai, H.; Hobara, R.; Yamamoto, Sh.; Yamamoto, K.; Someya, T.; Takubo, K.; Yokoyama, Y.; Araki, M.; Taguchi, M.; Harada, Y.; Wadati, H.; Tsunoda, M.; Kinjo, R.; Kagamihata, A.; Seike, T.; Takeuchi, M.; Tanaka, T.; Shin, S.; Matsuda, I.
2017-12-01
We report on directly determining the complex permittivity tensor using a method combining a developed light source from a segmented cross undulator of synchrotron radiation and the magneto-optical Kerr effect. The empirical permittivity, which carries the electronic and magnetic information of a material, has element specificity and has perfect confirmation using the quantum-mechanical calculation for itinerant electrons systems. These results help in understanding the interaction of light and matter, and they provide an interesting approach to seek the best materials as optical elements, for example, in extended-ultraviolet lithographic technologies or in state-of-the-art laser technologies.
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Implementation of a high performance parallel finite element micromagnetics package
International Nuclear Information System (INIS)
Scholz, W.; Suess, D.; Dittrich, R.; Schrefl, T.; Tsiantos, V.; Forster, H.; Fidler, J.
2004-01-01
A new high performance scalable parallel finite element micromagnetics package has been implemented. It includes solvers for static energy minimization, time integration of the Landau-Lifshitz-Gilbert equation, and the nudged elastic band method
Parallel and Serial Grouping of Image Elements in Visual Perception
Houtkamp, Roos; Roelfsema, Pieter R.
2010-01-01
The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…
A finite element solution method for quadrics parallel computer
International Nuclear Information System (INIS)
Zucchini, A.
1996-08-01
A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem
Directory of Open Access Journals (Sweden)
A.G.Belous
2003-01-01
Full Text Available Ceramic materials based on complex oxides with both the perovskite structure (Ln2/3Nb2O6 and the structure of tetragonal tungsten bronze (Ba6-xLn8+2x/3Ti18O54 have been investigated over a wide frequency and temperature ranges. The results obtained for certain structures denote the presence of the temperature anomalies of dielectric parameters (ε, tanδ. These anomalies occur over the wide frequency range including submilimeter (SMM wavelength range, and are related neither with the processing peculiarities nor with the presence of the phase transitions. Temperature behavior of the permittivity has been considered in terms of the polarization mechanism based on the elastic-strain lattice oscillations. It has been assumed that the observed anomalies could be ascribed to a superposition of harmonic and anharmonic contribution to lattice oscillations that determines τε sign and magnitude.
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
Energy Technology Data Exchange (ETDEWEB)
2017-10-24
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
Parallel and serial grouping of image elements in visual perception
Houtkamp, R.; Roelfsema, P.R.
2010-01-01
The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
Nanodielectrics with giant permittivity
Indian Academy of Sciences (India)
Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Nanodielectrics with giant permittivity
Indian Academy of Sciences (India)
Wintec
Department of Materials Science, Indian Association for the Cultivation of Science, ... In particular, ... 10. ) permittivity value in an assembly of ultra fine silver metal particles as .... Chang S, Doremus R H, Ajayan P M and Siegel R W 2000.
Finite element electromagnetic field computation on the Sequent Symmetry 81 parallel computer
International Nuclear Information System (INIS)
Ratnajeevan, S.; Hoole, H.
1990-01-01
Finite element field analysis algorithms lend themselves to parallelization and this fact is exploited in this paper to implement a finite element analysis program for electromagnetic field computation on the Sequent Symmetry 81 parallel computer with three processors. In terms of waiting time, the maximum gains are to be made in matrix solution and therefore this paper concentrates on the gains in parallelizing the solution part of finite element analysis. An outline of how parallelization could be exploited in most finite element operations is given in this paper although the actual implemention of parallelism on the Sequent Symmetry 81 parallel computer was in sparsity computation, matrix assembly and the matrix solution areas. In all cases, the algorithms were modified suit the parallel programming application rather than allowing the compiler to parallelize on existing algorithms
Dynamics of parallel robots from rigid bodies to flexible elements
Briot, Sébastien
2015-01-01
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
Generalized dielectric permittivity tensor
International Nuclear Information System (INIS)
Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.
1986-01-01
The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
Parallel finite elements with domain decomposition and its pre-processing
International Nuclear Information System (INIS)
Yoshida, A.; Yagawa, G.; Hamada, S.
1993-01-01
This paper describes a parallel finite element analysis using a domain decomposition method, and the pre-processing for the parallel calculation. Computer simulations are about to replace experiments in various fields, and the scale of model to be simulated tends to be extremely large. On the other hand, computational environment has drastically changed in these years. Especially, parallel processing on massively parallel computers or computer networks is considered to be promising techniques. In order to achieve high efficiency on such parallel computation environment, large granularity of tasks, a well-balanced workload distribution are key issues. It is also important to reduce the cost of pre-processing in such parallel FEM. From the point of view, the authors developed the domain decomposition FEM with the automatic and dynamic task-allocation mechanism and the automatic mesh generation/domain subdivision system for it. (author)
Directory of Open Access Journals (Sweden)
José Miguel Vargas-Félix
2012-11-01
Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.
Parallel eigenanalysis of finite element models in a completely connected architecture
Akl, F. A.; Morel, M. R.
1989-01-01
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.
Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration
International Nuclear Information System (INIS)
Setiyanto; Pudjijanto MS; Ardani
2006-01-01
To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
Energy Technology Data Exchange (ETDEWEB)
Toshimitsu, Fujisawa [Tokyo Univ., Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science (Japan); Genki, Yagawa [Tokyo Univ., Department of Quantum Engineering and Systems Science (Japan)
2003-07-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
International Nuclear Information System (INIS)
Toshimitsu, Fujisawa; Genki, Yagawa
2003-01-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Application of parallel connected power-MOSFET elements to high current d.c. power supply
International Nuclear Information System (INIS)
Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi
2001-01-01
The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed
Eigensolution of finite element problems in a completely connected parallel architecture
Akl, Fred A.; Morel, Michael R.
1989-01-01
A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively.
A framework for grand scale parallelization of the combined finite discrete element method in 2d
Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.
2014-09-01
Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.
International Nuclear Information System (INIS)
Tsuji, Masashi; Chiba, Gou
2000-01-01
A hierarchical domain decomposition boundary element method (HDD-BEM) for solving the multiregion neutron diffusion equation (NDE) has been fully parallelized, both for numerical computations and for data communications, to accomplish a high parallel efficiency on distributed memory message passing parallel computers. Data exchanges between node processors that are repeated during iteration processes of HDD-BEM are implemented, without any intervention of the host processor that was used to supervise parallel processing in the conventional parallelized HDD-BEM (P-HDD-BEM). Thus, the parallel processing can be executed with only cooperative operations of node processors. The communication overhead was even the dominant time consuming part in the conventional P-HDD-BEM, and the parallelization efficiency decreased steeply with the increase of the number of processors. With the parallel data communication, the efficiency is affected only by the number of boundary elements assigned to decomposed subregions, and the communication overhead can be drastically reduced. This feature can be particularly advantageous in the analysis of three-dimensional problems where a large number of processors are required. The proposed P-HDD-BEM offers a promising solution to the deterioration problem of parallel efficiency and opens a new path to parallel computations of NDEs on distributed memory message passing parallel computers. (author)
Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems
International Nuclear Information System (INIS)
Noriyuki Kushida; Hiroshi Okuda; Genki Yagawa
2002-01-01
In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the pre-conditioners. However, efficiency of pre-conditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain. (authors)
Parallel Object-Oriented Computation Applied to a Finite Element Problem
Directory of Open Access Journals (Sweden)
Jon B. Weissman
1993-01-01
Full Text Available The conventional wisdom in the scientific computing community is that the best way to solve large-scale numerically intensive scientific problems on today's parallel MIMD computers is to use Fortran or C programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably leads to nonportable codes and extensive development time, and restricts parallel programming to the domain of the expert programmer. We believe that these problems are not inherent to parallel computing but are the result of the programming tools used. We will show that comparable performance can be achieved with little effort if better tools that present higher level abstractions are used. The vehicle for our demonstration is a 2D electromagnetic finite element scattering code we have implemented in Mentat, an object-oriented parallel processing system. We briefly describe the application. Mentat, the implementation, and present performance results for both a Mentat and a hand-coded parallel Fortran version.
Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox
Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas
In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.
Parallel and pipelined front-end for multi-element silicon detectors in scanning electron microscopy
International Nuclear Information System (INIS)
Boulin, C.; Epstein, A.
1992-01-01
This paper discusses a silicon quadrant detector (128 elements) implemented as an electron detector in a Scanning Transmission Electron Microscope. As the electron beam scans over the sample, electrons are counted during each pixel. The authors developed an ASIC for the multichannel counting system. The digital front-end carries out the readout of all elements, in four groups, and uses these data to compute linear combinations to generate up to eight simultaneous images. For the preprocessing the authors implemented a parallel and pipelined system. Dedicated software tools were developed to generate the programs for all the processors. These tools are transparently accessed by the user via a user friendly interface
A parallel finite element method for the analysis of crystalline solids
DEFF Research Database (Denmark)
Sørensen, N.J.; Andersen, B.S.
1996-01-01
A parallel finite element method suitable for the analysis of 3D quasi-static crystal plasticity problems has been developed. The method is based on substructuring of the original mesh into a number of substructures which are treated as isolated finite element models related via the interface...... conditions. The resulting interface equations are solved using a direct solution method. The method shows a good speedup when increasing the number of processors from 1 to 8 and the effective solution of 3D crystal plasticity problems whose size is much too large for a single work station becomes possible....
Simulation of incompressible flows with heat and mass transfer using parallel finite element method
Directory of Open Access Journals (Sweden)
Jalal Abedi
2003-02-01
Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.
DEFF Research Database (Denmark)
Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael
2015-01-01
This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...
Nuclear reactor fuel element with a cluster of parallel fuel pins
International Nuclear Information System (INIS)
Macfall, D.; Butterfield, C.E.; Butterfield, R.S.
1977-01-01
An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de
PARALLEL ALGORITHM FOR THREE-DIMENSIONAL STOKES FLOW SIMULATION USING BOUNDARY ELEMENT METHOD
Directory of Open Access Journals (Sweden)
D. G. Pribytok
2016-01-01
Full Text Available Parallel computing technique for modeling three-dimensional viscous flow (Stokes flow using direct boundary element method is presented. The problem is solved in three phases: sampling and construction of system of linear algebraic equations (SLAE, its decision and finding the velocity of liquid at predetermined points. For construction of the system and finding the velocity, the parallel algorithms using graphics CUDA cards programming technology have been developed and implemented. To solve the system of linear algebraic equations the implemented software libraries are used. A comparison of time consumption for three main algorithms on the example of calculation of viscous fluid motion in three-dimensional cavity is performed.
Evaluating the performance of the particle finite element method in parallel architectures
Gimenez, Juan M.; Nigro, Norberto M.; Idelsohn, Sergio R.
2014-05-01
This paper presents a high performance implementation for the particle-mesh based method called particle finite element method two (PFEM-2). It consists of a material derivative based formulation of the equations with a hybrid spatial discretization which uses an Eulerian mesh and Lagrangian particles. The main aim of PFEM-2 is to solve transport equations as fast as possible keeping some level of accuracy. The method was found to be competitive with classical Eulerian alternatives for these targets, even in their range of optimal application. To evaluate the goodness of the method with large simulations, it is imperative to use of parallel environments. Parallel strategies for Finite Element Method have been widely studied and many libraries can be used to solve Eulerian stages of PFEM-2. However, Lagrangian stages, such as streamline integration, must be developed considering the parallel strategy selected. The main drawback of PFEM-2 is the large amount of memory needed, which limits its application to large problems with only one computer. Therefore, a distributed-memory implementation is urgently needed. Unlike a shared-memory approach, using domain decomposition the memory is automatically isolated, thus avoiding race conditions; however new issues appear due to data distribution over the processes. Thus, a domain decomposition strategy for both particle and mesh is adopted, which minimizes the communication between processes. Finally, performance analysis running over multicore and multinode architectures are presented. The Courant-Friedrichs-Lewy number used influences the efficiency of the parallelization and, in some cases, a weighted partitioning can be used to improve the speed-up. However the total cputime for cases presented is lower than that obtained when using classical Eulerian strategies.
Experimental Behavior Evaluation of Series and Parallel Connected Constant Phase Elements
Tsirimokou, Georgia
2017-01-28
Fractional-order capacitors are the core building blocks for implementing fractional-order circuits. Due to the absence of their commercial availability, they can be approximated through appropriately configured passive or active integer-order element topologies. Such a topology, constructed using Operational Transconductance Amplifiers (OTAs) and capacitors has been implemented in monolithic form through the AMS 0.35μm CMOS process, and the fabricated chips are employed here for the experimental evaluation of the behavior of networks constructed from fractional-order capacitors connected in series or in parallel.
Algorithms and data structures for massively parallel generic adaptive finite element codes
Bangerth, Wolfgang
2011-12-01
Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.
Permittivity disorder induced Anderson localization in magnetophotonic crystals
Energy Technology Data Exchange (ETDEWEB)
Abdi-Ghaleh, R., E-mail: r.abdi@bonabu.ac.ir [Department of Laser and Optical Engineering, University of Bonab, 5551761167 Bonab (Iran, Islamic Republic of); Namdar, A. [Faculty of Physics, University of Tabriz, 5166614766 Tabriz (Iran, Islamic Republic of)
2016-11-15
This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators. - Highlights: • We theoretically investigated the permittivity disorder induced Anderson localization of light in magnetophotonic crystals. • The disorder considered in the diagonal elements of the permittivity tensor of magneto-optical layers. • The disorder create the resonant transmittance modes associated with enhanced Faraday rotations in the photonic band gap. • The average localization length of the circular polarizations and the ensemble average of their phases were investigated. • The obtained results revealed the nonreciprocal property of circular eigen modes.
Mesh Partitioning Algorithm Based on Parallel Finite Element Analysis and Its Actualization
Directory of Open Access Journals (Sweden)
Lei Zhang
2013-01-01
Full Text Available In parallel computing based on finite element analysis, domain decomposition is a key technique for its preprocessing. Generally, a domain decomposition of a mesh can be realized through partitioning of a graph which is converted from a finite element mesh. This paper discusses the method for graph partitioning and the way to actualize mesh partitioning. Relevant softwares are introduced, and the data structure and key functions of Metis and ParMetis are introduced. The writing, compiling, and testing of the mesh partitioning interface program based on these key functions are performed. The results indicate some objective law and characteristics to guide the users who use the graph partitioning algorithm and software to write PFEM program, and ideal partitioning effects can be achieved by actualizing mesh partitioning through the program. The interface program can also be used directly by the engineering researchers as a module of the PFEM software. So that it can reduce the application of the threshold of graph partitioning algorithm, improve the calculation efficiency, and promote the application of graph theory and parallel computing.
International Nuclear Information System (INIS)
Nakamachi, Eiji
2005-01-01
A crystallographic homogenization procedure is introduced to the conventional static-explicit and dynamic-explicit finite element formulation to develop a multi scale - double scale - analysis code to predict the plastic strain induced texture evolution, yield loci and formability of sheet metal. The double-scale structure consists of a crystal aggregation - micro-structure - and a macroscopic elastic plastic continuum. At first, we measure crystal morphologies by using SEM-EBSD apparatus, and define a unit cell of micro structure, which satisfy the periodicity condition in the real scale of polycrystal. Next, this crystallographic homogenization FE code is applied to 3N pure-iron and 'Benchmark' aluminum A6022 polycrystal sheets. It reveals that the initial crystal orientation distribution - the texture - affects very much to a plastic strain induced texture and anisotropic hardening evolutions and sheet deformation. Since, the multi-scale finite element analysis requires a large computation time, a parallel computing technique by using PC cluster is developed for a quick calculation. In this parallelization scheme, a dynamic workload balancing technique is introduced for quick and efficient calculations
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
International Nuclear Information System (INIS)
Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge
2010-01-01
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.
2010-03-01
In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Dagai, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-12-01
Study of some elements used in EHF interferometry (bond of millimeter waves). This study is about design of the following elements: horns, horns associated with lens, power separators: -) Study of assemblies allowing measurements of complex dielectric constants of liquids. These devices are used in free propagation about wave lengths {<=} 2 mm; -) Studied devices: Interferometer for 2 separated waves and Michelson's type interferometer; -) 4 liquids have been used: {epsilon}'{sub r} Octane from -50 to 70 C (-58 to 158 F), {epsilon}'{sub r} and {epsilon}'' [Monochlorobenzene at 22,8 C (73 F), Mixture of octane with 10,8 per cent citral at 22 C (72 F) and Benzene at 21 C (70 F)]. -) Precision obtained about measurements: {delta}{epsilon}'/{epsilon}' de 1 a 2%, {delta}{epsilon}''/{epsilon}'' de 4 a 6%.(author) [French] Etudes d'elements utilises en interferometrie hertzienne fonctionnant en ondes millimetriques. Cette etude porte sur la realisation des elements suivants: cornets, cornets associes aux lentilles, separateurs de puissance. Etudes des montages permettant les mesures de la constante dielectrique complexe des corps liquides. Ces montages fonctionnent en propagation libre, sur des longueurs d'onde inferieures ou egales a 2 millimetres. Les montages etudies sont: interferometre a deux ondes separees et interferometre du type Michelson. De plus 4 liquides ont ete etudies: {epsilon}'{sub r} octane de -50 a 70 C, {epsilon}'{sub r} et {epsilon}'' [monochlorobenzene a 22,8 C et melange octane avec 10,8 pour cent citral a 22 C, Benzene a 21 C]. Les precisions obtenues sur les mesures sont: {delta}{epsilon}'/{epsilon}' de 1 a 2 pour cent, {delta}{epsilon}''/{epsilon}'' de 4 a 6 pour cent.
Principal spectra describing magnetooptic permittivity tensor in cubic crystals
Energy Technology Data Exchange (ETDEWEB)
Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)
2016-12-15
We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.
A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics
Lei, Dong; Liang, Yingjie; Xiao, Rui
2018-01-01
We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306
Chen, Jian; Matuttis, Hans-Georg
2013-02-01
We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.
Directory of Open Access Journals (Sweden)
Spyridon Liakas
2017-08-01
Full Text Available The particulate discrete element method (DEM can be employed to capture the response of rock, provided that appropriate bonding models are used to cement the particles to each other. Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors. Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional (2D models. In situ rock formations are often heterogeneous, thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis. In situ stress states are basically three-dimensional (3D, and therefore it is important to develop 3D models for this purpose. This paper revisits an earlier experimental study on heterogeneous specimens, of which the relative proportions of weaker material (siltstone and stronger, harder material (sandstone were varied in a controlled manner. Using a 3D DEM model with the parallel bond model, virtual heterogeneous specimens were created. The overall responses in terms of variations in strength and stiffness with different percentages of weaker material (siltstone were shown to agree with the experimental observations. There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations, suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.
Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters
Muraoka, Masae; Okuda, Hiroshi
With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.
Inversion of potential field data using the finite element method on parallel computers
Gross, L.; Altinay, C.; Shaw, S.
2015-11-01
In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.
Estimation of complex permittivity using loop antenna
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2004-01-01
A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....
A parallel Discrete Element Method to model collisions between non-convex particles
Directory of Open Access Journals (Sweden)
Rakotonirina Andriarimina Daniel
2017-01-01
Full Text Available In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called “glued-convex method” (in the sense clumping convex bodies together, as an extension of the popular “glued-spheres” method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i the collapse of a granular column made of convex particles and (i the microstructure of a heap of non-convex particles in a cylindrical reactor.
Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.
2007-01-01
We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Simultaneous identification of electric permittivity and magnetic permeability
International Nuclear Information System (INIS)
Feng, Hui; Jiang, Daijun; Zou, Jun
2010-01-01
In this paper we investigate the simultaneous reconstruction of the electric permittivity and magnetic permeability. The two physical parameters are allowed to be highly discontinuous in the concerned physical domain. The ill-posed inverse problem is formulated into an output least-squares nonlinear minimization with BV-regularization. The regularizing effect and mathematical properties of the regularized system are justified and analysed. A fully discrete Nedelec's edge element method is applied to approximate the regularized nonlinear optimization system, and its convergence is demonstrated
International Nuclear Information System (INIS)
Baidillah, Marlin R; Takei, Masahiro
2017-01-01
A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)
Effective permittivity of finite inhomogeneous objects
Raghunathan, S.B.; Budko, N.V.
2010-01-01
A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.
Test plan for prototype dielectric permittivity sensor
International Nuclear Information System (INIS)
Pfeifer, M.C.
1993-07-01
The digface characterization project funded by the Buried Waste Integrated Demonstration (BWID) is designed to test a new method of monitoring hazardous conditions during the remediation at waste sites. Often on a large scale, the exact cause of each anomaly is difficult to determine and ambiguities remain in the characterization of a site. The digface characterization concept is designed to alleviate some of this uncertainty by creating systems that monitor small volumes of soil and detect anomalous areas during remediation before they are encountered. The goal of the digface characterization demonstration is to detect changes in the physical properties from one volume to another and relate these changes in physical properties to changes in the level of contamination. Dielectric permittivity mapping is a method that might prove useful in digface characterization. In this project, the role of a dielectric permittivity monitoring device is under investigation. This project addresses two issues: what are the optimal means of mapping dielectric permittivity contrasts and what types of targets can be detected using dielectric permittivity mapping
International Nuclear Information System (INIS)
Coulomb, F.
1989-06-01
The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr
International Nuclear Information System (INIS)
Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.
2007-01-01
Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented
Tomar, S.K.
2002-01-01
It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.
Gutmann, R. J.; Borrego, J. M.
1978-01-01
Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.
Arteaga, Santiago Egido
1998-12-01
The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the
Energy Technology Data Exchange (ETDEWEB)
Fischer, P.F. [Brown Univ., Providence, RI (United States)
1996-12-31
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.; Pardo, David; Torres-Verdí n, Carlos; Demkowicz, Leszek F.; Calo, Victor M.
2010-01-01
measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
Energy Technology Data Exchange (ETDEWEB)
Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)
1996-12-31
Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.
Multiband Negative Permittivity Metamaterials and Absorbers
Directory of Open Access Journals (Sweden)
Yiran Tian
2013-01-01
Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.
Directory of Open Access Journals (Sweden)
Daniel Marcsa
2015-01-01
Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.
Directory of Open Access Journals (Sweden)
Rek Václav
2016-11-01
Full Text Available In this paper, the form of modifications of the existing sequential code written in C or C++ programming language for the calculation of various kind of structures using the explicit form of the Finite Element Method (Dynamic Relaxation Method, Explicit Dynamics in the NEXX system is introduced. The NEXX system is the core of engineering software NEXIS, Scia Engineer, RFEM and RENEX. It has the possibilities of multithreaded running, which can now be supported at the level of native C++ programming language using standard libraries. Thanks to the high degree of abstraction that a contemporary C++ programming language provides, a respective library created in this way can be very generalized for other purposes of usage of parallelism in computational mechanics.
Jylhä, Liisi; Honkamo, Johanna; Jantunen, Heli; Sihvola, Ari
2005-05-01
Effective permittivity was modeled and measured for composites that consist of up to 35vol% of titanium dioxide powder dispersed in a continuous epoxy matrix. The study demonstrates a method that enables fast and accurate numerical modeling of the effective permittivity values of ceramic/polymer composites. The model requires electrostatic Monte Carlo simulations, where randomly oriented homogeneous prism-shaped inclusions occupy random positions in the background phase. The computation cost of solving the electrostatic problem by a finite-element code is decreased by the use of an averaging method where the same simulated sample is solved three times with orthogonal field directions. This helps to minimize the artificial anisotropy that results from the pseudorandomness inherent in the limited computational domains. All the required parameters for numerical simulations are calculated from the lattice structure of titanium dioxide. The results show a very good agreement between the measured and numerically calculated effective permittivities. When the prisms are approximated by oblate spheroids with the corresponding axial ratio, a fairly good prediction for the effective permittivity of the mixture can be achieved with the use of an advanced analytical mixing formula.
Energy Technology Data Exchange (ETDEWEB)
Alleon, G. [EADS-CCR, 31 - Blagnac (France); Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E. [Cerfacs, 31 - Toulouse (France)
2003-07-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
International Nuclear Information System (INIS)
Alleon, G.; Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E.
2003-01-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
International Nuclear Information System (INIS)
Masoud Ziaei-Rad
2010-01-01
In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.
Directory of Open Access Journals (Sweden)
R. Daud
2013-06-01
Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.
Printed circuit board permittivity measurement using waveguide and resonator rings
Op 't Land, Sjoerd; Tereshchenko, O.V.; Ramdani, Mohamed; Leferink, Frank Bernardus Johannes; Perdriau, Richard
2014-01-01
Knowing the frequency dependent complex permittivity of Printed Circuit Board (PCB) substrates is important in modern electronics. In this paper, two methods for measuring the permittivity are applied to the same Flame Resistant (FR4) substrate and the results are compared. The reference measurement
Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar
2008-12-01
Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.
Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity
Chen, Hsieh; Panagiotopoulos, Athanassios Z.
2018-01-01
We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.
Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard
2006-09-01
The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.
Directory of Open Access Journals (Sweden)
Xiaoqing Wang
2016-01-01
Full Text Available Parallel analyses about the dynamic responses of a large-scale water conveyance tunnel under seismic excitation are presented in this paper. A full three-dimensional numerical model considering the water-tunnel-soil coupling is established and adopted to investigate the tunnel’s dynamic responses. The movement and sloshing of the internal water are simulated using the multi-material Arbitrary Lagrangian Eulerian (ALE method. Nonlinear fluid–structure interaction (FSI between tunnel and inner water is treated by using the penalty method. Nonlinear soil-structure interaction (SSI between soil and tunnel is dealt with by using the surface to surface contact algorithm. To overcome computing power limitations and to deal with such a large-scale calculation, a parallel algorithm based on the modified recursive coordinate bisection (MRCB considering the balance of SSI and FSI loads is proposed and used. The whole simulation is accomplished on Dawning 5000 A using the proposed MRCB based parallel algorithm optimized to run on supercomputers. The simulation model and the proposed approaches are validated by comparison with the added mass method. Dynamic responses of the tunnel are analyzed and the parallelism is discussed. Besides, factors affecting the dynamic responses are investigated. Better speedup and parallel efficiency show the scalability of the parallel method and the analysis results can be used to aid in the design of water conveyance tunnels.
Internal homogenization: effective permittivity of a coated sphere.
Chettiar, Uday K; Engheta, Nader
2012-10-08
The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.
Longitudinal permittivity of a toroidal plasma near rational surfaces
International Nuclear Information System (INIS)
Nekrasov, F.M.
1990-01-01
A quite simple analytical formula for longitudinal permittivity, suitable for numerical processing on a computer, is determined. On the basis of a Fourier representation a poloidal angle a compact expression for the imaginary part of longitudinal permittivity near rational surfaces (m+nq=0) at an arbitrary relation between the bounce frequency and excited wave frequency is determined. A strongly magnetized collisionless plasma in the weak toroidality approximation is considered
Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M
2016-03-15
Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of relative permittivity of LTCC ceramic at different temperatures
Directory of Open Access Journals (Sweden)
Qiulin Tan
2014-02-01
Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.
Directory of Open Access Journals (Sweden)
James Wolfer
2015-02-01
Full Text Available Traditionally, topics such as parallel computing, computer graphics, and artificial intelligence have been taught as stand-alone courses in the computing curriculum. Often these are elective courses, limiting the material to the subset of students choosing to take the course. Recently there has been movement to distribute topics across the curriculum in order to ensure that all graduates have been exposed to concepts such as parallel computing. Previous work described an attempt to systematically weave a tapestry of topics into the undergraduate computing curriculum. This paper reviews that work and expands it with representative examples of assignments, demonstrations, and results as well as describing how the tools and examples deployed for these classes have a residual effect on classes such as Comptuer Literacy.
Super soft silicone elastomers with high dielectric permittivity
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Yu, Liyun; Hvilsted, Søren
2015-01-01
Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s modulus and increasing the dielectric permittivity of silicone...... elastomers. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. New soft elastomer matrices with high dielectric permittivity and low Young’s modulus, with no loss of mechanical stability, were prepared by two different...... approaches using chloropropyl-functional silicone polymers. The first approach was based on synthesised chloropropyl-functional copolymers that were cross-linkable and thereby formed the basis of new silicone networks with high dielectric permittivity (e.g. a 43% increase). These networks were soft without...
Functional silicone copolymers and elastomers with high dielectric permittivity
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren
Dielectric elastomers (DEs) are a new and promising transducer technology and are often referred to as ‘artificial muscles’, due to their ability to undergo large deformations when stimulated by electric fields. DEs consist of a soft and thin elastomeric film sandwiched between compliant electrodes......, thereby forming a capacitor [1]. Silicone elastomers are one of the most used materials for DEs due to their high efficiency, fast response times and low viscous losses. The major disadvantage of silicone elastomers is that they possess relatively low dielectric permittivity, which means that a high...... electrical field is necessary to operate the DE. The necessary electrical field can be lowered by creating silicone elastomers with higher dielectric permittivity, i.e. with a higher energy density.The aim of this work is to create new and improved silicone elastomers with high dielectric permittivity...
Measurement of complex permittivity of composite materials using waveguide method
Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes
2011-01-01
Complex dielectric permittivity of 4 different composite materials has been measured using the transmissionline method. A waveguide fixture in L, S, C and X band was used for the measurements. Measurement accuracy is influenced by air gaps between test fixtures and the materials tested. One of the
Complex permittivity and conductivity of poly (p-phenylenediazo ...
Indian Academy of Sciences (India)
Conducting polymer composites were prepared by in situ polymerization of glyoxal and -phenylenediamine in different solvents containing different amounts of PVC, and silica. The microwave conductivity and complex permittivity of each sample was measured. The effect of dopants like HClO4 and HCl on these dielectric ...
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
International Nuclear Information System (INIS)
Yamada, Tomonori
2010-01-01
The safety requirement of nuclear power plant attracts much attention nowadays. With the growing computing power, numerical simulation is one of key technologies to meet this safety requirement. Center for Computational Science and e-Systems of Japan Atomic Energy Agency has been developing a finite element analysis code for assembled structure to accurately evaluate the structural integrity of nuclear power plant in its entirety under seismic events. Because nuclear power plant is very huge assembled structure with tens of millions of mechanical components, the finite element model of each component is assembled into one structure and non-conforming meshes of mechanical components are bonded together inside the code. The main technique to bond these mechanical components is triple sparse matrix multiplication with multiple point constrains and global stiffness matrix. In our code, this procedure is conducted in a component by component manner, so that the working memory size and computing time for this multiplication are available on the current computing environment. As an illustrative example, seismic simulation of a real nuclear reactor of High Temperature engineering Test Reactor, which is located at the O-arai research and development center of JAEA, with 80 major mechanical components was conducted. Consequently, our code successfully simulated detailed elasto-plastic deformation of nuclear reactor and its computational performance was investigated. (author)
Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard
introduces different properties in terms of contact angles, dielectric permittivity and rheological behaviour. All morphologies of PDMS-PEG block copolymer in this study exhibit high storage permittivity; at the same time the loss permittivity is even higher which implies that the synthesized PDMS-PEG block...
DEFF Research Database (Denmark)
Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard
2014-01-01
permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...
Energy Technology Data Exchange (ETDEWEB)
Milind Deo; Chung-Kan Huang; Huabing Wang
2008-08-31
volume of injection at lower rates. However, if oil production can be continued at high water cuts, the discounted cumulative production usually favors higher production rates. The workflow developed during the project was also used to perform multiphase simulations in heterogeneous, fracture-matrix systems. Compositional and thermal-compositional simulators were developed for fractured reservoirs using the generalized framework. The thermal-compositional simulator was based on a novel 'equation-alignment' approach that helped choose the correct variables to solve depending on the number of phases present and the prescribed component partitioning. The simulators were used in steamflooding and in insitu combustion applications. The framework was constructed to be inherently parallel. The partitioning routines employed in the framework allowed generalized partitioning on highly complex fractured reservoirs and in instances when wells (incorporated in these models as line sources) were divided between two or more processors.
High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P
Energy Technology Data Exchange (ETDEWEB)
Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.
Effective permittivity of random composite media: A comparative study
International Nuclear Information System (INIS)
Prasad, Ashutosh; Prasad, K.
2007-01-01
In the present study, experimental data for effective permittivity of amorphous, polycrystalline thick films, and ceramic form of samples, taken from the literature, have been chosen for their comparison with those yielded by different mixture equations. In order to test the acceptability of dielectric mixture equations for high volume fractions of the inclusion material in the mixture, eleven such equations have been chosen. It is found that equations given by Cuming, Maxwell-Wagner, Webmann, Skipetrov and modified Cule-Torquato show their coherence and minimal deviation from the experimental results of permittivity for all the chosen test materials almost over the entire measurement range of volume fractions. It is further found that Maxwell-Wagner, Webmann, and Skipetrov equations yielded equivalent results and consequently they have been combined together and reckoned as a single equation named MWWS. The study revealed that the Cuming equation had the highest degree of acceptability (errors <±1-5%) in all the cases
Effective Permittivity for FDTD Calculation of Plasmonic Materials
Directory of Open Access Journals (Sweden)
James B. Cole
2012-03-01
Full Text Available We present a new effective permittivity (EP model to accurately calculate surface plasmons (SPs using the finite-difference time-domain (FDTD method. The computational representation of physical structures with curved interfaces causes inherent errors in FDTD calculations, especially when the numerical grid is coarse. Conventional EP models improve the errors, but they are not effective for SPs because the SP resonance condition determined by the original permittivity is changed by the interpolated EP values. We perform FDTD simulations using the proposed model for an infinitely-long silver cylinder and gold sphere, and the results are compared with Mie theory. Our model gives better accuracy than the conventional staircase and EP models for SPs.
Negative permittivity chamber inside a stack of silver nanorings
Chen, Sheng Chung; Shiu Chau, Jr.
2010-05-01
The interactions of silver nanorings with polarized optical wave are numerically studied. If the resonant conditions are tuned, the polarization of incident field, inside the nanoring hole, will be reversed by the single silver nanoring due to the surface plasmon resonance, thus, the nanoring hole becomes a region of which permittivity is negative. Put two identical silver nanorings closely, there are two nodes happened between nanorings. It indicates that there is a very steep gradient of electric field and quasi-standing waves exist between nanorings. If many silver nanorings are lined up, the holes of the nanorings will form a negative permittivity chamber. The more close to the center of the chamber, the more ideal the polarization is reversed.
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic
Self-Healing, High-Permittivity Silicone Dielectric Elastomer
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard
2016-01-01
possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...... or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....
Measurement of mortar permittivity during setting using a coplanar waveguide
International Nuclear Information System (INIS)
Juan-García, P; Torrents, J M
2010-01-01
A sensor based on a coplanar waveguide structure was designed to perform non-destructive tests for material characterization in which the measurement can be done only on one side of the sample. The measurements were compared with the impedance of a capacitor filled with the same material. The permittivity and insertion loss of the sensor showed valuable information about the setting process of a mortar slab during the first 28 days of the hardening process, and a good correlation between both measurements was obtained, so the proposed setup can be useful for structural surveillance and moisture detection in civil structures
DEFF Research Database (Denmark)
Sitchinava, Nodar; Zeh, Norbert
2012-01-01
We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number of...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....
Artificial high effective permittivity medium in a SIW filled with metallic cylinders
Vicent, G.; Bronchalo, E.; Coves, A.; Torregrosa, G.
2018-02-01
A new topology of step-impedance band-pass filters in Substrate Integrated Waveguide (SIW) technology has been recently demonstrated in which low effective permittivity regions have been achieved by removing part of the substrate material and then shielding the perforated structure. Alternatively, in this work a new way to obtain an increased relative permittivity in the guiding region is proposed by periodically inserting metallic inclusions. This paper shows the results of a systematic study of the effective permittivity obtained in this way in a SIW in order to synthesize a higher effective permittivity, which can be used in the filter design.
Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.
Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas
2014-11-26
Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Glycerol as high-permittivity liquid filler in dielectric silicone elastomers
DEFF Research Database (Denmark)
Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard
of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to a very attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative-permittivity changes as a function of filler loading...
A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....
The permittivity of a plasma at cyclotron resonance in large amplitude e.m. fields
Schram, D.C.
1970-01-01
The permittivity of a collisionless plasma as a function of field parameters is measured in standing and in travelling waves. In both experiments the permittivity remains finite at cyclotron resonance; the resonance is broadened and shifted towards higher values of the magnetic field strength. The
Soil permittivity response to bulk electrical conductivity for selected soil water sensors
Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...
Brink, Wyger M; Versluis, Maarten J; Peeters, Johannes M; Börnert, Peter; Webb, Andrew G
2016-12-01
To explore the effects of high permittivity dielectric pads on the transmit and receive characteristics of a 3 Tesla body coil centered at the thighs, and their implications on image uniformity in receive array applications. Transmit and receive profiles of the body coil with and without dielectric pads were simulated and measured in healthy volunteers. Parallel imaging was performed using sensitivity encoding (SENSE) with and without pads. An intensity correction filter was constructed from the measured receive profile of the body coil. Measured and simulated data show that the dielectric pads improve the transmit homogeneity of the body coil in the thighs, but decrease its receive homogeneity, which propagates into reconstruction algorithms in which the body coil is used as a reference. However, by correcting for the body coil reception profile this effect can be mitigated. Combining high permittivity dielectric pads with an appropriate body coil receive sensitivity filter improves the image uniformity substantially compared with the situation without pads. Magn Reson Med 76:1951-1956, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Relative permittivity in the electrical double layer from nonlinear optics
Boamah, Mavis D.; Ohno, Paul E.; Geiger, Franz M.; Eisenthal, Kenneth B.
2018-06-01
Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11 ¯ 02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.
The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.
Energy Technology Data Exchange (ETDEWEB)
Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard
2005-07-01
Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).
Influence of particle arrangement on the permittivity of an elastomeric composite
Directory of Open Access Journals (Sweden)
Peiying J. Tsai
2017-01-01
Full Text Available Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ε. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS alter ε. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ε increases by as much as 85%. When particles are organized into chainlike forms, ε increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ε when ψ<9% while larger particles provide greater enhancement when ψ is larger than that value. To enhance ε, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Influence of particle arrangement on the permittivity of an elastomeric composite
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Massively parallel mathematical sieves
Energy Technology Data Exchange (ETDEWEB)
Montry, G.R.
1989-01-01
The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.
Crockett, Thomas W.
1995-01-01
This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
elements of the composite structure, a system of two quadratic equations for the desired principal values of the permittivity tensor of the composite is obtained. Results of this quantitative analysis are shown in graphs and can be used to predict the dielectric characteristics of composites with identically oriented lamellar inclusions (including in the form of nanostructured elements.
1982-01-01
Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn
Changes in permittivity and density of molecular liquids under high pressure.
Kiselev, Vladimir D; Kornilov, Dmitry A; Konovalov, Alexander I
2014-04-03
We collected and analyzed the density and permittivity of 57 nonpolar and dipolar molecular liquids at different temperatures (143 sets) and pressures (555 sets). No equation was found that could accurately predict the change to polar liquid permittivity by the change of its density in the range of the pressures and temperatures tested. Consequently, the influence of high hydrostatic pressure and temperature on liquid permittivity may be a more complicated process compared to density changes. The pressure and temperature coefficients of permittivity can be drastically larger than the pressure and temperature coefficients of density, indicating that pressure and particularly temperature significantly affect the structure of molecular liquids. These changes have less influence on the density change but can strongly affect the permittivity change. The clear relationship between the tangent and secant moduli of the permittivity curvatures under pressure for various molecular liquids at different temperatures was obtained, from which one can calculate the Tait equation coefficients from the experimental values of the pressure influence on the permittivity at ambient pressure.
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard
Polydimethylsiloxane (PDMS) elastomers are well-known to be soft and highly stretchable, yet they never achieve maximum elongation when utilised as dielectric elastomers, simply because their dielectric permittivity remains rather low. Conversely, polyethyleneglycols (PEG) are not stretchable......, but they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS......, the discontinuity in PEG can be acquired and the relative permittivity (ε’) is significantly enhanced (60%) with 5wt% of PDMS-PEG block copolymer incorporated into the silicone elastomer....
PARALLEL MOVING MECHANICAL SYSTEMS
Directory of Open Access Journals (Sweden)
Florian Ion Tiberius Petrescu
2014-09-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.
Lithium ferrite: The study on magnetic and complex permittivity characteristics
Directory of Open Access Journals (Sweden)
Madhavaprasad Dasari
2017-03-01
Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.
Polymorphous GdScO3 as high permittivity dielectric
International Nuclear Information System (INIS)
Schäfer, A.; Rahmanizadeh, K.; Bihlmayer, G.; Luysberg, M.; Wendt, F.; Besmehn, A.; Fox, A.
2015-01-01
Four different polymorphs of GdScO 3 are assessed theoretically and experimentally with respect to their suitability as a dielectric. The calculations carried out by density functional theory reveal lattice constants, band gaps and the energies of formation of three crystal phases. Experimentally all three crystal phases and the amorphous phase can be realized as thin films by pulsed laser deposition using various growth templates. Their respective crystal structures are confirmed by X-ray diffraction and transmission electron microscopy reflecting the calculated lattice constants. X-ray photoelectron spectroscopy unveils the band gaps of the different polymorphs of GdScO 3 which are above 5 eV for all films demonstrating good insulating properties. From capacitance voltage measurements, high permittivities of up to 27 for hexagonal GdScO 3 are deduced. - Highlights: • Different epitaxial polymorph phases of GdScO 3 were grown by pulsed laser deposition. • The cubic phase of GdScO 3 is reported for the first time. • All phases are proven to be useful for the use in silicon based and III–V based microelectronic devices.
PERMITTIVITY RESEARCH OF BIOLOGICAL SOLUTIONS IN GIGAHERTZ FREQUENCY RANGE
Directory of Open Access Journals (Sweden)
Anton S. Demin
2017-07-01
Full Text Available Subject of Research. We present results of permittivity research in gigahertz frequency range for saline and glucose solutions used in medical practice. Experiment results are substantiated theoretically on the basis of Debye-Cole model. Method. Researches have been carried out on blood plasma of healthy donor, water, normal saline and glucose solutions with different concentration from 3 to 12 mmol/l. Experiments have been performed by an active nearfield method based on measuring the impedance of a plane air-liquid boundary with open end of coaxial waveguide in the frequency range from 1 to 12 GHz. Measurement results have been processed with the use of vector analyzer computer system from Rohde & Schwarz. Transmittance spectra have been determined by means of IR-spectrometer from TENZOR-Bruker. Main Results. Simulation results have shown good agreement between the experimental results and the model, as well as the choice of the main parameters of the Debye-Cole model in the studied frequency range for all media. It has been shown that the range of 3-6 GHz can be considered as the main one in the development of diagnostic sensors for the non-invasive analysis of the glucose concentration in the human blood. Practical Relevance. Electrodynamic models of test fluid replacing human blood give the possibility to simulate the sensor basic characteristics for qualitative and quantitative estimation of glucose concentration in human blood and can be used to create an experimental sample of a non- invasive glucometer.
Directory of Open Access Journals (Sweden)
Natthaphon Raengthon
2016-03-01
Full Text Available The temperature coefficient of permittivity (TCε of BaTiO3–Bi(MeO3 solid solutions were investigated. It was determined that as the tolerance factor was decreased with the addition of Bi(MeO3, the TCε shifted from large negative values to TCε values approaching zero. It is proposed that the different bonding nature of the dopant cation affects the magnitude and temperature stability of the permittivity. This study suggests that the relationship between tolerance factor and TCε can be used as a guide to design new dielectric compounds exhibiting temperature-stable high permittivity characteristics, which is similar to past research on perovskite and pyrochlore-based microwave dielectrics.
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi
2018-01-01
Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity
International Nuclear Information System (INIS)
Liu, Liwu; Liu, Yanju; Zhang, Zhen; Leng, Jinsong; Li, Bo
2010-01-01
In this paper, an expression for the permittivity of electro-active silicone undergoing large deformation with high permittivity particles filled uniformly has been proposed. Two expressions are proposed for the permittivity, one based on experimental tests and the other based on the theory of composite material. By applying the thermodynamic model incorporating linear dielectric permittivity and nonlinear hyperelastic performance, the mechanical performance and electromechanical stability of the coupling system constituted by silicone filled with PMN–PT have been studied. The results show that the critical electric field decreases, namely the stability performance of the system declines when the content of PMN–PT c(v) increases and the electrostrictive coefficients increase. The results are beneficial for us to understand deeply the influence of the filled particle on the stability performance of silicone and to guide the design and manufacture of actuators and sensors based on dielectric elastomers
How the relative permittivity of solar cell materials influences solar cell performance
DEFF Research Database (Denmark)
Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole
2017-01-01
of the materials permittivity on the physics and performance of the solar cell by means of numerical simulation supported by analytical relations. We demonstrate that, depending on the specific solar cell configuration and materials properties, there are scenarios where the relative permittivity has a major......The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect...... the heterojunction partner has a high permittivity, solar cells are consistently more robust against several non-idealities that are especially likely to occur in early-stage development, when the device is not yet optimized....
Casanova, Henri; Robert, Yves
2008-01-01
""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi
Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode
International Nuclear Information System (INIS)
Li, Yun; Su, Ping; Yang, Zhimei; Ma, Yao; Gong, Min
2016-01-01
Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E C -0.31 eV and E C -0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.
Hancu, Ileana; Roberts, Jeannette Christine; Bulumulla, Selaka; Lee, Seung-Kyun
2015-05-01
To investigate the permittivity and conductivity of cancerous and normal tissues, their correlation to the apparent diffusion coefficient (ADC), and the specificity that they could add to cancer detection. Breast and prostate carcinomas were induced in rats. Conductivity and permittivity measurements were performed in the anesthetized animals using a dielectric probe and an impedance analyzer between 50 and 270 MHz. The correlations between ADCs (measured at 128 MHz) and conductivity values were investigated. Frequency-dependent discriminant functions were computed to assess the value that each parameter adds to cancer detection. Tumors exhibited higher permittivity than muscle tissue by 27%/12%/5% at 64/128/270MHz. Frequency independent, 15-20% higher conductivity was also noted in tumors compared to muscle tissue over the same frequency range. Strong negative correlation was observed between tissue conductivity and ADC. Whereas permittivity had the strongest discriminatory power at 64 MHz, it became comparable to ADC at 128 MHz and less important than ADC at 270 MHz. Conductivity measurements offered limited advantages in separating cancer from normal tissue beyond what ADC already provided; conversely, permittivity added separation power when added to the discriminant function. The moderately high cancerous tissue permittivity and conductivity impose strong constraints on the capability of MRI-based tissue electrical property measurements. © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Cutts, D.A.; Spyrou, N.M.; Stedman, J.D.
2000-01-01
Alzheimer's disease (AD) is a debilitating form of dementia which leads to impaired memory, thinking and behavior. Elemental concentrations between 'normal' and AD subjects as well as the hemispherical differences within the brain were examined. Tissue samples from both hemispheres of the frontal lobe in both AD and normal subjects were examined for their trace element concentrations using PIXE and RBS analyses. Elemental concentrations were seen to differ between AD and normal brain tissue samples. While in the normal group concentrations were found to be significantly higher in the right hemisphere than in the left the converse was tru in AD. A change in elemental concentrations may indicate possible alterations in the function of the blood brain barrier. This was examined by determining regional cerebral metabolic rates of glucose (rCMRGlu) using the in vivo technique of positron emission tomography (PET). Again variations between both hemispheres and between AD and normal were found. (author)
Yan, Beichuan; Regueiro, Richard A.
2018-02-01
A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.
Xu, Jian; Kim, Daniel; Otazo, Ricardo; Srichai, Monvadi B; Lim, Ruth P; Axel, Leon; Mcgorty, Kelly Anne; Niendorf, Thoralf; Sodickson, Daniel K
2013-07-01
To evaluate the feasibility and perform initial comparative evaluations of a 5-minute comprehensive whole-heart magnetic resonance imaging (MRI) protocol with four image acquisition types: perfusion (PERF), function (CINE), coronary artery imaging (CAI), and late gadolinium enhancement (LGE). This study protocol was Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board-approved. A 5-minute comprehensive whole-heart MRI examination protocol (Accelerated) using 6-8-fold-accelerated volumetric parallel imaging was incorporated into and compared with a standard 2D clinical routine protocol (Standard). Following informed consent, 20 patients were imaged with both protocols. Datasets were reviewed for image quality using a 5-point Likert scale (0 = non-diagnostic, 4 = excellent) in blinded fashion by two readers. Good image quality with full whole-heart coverage was achieved using the accelerated protocol, particularly for CAI, although significant degradations in quality, as compared with traditional lengthy examinations, were observed for the other image types. Mean total scan time was significantly lower for the Accelerated as compared to Standard protocols (28.99 ± 4.59 min vs. 1.82 ± 0.05 min, P simplified scan prescription and high spatial and temporal resolution enabled by highly parallel imaging technology. The study also highlights technical hurdles that remain to be addressed. Although image quality remained diagnostic for most scan types, the reduced image quality of PERF, CINE, and LGE scans in the Accelerated protocol remain a concern. Copyright © 2012 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Farace, Paolo; Antolini, Renzo; Pontalti, Rolando; Cristoforetti, Luca; Scarpa, Marina
1997-01-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning. (author)
Energy Technology Data Exchange (ETDEWEB)
Farace, Paolo; Antolini, Renzo [CMBM-ITC, Centro Materiali e Biofisica Medica, 38050 Povo-Trento (Italy); Dipartimento di Fisica and INFM, Universita di Trento, 38050 Povo-Trento (Italy); Pontalti, Rolando; Cristoforetti, Luca [CMBM-ITC, Centro Materiali e Biofisica Medica, 38050 Povo-Trento (Italy); Scarpa, Marina [Dipartimento di Fisica and INFM, Universita di Trento, 38050 Povo-Trento (Italy)
1997-11-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning. (author)
Farace, P; Pontalti, R; Cristoforetti, L; Antolini, R; Scarpa, M
1997-11-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning.
Energy Technology Data Exchange (ETDEWEB)
Farace, Paolo; Antolini, Renzo [CMBM-ITC, Centro Materiali e Biofisica Medica, 38050 Povo-Trento (Italy); Dipartimento di Fisica and INFM, Universita di Trento, 38050 Povo-Trento (Italy); Pontalti, Rolando; Cristoforetti, Luca [CMBM-ITC, Centro Materiali e Biofisica Medica, 38050 Povo-Trento (Italy); Scarpa, Marina [Dipartimento di Fisica and INFM, Universita di Trento, 38050 Povo-Trento (Italy)
1997-11-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning. (author)
Cutts, DA; Spyrou, NM; Maguire, RP; Stedman, JD; Leenders, KL
Alzheimer's disease (AD) isa debilitating form of dementia which leads to impaired memory, thinking and behavior. This work examines elemental concentrations between "normal" and AD subjects as well as the hemispherical differences within the brain. Tissue samples from both hemispheres of the
Energy Technology Data Exchange (ETDEWEB)
Deb, M.K.; Kennon, S.R.
1998-04-01
A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.
A Variational Approach to the Estimate of the Permittivity of a Composite with Dispersed Inclusions
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Composites are inhomogeneous materials (heterogeneous solid body, which fall into the matrix and inclusions. The matrix in a composite is a binder between the inclusions. The properties of the inclusions mainly determine the application of composites. Selection of the characteristics of the matrix and inclusions enables us to meet the requirements for materials to be used in various fields of technology. Composites are widely used as structural or thermal protection material and as functional materials in various electrical devices, including dielectrics. One of the most important characteristics of the composite dielectric is the relative permittivity. The latter is primarily determined by the dielectric properties of the matrix and inclusions, as well as the shape and volume concentration of inclusions.For a composite with dispersed inclusions we are able to construct adequate mathematical models which enable us to predict sufficiently reliably the dependence of its dielectric constant on these defining parameters. In this paper, among the various approaches to the construction of such models we emphasize a variational approach which allows us not only to determine this dependence, but also obtain guaranteed bilateral boundaries of the area of possible values of the dielectric constant of the composite used to estimate the highest accuracy of calculated values.The representative element of the composite structure with inclusions of spherical shape modeling the form of dispersed inclusions with dimensions close to all directions is considered. For the representative element we obtained the electrostatic potential distribution that is permissible for the minimized functional. The latter is the part of the variational form of a mathematical model which describes the dielectric properties of the considered composite. From the equality of the values of this functional on the received permissible distribution in a representative element of the
Directory of Open Access Journals (Sweden)
Ronal D. Montoya-Montoya
2013-11-01
Full Text Available This paper presents the results of measuring relative permittivity of fiber glass printed circuit board (PCB’s, using a rectangular resonant cavity. The relative permittivity is presented as function of frequency. To obtain resonant frequencies, the return loss was measured using a network analyzer. Relative permittivity was calculated by finding frequencies of resonant cavity modes. The results are presented in a frequency span of 1 to 3.5GHz. It was clearly shown the nonlinear behavior of the relative permittivity for the dielectric laminate evaluated, even what happens respect to the frequency of the resonant modes below and above to frequency of 2 GHz.
Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard
Polydimethylsiloxane (PDMS) based elastomers are well-known to actuate with large strain mainly due to their low modulus and their non-conducting nature. On the other hand, polyethyleneglycols(PEG) are not stretchable but they have high permittivity and are conductive. Combination of the two...... polymers as a block copolymer depicts a possibility for substantial improvement of properties such as high permittivity and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into different morphologies1 such as lamellar,cylinder, gyroid...... and spheres based on variation of volume fractions of PDMS and PEG. The synthesisis amended from Klasner et al.2 and Jukarainen et al.3 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS-PEG multiblock...
International Nuclear Information System (INIS)
Milton, Graeme W
2010-01-01
We show that any pair of real symmetric tensors ε and μ can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low-loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitte and Bourel and Bouchitte and Schweizer: one having, at the given frequency, a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor; and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties, these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.
Directory of Open Access Journals (Sweden)
W. M. Wu
2014-10-01
Full Text Available In this paper, we investigate the possibility of using the heterogeneous materials, with cuboid metallic inclusions inside a dielectric substrate (host to control the effective permittivity. We find that in the gigahertz range, such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate. Three principal orientations of microscale cuboid inclusions have been taken into account in this study. The highest permittivity is observed when the orientation provides the largest polarization (electric dipole moment. The detrimental side effect of the metallic inclusion, which leads to the decrease of the effective magnetic permeability, can be suppressed by the proper choice of shape and orientation of the inclusions. This choice can in fact reduce the induced current and hence maximize the permeability. The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.
Determination of permittivity of pulses and cereals using metamaterial split ring resonator
Chakyar, Sreedevi P.; Sikha Simon, K.; Murali, Aathira; Shanto T., A.; Andrews, Jolly; Joseph V., P.
2017-06-01
Relative permittivity of wide variety of pulses and cereals are precisely determined with the help of metamaterial Split Ring Resonator (SRR) operating at microwave frequencies using a simple extraction procedure. The unknown permittivity of food samples in powder form are evaluated from a calibration curve drawn between the dielectric constant of some standard samples and LC resonant frequency of SRR test probe with the sample placed over it. The experimental setup consists of SRR test probe arranged between transmitting and receiving probes connected to a vector network analyzer. Unknown relative permittivity of the sample is obtained by placing it on the SRR surface and is evaluated from the calibration curve which is found to be in good agreement with the expected standard values. The possible applications of this sensitive and easy technique are analyzed in the field of food preservation, quality checking, adulteration etc.
A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw
2016-01-01
elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...
International Nuclear Information System (INIS)
Zhang, Maomao; Soleimani, Manuchehr
2016-01-01
Electrical capacitance tomography (ECT) is an imaging method mainly capable of reconstructing dielectric permittivity. Generally, the reactance part of complex admittance is measured in a selected frequency. This paper presents for the first time an in depth and systematic analysis of complex admittance data for simultaneous reconstruction of both electrical conductivity and dielectric permittivity. A complex-valued forward model, Jacobian matrix and inverse solution are developed in the time harmonic excitation mode to allow for multi-frequency measurements. Realistic noise models are used to evaluate the performance of complex admittance ECT in a range of excitation frequencies. This paper demonstrates far greater potential for ECT as a versatile imaging tool through novel analysis of complex admittance imaging using a dual conductivity permittivity inversion method. The paper demonstrates that various classes of contactless capacitance based measurement devices can be analysed through complex multi-frequency ECT. (paper)
Modeled effects on permittivity measurements of water content in high surface area porous media
International Nuclear Information System (INIS)
Jones, S.B.; Or, Dani
2003-01-01
Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media
Plasmonic modulator optimized by patterning of active layer and tuning permittivity
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Lavrinenko, Andrei
2012-01-01
as electrodes. External field changes carrier density in the ultra-thin ITO layer, which influences the permittivity. The metal-insulator-metal system possesses a plasmon resonance, and it is strongly affected by changes in the permittivity of the active layer. To improve performance of the structure we propose...... several optimizations. We examine influence of the ITO permittivity on the modulator's performance and point out appropriate values. We analyze eigenmodes of the waveguide structure and specify the range for its efficient operation. We show that substituting the continuous active layer by a one......-dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside...
Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band
Directory of Open Access Journals (Sweden)
Sun Wang
2018-02-01
Full Text Available The phonon dispersion spectrum, eigenvector, and lattice vibration frequency of cadmium telluride with a zinc blende structure have been investigated using the density functional theory, and the permittivity of cadmium telluride crystal is numerically calculated. The permittivity of the crystal is measured using the terahertz time-domain spectroscopy system. The experimental results are consistent with the theoretical calculations on the modified local density approximation, the general gradient approximation, and the modified general gradient approximation. Finally, the differences among the three approximate exchange correlation potentials indicate that in the terahertz region, the permittivity of cadmium telluride is dominantly contributed by the coupling between electron and phonon; however, the phonon frequencies of transverse wave and longitudinal wave were sensitive to electron density distribution.
International Nuclear Information System (INIS)
Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.
1997-01-01
The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment
Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode
Energy Technology Data Exchange (ETDEWEB)
Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Su, Ping, E-mail: pingsu@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei; Ma, Yao [Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min, E-mail: mgong@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)
2016-12-01
Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E{sub C}-0.31 eV and E{sub C}-0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.
Das, S.; Ghosh, A.
2016-05-01
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.
International Nuclear Information System (INIS)
Kouzai, Masaki; Nishikata, Atsuhiro; Fukunaga, Kaori; Miyaoka, Shunsuke
2007-01-01
Various chemical reactions occur simultaneously in barrels during the fermentation processes of alcoholic beverages. Chemical analyses are employed to monitor the change in chemical components, such as glucose and ethyl alcohol. The tests are carried out with extracted specimens, are costly and require time. We have developed a permittivity measurement system for liquid specimens in the frequency range from 2.6 to 50 GHz, and applied the system to fermentation monitoring. Experimental results proved that the observed change in complex permittivity suggests a decrease in the amount of glucose and an increase in alcohol content, which are the key chemical components during the fermentation process
DEFF Research Database (Denmark)
Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren
2015-01-01
permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...
Direct 2-D reconstructions of conductivity and permittivity from EIT data on a human chest.
Herrera, Claudia N L; Vallejo, Miguel F M; Mueller, Jennifer L; Lima, Raul G
2015-01-01
A novel direct D-bar reconstruction algorithm is presented for reconstructing a complex conductivity distribution from 2-D EIT data. The method is applied to simulated data and archival human chest data. Permittivity reconstructions with the aforementioned method and conductivity reconstructions with the previously existing nonlinear D-bar method for real-valued conductivities depicting ventilation and perfusion in the human chest are presented. This constitutes the first fully nonlinear D-bar reconstructions of human chest data and the first D-bar permittivity reconstructions of experimental data. The results of the human chest data reconstructions are compared on a circular domain versus a chest-shaped domain.
McCallum, Ethan
2011-01-01
It's tough to argue with R as a high-quality, cross-platform, open source statistical software product-unless you're in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets. You'll learn the basics of Snow, Multicore, Parallel, and some Hadoop-related tools, including how to find them, how to use them, when they work well, and when they don't. With these packages, you can overcome R's single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R's memory barrier.
Moerland, R.J.; van Hulst, N.F.; Gersen, H.; Kuipers, L.
2005-01-01
Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has
International Nuclear Information System (INIS)
Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M
2010-01-01
We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.
Energy Technology Data Exchange (ETDEWEB)
Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M [Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)
2010-01-08
We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.
High dielectric permittivity elastomers from well-dispersed expanded graphite in low concentrations
DEFF Research Database (Denmark)
Daugaard, Anders Egede; Hassouneh, Suzan Sager; Kostrzewska, Malgorzata
2013-01-01
The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the last years due to their use in for example dielectric electroactive polymers. For this particular use, both the electrically insulating properties - as well as the mechanical...
EBG structures on high permittivity substrate to reduce noise in power distribution networks
Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes
2012-01-01
The noise reduction effect in a Power Distribution Network (PDN) by implementing Electromagnetic Band Gap structures (EBG) on standard and high permittivity substrates has been investigated. Boards with different EBG structures have been modelled and designed. Using the EBG structures the Power
Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries
Czech Academy of Sciences Publication Activity Database
Márton, Pavel; Stepkova, Vilgelmina; Hlinka, Jiří
2013-01-01
Roč. 86, č. 1 (2013), s. 103-108 ISSN 0141-1594 R&D Projects: GA ČR GAP204/10/0616 Institutional support: RVO:68378271 Keywords : Bloch wall * domain boundary * BaTiO 3 * Ginzburg-Landau-Devonshire theory * permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013
2 filler on the dielectric permittivity and electrical modulus of PMMA
Indian Academy of Sciences (India)
The real and imaginary part of the dielectric permittivity decreased with the increase in frequency but increased with temperature. The electrical conductivity measurement showed a plateau-like behaviour in the low-frequency region and dispersion in the high-frequency region. The frequency-dependent electrical modulus ...
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard
Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts...... a possibility for substantial improvement of properties such as high permittivity, stretchability and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into discontinuous morphologies in PEG based on variation of volume fractions of PDMS....... The utilized synthesis of PDMS-PEG multiblock copolymer is based on hydrosilylation reaction, which is amended from Klasner et al.1 and Jukarainen etal.2 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS...
Capillary pressure as a unique function of electric permittivity and water saturation
Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.
2007-01-01
The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)
Energy Technology Data Exchange (ETDEWEB)
Faryad, Muhammad, E-mail: muhammad.faryad@lums.edu.pk [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)
2017-02-19
Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical. - Highlights: • The Huygens principle was formulated for bianistropic mediums when the permittivity and permeability dyadics of the medium are symmetric. • The formulation covers isotropic, biisotropic, and gyrotropic-like uniaxial mediums for which the Huygens principle is already available. • The formulation also covers new mediums like biaxial, chiro-omega, pseudo chiral, gyrotropic-like biaxial, and Lorentz reciprocal mediums.
Coaxial Sensors For Broad-Band Complex Permittivity Measurements of Petroleum Fluids
Energy Technology Data Exchange (ETDEWEB)
Folgeroe, K.
1996-12-31
This doctoral thesis verifies that dielectric spectroscopy and microwave permittivity measurements can be used to characterize petroleum liquids. It concentrates on developing sensors for three potential industrial applications: quality characterization of crude oil and petroleum fractions, monitoring of gas-hydrate formation in water-in-oil emulsions, and determination of water-content in thin liquid layers. The development of a permittivity measurement system for crude oil and petroleum fractions is described. As black oils have low dielectric constant and loss, the system must be very sensitive in order to measure the dielectric spectra and to distinguish oils of different permittivity. Such a system was achieved by combining impedance and scattering parameter measurements with appropriate permittivity calculation methods. The frequency range from 10 kHz to 6 GHz was found convenient for observing the main dispersion of the oils. All the oils had dielectric constants between 2.1 and 2.9 and dielectric loss below 0.01. The oils studied were samples of the feedstock for the cracker and coke processes at a petroleum refinery. This verifies that dielectric spectroscopy is a potential technique for on-line quality monitoring of the feedstock at petroleum refineries. Gas hydrates may cause major problems like clogging of pipelines. Dielectric spectroscopy is proposed as a means of monitoring the formation of gas hydrates in emulsions. It is found that open-ended coaxial probes fulfill the sensitivity requirements for such sensors. 312 refs., 87 figs., 20 tabs.
In vivo and in situ measurement and modelling of intra-body effective complex permittivity
DEFF Research Database (Denmark)
Nadimi, Esmaeil S; Blanes-Vidal, Victoria; Harslund, Jakob L F
2015-01-01
Radio frequency tracking of medical micro-robots in minimally invasive medicine is usually investigated upon the assumption that the human body is a homogeneous propagation medium. In this Letter, the authors conducted various trial programs to measure and model the effective complex permittivity e...
Study on the Microwave Permittivity of Single-Walled Carbon Nanotube
Liu, Xiaolai; Zhao, Donglin
2009-01-01
In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede
2015-01-01
system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede
2014-01-01
Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...
Chavanne, Xavier; Frangi, Jean-Pierre
2014-08-26
This paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm distance to scan a significant volume of the medium (~1 L). It measures their admittances owing to a self-balanced impedance bridge operating at a frequency in the range of 1-20 MHz, possibly 30 MHz. Thanks to accurate design and electronic circuit theory-based modeling, the determination of the admittances takes into account all distortions due to lead and bridge electromagnetic effects inside the sensor when working at high frequencies. Calibration procedures and uncertainties are presented. The article also describes developments to make the present sensor autonomous on digital acquisition, basic data treatment and energy, as well as able to transfer stored data by a radio link. These steps in progress are prerequisites for a wireless network of sensors.
Directory of Open Access Journals (Sweden)
Xavier Chavanne
2014-08-01
Full Text Available This paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm distance to scan a significant volume of the medium (~1 L. It measures their admittances owing to a self-balanced impedance bridge operating at a frequency in the range of 1–20 MHz, possibly 30 MHz. Thanks to accurate design and electronic circuit theory-based modeling, the determination of the admittances takes into account all distortions due to lead and bridge electromagnetic effects inside the sensor when working at high frequencies. Calibration procedures and uncertainties are presented. The article also describes developments to make the present sensor autonomous on digital acquisition, basic data treatment and energy, as well as able to transfer stored data by a radio link. These steps in progress are prerequisites for a wireless network of sensors.
Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.
2014-12-01
When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon
Directory of Open Access Journals (Sweden)
James G. Worner
2017-05-01
Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship. ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.
Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin
2017-10-30
The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
Directory of Open Access Journals (Sweden)
A. I. ZOLOTAREVSKIY
2018-05-01
Full Text Available Purpose. To investigate the frequency-temperature relationship of the dielectric permittivity of PZT piezoceramics in the low frequency range. Methodology. To obtain the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics, a technique was used to determine the capacitance of the capacitor, between which plates the sample was placed. The value of the dielectric permittivity of the sample was calculated from the capacitor capacitance obtained. Findings. The frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low frequency range has been obtained by the authors. The dielectric permittivity is not practically related to the frequency of the alternating voltage at a low temperature, with increasing in temperature its value increases and frequency relationship is observed. The temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by the exponential functional dependence in the low-temperature range. The activation energy of the PZT piezoceramics polarization is determined from the graph of the dependence of the logarithm of the dielectric permittivity upon the inverse temperature. Different values of the activation energy for the two temperature regions prove on the existence of different mechanisms of the PZT piezoceramics polarization in the temperature range being investigated. Originality. The authors investigated the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low-frequency range. It is established that the temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by an exponential functional relationship in the lowtemperature range. The activation energy of polarization is determined for two temperature sections. Practical value. The research results can be used to study the mechanism of polarization of
Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G
Levasseur-Regourd, A.; Hérique, Alain; Kofman, Wlodek; Beck, Pierre; Bonal, Lydie; Buttarazzi, Ilaria; Heggy, Essam; Lasue, Jeremie; Quirico, Eric; Zine, Sonia
2016-10-01
Unique information about the internal structure of the nucleus of comet 67P/C-G was provided by the CONSERT bistatic radar on-board Rosetta and Philae [1]. Analysis of the propagation of its signal throughout the small lobe indicated that the real part of the permittivity at 90 MHz is of (1.27±0.05). The first interpretation of this value using dielectric properties of mixtures of dust and ices (H2O, CO2), led to the conclusion that the comet porosity ranges between 75-85%. In addition, the dust/ice ratio was found to range between 0.4-2.6 and the permittivity of dust (including 30% of porosity) was determined to be lower than 2.9.The dust permittivity estimate is now reduced by taking into account the updated values of nucleus density and of dust/ice ratio, in order of providing further insights into the nature of the constituents of comet 67P/C-G [2]. We adopt a systematic approach: i) determination of the dust permittivity as a function of the ice (I) to dust (D) and vacuum (V) volume fraction; ii) comparison with the permittivity of meteoritic, mineral and organic materials from literature and laboratory measurements; iii) test of several composition models of the nucleus, corresponding to cosmochemical end members of 67P/C-G. For each of these models the location in the ternary I/D/V diagram is calculated based on available dielectric measurements, and confronted to the locus of 67P/C-G. The number of compliant models is small and the cosmochemical implications of each are discussed [2]. An important fraction of carbonaceous material is required in the dust in order to match CONSERT permittivity observations, establishing that comets represent a massive carbon reservoir.Support from Centre National d'Études Spatiales (CNES, France) for this work, based on observations with CONSERT on board Rosetta, is acknowledged. The CONSERT instrument was designed, built and operated by IPAG, LATMOS and MPS and was financially supported by CNES, CNRS, UJF/UGA, DLR and MPS
Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina
2013-03-01
Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.
Patro, L N; Burghaus, O; Roling, B
2017-04-21
We have measured the third-order permittivity spectra ε 3 3 of a monocationic and of a dicationic liquid close to the glass transition temperature by applying ac electric fields with large amplitudes up to 180 kV/cm. A peak ("hump") in the modulus of ε 3 3 is observed for a mono-cationic liquid after subtraction of the dc contribution from the imaginary part of ε 3 3 . We show that the origin of this experimental "hump" is a peak in the imaginary part of ε 3 3 , with the peak height strongly increasing with decreasing temperature. Overall, the spectral shape of the third-order permittivity of both ionic liquids is similar to the predictions of a symmetric double well potential model, although this model does not predict a "hump" in the modulus. In contrast, an asymmetric double well potential model predicts a "hump," but the spectral shape of both the real and imaginary part of ε 3 3 deviates significantly from the experimental spectra. These results show that not only the modulus of ε 3 3 but also its phase is an important quantity when comparing experimental results with theoretical predictions.
Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming
2018-05-01
Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.
International Nuclear Information System (INIS)
Ducharne, B; Guyomar, D; Sebald, G
2007-01-01
The properties of ferroelectric ceramics strongly depend on the electromechanical loading and their measurement conditions. In this paper, a nonlinear phenomenological one-dimensional model based on the dry friction concept is presented to describe the hysteretic polarization behaviour. Dielectric permittivities versus dc electric field (or capacitance C versus voltage V) loops are determined for the characterization of ferroelectric material. The ε 33 coefficient is used for the ceramic characterization because it is strongly correlated with the ceramic quality. The purpose of this paper is to develop a model of reversal polarization behaviour close to physical realities, able to provide good performances on the simulation of dielectric permittivity loop ε 33 (E dc ). Simulated behaviours are finally compared with experimental results on a typically soft PZT ferroelectric ceramic
Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film
San Roman Alerigi, Damian; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Ben Slimane, Ahmed; Ng, Tien Khee; Hedhili, Mohamed N.; Alsunaidi, Mohammad; Ooi, Boon S.
2013-01-01
In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As 2 S 3 chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of ? 40 %. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As 2 S 3-thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method. © 2013 American Institute of Physics.
Influence of the local structure in phase-change materials on their dielectric permittivity.
Shportko, Kostiantyn V; Venger, Eugen F
2015-01-01
Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.
Directory of Open Access Journals (Sweden)
Adriano Luiz de Paula
2011-01-01
Full Text Available Recognizing the importance of an adequate characterization of radar absorbing materials, and consequently their development, the present study aims to contribute for the establishment and validation of experimental determination and numerical simulation of electromagnetic materials complex permittivity and permeability, using a Teflon® sample. The present paper branches out into two related topics. The first one is concerned about the implementation of a computational modeling to predict the behavior of electromagnetic materials in confined environment by using electromagnetic three-dimensional simulation. The second topic re-examines the Nicolson-Ross-Weir mathematical model to retrieve the constitutive parameters (complex permittivity and permeability of a homogeneous sample (Teflon®, from scattering coefficient measurements. The experimental and simulated results show a good convergence that guarantees the application of the used methodologies for the characterization of different radar absorbing materials samples.
Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.
Shubitidze, Fridon; Osterberg, Ulf
2007-04-01
A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.
Directory of Open Access Journals (Sweden)
Gonzalo Astray
2014-07-01
Full Text Available CO2 + ethanol mixtures have a huge scientific interest and enormous relevance for many industrial processes. Obtaining of their chemical and physical properties is a fundamental task. Relative permittivity (r of these mixtures is a key property because allows a better knowledge of the structure and the interactions in other media. In this work predictive values of relative permittivity (r of carbon dioxide + ethanol mixtures were obtained implementing artificial neural networks (ANNs. They are used successfully in very different fields; therefore it is a very useful tool. In this case the obtained results enhance the ones from the usual multiple linear regression analysis. In both cases mass fraction, pressure and temperature experimental data from a direct capacitance method were used.
Development of a new prototype system for measuring the permittivity of dielectric materials
Directory of Open Access Journals (Sweden)
Jiajia Jiang
2014-06-01
Full Text Available A simple prototype for measuring the properties of dielectric materials is introduced in this Letter. A homogeneous dielectric sample placed in a field produced by a nearby antenna will affect the input impedance of the antenna. The permittivity and the loss of the dielectric sample can then be determined from the change of the input impedance of the antenna. The prototype has been validated by experiments.
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard
2015-01-01
A silicone elastomer from PDMS-PEG multiblock copolymer has been prepared by use of silylation reactions for both copolymer preparation and crosslinking. The dielectric and mechanical properties of the silicone elastomers were carefully investigated, as well as the morphology of the elastomers wa...... to a significantly increased dielectric permittivity. The conductivity also remained low due to the resulting discontinuity in PEG within the silicone matrix....
Microwave absorbing property and complex permittivity and permeability of graphene–CdS nanocomposite
International Nuclear Information System (INIS)
Zhang, Dong-Dong; Zhao, Dong-Lin; Zhang, Ji-Ming; Bai, Li-Zhong
2014-01-01
Graphical abstract: Graphene–CdS (G–CdS) nanocomposite with a good structural interface and enhanced microwave absorption has been successfully and directly synthesized from graphene oxide via a facile hydrothermal approach. The permittivity of G–CdS nanocomposite presents triple dielectric relaxations by constructing a good structural G–CdS interface. The triple dielectric relaxations are critical to improve the microwave absorption of the G–CdS nanocomposite. Highlights: • Graphene–CdS (G–CdS) nanocomposite was directly synthesized from graphene oxide. • The G–CdS nanocomposite exhibits enhanced microwave absorption. • The permittivity of G–CdS nanocomposite presents triple dielectric relaxations. -- Abstract: The graphene–CdS (G–CdS) nanocomposite with enhanced microwave absorption was directly synthesized from graphene oxide (GO) via a facile hydrothermal approach, during which the formation of CdS nanoparticles and the reduction of GO occured simultaneously. The morphology, structure, microwave absorbing property, complex permittivity and permeability of G–CdS nanocomposite were systematically investigated by transmission electron microscope, X-ray diffraction and the coaxial line method. The complex permittivity of G–CdS nanocomposite presents triple dielectric relaxations with constructing a good structural graphene–CdS interface. The triple dielectric relaxations were critical to improve the microwave absorption of G–CdS nanocomposite. The G–CdS nanocomposite achieved a reflection loss below –10 dB in the frequency range of 5.2–18 GHz when adjusting the thicknesses from 2 to 5 mm, which was mainly ascribed to the proper electromagnetic matching of the CdS nanoparticles and graphene sheets, and the triple dielectric relaxations. The G–CdS nanocomposite is promising as a lightweight and wide-frequency microwave absorber
Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng
2018-02-01
A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.
Kapilevich, B.; Litvak, B.; Anisimov, M.; Hardon, D.; Pinhasi, Y.
2012-01-01
The paper describes the complex permittivity measurements of textiles and leathers in a free space at 330 GHz. The destructive role of the Rayleigh scattering effect is considered and the angular-invariant limit for an incidence angle has been found out experimentally within 25–30 degrees. If incidence angle exceeds this critical parameter, the uncertainty caused by the Rayleigh scattering is drastically increased preventing accurate measurements of the real and imaginary parts of a bulky mat...
Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids
Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł
2016-08-01
The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.
International Nuclear Information System (INIS)
Bobrov, V.B.; Trigger, S.A.; Zagorodny, A.G.
2010-01-01
It is proved that the Kubo formula for the conductivity σ(ω) is valid at real frequencies ω. On this basis, an exact relation is derived for the static conductivity σ st of the Coulomb system. It is shown that the static conductivity is determined by the time correlation function in the limit t→∞. It is proved that the permittivity ε(ω) satisfies the Kramers-Kronig relations which take into account a singularity associated with static conductivity.
The precipitation in annealing and its effect on permittivity of Fe–Si–Al powders
International Nuclear Information System (INIS)
Li, Gang; Cui, Yin; Zhang, Nan; Wang, Xin; Xie, Jian Liang
2016-01-01
SEM images show that some precipitates distributed on the surface of as-annealed Fe–Si–Al powders. Subsequent experimental results indicate that both morphology and microstructure of as-annealed Fe–Si–Al powders change with increasing annealing temperature. Meanwhile, dielectric properties analysis suggesting that both real part ε′ and imaginary part ε″ of the Fe–Si–Al powders decrease significantly after annealed at 450 °C or higher temperature. We assume that it’s the precipitates with low electrical conductivity developed on the surface of powders that increase the surface resistivity of as-annealed powders and leading to a lower imagine part of permittivity. The drop of real part ε′ ascribed to the weakened interfacial polarization which resulted from the decrease of structural defects such as grain boundaries and interfaces during annealing process. - Highlights: • As-milled Fe–Si–Al powders were annealed at various temperature. • The change of morphology and microstructure of as-annealed Fe–Si–Al was examined. • Complex permittivity decrease significantly after annealed over 400 °C and permeability increase as annealing temperature rises. • The precipitation process in annealing and its effect on permittivity were analyzed.
Directory of Open Access Journals (Sweden)
Elhaouzi F.
2018-01-01
Full Text Available The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA polymer filled with three concentrations of the dispersed conducting carbon black (CB nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.
Dielectric elastomer actuators using Slide-Ring Material® with increased permittivity
International Nuclear Information System (INIS)
Tsuchitani, Shigeki; Miki, Hirofumi; Sunahara, Tokiharu
2015-01-01
The inclusion of high permittivity nanoparticles in elastomeric materials for dielectric elastomer actuators (DEAs) is one promising method to achieve large strain at relatively low applied voltages. However, the addition of these nanoparticles tends to increase the stiffness of the elastomer and disturbs the actuation of the DEA. This is attributed to restriction of the chain motion in the elastomer by the nanoparticles. Slide-Ring Material ® (SRM) is a cross-linked polymeric material with freely movable cross-linking sites. The internal stresses in this structure are dramatically homogenized by the pulley effect; therefore, the restriction of chain motion due to the nanoparticles is expected to be significantly reduced. We have employed SRM as a host elastomer for a DEA with the addition of ferroelectric BaTiO 3 (BT) nanoparticles. The effects of BT addition on the permittivity, stiffness and viscosity of the SRM–BT nanocomposites, and the actuation strain of DEAs using SRM were evaluated. The permittivity of the nanocomposites increased linearly with the concentration of BT and reached 3.6 times that for pure SRM at 50 wt%. The elastic modulus and the viscosity remained almost constant up to 20 wt% and then decreased above this concentration. The actuation strain of a planar actuator using SRM and 50 wt% BT was four times larger than that of the DEA with pure SRM. (paper)
National Research Council Canada - National Science Library
Natarajan, V; Chatterjee, D
2004-01-01
This paper presents effects of substrate permittivity and thickness on the performance characteristics like impedance bandwidth, radiation efficiency and gain of a single-layer, wideband, U-slot antenna...
National Research Council Canada - National Science Library
Makeiff, Darren A; Huber, Trisha; Saville, Paul
2005-01-01
... the complex permittivity from transmission-reflection waveguide measurements in the X-band (8-12 GHz). PMMA composites containing PAni-MWNT or PAni-CNFs poorer, while PMMA composites containing PAni and MWNT mixed ex situ...
Large electrical manipulation of permittivity in BaTiO3 and Pb(Zr,Ti)O3 bimorph heterostructure
International Nuclear Information System (INIS)
Ci, Penghong; Liu, Guoxi; Dong, Shuxiang; Zhang, Li
2014-01-01
We report a strain-mediated electric field manipulation of permittivity in BaTiO 3 (barium titanate, BT) ceramic by a Pb(Zr,Ti)O 3 (PZT) bimorph. This BT/PZT heterostructure exhibited a relatively large permittivity tunability of BT up to ±10% in a wide frequency range under an electric field of ±4 kV/cm applied to the PZT bimorph. The permittivity tunability is attributed to the strain in BT produced by the PZT bimorph. Calculations of the relationship between permittivity and applied electric field were developed, and corresponded well with measurements. The BT/PZT heterostructure has potential for applications in broadband field tunable smart electronic devices.
Brouet, Y.; Neves, L.; Sabouroux, P.; Levasseur-Regourd, A. C.; Poch, O.; Encrenaz, P.; Pommerol, Antoine; Thomas, N.; Kofman, W.
2016-01-01
The internal properties of porous and icy bodies in the solar system can be investigated by ground-penetrating radars (GPRs), like the COmet Nucleus Sounding Experiment by Radiowave Transmission instrument on board the Rosetta spacecraft which has sounded the interior of the nucleus of comet 67P/Churyumov-Gerasimenko. Accurate constraints on the permittivity of icy media are needed for the interpretation of the data. We report novel permittivity measurements performed on water ice samples and...
International Nuclear Information System (INIS)
Riadigos, C.F.; Iglesias, R.; Rivas, M.A.; Iglesias, T.P.
2011-01-01
Relative permittivity and density on mixing at atmospheric pressure and temperatures from (288.15 to 308.15) K and atmospheric pressure have been measured over the entire composition range of mixing for {CH 3 O(CH 2 CH 2 O) m CH 3 with m = 1, 2, 3, 4 (also called monoglyme, diglyme, triglyme, or tetraglyme) + n-heptane}. The permittivity values were fitted as a function of the volume fraction and temperature to a logarithmic equation. The excess permittivity is calculated considering a definition that has been recently established in terms of the volume fraction. Excess molar volumes on mixing for the above systems have also been calculated. The density and excess molar volumes were fitted as a function of both mole fraction and temperature to a polynomial equation. The temperature dependence of derived magnitudes, (∂V m E /∂T) P,x and (∂H m E /∂P) T,x , was computed, given their importance in the study of specific molecular interactions. The experimental values of permittivity have been compared to those estimated by usual models of literature and the results indicate that the predictions are better when the volume change on mixing is incorporated in calculations. From the values of permittivity and density on mixing the dipole moment for tetraglyme was calculated. The work concludes with an interpretation of the sign of excess permittivity and its behaviour with temperature and that of excess molar volume.
Synchronization Techniques in Parallel Discrete Event Simulation
Lindén, Jonatan
2018-01-01
Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...
Parallel Algorithms for Groebner-Basis Reduction
1987-09-25
22209 ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) * PARALLEL ALGORITHMS FOR GROEBNER -BASIS REDUCTION 12. PERSONAL...All other editions are obsolete. Productivity Engineering in the UNIXt Environment p Parallel Algorithms for Groebner -Basis Reduction Technical Report
Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators
Li, Min
High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a
DEFF Research Database (Denmark)
Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren
2013-01-01
-(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity......Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...
Permittivity, molar volume and crytical phenomena near the lambda-point in liquid 4He
International Nuclear Information System (INIS)
Panov, V.I.; Khvostikov, V.A.
1982-01-01
The permittivity, molar volume and thermal expansion coefficient at the saturated vapor pressure are measured for liquid helium 4 He in the temperature range from 1.4 to 4.2 K. It is shown that the thermal expansion coefficient at saturated vapor pressure near the lambda-transition can be described with a high degree of accuracy by a logarithmic function. The values of the critical indexes obtained by studying the nature of the divergence of the isobaric thermal expansion coefficient at 1x10sup(-5) Tsub(lambda) and α'=0.000+-0.0025 for T 4 He near the lambda transition
Parallel Programming with Intel Parallel Studio XE
Blair-Chappell , Stephen
2012-01-01
Optimize code for multi-core processors with Intel's Parallel Studio Parallel programming is rapidly becoming a "must-know" skill for developers. Yet, where to start? This teach-yourself tutorial is an ideal starting point for developers who already know Windows C and C++ and are eager to add parallelism to their code. With a focus on applying tools, techniques, and language extensions to implement parallelism, this essential resource teaches you how to write programs for multicore and leverage the power of multicore in your programs. Sharing hands-on case studies and real-world examples, the
Parallelization of 2-D lattice Boltzmann codes
International Nuclear Information System (INIS)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)
Parallelization of 2-D lattice Boltzmann codes
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).
Directory of Open Access Journals (Sweden)
Z. X. Cao
2014-06-01
Full Text Available To retrieve complex-valued effective permittivity and permeability of electromagnetic metamaterials (EMMs based on resonant effect from scattering parameters using a complex logarithmic function is not inevitable. When complex values are expressed in terms of magnitude and phase, an infinite number of permissible phase angles is permissible due to the multi-valued property of complex logarithmic functions. Special attention needs to be paid to ensure continuity of the effective permittivity and permeability of lossy metamaterials as frequency sweeps. In this paper, an automated phase correction (APC algorithm is proposed to properly trace and compensate phase angles of the complex logarithmic function which may experience abrupt phase jumps near the resonant frequency region of the concerned EMMs, and hence the continuity of the effective optical properties of lossy metamaterials is ensured. The algorithm is then verified to extract effective optical properties from the simulated scattering parameters of the four different types of metamaterial media: a cut-wire cell array, a split ring resonator (SRR cell array, an electric-LC (E-LC resonator cell array, and a combined SRR and wire cell array respectively. The results demonstrate that the proposed algorithm is highly accurate and effective.
Exact Cavity Perturbation Technique to Determine Complex Permittivity of Dielectric Materials
Starr, Charles H.; Barmatz, Martin B.
2011-01-01
Cassini is an international spacecraft mission facilitated by NASA and ESA which seeks to understand the Saturn planetary system, including rings and moons. Launched in 1997, the Cassini spacecraft contains two major components: the Cassini orbiter that has been orbiting Saturn since October 2004, and the European-built Huygens probe that landed on Titan's surface in December 2004 to study its geology and atmosphere. Titan, Saturn's largest moon and the second largest moon in the solar system, possesses surface and atmospheric features similar to those of Earth, including lakes, seas, and mountains. A physical characterization of these features is critical to understanding the origin and evolution of Titan, whose surface composition reflects its geological history. Because Titan's atmosphere is largely composed of methane, it is believed that surfaces lakes are filled with mixtures of liquid hydrocarbons. The Cassini orbiter's RADAR instrument has been scanning Titan's surface at the atmosphere-penetrating microwave frequency of 13.8 Gigahertz since 2004. However, accurate interpretation of these data is limited by a lack of knowledge regarding dielectric properties of liquid hydrocarbons at cryogenic temperatures. Therefore, it is of specific interest to experimentally determine values for the complex permittivities of various liquid hydrocarbon mixtures at the surface conditions of Titan. In particular, more accurate values for complex permittivity would improve estimates of lake depth and surface composition obtained from the instrument's altimetry and backscatter modes.
Rocha, M. J. S.; Silva, P. M. O.; Theophilo, K. R. B.; Sancho, E. O.; Paula, P. V. L.; Silva, M. A. S.; Honorato, S. B.; Sombra, A. S. B.
2012-08-01
This paper presents the microwave dielectric properties and a structural study of SrBi2Nb2O9 (SBN) added La2O3, PbO or Bi2O3 obtained by a solid state procedure. High-energy mechanical milling was used to reduce the particle size, which allows for a better shaping of the green body and an increased reactivity. The mechanical milling activation process produced a reduced sintering temperature in the material, decreasing the loss of the volatile elements and controlling the growth of the grain that is produced when a high temperature is required to obtain dense ceramics. The incorporation of La3+, or Pb2+, or Bi3+ of different amounts (0, 3, 5, 10 and 15 wt%) was used to improve the densification without changing the crystal structure, since with a low doping content these ions can occupy the A site of the perovskite blocks; they can also occupy the Bi3+ sites in Bi2O3 layers. A single orthorhombic phase was formed after calcination at 800 °C for 2 h. X-ray diffraction, Fourier transformation, infrared and Raman spectroscopy have been carried out in order to investigate the effects of doping on SBN. The dielectric permittivity (ɛ‧r) and loss in the microwave region (2-4 GHz) of SBN ceramics with additions of Bi2O3, La2O3 and PbO were studied. Higher values of permittivity (ɛr‧ = 154.6) have been obtained for the SBN added La (15 wt%) a lower loss (tg δ = 0.01531) was also achieved in the SBN added La (15 wt%) sample with PVA and TEOS, respectively. The samples that showed the highest dielectric permittivities were all lanthanum doped, all with values of permittivity above 90. A comparative study associated with different types of binders was completed (with glycerin, PVA and TEOS). This procedure allowed us to obtain phases at lower temperatures than usually appear in the literature. The microwave dielectric properties (permittivity and loss) in the region 2-4 GHz, were studied for all samples. The structural and microwave dielectric properties of SBN show a
Directory of Open Access Journals (Sweden)
Adriana Medeiros Gama
2010-04-01
Full Text Available The complex dielectric permittivity (e and magnetic permeability (m of Radar Absorbing Materials (RAM based on metallic magnetic particles (carbonyl iron particles embedded in a dielectric matrix (silicon rubber have been studied in the frequency range of 2 to 18 GHz. The relative permeability and permittivity of carbonyl iron-silicon composites for various mass fractions are measured by the transmission/reflection method using a vector network analyzer. The concentration dependence of permittivity and permeability on the frequency is analyzed. In a general way, the results show that e´ parameter shows a more significant variation among the evaluated parameters (e”, m”, m’. The comparison of dielectric and magnetic loss tangents (e”/e” and m”/m’, respectively shows more clearly the variation of both parameters (e and m according to the frequency. It is also observed that higher carbonyl iron content fractions favor both dielectric and magnetic loss tangents.
Luo, Wei; Lanagan, Michael T; Sica, Christopher T; Ryu, Yeunchul; Oh, Sukhoon; Ketterman, Matthew; Yang, Qing X; Collins, Christopher M
2013-07-01
Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder. Copyright © 2012 Wiley Periodicals, Inc.
Giustino, Feliciano; Umari, Paolo; Pasquarello, Alfredo
2003-12-31
Using a density-functional approach, we study the dielectric permittivity across interfaces at the atomic scale. Focusing on the static and high-frequency permittivities of SiO2 films on silicon, for oxide thicknesses from 12 A down to the atomic scale, we find a departure from bulk values in accord with experiment. A classical three-layer model accounts for the calculated permittivities and is supported by the microscopic polarization profile across the interface. The local screening varies on length scales corresponding to first-neighbor distances, indicating that the dielectric transition is governed by the chemical grading. Silicon-induced gap states are shown to play a minor role.
Hasar, U C
2009-05-01
A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.
Morse, H Stephen
1994-01-01
Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi
Akl, Selim G
1985-01-01
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the
Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.
2013-01-01
In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.
Energy Technology Data Exchange (ETDEWEB)
Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)
2014-03-24
Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.
Alabastri, A.
2013-10-25
In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.
Introduction to parallel programming
Brawer, Steven
1989-01-01
Introduction to Parallel Programming focuses on the techniques, processes, methodologies, and approaches involved in parallel programming. The book first offers information on Fortran, hardware and operating system models, and processes, shared memory, and simple parallel programs. Discussions focus on processes and processors, joining processes, shared memory, time-sharing with multiple processors, hardware, loops, passing arguments in function/subroutine calls, program structure, and arithmetic expressions. The text then elaborates on basic parallel programming techniques, barriers and race
Fox, Geoffrey C; Messina, Guiseppe C
2014-01-01
A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop
A Parallel Priority Queue with Constant Time Operations
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Träff, Jesper Larsson; Zaroliagis, Christos D.
1998-01-01
We present a parallel priority queue that supports the following operations in constant time:parallel insertionof a sequence of elements ordered according to key,parallel decrease keyfor a sequence of elements ordered according to key,deletion of the minimum key element, anddeletion of an arbitrary...... application is a parallel implementation of Dijkstra's algorithm for the single-source shortest path problem, which runs inO(n) time andO(mlogn) work on a CREW PRAM on graphs withnvertices andmedges. This is a logarithmic factor improvement in the running time compared with previous approaches....
DEFF Research Database (Denmark)
Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.
2000-01-01
Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...
Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Martinez-Ricci, Maria L. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, 46022 Valencia (Spain)]. E-mail: jmonsori@fis.upv.es; Silvestre, Enrique [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain); Andres, Pedro [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain)
2007-04-30
We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability {mu} or the electric permittivity {epsilon} of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when {mu}=0 or when {epsilon}=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to {mu}=0 occurs only for TE polarized waves, whereas a gap corresponding to {epsilon}=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction.
Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals
International Nuclear Information System (INIS)
Depine, Ricardo A.; Martinez-Ricci, Maria L.; Monsoriu, Juan A.; Silvestre, Enrique; Andres, Pedro
2007-01-01
We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability μ or the electric permittivity ε of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when μ=0 or when ε=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to μ=0 occurs only for TE polarized waves, whereas a gap corresponding to ε=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction
International Nuclear Information System (INIS)
Duenas, S.; Castan, H.; Garcia, H.; Barbolla, J.; Kukli, K.; Ritala, M.; Leskelae, M.
2005-01-01
Deep level transient spectroscopy, capacitance-voltage and conductance transient measurement techniques have been applied in order to evaluate the electrical quality of thin high-permittivity oxide layers on silicon. The oxides studied included HfO 2 film grown from two different oxygen-free metal precursors and Ta 2 O 5 and Nb 2 O 5 nanolaminates. The interface trap densities correlated to the oxide growth chemistry and semiconductor substrate treatment. No gap state densities induced by structural disorder were measured in the films grown on chemical SiO 2 . Trap densities were also clearly lower in HfO 2 films compared to Ta 2 O 5 -Nb 2 O 5
Energy Technology Data Exchange (ETDEWEB)
Nabokov, O.A.; Lyubimov, Yu.A.
1985-10-01
The authors previously studied the complex dielectric permittivity of ordinary water at 70-200/sup 0/C. Similar measurements were performed in this work for D/sub 2/O by incomplete filling of a microwave resonator at a frequency of about 9.3 GHz. Distilled 99.8% D/sub 2/O was used. For D/sub 2/O, the value of tau/sub D/T/eta (where eta is the viscosity) increases with increasing temperature, so that at 140/sup 0/C its change goes beyond the limits of error of the measurement of tau/sub D/ and eta. The gradual increase in tau/sub D/T/eta and tau/sub D/D with temperature indicates weakening of the interaction between orientation and translation movements of the liquid D/sub 2/O molecules with increasing temperature. 11 references, 1 figure.
Complex bounds and microstructural recovery from measurements of sea ice permittivity
International Nuclear Information System (INIS)
Gully, A.; Backstrom, L.G.E.; Eicken, H.; Golden, K.M.
2007-01-01
Sea ice is a porous composite of pure ice with brine, air, and salt inclusions. The polar sea ice packs play a key role in the earth's ocean-climate system, and they host robust algal and bacterial communities that support the Arctic and Antarctic ecosystems. Monitoring the sea ice packs on global or regional scales is an increasingly important problem, typically involving the interaction of an electromagnetic wave with sea ice. In the quasistatic regime where the wavelength is much longer than the composite microstructural scale, the electromagnetic behavior is characterized by the effective complex permittivity tensor ε*. In assessing the impact of climate change on the polar sea ice covers, current satellites and algorithms can predict ice extent, but the thickness distribution remains an elusive, yet most important feature. In recent years, electromagnetic induction devices using low frequency waves have been deployed on ships, helicopters and planes to obtain thickness data. Here we compare two sets of theoretical bounds to extensive outdoor tank and in situ field data on ε* at 50MHz taken in the Arctic and Antarctic. The sea ice is assumed to be a two phase composite of ice and brine with known constituent permittivities. The first set of bounds assumes only knowledge of the brine volume fraction or porosity, and the second set further assumes statistical isotropy of the microstructure. We obtain excellent agreement between theory and experiment, and are able to observe the apparent violation of the isotropic bounds as the vertically oriented microstructure becomes increasingly connected for higher porosities. Moreover, these bounds are inverted to obtain estimates of the porosity from the measurements of ε*. We find that the temporal variations of the reconstructed porosity, which is directly related to temperature, closely follow the actual behavior
Performance Analysis of Parallel Mathematical Subroutine library PARCEL
International Nuclear Information System (INIS)
Yamada, Susumu; Shimizu, Futoshi; Kobayashi, Kenichi; Kaburaki, Hideo; Kishida, Norio
2000-01-01
The parallel mathematical subroutine library PARCEL (Parallel Computing Elements) has been developed by Japan Atomic Energy Research Institute for easy use of typical parallelized mathematical codes in any application problems on distributed parallel computers. The PARCEL includes routines for linear equations, eigenvalue problems, pseudo-random number generation, and fast Fourier transforms. It is shown that the results of performance for linear equations routines exhibit good parallelization efficiency on vector, as well as scalar, parallel computers. A comparison of the efficiency results with the PETSc (Portable Extensible Tool kit for Scientific Computations) library has been reported. (author)
Applications of the parallel computing system using network
International Nuclear Information System (INIS)
Ido, Shunji; Hasebe, Hiroki
1994-01-01
Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)
Hoenders, B.J.
1986-01-01
We consider an infinitely long conducting cylinder whose dielectric and magnetic permittivity and conductivity are functions of the distance from a point inside the cylinder to its axis. It is shown that the r-dependent part of the set of electromagnetic modes associated with such a cylinder is
A. A. Dubinova (Anna); C. Rutjes (Casper); U. M. Ebert (Ute)
2015-01-01
htmlabstractWe study positive streamer inception from the tip of an elongated ice particle. The dielectric permittivity of ice drops from 93 to 3 for electric fields changing on the millisecond timescale [1]. We demonstrate that this effect can be important on the nanosecond time scale of
Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team
2013-03-01
Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.
DEFF Research Database (Denmark)
Bodea, M. A.; Sbarcea, G.; Naik, G. V.
2013-01-01
Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...
DEFF Research Database (Denmark)
Breinbjerg, Olav; Yaghjian, Arthur D.
2014-01-01
-Bloch space harmonics. We discuss how space harmonic permittivity and permeability can be expressed in seemingly different though equivalent forms, and we investigate these parameters of the zeroeth order space harmonic for a particular 1D periodic structure that is based on a previously reported 3D periodic...
Parallel Atomistic Simulations
Energy Technology Data Exchange (ETDEWEB)
HEFFELFINGER,GRANT S.
2000-01-18
Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.
2014-12-01
One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.
CERN. Geneva
2016-01-01
The traditionally used and well established parallel programming models OpenMP and MPI are both targeting lower level parallelism and are meant to be as language agnostic as possible. For a long time, those models were the only widely available portable options for developing parallel C++ applications beyond using plain threads. This has strongly limited the optimization capabilities of compilers, has inhibited extensibility and genericity, and has restricted the use of those models together with other, modern higher level abstractions introduced by the C++11 and C++14 standards. The recent revival of interest in the industry and wider community for the C++ language has also spurred a remarkable amount of standardization proposals and technical specifications being developed. Those efforts however have so far failed to build a vision on how to seamlessly integrate various types of parallelism, such as iterative parallel execution, task-based parallelism, asynchronous many-task execution flows, continuation s...
Parallelism in matrix computations
Gallopoulos, Efstratios; Sameh, Ahmed H
2016-01-01
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...
Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2012-07-01
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. Copyright © 2012 Wiley Periodicals, Inc.
Parallel Algorithms and Patterns
Energy Technology Data Exchange (ETDEWEB)
Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.
Application Portable Parallel Library
Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott
1995-01-01
Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.
Kessouri, P.; Buvat, S.; Tabbagh, A.
2012-12-01
Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric
Microfluidic-based Broadband Measurements of Fluid Permittivity and Permeability to 100 GHz
Little, Charles A. E.
This dissertation concerns the development of unique microfluidic microwave devices and associated microwave calibrations to quantitatively extract the broadband permittivity and permeability of fluids between 100 kHz and 110 GHz. The devices presented here consist of SU-8- and PDMS-based microfluidic channels integrated lithographically with coplanar waveguides (CPWs), measured via an external vector network analyzer (VNA). By applying our hybrid set of microwave calibrations to the raw data we extract distributed circuit parameters, representative of the electromagnetic response of the microfluidic channel. We then correlate these parameters to the permittivity and permeability of the fluid within the channels. We are primarily focused on developing devices, calibrations, and analyses to characterize various chemical and biological systems. The small fluid volumes and overall scale of our devices lends the technique to point-of-care blood and cell analysis, as well as to the analysis of high-value chemicals. Broadband microwave microfluidics is sensitive to three primary categories of phenomena: Ionic, dipolar, and magnetic resonances. All three can occur in complex fluids such as blood, proteins and particle suspensions. In order to make quantitative measurements, we need to be able to model and separate all three types of responses. Here we first measure saline solutions (NaCl and water) as an ideal system to better understanding both the ionic and dipolar response. Specifically, we are targeting the electrical double-layer (EDL) response, an ionic effect, which dominates over the intrinsic fluid response at lower frequencies. We have found that the EDL response for saline obeys a strict Debye-type relaxation model, the frequency response of which is dependent solely on the conductivity of the solution. To develop a better understanding of the magnetic response, we first measure magnetic nanoparticles; showing it is possible to detect the magnetic resonances of
Boivin, A.; Hickson, D. C.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.
2017-12-01
In preparation for the OSIRIS-REx sample return mission, ground based radar data have been used to help characterize the carbonaceous asteroid (101955) Bennu as well as to produce a 3-D shape model. Radar data have also been used to derive the near-surface bulk density of the asteroid, a key engineering factor for sample acquisition and return. The relationship between radar albedo and bulk density of the nearsurface depends on the relative permittivity of the material, in this case regolith. The relative permittivity is complex such that ɛ r = ɛ r' + i ɛ r'', where ɛ r' is the dielectric constant and ɛ r'' is the loss factor. Laboratory permittivity measurements have been made in the past on a myriad of samples including Earth materials, lunar Apollo and analog samples, Mars soil analog samples, some meteorites, and cometary analog samples in support of the Rosetta mission. These measurements have been made in different frequency bands and in various conditions; however, no measurements to date have systematically explored the effect of changes in mineralogy on the complex permittivity, and particularly the loss tangent (tanδ , the ratio of ɛ r'' to ɛ r'). The loss tangent controls the absorption of the signal by the material. Continuing our investigation of the effects of mineralogy on these properties, we will present for the first time results of complex permittivity measurements of the UCF/DSI-CI-2 CI asteroid regolith simulant produced by Deep Space Industries Inc. The simulant is mineralogically similar to the CI meteorite Orgueil. CI meteorites are the most spectrally similar meteorites to (101955) Bennu. Since the simulant has been provided to us un-mixed, several sub-samples will be created containing different amounts of carbon, thus allowing us to systematically investigate the effects of carbon content on the permittivity. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs prior to being loaded into a coaxial
Parallel discrete event simulation
Overeinder, B.J.; Hertzberger, L.O.; Sloot, P.M.A.; Withagen, W.J.
1991-01-01
In simulating applications for execution on specific computing systems, the simulation performance figures must be known in a short period of time. One basic approach to the problem of reducing the required simulation time is the exploitation of parallelism. However, in parallelizing the simulation
Parallel reservoir simulator computations
International Nuclear Information System (INIS)
Hemanth-Kumar, K.; Young, L.C.
1995-01-01
The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90
DEFF Research Database (Denmark)
A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard
2017-01-01
Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...
Totally parallel multilevel algorithms
Frederickson, Paul O.
1988-01-01
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.
Energy Technology Data Exchange (ETDEWEB)
1991-10-23
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.
Dielectric response of arbitrary-shaped clusters studied by the finite element method
Czech Academy of Sciences Publication Activity Database
Rychetský, Ivan; Klíč, Antonín
2012-01-01
Roč. 427, č. 1 (2012), s. 143-147 ISSN 0015-0193 R&D Projects: GA ČR GA202/09/0430 Institutional research plan: CEZ:AV0Z10100520 Keywords : effective permittivity * two-component composite * integral representation * finite element analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.415, year: 2012
Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume
Mackay, Tom G.
2004-08-01
The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.
International Nuclear Information System (INIS)
Palme, U.W.
1987-10-01
Estimating and monitoring up-to-date soil moisture conditions over extensive areas through passive (or active) microwave remote sensing techniques requires the knowledge of the complex relative permittivity (ε r * ) in function of soil moisture. X-band measurements of ε r * for different moisture conditions were made in laboratory for soil samples of six important Soils (PV 2 , LV 3 , LR d , LE 1 , SAP and Sc). Using a theoretical model and computational programmes developed, these measurements allowed estimates of the emissive characteristics of the soils that would be expected with the X-Band Microwave Radiometer built at INPE. The results, new, for soils from tropical regions, showed that only the physical characteristics and properties of the soils are not sufficient to explain the behaviour of ε r * in function of soil moisture, indicating that the chemical and/or mineralogical properties of the soils do have an important contribution. The results also showed thast ε r * in function of soil moisture depends on soil class. (author) [pt
The permittivity and refractive index measurements of doped barium titanate (BT-BCN)
Meeker, Michael A.; Kundu, Souvik; Maurya, Deepam; Kang, Min-Gyu; Sosa, Alejandro; Mudiyanselage, Rathsara R. H. H.; Clavel, Michael; Gollapudi, Sreenivasulu; Hudait, Mantu K.; Priya, Shashank; Khodaparast, Giti A.
2017-11-01
While piezoelectric- ferroelectric materials offer great potential for nonvolatile random access memory, most commonly implemented ferroelectrics contain lead which imposes a challenge in meeting environmental regulations. One promising candidate for lead-free, ferroelectric material based memory is (1 - x) BaTiO3 - xBa(Cu1 / 3 Nb2 / 3) O3 (BT-BCN), x = 0.025 . The samples studied here were grown on a Si substrate with an HfO2 buffer layer, thereby preventing the interdiffusion of BT-BTCN into Si. This study provides further insight into the physical behavior of BT-BCN that will strengthen the foundation for developing switching devices. The sample thicknesses ranged from 1.5 to 120 nm, and piezoelectric force microscopy was employed in order to understand the local ferroelectric behaviors. Dielectric constant as a function of frequency demonstrated enhanced frequency dispersion indicating the polar nature of the composition. The relative permittivity was found to change significantly with varying bias voltage and exhibited a tunability of 82%. The difference in the peak position during up and down sweeps is due to the presence of the spontaneous polarization. Furthermore, reflectometry was performed to determine the refractive index of samples with differing thicknesses. Our results demonstrate that refractive indices are similar to that of barium titanate. This is a promising result indicating that improved ferroelectric properties are obtained without compromising the optical properties.
Wu, Yingwei; Isakov, Dmitry; Grant, Patrick S
2017-10-23
Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 ) micro-particles in a polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.
Directory of Open Access Journals (Sweden)
Yingwei Wu
2017-10-01
Full Text Available Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 micro-particles in a polymeric acrylonitrile butadiene styrene (ABS matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.
Application of Jonscher model for the characterization of the dielectric permittivity of concrete
International Nuclear Information System (INIS)
Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gerard; Boone, Francois
2008-01-01
The study of electromagnetic waves propagating in concrete is a complex problem. Understanding the phenomenon of interaction between the wave and the matter is related to the knowledge of the variation process of concrete's electromagnetic properties in terms of its physical characteristics. In particular, dielectric permittivity of concrete is affected by moisture content and change in the frequency of the electromagnetic field applied. In this study, we apply the three-parameter Jonscher model (n, χ r , ε ∞ ) to show the dispersive aspect of the concrete. The validation of this model is carried out through tests on mortar and concrete at the laboratory, on the one hand, and by comparison of the results with data obtained previously by other researchers, on the other hand. The Jonscher model matches very well the experimental measurements of the concrete. At different moisture levels, heterogeneities and porosities, the results obtained are very good. This shows that this model is very effective and very suitable to represent the dielectric properties of concrete.
Application of Jonscher model for the characterization of the dielectric permittivity of concrete
Energy Technology Data Exchange (ETDEWEB)
Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gerard [Groupe de recherche en auscultation et instrumentation, Department of Civil Engineering, University of Sherbrooke, Sherbrooke (QC), J1K2R1 (Canada); Boone, Francois [Laboratoire d' Electronique Micro-Ondes, Department of Electrical Engineering and Engineering computer, University of Sherbrooke, Sherbrooke (QC), J1K2R1 (Canada)], E-mail: Taoufik.Bourdi@Usherbrooke.ca
2008-10-21
The study of electromagnetic waves propagating in concrete is a complex problem. Understanding the phenomenon of interaction between the wave and the matter is related to the knowledge of the variation process of concrete's electromagnetic properties in terms of its physical characteristics. In particular, dielectric permittivity of concrete is affected by moisture content and change in the frequency of the electromagnetic field applied. In this study, we apply the three-parameter Jonscher model (n, {chi}{sub r}, {epsilon}{sub {infinity}}) to show the dispersive aspect of the concrete. The validation of this model is carried out through tests on mortar and concrete at the laboratory, on the one hand, and by comparison of the results with data obtained previously by other researchers, on the other hand. The Jonscher model matches very well the experimental measurements of the concrete. At different moisture levels, heterogeneities and porosities, the results obtained are very good. This shows that this model is very effective and very suitable to represent the dielectric properties of concrete.
Ghasemi, Rasta; Degiron, Aloyse; Leroux, Xavier; Lupu, Anatole; de Lustrac, André
2013-05-01
The transformation optics was introduced by J. Pendry and U. Leonhardt in 2006 [1,2]. In this method an initial space is transformed into a new space and this transformed space can be materialized by a material, which the electromagnetic parameters can be deduced from the metric of the transformed space. In the general case the electromagnetic parameters are anisotropic tensors. At microwave frequencies these materials can be realized using classical metamaterials like SRR form J. Pendry or ELC from D. Smith [3]. At infrared wavelengths this realization is a challenge because the dimensions of the metamaterials are much smaller than the wavelength and become nanometric. Then the design of these metamaterials must be simplified and original methods must be developed to allow the realization of these metamaterials with controlled electromagnetic properties. In this paper we describe the realization of a multilayer metamaterial working at infrared wavelength, which the permittivity and the permeability can be adjusted separately. We give some examples of realized multilayer materials operating around 150THz, with a comparison between the results of full wave simulations of these materials and their characterizations using a Fourier Transform Infrared Spectrometer.
Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents.
Bruckner, Johanna R; Kuhnhold, Anja; Honorato-Rios, Camila; Schilling, Tanja; Lagerwall, Jan P F
2016-09-27
Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.
Energy Technology Data Exchange (ETDEWEB)
Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Lee, Choong Hyun; Nishimura, Tomonori; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)
2015-08-17
We investigated yttrium scandate (YScO{sub 3}) as an alternative high-permittivity (k) dielectric thin film for Ge gate stack formation. Significant enhancement of k-value is reported in YScO{sub 3} comparing to both of its binary compounds, Y{sub 2}O{sub 3} and Sc{sub 2}O{sub 3}, without any cost of interface properties. It suggests a feasible approach to a design of promising high-k dielectrics for Ge gate stack, namely, the formation of high-k ternary oxide out of two medium-k binary oxides. Aggressive scaling of equivalent oxide thickness (EOT) with promising interface properties is presented by using YScO{sub 3} as high-k dielectric and yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) as interfacial layer, for a demonstration of high-k gate stack on Ge. In addition, we demonstrate Ge n-MOSFET performance showing the peak electron mobility over 1000 cm{sup 2}/V s in sub-nm EOT region by YScO{sub 3}/Y-GeO{sub 2}/Ge gate stack.
Permittivity and modulus spectroscopic study of BaFe0.5Nb0.5O3 ceramics
Directory of Open Access Journals (Sweden)
Subrat K. Kar
2013-12-01
Full Text Available Ba(Fe0.5Nb0.5O3 (BFN powder was synthesized in single perovskite phase by conventional solid state reaction route and BFN ceramic was obtained by uniaxial pressing and sintering at 1350 °C. Complex immittance like: permittivity and modulus spectroscopic formalism were simultaneously used to explain dielectric behaviour of the ceramics. The activation energy calculated from dielectric relaxation below 100 °C was found to be ~0.19 eV. The activation energy obtained from modulus spectra above 100 °C was ~0.59 eV. The space charge polarization model was used to explain the origin of relaxation and “giant” permittivity of BFN ceramics near room temperature.
Directory of Open Access Journals (Sweden)
A. Comegna
2013-09-01
Full Text Available Contamination of soils with non-aqueous phase liquids (NAPL constitutes a serious geo-environmental problem, given the toxicity level and high mobility of these organic compounds. To develop effective decontamination methods, characterisation and identification of contaminated soils are needed. The objective of this work is to explore the potential of dielectric permittivity measurements to detect the presence of NAPLs in soils. The dielectric permittivity was measured by Time Domain Reflectometry method (TDR in soil samples with either different volumetric content of water (w and NAPL (NAPL or at different stages during immiscible displacement test carried out with two different flushing solutions. A mixing model proposed by Francisca and Montoro, was calibrated to estimate the volume fraction of contaminant present in soil. Obtained results, showed that soil contamination with NAPL and the monitoring of immiscible fluid displacement, during soil remediation processes, can be clearly identified from dielectric measurements.
DEFF Research Database (Denmark)
Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard
the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...
Thu'o'ng, Nguyen Hoai; Sidorkin, A. S.; Milovidova, S. D.
2018-03-01
The dispersion of dielectric permittivity in nanocrystalline cellulose-triglycine sulfate composites is studied in the range of frequencies from 10-3 to 106 Hz, at temperatures varying from room temperature to the temperature of phase transition in this composite (54°C), in weak electric fields (1 V cm-1). Two behaviors for the dielectric dispersion are identified in the studied frequency range: at ultralow frequencies (10-3-10 Hz), the dispersion is due to Maxwell-Wagner polarization, while at higher frequencies (10-106 Hz), the dispersion is due to the movement of domain walls in the embedded triglycine sulfate crystallites. An additional peak in the temperature-dependent profiles of dielectric permittivity is detected at lower temperatures in freshly prepared samples of the considered composite; we associate it with the presence of residual water in these samples.
Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman
2017-04-26
This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.
Dielectric permittivity in weakly concentrated SrTiO.sub.3./sub.:Mn crystals and ceramics
Czech Academy of Sciences Publication Activity Database
Trepakov, Vladimír; Savinov, Maxim; Železný, Vladimír; Pokorný, Jan; Syrnikov, P.; Azzoni, C. B.; Galinetto, P.; Mozzati, M. C.; Badalyan, A.; Deyneka, Alexander; Jastrabík, Lubomír
2007-01-01
Roč. 93, č. 1 (2007), 012017/1-012017/6 ISSN 1742-6588 R&D Projects: GA AV ČR KAN301370701; GA AV ČR 1QS100100563; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100522 Keywords : dielectric permittivity * SrTiO 3 :Mn * crystals and ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Energy Technology Data Exchange (ETDEWEB)
Feijoo, P.C., E-mail: pedronska@fis.ucm.es [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Pampillón, M.A.; San Andrés, E. [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Fierro, J.L.G. [Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, C/Marie Curie 2, E-28049 Cantoblanco (Spain)
2015-10-30
In this work we use the high pressure sputtering technique to deposit the high permittivity dielectric gadolinium scandate on silicon substrates. This nonconventional deposition technique prevents substrate damage and allows for growth of ternary compounds with controlled composition. Two different approaches were assessed: the first one consists of depositing the material directly from a stoichiometric GdScO{sub 3} target; in the second one, we anneal a nano-laminate of < 0.5 nm thick Gd{sub 2}O{sub 3} and Sc{sub 2}O{sub 3} films in order to control the composition of the scandate. Metal–insulator–semiconductor capacitors were fabricated with platinum gates for electrical characterization. Accordingly, we grew a Gd-rich Gd{sub 2−x}Sc{sub x}O{sub 3} film that, in spite of higher leakage currents, presents a better effective relative permittivity of 21 and lower density of defects. - Highlights: • GdScO is deposited on Si as a high permittivity dielectric by two procedures. • Films sputtered from GdScO{sub 3} target are Sc-rich and present thick interface SiO{sub x}. • Gd-rich GdScO is obtained from a nano-laminate sputtered from Sc{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. • Gd{sub 1.8}Sc{sub 0.2}O{sub 3} shows good effective permittivity and electrical properties.
Revil, A
2013-01-01
A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823
Vector and parallel processors in computational science
International Nuclear Information System (INIS)
Duff, I.S.; Reid, J.K.
1985-01-01
This book presents the papers given at a conference which reviewed the new developments in parallel and vector processing. Topics considered at the conference included hardware (array processors, supercomputers), programming languages, software aids, numerical methods (e.g., Monte Carlo algorithms, iterative methods, finite elements, optimization), and applications (e.g., neutron transport theory, meteorology, image processing)
Piezoelectric theory for finite element analysis of ultrasonic motors
Energy Technology Data Exchange (ETDEWEB)
Emery, J.D.; Mentesana, C.P.
1997-06-01
The authors present the fundamental equations of piezoelectricity and references. They show how a second form of the equations and a second set of coefficients can be found, through inversions involving the elasticity tensor. They show how to compute the clamped permittivity matrix from the unclamped matrix. The authors list the program pzansys.ftn and present examples of its use. This program does the conversions and calculations needed by the finite element program ANSYS.
Directory of Open Access Journals (Sweden)
Jae-Hyun Kim
2018-04-01
Full Text Available The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA with a high permittivity (ɛr = 10 feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.
Algorithms for parallel computers
International Nuclear Information System (INIS)
Churchhouse, R.F.
1985-01-01
Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)
Parallelism and array processing
International Nuclear Information System (INIS)
Zacharov, V.
1983-01-01
Modern computing, as well as the historical development of computing, has been dominated by sequential monoprocessing. Yet there is the alternative of parallelism, where several processes may be in concurrent execution. This alternative is discussed in a series of lectures, in which the main developments involving parallelism are considered, both from the standpoint of computing systems and that of applications that can exploit such systems. The lectures seek to discuss parallelism in a historical context, and to identify all the main aspects of concurrency in computation right up to the present time. Included will be consideration of the important question as to what use parallelism might be in the field of data processing. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Parallel magnetic resonance imaging
International Nuclear Information System (INIS)
Larkman, David J; Nunes, Rita G
2007-01-01
Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
Directory of Open Access Journals (Sweden)
Zejun Pu
2017-11-01
Full Text Available In this report, flexible cross-linked polyarylene ether nitrile/functionalized barium titanate(CPEN/F-BaTiO3 dielectrics films with high permittivitywere prepared and characterized. The effects of both the F-BaTiO3 and matrix curing on the mechanical, thermal and dielectric properties of the CPEN/F-BaTiO3 dielectric films were investigated in detail. Compared to pristine BaTiO3, the surface modified BaTiO3 particles effectively improved their dispersibility and interfacial adhesion in the polymer matrix. Moreover, the introduction of F-BaTiO3 particles enhanced dielectric properties of the composites, with a relatively high permittivity of 15.2 and a quite low loss tangent of 0.022 (1 kHz when particle contents of 40 wt % were utilized. In addition, the cyano (–CN groups of functional layer also can serve as potential sites for cross-linking with polyarylene ether nitrile terminated phthalonitrile (PEN-Ph matrix and make it transform from thermoplastic to thermosetting. Comparing with the pure PEN-ph film, the latter results indicated that the formation of cross-linked network in the polymer-based system resulted in increased tensile strength by ~67%, improved glass transition temperature (Tg by ~190 °C. More importantly, the CPEN/F-BaTiO3 composite films filled with 30 wt % F-BaTiO3 particles showed greater energy density by nearly 190% when compared to pure CPEN film. These findings enable broader applications of PEN-based composites in high-performance electronics and energy storage devices materials used at high temperature.
Brouet, Yann; Levasseur-Regourd, Anny-Chantal; Encrenaz, Pierre; Sabouroux, Pierre; Heggy, Essam; Kofman, Wlodek; Thomas, Nick
2015-04-01
The Rosetta mission has successfully rendezvous comet 67P/Churyumov-Gerasimenko (hereafter 67P) last year and landed Philae module on its nucleus on 12 November it 2014. Among instruments onboard Rosetta, MIRO [1], composed of two radiometers, with receivers at 190 GHz and 563 GHz (center-band), is dedicated to the measurements of the subsurface and surface brightness temperatures. These values depend on the complex relative permittivity (hereafter permittivity) with ɛ' and ɛ'' the real and imaginary parts. The permittivity of the material depends on frequency, bulk density/porosity, composition and temperature [2]. Considering the very low bulk density of 67P nucleus (about 450 kg.m-3 [3]) and the suspected presence of a dust mantle in many areas of the nucleus [4], investigations on the permittivity of porous granular samples are needed to support the interpretation of MIRO data, as well as of other microwave experiments onboard Rosetta, e.g. CONSERT [5], a bistatic penetrating radar working at 90 MHz. We have developed a programme of permittivity measurements on porous granular samples over a frequency range from 50 MHz to 190 GHz under laboratory conditions (e.g. [6] and [7]). We present new results obtained on JSC-1A lunar soil simulant and ashes from Etna. The samples were split into several sub-samples with different size ranges covering a few to 500 μm. Bulk densities of the sub-samples were carefully measured and found to be in the 800-1400 kg.m-3 range. Sub-samples were also dried and volumetric moisture content was found to be below 0.6%. From 50 MHz to 6 GHz and at 190 GHz, the permittivity has been determined, respectively with a coaxial cell and with a quasi-optical bench mounted in transmission, both connected to a vector network analyzer. The results demonstrate the dispersive behaviours of ɛ' between 50 MHz and 190 GHz. Values of ɛ' remain within the 3.9-2.6 range for all sub-samples. At CONSERT frequency, ɛ'' is within the 0.01-0.09 range
International Nuclear Information System (INIS)
Wieser, R.
1987-01-01
The spherical fuel elements are stored dry in cans. The cans themselves are stacked in parallel storage shafts, which are combined into a rectangular storage space. The storage space is made earthquake-proof by surrounding it with concrete. It consists of a ceiling assembled from several steel parts, which is connected to the floor by support elements. A cooling air ventilation station supplies the individual storage shaft and therefore the cans with cooling air via incoming and outgoing pipes. (DG) [de
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
Parallelism Effects and Verb Activation: The Sustained Reactivation Hypothesis
Callahan, Sarah M.; Shapiro, Lewis P.; Love, Tracy
2010-01-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout "and"-coordinated sentences. Four points were tested: (1) approximately 1,600ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100ms after the…
Parallel processing of two-dimensional Sn transport calculations
International Nuclear Information System (INIS)
Uematsu, M.
1997-01-01
A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation
Parallel processing of structural integrity analysis codes
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.
1996-01-01
Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab
Massively parallel multicanonical simulations
Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard
2018-03-01
Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.
SPINning parallel systems software
International Nuclear Information System (INIS)
Matlin, O.S.; Lusk, E.; McCune, W.
2002-01-01
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin
Parallel programming with Python
Palach, Jan
2014-01-01
A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.
Persico, Raffaele
2017-04-01
TDR probes can be exploited for the measure of the electromagnetic characteristics of the soil, or of any penetrable material. They are commonly exploited as instruments for the measure of the propagation velocity of the electromagnetic waves in the probed medium [1], in its turn useful for the proper focusing of GPR data [2-5]. However, a more refined hardware and processing can allow to extrapolate from these probes also the discrimination between dielectric and magnetic characteristics of the material under test, which can be relevant for a better interpretation of the buried scenario or in order to infer physical-chemical characteristics of the material at hand. This requires a TDR probe that can work in frequency domain, and in particular that allows to retrieve the reflection coefficient at the air soil interface. It has been already shown [6] that in lossless cases this can be promising. In the present contribution, it will be shown at the EGU conference that it is possible to look for both the relative complex permittivity and the relative magnetic permeability of the probed material, on condition that the datum has an acceptable SNR and that some diversity of information is guaranteed, either by multifrequency data or by a TDR that can prolong its arms in the soil. References [1] F. Soldovieri, G. Prisco, R. Persico, Application of Microwave Tomography in Hydrogeophysics: some examples, Vadose Zone Journal, vol. 7, n. 1 pp. 160-170, Feb. 2008. [2] I. Catapano, L. Crocco, R. Persico, M. Pieraccini, F. Soldovieri, "Linear and Nonlinear Microwave Tomography Approaches for Subsurface Prospecting: Validation on Real Data", IEEE Trans. on Antennas and Wireless Propagation Letters, vol. 5, pp. 49-53, 2006. [3] G. Leucci, N. Masini, R. Persico, F. Soldovieri." GPR and sonic tomography for structural restoration : the case of the Cathedral of Tricarico", Journal of Geophysics and Engineering, vol. 8, pp. S76-S92, Aug. 2011. [4] S. Piscitelli, E. Rizzo, F. Cristallo
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin; Yang, Dinghui; Dong, Xingpeng; Liu, Qiancheng; Zheng, Yongchang
2017-01-01
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint
Brouet, Y.; Neves, L.; Sabouroux, P.; Levasseur-Regourd, A. C.; Poch, O.; Encrenaz, P.; Pommerol, A.; Thomas, N.; Kofman, W.
2016-12-01
The internal properties of porous and icy bodies in the solar system can be investigated by ground-penetrating radars (GPRs), like the COmet Nucleus Sounding Experiment by Radiowave Transmission instrument on board the Rosetta spacecraft which has sounded the interior of the nucleus of comet 67P/Churyumov-Gerasimenko. Accurate constraints on the permittivity of icy media are needed for the interpretation of the data. We report novel permittivity measurements performed on water ice samples and icy mixtures with porosities in the 31-91% range. The measurements have been performed between 50 MHz and 2 GHz with a coaxial cell on a total of 38 samples with a good reproducibility. We used controlled procedures to produce fine-grained and coarse-grained ice samples with a mean diameter of 4.5 μm and 67 μm, respectively, and to prepare icy mixtures. The JSC-1A lunar regolith simulant was used as the dust component in the mixtures. The results are focused on the real-part ɛ' of the permittivity, which constrains the phase velocity of the radio waves in low-loss media. The values of ɛ' show a nondispersive behavior and are within the range of 1.1 to 2.7. They decrease with the increasing porosity Φ according to E(1 - Φ), with E equal to about 3.13 for pure water ice, and in the 3.8-7.5 range for ice-dust mixtures with a dust-to-ice volumetric ratio in the 0.1-2.8 range, respectively. These measurements are also relevant for radiometers operating in the millimeter-submillimeter domains, as suggested by the nondispersive behavior of the mixtures and of the pure components.
Directory of Open Access Journals (Sweden)
N.N. Ali
2017-06-01
Full Text Available Silicone Rubber (SiR is considered as one of the most established insulator in High Voltage (HV industry. SiR possess a great function ability such as its lighter weight, great heat resistance and substantial electrical insulation properties. Dynamic research were performed all around the world in order to explore the unique insulating behavior of SiR but very little are done on the optimization of SiR in term of their processing parameters and formulation. In this work, four materials and processing factors were introduced; A: Alumina Trihydrate (ATH, B: Dicumyl-Peroxide (DCP, C: mixing speed and D: mixing time in order to analyze its contribution towards improving the surface resistivity and relative permittivity of SIR rubber. The factors range were set based on prior screening and are defined as; ATH (10 – 50 pphr, Dicumyl Peroxide (0.50 -1.50 pphr, speed of mixer (40 – 70 rpm and mixing period (5 – 10 mins which were then varied accordingly to produce an overall 19 samples of SiR blends. The testing results were analyzed using statistical Design of Experiment (DOE by applying two level full factorial from Design Expert Software (v10 to discover the inter-correlation between the factors studied and benefaction of each factor in improving both surface resistivity and relative permittivity responses of produced SiR blends. The model analysis on surface resistivity shows the coefficient of determination R2 value of 88.72% while the one for relative permittivity shows R2 value of 82.34 %. Combination of both dependent variables had yielded an optimization suggestion for SiR formulation and processing strategy of ATH: 50 pphr, DCP: 0.50 pphr, mixing speed: 70 rpm and mixing period: 10 mins with the desirability level of 0.835. The optimized formulation had resulted in the production of SiR blend with the characteristic of surface resistivity of 1.02039x10^14 Ω/sq and relative permittivity of 4.0231, respectively. In conclusion, it can be
Jana, Amit Kumar; Roy, Partha; Nath, Deb Narayan
2014-02-01
Effect of viscosity variation on the magnetic field effect in pyrene-N,N-dimethylaniline exciplex luminescence has been studied at different permittivity values. The data is compatible to the model of Krissinel et al. (1999) [10] reported earlier to explain the effect probing the escape yield of radical pairs. It is shown that the data can also be explained on the basis of a simple model. It is interesting to note that the present letter also demonstrates the positive slope of MFE with diffusivity at extremely high viscous condition as predicted by Krissinel et al. (1999) [10] which has not been observed in earlier experiments.
Expressing Parallelism with ROOT
Energy Technology Data Exchange (ETDEWEB)
Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab
2017-11-22
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.
Expressing Parallelism with ROOT
Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.
2017-10-01
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.
Parallel Fast Legendre Transform
Alves de Inda, M.; Bisseling, R.H.; Maslen, D.K.
1998-01-01
We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were
Practical parallel programming
Bauer, Barr E
2014-01-01
This is the book that will teach programmers to write faster, more efficient code for parallel processors. The reader is introduced to a vast array of procedures and paradigms on which actual coding may be based. Examples and real-life simulations using these devices are presented in C and FORTRAN.
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, Michael [Iowa State Univ., Ames, IA (United States)
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Parallel universes beguile science
2007-01-01
A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- as least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.
Energy Technology Data Exchange (ETDEWEB)
2017-04-04
A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique. We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.
International Nuclear Information System (INIS)
Gardes, D.; Volkov, P.
1981-01-01
A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr
Parallel hierarchical global illumination
Energy Technology Data Exchange (ETDEWEB)
Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)
1997-10-08
Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.
Mount, Gregory J.; Comas, Xavier
2014-10-01
Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.
Directory of Open Access Journals (Sweden)
S. Das
2015-02-01
Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.
Energy Technology Data Exchange (ETDEWEB)
Ferrer, F.J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain)], E-mail: fjferrer@us.es; Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain); Gonzalez-Elipe, A.R.; Yubero, F. [Insituto de Ciencia de Materiales de Sevilla, c/ Americo vespucio, no. 49, 41092 Sevilla (Spain)
2007-12-03
Mixed oxides Zr{sub x}Si{sub 1-x}O{sub 2} (0 < x < 1) thin films have been prepared at room temperature by decomposition of (CH{sub 3}CH{sub 2}O){sub 3}SiH and Zr[OC(CH{sub 3}){sub 3}]{sub 4} volatile precursors induced by mixtures of O{sub 2}{sup +} and Ar{sup +} ions. The films were flat and amorphous independently of the Si/Zr ratio and did not present phase segregation of the pure single oxides (SiO{sub 2} and ZrO{sub 2}). A 10-23 at.% of H and 1-5 at.% of C atoms remained incorporated in the films depending on the mixture ratio of the Si and Zr precursors and the composition of the bombarding gas used during the deposition process. These impurities are mainly forming hydroxyl and carboxylic groups. Optical refractive index and static permittivity of the films were determined by reflection NIR-Vis spectroscopy and C-V electrical characterization, respectively. It is found that the refractive index increases non-linearly from 1.45 to 2.10 as the Zr content in the thin films increases. The static permittivity also increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Optical and electrical characteristics of the films are justified by their impurity content and the available theories.
Energy Technology Data Exchange (ETDEWEB)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-02-15
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.
Directory of Open Access Journals (Sweden)
Sylvain Druart
2014-01-01
Full Text Available We present a methodology and a circuit to extract liquid resistance and capacitance simultaneously from the same output signal using interdigitated sensing electrodes. The principle consists in the generation of a current square wave and its application to the sensor to create a triangular output voltage which contains both the conductivity and permittivity parameters in a single periodic segment. This concept extends the Triangular Waveform Voltage (TWV signal generation technique and is implemented by a system which consists in a closed-loop current-controlled oscillator and only requires DC power to operate. The system interface is portable and only a small number of electrical components are used to generate the expected signal. Conductivities of saline NaCl and KCl solutions, being first calibrated by commercial equipment, are characterized by a system prototype. The results show excellent linearity and prove the repeatability of the measurements. Experiments on water-glycerol mixtures validate the proposed sensing approach to measure the permittivity and the conductivity simultaneously. We discussed and identified the sources of measurement errors as circuit parasitic capacitances, switching clock feedthrough, charge injection, bandwidth, and control-current quality.
High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites
Energy Technology Data Exchange (ETDEWEB)
Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun, E-mail: fengzekun@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Zhongyan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiangmen Magsource New Material CO., LTD., 529000 Guangdong (China); Su, Zhijuan; Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)
2015-05-07
Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.
Energy Technology Data Exchange (ETDEWEB)
Su, Zhijuan; Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Li, Qifan; Feng, Zekun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xian [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)
2015-05-07
A series of Z-type and Y-type ferrite composites with various phase fractions were studied for their RF properties including the measurement of permittivity to permeability spectra over a frequency range of 0.1–10 GHz. Phase identification of the ferrite composites' constituents was determined by X-ray diffraction. An effective medium approximation was used to predict the magnetic and dielectric behavior of the composites. The experiments indicated that the composite having 75 vol. % of Z-type ferrite demonstrated a permeability of ∼12 with a nearly equivalent permittivity, yielding a ratio (μ′/ε′) of 0.91 at a frequency range from 0.55 to 0.75 GHz. The dielectric loss (i.e., tan δ{sub ε}) and magnetic loss (i.e., tan δ{sub μ}) were measured to be lower than 0.08 at f = 0.1–1 GHz and 0.29 at f = 0.1–0.7 GHz, respectively. Furthermore, the loss factors, as tan δ{sub ε}/ε′ and tan δ{sub μ}/μ′, were calculated to be 0.003 and 0.02 at 0.65 GHz, respectively.
Energy Technology Data Exchange (ETDEWEB)
Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)
2016-05-15
In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.
High permittivity materials for oxide gate stack in Ge-based metal oxide semiconductor capacitors
Energy Technology Data Exchange (ETDEWEB)
Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Baldovino, Silvia [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy); Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)
2010-01-01
In the effort to ultimately shrink the size of logic devices towards a post-Si era, the integration of Ge as alternative channel material for high-speed p-MOSFET devices and the concomitant coupling with high permittivity dielectrics (high-k) as gate oxides is currently a key-challenge in microelectronics. However, the Ge option still suffers from a number of unresolved drawbacks and open issues mainly related to the thermodynamic and electrical compatibility of Ge substrates with high-k gate stack. Strictly speaking, two main concerns can be emphasized. On one side is the dilemma on which chemical/physical passivation is more suitable to minimize the unavoidable presence of electrically active defects at the oxide/semiconductor interface. On the other side, overcoming the SiO{sub 2} gate stack opens the route to a number of potentially outperforming high-k oxides. Two deposition approaches were here separately adopted to investigate the high-k oxide growth on Ge substrates, the molecular beam deposition (MBD) of Gd{sub 2}O{sub 3} and the atomic layer deposition (ALD) of HfO{sub 2}. In the MBD framework epitaxial and amorphous Gd{sub 2}O{sub 3} films were grown onto GeO{sub 2}-passivated Ge substrates. In this case, Ge passivation was achieved by exploiting the Ge{sup 4+} bonding state in GeO{sub 2} ultra-thin interface layers intentionally deposited in between Ge and the high-k oxide by means of atomic oxygen exposure to Ge. The composition of the interface layer has been characterized as a function of the oxidation temperature and evidence of Ge dangling bonds at the GeO{sub 2}/Ge interface has been reported. Finally, the electrical response of MOS capacitors incorporating Gd{sub 2}O{sub 3} and GeO{sub 2}-passivated Ge substrates has been checked by capacitance-voltage measurements. On the other hand, the structural and electrical properties of HfO{sub 2} films grown by ALD on Ge by using different oxygen precursors, i.e. H{sub 2}O, Hf(O{sup t}Bu){sub 2}(mmp
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
DEFF Research Database (Denmark)
Gregersen, Frans; Josephson, Olle; Kristoffersen, Gjert
of departure that English may be used in parallel with the various local, in this case Nordic, languages. As such, the book integrates the challenge of internationalization faced by any university with the wish to improve quality in research, education and administration based on the local language......Abstract [en] More parallel, please is the result of the work of an Inter-Nordic group of experts on language policy financed by the Nordic Council of Ministers 2014-17. The book presents all that is needed to plan, practice and revise a university language policy which takes as its point......(s). There are three layers in the text: First, you may read the extremely brief version of the in total 11 recommendations for best practice. Second, you may acquaint yourself with the extended version of the recommendations and finally, you may study the reasoning behind each of them. At the end of the text, we give...
Multibus-based parallel processor for simulation
Ogrady, E. P.; Wang, C.-H.
1983-01-01
A Multibus-based parallel processor simulation system is described. The system is intended to serve as a vehicle for gaining hands-on experience, testing system and application software, and evaluating parallel processor performance during development of a larger system based on the horizontal/vertical-bus interprocessor communication mechanism. The prototype system consists of up to seven Intel iSBC 86/12A single-board computers which serve as processing elements, a multiple transmission controller (MTC) designed to support system operation, and an Intel Model 225 Microcomputer Development System which serves as the user interface and input/output processor. All components are interconnected by a Multibus/IEEE 796 bus. An important characteristic of the system is that it provides a mechanism for a processing element to broadcast data to other selected processing elements. This parallel transfer capability is provided through the design of the MTC and a minor modification to the iSBC 86/12A board. The operation of the MTC, the basic hardware-level operation of the system, and pertinent details about the iSBC 86/12A and the Multibus are described.
Xyce parallel electronic simulator.
Energy Technology Data Exchange (ETDEWEB)
Keiter, Eric R; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd S; Pawlowski, Roger P; Santarelli, Keith R.
2010-05-01
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.
Betchov, R
2012-01-01
Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
International Nuclear Information System (INIS)
Lü Yuan-Jie; Lin Zhao-Jun; Zhang Yu; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Chen Hong; Wang Zhan-Guo
2011-01-01
Ni Schottky contacts on AlGaN/GaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N 2 ambience at 600 °C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C). With the measured current—voltage (I—V) and capacitance—voltage (C—V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the AlGaN barrier layer was related to the piezoelectric and the spontaneous polarization of the AlGaN barrier layer. The relative permittivity was in proportion to the strain of the AlGaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the AlGaN barrier totally relaxed (after 18 h at 600 °C in the current study), and then the relative permittivity was almost a constant with the increased thermal stress time. When the sample was treated at 800 °C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the AlGaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of AlGaN/GaN heterostructure devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Standard elements; Elements standards
Energy Technology Data Exchange (ETDEWEB)
Blanc, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
Following his own experience the author recalls the various advantages, especially in the laboratory, of having pre-fabricated vacuum-line components at his disposal. (author) [French] A la suite de sa propre experience, l'auteur veut rappeler les divers avantages que presente, tout particulierement en laboratoire, le fait d'avoir a sa disposition des elements pre-fabriques de canalisations a vide. (auteur)
International Nuclear Information System (INIS)
Kundracik, F.; Neilinger, P.; Hartmanova, M.; Nadazdy, V.; Mansilla, C.
2011-01-01
Ceria, as material with relatively high dielectric permittivity, ε r , and ability to form films on the Si substrate, is a candidate for the gate dielectrics in the MOS devices. Doping with suitable e.g. trivalent rare earth oxides and suitable treatment after deposition (preparation) can improve their properties, e.g. ionic conductivity, dielectric permittivity and mechanical hardness. In this work, the dielectric properties of CeO 2 + Sm 2 O 3 films prepared by electron beam physical vapour deposition (EB-PVD) and some of them simultaneously also by the Ar + ionic beam assisted deposition (IBAD) techniques are analysed. (authors)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Resistor Combinations for Parallel Circuits.
McTernan, James P.
1978-01-01
To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)
SOFTWARE FOR DESIGNING PARALLEL APPLICATIONS
Directory of Open Access Journals (Sweden)
M. K. Bouza
2017-01-01
Full Text Available The object of research is the tools to support the development of parallel programs in C/C ++. The methods and software which automates the process of designing parallel applications are proposed.
2 filler on the dielectric permittivity and electrical modulus of PMMA
Indian Academy of Sciences (India)
plex in solution phase.9 Debye theory of dipolar relaxation apprehends the ... present a study on the effect of Zn(NO3)2 filler in PMMA matrix, with a view to .... 3.4 EDX analysis. The quantitative and qualitative elemental analyses of the.
International Nuclear Information System (INIS)
Strelniker, Y.M.; Bergman, D.J.
1998-01-01
A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host
Parallel External Memory Graph Algorithms
DEFF Research Database (Denmark)
Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari
2010-01-01
In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of Â¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....
Parallel inter channel interaction mechanisms
International Nuclear Information System (INIS)
Jovic, V.; Afgan, N.; Jovic, L.
1995-01-01
Parallel channels interactions are examined. For experimental researches of nonstationary regimes flow in three parallel vertical channels results of phenomenon analysis and mechanisms of parallel channel interaction for adiabatic condition of one-phase fluid and two-phase mixture flow are shown. (author)
International Nuclear Information System (INIS)
Ainsworth, K.F.
1979-01-01
A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
A Parallel Butterfly Algorithm
Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing
2014-01-01
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
A Parallel Butterfly Algorithm
Poulson, Jack
2014-02-04
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
Fast parallel event reconstruction
CERN. Geneva
2010-01-01
On-line processing of large data volumes produced in modern HEP experiments requires using maximum capabilities of modern and future many-core CPU and GPU architectures.One of such powerful feature is a SIMD instruction set, which allows packing several data items in one register and to operate on all of them, thus achievingmore operations per clock cycle. Motivated by the idea of using the SIMD unit ofmodern processors, the KF based track fit has been adapted for parallelism, including memory optimization, numerical analysis, vectorization with inline operator overloading, and optimization using SDKs. The speed of the algorithm has been increased in 120000 times with 0.1 ms/track, running in parallel on 16 SPEs of a Cell Blade computer. Running on a Nehalem CPU with 8 cores it shows the processing speed of 52 ns/track using the Intel Threading Building Blocks. The same KF algorithm running on an Nvidia GTX 280 in the CUDA frameworkprovi...
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2
International Nuclear Information System (INIS)
Mandal, Suman; Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid
2016-01-01
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO 2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.
Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 (India); Kundu, Asish K.; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Rioult, Maxime; Belkhou, Rachid [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette (France)
2016-08-29
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Parallel algorithms on the ASTRA SIMD machine
International Nuclear Information System (INIS)
Odor, G.; Rohrbach, F.; Vesztergombi, G.; Varga, G.; Tatrai, F.
1996-01-01
In view of the tremendous computing power jump of modern RISC processors the interest in parallel computing seems to be thinning out. Why use a complicated system of parallel processors, if the problem can be solved by a single powerful micro-chip. It is a general law, however, that exponential growth will always end by some kind of a saturation, and then parallelism will again become a hot topic. We try to prepare ourselves for this eventuality. The MPPC project started in 1990 in the keydeys of parallelism and produced four ASTRA machines (presented at CHEP's 92) with 4k processors (which are expandable to 16k) based on yesterday's chip-technology (chip presented at CHEP'91). These machines now provide excellent test-beds for algorithmic developments in a complete, real environment. We are developing for example fast-pattern recognition algorithms which could be used in high-energy physics experiments at the LHC (planned to be operational after 2004 at CERN) for triggering and data reduction. The basic feature of our ASP (Associate String Processor) approach is to use extremely simple (thus very cheap) processor elements but in huge quantities (up to millions of processors) connected together by a very simple string-like communication chain. In this paper we present powerful algorithms based on this architecture indicating the performance perspectives if the hardware quality reaches present or even future technology levels. (author)
An Improved Triangular Element With Drilling Rotations
DEFF Research Database (Denmark)
Damkilde, Lars; Grønne, Mikael
2002-01-01
by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST...
International Nuclear Information System (INIS)
DeHart, Mark D.; Williams, Mark L.; Bowman, Stephen M.
2010-01-01
The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement
Galvanic element. Galvanisches Element
Energy Technology Data Exchange (ETDEWEB)
Sprengel, D.; Haelbig, H.
1980-01-03
The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.
Low-frequency permittivity of spin-density wave in (TMTSF)_{2}PF_{6} at low temperatures
DEFF Research Database (Denmark)
Nad, F.; Monceau, P.; Bechgaard, K.
1995-01-01
Conductivity and permittivity epsilon of(TMTSF)(2)PF6 have been measured at low frequencies of (10(2)-10(7) Hz) at low temperatures below the spin-density wave (SDW) transition temperature T-p. The temperature dependence of the conductivity shows a deviation from thermally activated behavior at T...
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-12
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
Parallel Polarization State Generation.
She, Alan; Capasso, Federico
2016-05-17
The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.
Parallel imaging microfluidic cytometer.
Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching
2011-01-01
By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. Copyright © 2011 Elsevier Inc. All rights reserved.
Parallel computing solution of Boltzmann neutron transport equation
International Nuclear Information System (INIS)
Ansah-Narh, T.
2010-01-01
The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)
International Nuclear Information System (INIS)
Masukawa, Fumihiro; Takano, Makoto; Naito, Yoshitaka; Yamazaki, Takao; Fujisaki, Masahide; Suzuki, Koichiro; Okuda, Motoi.
1993-11-01
In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)
Demontoux, François; Bircher, Simone; Ruffié, Gilles; Bonnaudiin, Fabrice; Wigneron, Jean-Pierre; Kerr, Yann
2017-04-01
Microwave remote sensing and non-destructive analysis are a powerful way to provide properties estimation of materials. Numerous applications using microwave frequency behavior of materials (remote sensing above land surfaces, non-destructive analysis…) are strongly dependent on the material's permittivity (i.e. dielectric properties). This permittivity depends on numerous parameters such as moisture, texture, temperature, frequency or bulk density. Permittivity measurements are generally carried out in the laboratory. Additionally, dielectric mixing models allow, over a restricted range of conditions, the assessment of a material's permittivity. in-situ measurements are more difficult to obtain. Some in situ measurement probes based on permittivity properties of soil exist (e.g. Time Domain Reflectometers and Transmissometers, capacitance and impedance sensors). They are dedicated to the acquisition of soil moisture data based on permittivity (mainly the real part) estimations over a range of frequencies from around 50 MHz to 1 or 2 GHz. Other Dielectric Assessment Kits exist but they are expensive and they are rather dedicated to laboratory measurements. Furthermore, the user can't address specific issues related to particular materials (e.g. organic soils) or specific measurement conditions (in situ long time records). At the IMS Laboratory we develop probes for in situ soil permittivity measurements (real and imaginary parts) in the 0.5 - 6 GHz frequency range. They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. The probes can be connected to a portable Vector Network Analyzer (VNA, ANRITSU MS2026A) for the S11 coefficient measurements needed to compute permittivity. It is connected to a PC to record data using an USB connection. This measurement set-up is already used for in situ measurement of soil properties in the framework of the European Space Agency's (ESA) SMOS space mission. However
Prosodic structure as a parallel to musical structure
Directory of Open Access Journals (Sweden)
Christopher Cullen Heffner
2015-12-01
Full Text Available What structural properties do language and music share? Although early speculation identified a wide variety of possibilities, the literature has largely focused on the parallels between musical structure and syntactic structure. Here, we argue that parallels between musical structure and prosodic structure deserve more attention. We review the evidence for a link between musical and prosodic structure and find it to be strong. In fact, certain elements of prosodic structure may provide a parsimonious comparison with musical structure without sacrificing empirical findings related to the parallels between language and music. We then develop several predictions related to such a hypothesis.
About Parallel Programming: Paradigms, Parallel Execution and Collaborative Systems
Directory of Open Access Journals (Sweden)
Loredana MOCEAN
2009-01-01
Full Text Available In the last years, there were made efforts for delineation of a stabile and unitary frame, where the problems of logical parallel processing must find solutions at least at the level of imperative languages. The results obtained by now are not at the level of the made efforts. This paper wants to be a little contribution at these efforts. We propose an overview in parallel programming, parallel execution and collaborative systems.
Parallel Framework for Cooperative Processes
Directory of Open Access Journals (Sweden)
Mitică Craus
2005-01-01
Full Text Available This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of related algorithms. The idea behind the system we are describing is to have a re-usable framework for running several sequential algorithms in a parallel environment. The algorithms that the framework can be used with have several things in common: they have to run in cycles and the work should be possible to be split between several "processing units". The parallel framework uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented: an Ant Colony Optimization (ACO parallel algorithm for the Travelling Salesman Problem (TSP and an Image Processing (IP parallel algorithm for the Symmetrical Neighborhood Filter (SNF. The implementations of these applications by means of the parallel framework prove to have good performances: approximatively linear speedup and low communication cost.
Parallel Monte Carlo reactor neutronics
International Nuclear Information System (INIS)
Blomquist, R.N.; Brown, F.B.
1994-01-01
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
DEFF Research Database (Denmark)
Kosbar, Tamer R.; Sofan, Mamdouh A.; Waly, Mohamed A.
2015-01-01
about 6.1 °C when the TFO strand was modified with Z and the Watson-Crick strand with adenine-LNA (AL). The molecular modeling results showed that, in case of nucleobases Y and Z a hydrogen bond (1.69 and 1.72 Å, respectively) was formed between the protonated 3-aminopropyn-1-yl chain and one...... of the phosphate groups in Watson-Crick strand. Also, it was shown that the nucleobase Y made a good stacking and binding with the other nucleobases in the TFO and Watson-Crick duplex, respectively. In contrast, the nucleobase Z with LNA moiety was forced to twist out of plane of Watson-Crick base pair which......The phosphoramidites of DNA monomers of 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine (Y) and 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine LNA (Z) are synthesized, and the thermal stability at pH 7.2 and 8.2 of anti-parallel triplexes modified with these two monomers is determined. When, the anti...
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
A Parallel Particle Swarm Optimizer
National Research Council Canada - National Science Library
Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D
2003-01-01
.... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...
Patterns for Parallel Software Design
Ortega-Arjona, Jorge Luis
2010-01-01
Essential reading to understand patterns for parallel programming Software patterns have revolutionized the way we think about how software is designed, built, and documented, and the design of parallel software requires you to consider other particular design aspects and special skills. From clusters to supercomputers, success heavily depends on the design skills of software developers. Patterns for Parallel Software Design presents a pattern-oriented software architecture approach to parallel software design. This approach is not a design method in the classic sense, but a new way of managin
DEFF Research Database (Denmark)
Christensen, Mark Schram; Ehrsson, H Henrik; Nielsen, Jens Bo
2013-01-01
a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral...... adduction-abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas...
Finite element modeling of piezoelectric elements with complex electrode configuration
International Nuclear Information System (INIS)
Paradies, R; Schläpfer, B
2009-01-01
It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been
Parallel computing by Monte Carlo codes MVP/GMVP
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Nakagawa, Masayuki; Mori, Takamasa
2001-01-01
General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides
Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.
2017-12-01
An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.
Optimising a parallel conjugate gradient solver
Energy Technology Data Exchange (ETDEWEB)
Field, M.R. [O`Reilly Institute, Dublin (Ireland)
1996-12-31
This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.
PARALLEL IMPORT: REALITY FOR RUSSIA
Directory of Open Access Journals (Sweden)
Т. А. Сухопарова
2014-01-01
Full Text Available Problem of parallel import is urgent question at now. Parallel import legalization in Russia is expedient. Such statement based on opposite experts opinion analysis. At the same time it’s necessary to negative consequences consider of this decision and to apply remedies to its minimization.Purchase on Elibrary.ru > Buy now
The Galley Parallel File System
Nieuwejaar, Nils; Kotz, David
1996-01-01
Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.
Parallelization of the FLAPW method
International Nuclear Information System (INIS)
Canning, A.; Mannstadt, W.; Freeman, A.J.
1999-01-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about one hundred atoms due to a lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel computer
Parallelization of the FLAPW method
Canning, A.; Mannstadt, W.; Freeman, A. J.
2000-08-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining structural, electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work, we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel supercomputer.
New Parallel Algorithms for Landscape Evolution Model
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
A multitransputer parallel processing system (MTPPS)
International Nuclear Information System (INIS)
Jethra, A.K.; Pande, S.S.; Borkar, S.P.; Khare, A.N.; Ghodgaonkar, M.D.; Bairi, B.R.
1993-01-01
This report describes the design and implementation of a 16 node Multi Transputer Parallel Processing System(MTPPS) which is a platform for parallel program development. It is a MIMD machine based on message passing paradigm. The basic compute engine is an Inmos Transputer Ims T800-20. Transputer with local memory constitutes the processing element (NODE) of this MIMD architecture. Multiple NODES can be connected to each other in an identifiable network topology through the high speed serial links of the transputer. A Network Configuration Unit (NCU) incorporates the necessary hardware to provide software controlled network configuration. System is modularly expandable and more NODES can be added to the system to achieve the required processing power. The system is backend to the IBM-PC which has been integrated into the system to provide user I/O interface. PC resources are available to the programmer. Interface hardware between the PC and the network of transputers is INMOS compatible. Therefore, all the commercially available development software compatible to INMOS products can run on this system. While giving the details of design and implementation, this report briefly summarises MIMD Architectures, Transputer Architecture and Parallel Processing Software Development issues. LINPACK performance evaluation of the system and solutions of neutron physics and plasma physics problem have been discussed along with results. (author). 12 refs., 22 figs., 3 tabs., 3 appendixes
Xyce parallel electronic simulator : reference guide.
Energy Technology Data Exchange (ETDEWEB)
Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick
2011-05-01
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.
International Nuclear Information System (INIS)
Gregory, A.P.; Blackburn, J.F.; Lees, K.; Clarke, R.N.; Hodgetts, T.E.; Hanham, S.M.; Klein, N.
2016-01-01
In this paper improvements to a Near-Field Scanning Microwave Microscope (NSMM) are presented that allow the loss of high loss dielectric materials to be measured accurately at microwave frequencies. This is demonstrated by measuring polar liquids (loss tangent tanδ≈1) for which traceable data is available. The instrument described uses a wire probe that is electromagnetically coupled to a resonant cavity. An optical beam deflection system is incorporated within the instrument to allow contact mode between samples and the probe tip to be obtained. Liquids are contained in a measurement cell with a window of ultrathin glass. The calibration process for the microscope, which is based on image-charge electrostatic models, has been adapted to use the Laplacian ‘complex frequency’. Measurements of the loss tangent of polar liquids that are consistent with reference data were obtained following calibration against single-crystal specimens that have very low loss. - Highlights: • Design of a microwave microscope with resolution on the micron scale. • Improved theory for obtaining permittivity and loss tangent of high loss materials. • Polar reference liquids are used as test samples. • Traceable measurements with accuracy approximately ±10% in ε′ and ±20% in tan δ.
Energy Technology Data Exchange (ETDEWEB)
Brazovskii, Serguei, E-mail: brazov@lptms.u-psud.fr [LPTMS, UMR8626, CNRS & University Paris-Sud, Bat. 100, Orsay F-91405 (France); International Institute of Physics, 59078-400 Natal, Rio Grande do Norte (Brazil); Monceau, Pierre [CNRS & University Grenoble Alpes, Institute NEEL, F-38042 Grenoble (France); Nad, Felix Ya.
2015-03-01
The quasi one-dimensional organic conductor (TMTTF){sub 2}AsF{sub 6} shows the charge ordering transition at T{sub CO}=101 K to a state of the ferroelectric Mott insulator which is still well conducting. We present and interpret the experimental data on the gigantic dielectric response in the vicinity of T{sub CO}, concentrating on the frequency dependence of the inverse 1/ε of the complex permittivity ε=ε′+iε′′. Surprisingly for a ferroelectric, we could closely approach the 2nd order phase transition and to deeply reach the critical dynamics of the polarization. We could analyze the critical slowing-down when approaching T{sub CO} from both sides and to extract the anomalous power law for the frequency dependence of the order parameter viscosity. Moreover, below T{sub CO} we could extract a sharp absorption feature coming from a motion of domain walls which shows up at a frequency well below the relaxation rate.
Parallel Numerical Simulations of Water Reservoirs
Torres, Pedro; Mangiavacchi, Norberto
2010-11-01
The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2016-01-01
The bulk permittivity of Rogers 4003C substrate is estimated in the lower UHF frequency band by comparing the simulated and measured return loss for a bandpass filter based on a coplanar waveguide and a capacitively loaded loop. The obtained value, which deviates from that specified by Rogers at ...... GHz, is subsequently utilized for accurate design of a new light-weight superdirective first-order probe for spherical near-field (SNF) antenna measurements at low frequencies.......The bulk permittivity of Rogers 4003C substrate is estimated in the lower UHF frequency band by comparing the simulated and measured return loss for a bandpass filter based on a coplanar waveguide and a capacitively loaded loop. The obtained value, which deviates from that specified by Rogers at 10...
Comparing and Optimising Parallel Haskell Implementations for Multicore Machines
DEFF Research Database (Denmark)
Berthold, Jost; Marlow, Simon; Hammond, Kevin
2009-01-01
In this paper, we investigate the differences and tradeoffs imposed by two parallel Haskell dialects running on multicore machines. GpH and Eden are both constructed using the highly-optimising sequential GHC compiler, and share thread scheduling, and other elements, from a common code base. The ...
Approaches for parallel data loading and data querying
Directory of Open Access Journals (Sweden)
Vlad DIACONITA
2015-07-01
Full Text Available This paper aims to bring contributions in data loading and data querying using products from the Apache Hadoop ecosystem. Currently, we talk about Big Data at up to zettabytes scale (10^21 bytes. Research in this area is usually interdisciplinary combining elements from statistics, system integration, parallel processing and cloud computing.
Is Monte Carlo embarrassingly parallel?
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Parallel integer sorting with medium and fine-scale parallelism
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
A development framework for parallel CFD applications: TRIOU project
International Nuclear Information System (INIS)
Calvin, Ch.
2003-01-01
We present in this paper the parallel structure of a thermal-hydraulic framework: Trio-U. This development platform has been designed in order to solve large 3-dimensional structured or unstructured CFD (computational fluid dynamics) problems. The code is intrinsically parallel, and an object-oriented design, UML, is used. The implementation language chosen is C++. All the parallelism management and the communication routines have been encapsulated. Parallel I/O and communication classes over standard I/O streams of C++ have been defined, which allows the developer an easy use of the different modules of the application without dealing with basic parallel process management and communications. Moreover, the encapsulation of the communication routines, guarantees the portability of the application and allows an efficient tuning of basic communication methods in order to achieve the best performances of the target architecture. The speed-up of parallel applications designed using the Trio U framework are very good since we obtained, for instance, on complex turbulent flow Large Eddy Simulation (LES) simulations an efficiency of up to 90% on 20 processors. The efficiencies obtained on direct numerical simulations of two phase flow fluids are similar since the speed-up is nearly equals to 7.5 for a 3-dimensional simulation using a one million element mesh on 8 processors. The purpose of this paper is to focus on the main concepts and their implementation that were the guidelines of the design of the parallel architecture of the code. (author)
Parallel education: what is it?
Amos, Michelle Peta
2017-01-01
In the history of education it has long been discussed that single-sex and coeducation are the two models of education present in schools. With the introduction of parallel schools over the last 15 years, there has been very little research into this 'new model'. Many people do not understand what it means for a school to be parallel or they confuse a parallel model with co-education, due to the presence of both boys and girls within the one institution. Therefore, the main obj...
Balanced, parallel operation of flashlamps
International Nuclear Information System (INIS)
Carder, B.M.; Merritt, B.T.
1979-01-01
A new energy store, the Compensated Pulsed Alternator (CPA), promises to be a cost effective substitute for capacitors to drive flashlamps that pump large Nd:glass lasers. Because the CPA is large and discrete, it will be necessary that it drive many parallel flashlamp circuits, presenting a problem in equal current distribution. Current division to +- 20% between parallel flashlamps has been achieved, but this is marginal for laser pumping. A method is presented here that provides equal current sharing to about 1%, and it includes fused protection against short circuit faults. The method was tested with eight parallel circuits, including both open-circuit and short-circuit fault tests
Energy Technology Data Exchange (ETDEWEB)
Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn
2017-01-01
In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.
Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12
International Nuclear Information System (INIS)
Capsoni, D.; Bini, M.; Massarotti, V.; Chiodelli, G.; Mozzatic, M.C.; Azzoni, C.B.
2004-01-01
The dopant role on the electric and dielectric properties of the perovskite-type CaCu 3 Ti 4 O 12 (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90εr180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at room temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements
International Nuclear Information System (INIS)
Yue, Lei; Qin, Xiaomei; Wu, Xi; Xu, Li; Guo, Yongsheng; Fang, Wenjun
2015-01-01
Highlights: • Binary mixtures of JP-10 with octane isomers are studied as model hydrocarbon fuels. • Density, viscosity, refractive index and relative permittivity are determined. • Excess molar volumes and viscosity deviations are calculated and correlated. - Abstract: The fundamental physical properties including density, viscosity, refractive index and relative permittivity, have been measured for binary mixtures of exo-tetrahydrodicyclopentadiene (JP-10) with four octane isomers (n-octane, 3-methylheptane, 2,4-dimethylhexane and 2,2,4-trimethylpentane) over the whole composition range at temperatures T = (293.15 to 313.15) K and pressure p = 0.1 MPa. The values of excess molar volume (V m E ), viscosity deviation (Δη), refractive index deviation (Δn D ) and relative permittivity deviation (Δε r ) are then calculated. All of the values of V m E and Δη are observed to be negative, while those of Δn D and Δε r are close to zero. The effects of temperature and composition on the variation of V m E values are discussed. The negative values of V m E and Δη are conductive to high-density and low-resistance of fuels, which is favorable for the design and preparation of advanced hydrocarbon fuels
International Nuclear Information System (INIS)
Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan
2017-01-01
In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.
Abdoli-Arani, A.; Ramezani-Arani, R.
2012-11-01
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.
Energy Technology Data Exchange (ETDEWEB)
Sivaramakrishnan, C. K.; Jadhav, A. V.; Reghuraman, K.; Mathew, K. A.; Nair, P. S.; Ramaniah, M. V.
1973-07-01
Research progress is reported on studies of the transplutonium elements including recovery and purification of americium, preparation of /sup 238/Pu, extraction studies using diethylhexyl phosphate. (DHM)
International Nuclear Information System (INIS)
Techaumnat, B; Eua-arporn, B; Takuma, T
2004-01-01
This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios
Workspace Analysis for Parallel Robot
Directory of Open Access Journals (Sweden)
Ying Sun
2013-05-01
Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.
"Feeling" Series and Parallel Resistances.
Morse, Robert A.
1993-01-01
Equipped with drinking straws and stirring straws, a teacher can help students understand how resistances in electric circuits combine in series and in parallel. Follow-up suggestions are provided. (ZWH)
Parallel encoders for pixel detectors
International Nuclear Information System (INIS)
Nikityuk, N.M.
1991-01-01
A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs
Event monitoring of parallel computations
Directory of Open Access Journals (Sweden)
Gruzlikov Alexander M.
2015-06-01
Full Text Available The paper considers the monitoring of parallel computations for detection of abnormal events. It is assumed that computations are organized according to an event model, and monitoring is based on specific test sequences
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
International Nuclear Information System (INIS)
Barletta, A.
2008-01-01
The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a circular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinusoidal function of the azimuthal coordinate θ with period 2π. A π/2 rotation in the position of the maximum heat flux, achieved by setting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the local balance equations are solved numerically by employing a finite element method
Writing parallel programs that work
CERN. Geneva
2012-01-01
Serial algorithms typically run inefficiently on parallel machines. This may sound like an obvious statement, but it is the root cause of why parallel programming is considered to be difficult. The current state of the computer industry is still that almost all programs in existence are serial. This talk will describe the techniques used in the Intel Parallel Studio to provide a developer with the tools necessary to understand the behaviors and limitations of the existing serial programs. Once the limitations are known the developer can refactor the algorithms and reanalyze the resulting programs with the tools in the Intel Parallel Studio to create parallel programs that work. About the speaker Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and was involved in th...
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Parallel algorithms for continuum dynamics
International Nuclear Information System (INIS)
Hicks, D.L.; Liebrock, L.M.
1987-01-01
Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors
DEFF Research Database (Denmark)
Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen
2016-01-01
Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...
Parallelization characteristics of the DeCART code
International Nuclear Information System (INIS)
Cho, J. Y.; Joo, H. G.; Kim, H. Y.; Lee, C. C.; Chang, M. H.; Zee, S. Q.
2003-12-01
domain using MPI. In memory distribution capability, the memory requirement of about 11 GBytes for a simplified SMART core problem is reduced by the factor of about 11 when using 12 processors. Therefore it is concluded that the parallel capability accompanying memory distribution of the DeCART code enables not only to solve a problem efficiently via parallel computing but also to solve huge problems via memory distribution on affordable LINUX clusters, and this parallel execution feature is an important element of DeCART since it increases significantly the practical application of the DeCART code
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-08-12
Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Parallel Implicit Algorithms for CFD
Keyes, David E.
1998-01-01
The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.
Second derivative parallel block backward differentiation type ...
African Journals Online (AJOL)
Second derivative parallel block backward differentiation type formulas for Stiff ODEs. ... Log in or Register to get access to full text downloads. ... and the methods are inherently parallel and can be distributed over parallel processors. They are ...
A Parallel Approach to Fractal Image Compression
Lubomir Dedera
2004-01-01
The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Solving the Flood Propagation Problem with Newton Algorithm on Parallel Systems
Directory of Open Access Journals (Sweden)
Chefi Triki
2012-04-01
Full Text Available In this paper we propose a parallel implementation for the flood propagation method Flo2DH. The model is built on a finite element spatial approximation combined with a Newton algorithm that uses a direct LU linear solver. The parallel implementation has been developed by using the standard MPI protocol and has been tested on a set of real world problems.
An inherently parallel method for solving discretized diffusion equations
International Nuclear Information System (INIS)
Eccleston, B.R.; Palmer, T.S.
1999-01-01
A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems
Parallel fabrication of macroporous scaffolds.
Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal
2018-07-01
Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.
Parallel plasma fluid turbulence calculations
International Nuclear Information System (INIS)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-01-01
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated
Evaluating parallel optimization on transputers
Directory of Open Access Journals (Sweden)
A.G. Chalmers
2003-12-01
Full Text Available The faster processing power of modern computers and the development of efficient algorithms have made it possible for operations researchers to tackle a much wider range of problems than ever before. Further improvements in processing speed can be achieved utilising relatively inexpensive transputers to process components of an algorithm in parallel. The Davidon-Fletcher-Powell method is one of the most successful and widely used optimisation algorithms for unconstrained problems. This paper examines the algorithm and identifies the components that can be processed in parallel. The results of some experiments with these components are presented which indicates under what conditions parallel processing with an inexpensive configuration is likely to be faster than the traditional sequential implementations. The performance of the whole algorithm with its parallel components is then compared with the original sequential algorithm. The implementation serves to illustrate the practicalities of speeding up typical OR algorithms in terms of difficulty, effort and cost. The results give an indication of the savings in time a given parallel implementation can be expected to yield.
Pattern-Driven Automatic Parallelization
Directory of Open Access Journals (Sweden)
Christoph W. Kessler
1996-01-01
Full Text Available This article describes a knowledge-based system for automatic parallelization of a wide class of sequential numerical codes operating on vectors and dense matrices, and for execution on distributed memory message-passing multiprocessors. Its main feature is a fast and powerful pattern recognition tool that locally identifies frequently occurring computations and programming concepts in the source code. This tool also works for dusty deck codes that have been "encrypted" by former machine-specific code transformations. Successful pattern recognition guides sophisticated code transformations including local algorithm replacement such that the parallelized code need not emerge from the sequential program structure by just parallelizing the loops. It allows access to an expert's knowledge on useful parallel algorithms, available machine-specific library routines, and powerful program transformations. The partially restored program semantics also supports local array alignment, distribution, and redistribution, and allows for faster and more exact prediction of the performance of the parallelized target code than is usually possible.
Impact of new computing systems on finite element computations
International Nuclear Information System (INIS)
Noor, A.K.; Fulton, R.E.; Storaasi, O.O.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified
Impedance matching through a single passive fractional element
Radwan, Ahmed Gomaa
2012-07-01
For the first time, a generalized admittance Smith chart theory is introduced to represent fractional order circuit elements. The principles of fractional order matching circuits are described. We show that for fractional order α < 1, a single parallel fractional element can match a wider range of load impedances as compared to its series counterpart. Several matching examples demonstrate the versatility of fractional order series and parallel element matching as compared to the conventional approach. © 2012 IEEE.
An Introduction to Parallelism, Concurrency and Acceleration (1/2)
CERN. Geneva
2016-01-01
Concurrency and parallelism are firm elements of any modern computing infrastructure, made even more prominent by the emergence of accelerators. These lectures offer an introduction to these important concepts. We will begin with a brief refresher of recent hardware offerings to modern-day programmers. We will then open the main discussion with an overview of the laws and practical aspects of scalability. Key parallelism data structures, patterns and algorithms will be shown. The main threats to scalability and mitigation strategies will be discussed in the context of real-life optimization problems.
Algorithms for computational fluid dynamics n parallel processors
International Nuclear Information System (INIS)
Van de Velde, E.F.
1986-01-01
A study of parallel algorithms for the numerical solution of partial differential equations arising in computational fluid dynamics is presented. The actual implementation on parallel processors of shared and nonshared memory design is discussed. The performance of these algorithms is analyzed in terms of machine efficiency, communication time, bottlenecks and software development costs. For elliptic equations, a parallel preconditioned conjugate gradient method is described, which has been used to solve pressure equations discretized with high order finite elements on irregular grids. A parallel full multigrid method and a parallel fast Poisson solver are also presented. Hyperbolic conservation laws were discretized with parallel versions of finite difference methods like the Lax-Wendroff scheme and with the Random Choice method. Techniques are developed for comparing the behavior of an algorithm on different architectures as a function of problem size and local computational effort. Effective use of these advanced architecture machines requires the use of machine dependent programming. It is shown that the portability problems can be minimized by introducing high level operations on vectors and matrices structured into program libraries
International Nuclear Information System (INIS)
Armijo, J.S.
1976-01-01
A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de
Permittivity of polycrystalline material
Czech Academy of Sciences Publication Activity Database
Klíč, Antonín; Rychetský, Ivan
2013-01-01
Roč. 449, č. 1 (2013), s. 154-160 ISSN 0015-0193 R&D Projects: GA ČR GAP204/12/0232 Institutional support: RVO:68378271 Keywords : effective medium * polycrystal Subject RIV: BE - Theoretical Physics Impact factor: 0.383, year: 2013
Parallel artificial liquid membrane extraction
DEFF Research Database (Denmark)
Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine
2013-01-01
This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....
Contact-impact algorithms on parallel computers
International Nuclear Information System (INIS)
Zhong Zhihua; Nilsson, Larsgunnar
1994-01-01
Contact-impact algorithms on parallel computers are discussed within the context of explicit finite element analysis. The algorithms concerned include a contact searching algorithm and an algorithm for contact force calculations. The contact searching algorithm is based on the territory concept of the general HITA algorithm. However, no distinction is made between different contact bodies, or between different contact surfaces. All contact segments from contact boundaries are taken as a single set. Hierarchy territories and contact territories are expanded. A three-dimensional bucket sort algorithm is used to sort contact nodes. The defence node algorithm is used in the calculation of contact forces. Both the contact searching algorithm and the defence node algorithm are implemented on the connection machine CM-200. The performance of the algorithms is examined under different circumstances, and numerical results are presented. ((orig.))
Parallel algorithms for mapping pipelined and parallel computations
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
Cellular automata a parallel model
Mazoyer, J
1999-01-01
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
Kjellander, Roland
2018-05-01
A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.
Parallel Sparse Matrix - Vector Product
DEFF Research Database (Denmark)
Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd
This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...
[Falsified medicines in parallel trade].
Muckenfuß, Heide
2017-11-01
The number of falsified medicines on the German market has distinctly increased over the past few years. In particular, stolen pharmaceutical products, a form of falsified medicines, have increasingly been introduced into the legal supply chain via parallel trading. The reasons why parallel trading serves as a gateway for falsified medicines are most likely the complex supply chains and routes of transport. It is hardly possible for national authorities to trace the history of a medicinal product that was bought and sold by several intermediaries in different EU member states. In addition, the heterogeneous outward appearance of imported and relabelled pharmaceutical products facilitates the introduction of illegal products onto the market. Official batch release at the Paul-Ehrlich-Institut offers the possibility of checking some aspects that might provide an indication of a falsified medicine. In some circumstances, this may allow the identification of falsified medicines before they come onto the German market. However, this control is only possible for biomedicinal products that have not received a waiver regarding official batch release. For improved control of parallel trade, better networking among the EU member states would be beneficial. European-wide regulations, e. g., for disclosure of the complete supply chain, would help to minimise the risks of parallel trading and hinder the marketing of falsified medicines.
The parallel adult education system
DEFF Research Database (Denmark)
Wahlgren, Bjarne
2015-01-01
for competence development. The Danish university educational system includes two parallel programs: a traditional academic track (candidatus) and an alternative practice-based track (master). The practice-based program was established in 2001 and organized as part time. The total program takes half the time...
Where are the parallel algorithms?
Voigt, R. G.
1985-01-01
Four paradigms that can be useful in developing parallel algorithms are discussed. These include computational complexity analysis, changing the order of computation, asynchronous computation, and divide and conquer. Each is illustrated with an example from scientific computation, and it is shown that computational complexity must be used with great care or an inefficient algorithm may be selected.
Parallel imaging with phase scrambling.
Zaitsev, Maxim; Schultz, Gerrit; Hennig, Juergen; Gruetter, Rolf; Gallichan, Daniel
2015-04-01
Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. © 2014 Wiley Periodicals, Inc.
Default Parallels Plesk Panel Page
services that small businesses want and need. Our software includes key building blocks of cloud service virtualized servers Service Provider Products ParallelsÂ® Automation Hosting, SaaS, and cloud computing , the leading hosting automation software. You see this page because there is no Web site at this
Parallel plate transmission line transformer
Voeten, S.J.; Brussaard, G.J.H.; Pemen, A.J.M.
2011-01-01
A Transmission Line Transformer (TLT) can be used to transform high-voltage nanosecond pulses. These transformers rely on the fact that the length of the pulse is shorter than the transmission lines used. This allows connecting the transmission lines in parallel at the input and in series at the
Matpar: Parallel Extensions for MATLAB
Springer, P. L.
1998-01-01
Matpar is a set of client/server software that allows a MATLAB user to take advantage of a parallel computer for very large problems. The user can replace calls to certain built-in MATLAB functions with calls to Matpar functions.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Directory of Open Access Journals (Sweden)
S.I. Sorokov
2010-01-01
Full Text Available The cluster pseudospin model of proton glasses, which takes into account the energy levels of protons around the PO4 group, the long-range interactions between the hydrogen bonds, and an internal random deformational field is used to investigate thermodynamical characteristics, longitudinal and transverse dielectric permittivities of Rb1-x(ND4xD2PO4 and Rb1-x(NH4xH2AsO4 compounds. A review of experimental and theoretical works on the Rb1-x(NH4xH2PO4 type crystals is presented.
Tani, Laurits
2015-01-01
To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.
Parallel computing: numerics, applications, and trends
National Research Council Canada - National Science Library
Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter
2009-01-01
... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...
Experiments with parallel algorithms for combinatorial problems
G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens
1985-01-01
textabstractIn the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines
International Nuclear Information System (INIS)
Heggarty, J.W.
1999-06-01
For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in
Parallel iterative solvers and preconditioners using approximate hierarchical methods
Energy Technology Data Exchange (ETDEWEB)
Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.
The numerical parallel computing of photon transport
International Nuclear Information System (INIS)
Huang Qingnan; Liang Xiaoguang; Zhang Lifa
1998-12-01
The parallel computing of photon transport is investigated, the parallel algorithm and the parallelization of programs on parallel computers both with shared memory and with distributed memory are discussed. By analyzing the inherent law of the mathematics and physics model of photon transport according to the structure feature of parallel computers, using the strategy of 'to divide and conquer', adjusting the algorithm structure of the program, dissolving the data relationship, finding parallel liable ingredients and creating large grain parallel subtasks, the sequential computing of photon transport into is efficiently transformed into parallel and vector computing. The program was run on various HP parallel computers such as the HY-1 (PVP), the Challenge (SMP) and the YH-3 (MPP) and very good parallel speedup has been gotten
A parallel algorithm for transient solid dynamics simulations with contact detection
International Nuclear Information System (INIS)
Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.
1996-01-01
Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations
International Nuclear Information System (INIS)
Kennedy, S.T.
1982-01-01
A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)
International Nuclear Information System (INIS)
Hemingway, J.D.
1975-01-01
The review is covered in sections, entitled: predicted nuclear properties - including closed shells, decay characteristics; predicted chemical properties - including electronic structure and calculated properties, X-radiation, extrapolated chemical properties, separation chemistry; methods of synthesis; the natural occurrence of superheavy elements. (U.K.)
Sequential and parallel image restoration: neural network implementations.
Figueiredo, M T; Leitao, J N
1994-01-01
Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented.
Parallel Auxiliary Space AMG Solver for $H(div)$ Problems
Energy Technology Data Exchange (ETDEWEB)
Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-12-18
We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.
Parallel algorithms for computation of the manipulator inertia matrix
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Automatic Parallelization Tool: Classification of Program Code for Parallel Computing
Directory of Open Access Journals (Sweden)
Mustafa Basthikodi
2016-04-01
Full Text Available Performance growth of single-core processors has come to a halt in the past decade, but was re-enabled by the introduction of parallelism in processors. Multicore frameworks along with Graphical Processing Units empowered to enhance parallelism broadly. Couples of compilers are updated to developing challenges forsynchronization and threading issues. Appropriate program and algorithm classifications will have advantage to a great extent to the group of software engineers to get opportunities for effective parallelization. In present work we investigated current species for classification of algorithms, in that related work on classification is discussed along with the comparison of issues that challenges the classification. The set of algorithms are chosen which matches the structure with different issues and perform given task. We have tested these algorithms utilizing existing automatic species extraction toolsalong with Bones compiler. We have added functionalities to existing tool, providing a more detailed characterization. The contributions of our work include support for pointer arithmetic, conditional and incremental statements, user defined types, constants and mathematical functions. With this, we can retain significant data which is not captured by original speciesof algorithms. We executed new theories into the device, empowering automatic characterization of program code.
A two-level parallel direct search implementation for arbitrarily sized objective functions
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, S.A.; Shadid, N.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1994-12-31
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
A PARALLEL NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR STOKES PROBLEMS
Institute of Scientific and Technical Information of China (English)
Mei-qun Jiang; Pei-liang Dai
2006-01-01
A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in RN(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.
Parallel algorithms and archtectures for computational structural mechanics
Patrick, Merrell; Ma, Shing; Mahajan, Umesh
1989-01-01
The determination of the fundamental (lowest) natural vibration frequencies and associated mode shapes is a key step used to uncover and correct potential failures or problem areas in most complex structures. However, the computation time taken by finite element codes to evaluate these natural frequencies is significant, often the most computationally intensive part of structural analysis calculations. There is continuing need to reduce this computation time. This study addresses this need by developing methods for parallel computation.
Eddy current testing probe optimization using a parallel genetic algorithm
Directory of Open Access Journals (Sweden)
Dolapchiev Ivaylo
2008-01-01
Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.
Connectionist Models and Parallelism in High Level Vision.
1985-01-01
GRANT NUMBER(s) Jerome A. Feldman N00014-82-K-0193 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENt. PROJECT, TASK Computer Science...Connectionist Models 2.1 Background and Overviev % Computer science is just beginning to look seriously at parallel computation : it may turn out that...the chair. The program includes intermediate level networks that compute more complex joints and ones that compute parallelograms in the image. These
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
Parallel computing for homogeneous diffusion and transport equations in neutronics
International Nuclear Information System (INIS)
Pinchedez, K.
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Directory of Open Access Journals (Sweden)
Christopher Ian Wright
2015-09-01
Full Text Available This article describes a series of experiments to assess the performance and suitability of a permittivity sensor in the area of heat transfer. The permittivity sensor measures condition index and temperature of a fluid. A series of 5 experiments was conducted. They assessed the reproducibility of the sensor using both clean and dirty fluid samples, and showed the sensor had good reproducibility based on calculations of coefficients of variation. The sensor also detected water contamination, assessed from construction of a stimulus-response curve to step-wise increases in water and from real-life samples where water content was reported to be out of specification. Further experiments tested the association between condition index and both water content and fluid cleanliness in a real-life setting. Results demonstrated the sensor that condition index reflected changes in fluid water and cleanliness and was therefore a measure of fluid condition. The implication of these findings is that the sensor can be used to make rapid and reliable assessments of fluid condition using only small samples (i.e., <50 ml. The sensor may be of benefit to customers that need to make a lot of regular samples over a large processing site, such as concentrated solar power plants.
Energy Technology Data Exchange (ETDEWEB)
Aepuru, Radhamanohar [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Bhaskara Rao, B.V.; Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025 (India); Panda, H.S., E-mail: himanshusp@diat.ac.in [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)
2015-11-01
Flower like radial zinc oxide (RZnO) was prepared by using a facile solvothermal method and used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. Structural informations of the samples are analyzed by X-ray diffraction and correlated with high resolution transmission electron microscopy along with high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). For the first time, stability studies are carried out by solvent relaxation nuclear magnetic resonance experiments. Dielectric studies of the PVDF and PVDF-RZnO nanocomposites are reported over the wide range of frequency (0.01 Hz–1 MHz) and temperature (25–90 °C). Dielectric property of the PVDF-RZnO nanocomposites was significantly improved wrt filler percentage in PVDF. Unique negative permittivity was observed in the composites having higher filler content (>40 wt%) typically at low frequencies. First time, it is observed that the higher RZnO content in PVDF results the formation of pseudo conducting network and hence improved the electromagnetic shielding efficiency (85%) than PVDF and PVDF-commercial ZnO composites. - Highlights: • Radial ZnO-PVDF nanocomposites were fabricated by using solution casting. • Pseudo conducting network is confirmed through cryo-fracture morphology study. • Stability study of the nano fillers was performed in the polymer matrix. • Unique negative permittivity behavior of the nanocomposites was observed. • EMI shielding property of the radial ZnO-PVDF nanocomposites was performed.
Energy Technology Data Exchange (ETDEWEB)
Carvalho, N. C., E-mail: natalia.docarmocarvalho@research.uwa.edu.au; Le Floch, J-M.; Tobar, M. E. [School of Physics, The University of Western Australia, Crawley 6009 (Australia); ARC Centre of Excellence for Engineered Quantum Systems (EQuS), 35 Stirling Hwy, Crawley 6009 (Australia); Krupka, J. [Instytut Mikroelektroniki i Optoelektroniki PW, Koszykowa 75, 00-662 Warsaw (Poland)
2015-05-11
The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.
Structural synthesis of parallel robots
Gogu, Grigore
This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators. This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1. Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...
GPU Parallel Bundle Block Adjustment
Directory of Open Access Journals (Sweden)
ZHENG Maoteng
2017-09-01
Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.
Parallel processing at the SSC: The fact and the fiction
International Nuclear Information System (INIS)
Bourianoff, G.; Cole, B.
1991-10-01
Accurately modelling the behavior of particles circulating in accelerators is a computationally demanding task. The particle tracking code currently in use at SSC is based upon a ''thin element'' analysis (TEAPOT). In this model each magnet in the lattice is described by a thin element at which the particle experiences an impulsive kick. Each kick requires approximately 200 floating point operations (''FLOP''). For the SSC collider lattice consisting of 10 4 elements, performing a tracking of study for a set of 100 particles for 10 7 turns would require 2 x 10 15 FLOPS. Even on a machine capable of 100 MFLOP/sec (MFLOPS), this would require 2 x 10 7 seconds, and many such runs are necessary. It should be noted that the accuracy with which the kicks are to be calculated is important: the large number of iterations involved will magnify the effects of small errors. The inability of current computational resources to effectively perform the full calculation motivates the migration of this calculation to the most powerful computers available. A survey of the current research into new technologies for superconducting reveals that the supercomputers of the future will be parallel in nature. Further, numerous such machines exist today, and are being used to solve other difficult problems. Thus it seems clear that it is not early to begin developing the capability to develop tracking codes for parallel architectures. This report discusses implementing parallel processing on the SCC
Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB
Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.
2017-01-01
Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.
A tandem parallel plate analyzer
International Nuclear Information System (INIS)
Hamada, Y.; Fujisawa, A.; Iguchi, H.; Nishizawa, A.; Kawasumi, Y.
1996-11-01
By a new modification of a parallel plate analyzer the second-order focus is obtained in an arbitrary injection angle. This kind of an analyzer with a small injection angle will have an advantage of small operational voltage, compared to the Proca and Green analyzer where the injection angle is 30 degrees. Thus, the newly proposed analyzer will be very useful for the precise energy measurement of high energy particles in MeV range. (author)
International Nuclear Information System (INIS)
Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.
1985-01-01
This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec
An anthropologist in parallel structure
Directory of Open Access Journals (Sweden)
Noelle Molé Liston
2016-08-01
Full Text Available The essay examines the parallels between Molé Liston’s studies on labor and precarity in Italy and the United States’ anthropology job market. Probing the way economic shift reshaped the field of anthropology of Europe in the late 2000s, the piece explores how the neoliberalization of the American academy increased the value in studying the hardships and daily lives of non-western populations in Europe.
Combinatorics of spreads and parallelisms
Johnson, Norman
2010-01-01
Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,
New algorithms for parallel MRI
International Nuclear Information System (INIS)
Anzengruber, S; Ramlau, R; Bauer, F; Leitao, A
2008-01-01
Magnetic Resonance Imaging with parallel data acquisition requires algorithms for reconstructing the patient's image from a small number of measured lines of the Fourier domain (k-space). In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we consider the problem as a non-linear inverse problem. However, in order to avoid cost intensive derivatives we will use Landweber-Kaczmarz iteration and in order to improve the overall results some additional sparsity constraints.
Wakefield calculations on parallel computers
International Nuclear Information System (INIS)
Schoessow, P.
1990-01-01
The use of parallelism in the solution of wakefield problems is illustrated for two different computer architectures (SIMD and MIMD). Results are given for finite difference codes which have been implemented on a Connection Machine and an Alliant FX/8 and which are used to compute wakefields in dielectric loaded structures. Benchmarks on code performance are presented for both cases. 4 refs., 3 figs., 2 tabs
Use of massively parallel computing to improve modelling accuracy within the nuclear sector
Directory of Open Access Journals (Sweden)
L M Evans
2016-06-01
This work presents recent advancements in three techniques: Uncertainty quantification (UQ; Cellular automata finite element (CAFE; Image based finite element methods (IBFEM. Case studies are presented demonstrating their suitability for use in nuclear engineering made possible by advancements in parallel computing hardware that is projected to be available for industry within the next decade costing of the order of $100k.
Aspects of computation on asynchronous parallel processors
International Nuclear Information System (INIS)
Wright, M.
1989-01-01
The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues
Parallel processing of genomics data
Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario
2016-10-01
The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.
International Nuclear Information System (INIS)
Flerov, G.
1976-01-01
The history is briefly described of the investigation of superheavy elements at the Joint Institute for Nuclear Research at Dubna. The significance of the investigation is assessed from the point of view of the nuclear structure study and major problems encountered in experimental efforts are indicated. Current experimental methods aiming at the discovery or the production of superheavy nuclei with Z approximately 114 are listed. (I.W.)
Three-dimensional magnetic field computation on a distributed memory parallel processor
International Nuclear Information System (INIS)
Barion, M.L.
1990-01-01
The analysis of three-dimensional magnetic fields by finite element methods frequently proves too onerous a task for the computing resource on which it is attempted. When non-linear and transient effects are included, it may become impossible to calculate the field distribution to sufficient resolution. One approach to this problem is to exploit the natural parallelism in the finite element method via parallel processing. This paper reports on an implementation of a finite element code for non-linear three-dimensional low-frequency magnetic field calculation on Intel's iPSC/2
Effect of a magnetic field on the permittivity of 80%La0.7Sr0.3MnO3/20%GeO2 composite
Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.; Sitalo, E. I.; Yatsenko, V. K.
2018-01-01
The dielectric properties of a magnetoresistive conducting two-phase 80%La0.7Sr0.3MnO3/20%GeO2 (wt %) composite have been studied near the percolation threshold in magnetic fields from 0 to 15 kOe at frequencies of the measurement field from 5 kHz to 1 MHz. The samples have inductive impedances; i.e., their permittivities can be considered negative due to a high conductivity in this frequency range. The permittivity increases in magnitude in magnetic field, and the values of the magnetodielectric coefficient reach 23% at room temperature. The reasons for the effect of magnetic field on the dielectric permittivity of samples are discussed.
Parallel multiscale simulations of a brain aneurysm
Energy Technology Data Exchange (ETDEWEB)
Grinberg, Leopold [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich 52425 (Germany); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2013-07-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in
Parallel multiscale simulations of a brain aneurysm
International Nuclear Information System (INIS)
Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em
2013-01-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in
International Nuclear Information System (INIS)
Abbott, T.I.; Jones, C.G.
1984-01-01
Radiographic elements are disclosed comprised of first and second silver halide emulsion layers separated by an interposed support capable of transmitting radiation to which the second image portion is responsive. At least the first imaging portion contains a silver halide emulsion in which thin tubular silver halide grains of intermediate aspect ratios (from 5:1 to 8:1) are present. Spectral sensitizing dye is adsorbed to the surface of the tubular grains. Increased photographic speeds can be realized at comparable levels of crossover. (author)
Overview of the Force Scientific Parallel Language
Directory of Open Access Journals (Sweden)
Gita Alaghband
1994-01-01
Full Text Available The Force parallel programming language designed for large-scale shared-memory multiprocessors is presented. The language provides a number of parallel constructs as extensions to the ordinary Fortran language and is implemented as a two-level macro preprocessor to support portability across shared memory multiprocessors. The global parallelism model on which the Force is based provides a powerful parallel language. The parallel constructs, generic synchronization, and freedom from process management supported by the Force has resulted in structured parallel programs that are ported to the many multiprocessors on which the Force is implemented. Two new parallel constructs for looping and functional decomposition are discussed. Several programming examples to illustrate some parallel programming approaches using the Force are also presented.
Automatic Loop Parallelization via Compiler Guided Refactoring
DEFF Research Database (Denmark)
Larsen, Per; Ladelsky, Razya; Lidman, Jacob
For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...
Parallel kinematics type, kinematics, and optimal design
Liu, Xin-Jun
2014-01-01
Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others. This book is intended for researchers, scientists, engineers and postgraduates or above with interes...
Applied Parallel Computing Industrial Computation and Optimization
DEFF Research Database (Denmark)
Madsen, Kaj; NA NA NA Olesen, Dorte
Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...
Parallelization of pressure equation solver for incompressible N-S equations
International Nuclear Information System (INIS)
Ichihara, Kiyoshi; Yokokawa, Mitsuo; Kaburaki, Hideo.
1996-03-01
A pressure equation solver in a code for 3-dimensional incompressible flow analysis has been parallelized by using red-black SOR method and PCG method on Fujitsu VPP500, a vector parallel computer with distributed memory. For the comparison of scalability, the solver using the red-black SOR method has been also parallelized on the Intel Paragon, a scalar parallel computer with a distributed memory. The scalability of the red-black SOR method on both VPP500 and Paragon was lost, when number of processor elements was increased. The reason of non-scalability on both systems is increasing communication time between processor elements. In addition, the parallelization by DO-loop division makes the vectorizing efficiency lower on VPP500. For an effective implementation on VPP500, a large scale problem which holds very long vectorized DO-loops in the parallel program should be solved. PCG method with red-black SOR method applied to incomplete LU factorization (red-black PCG) has more iteration steps than normal PCG method with forward and backward substitution, in spite of same number of the floating point operations in a DO-loop of incomplete LU factorization. The parallelized red-black PCG method has less merits than the parallelized red-black SOR method when the computational region has fewer grids, because the low vectorization efficiency is obtained in red-black PCG method. (author)
Parallel algorithms and cluster computing
Hoffmann, Karl Heinz
2007-01-01
This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...
Hofmann, S
1999-01-01
The outstanding aim of experimental investigations of heavy nuclei is the exploration of spherical 'SuperHeavy Elements' (SHEs). On the basis of the nuclear shell model, the next double magic shell-closure beyond sup 2 sup 0 sup 8 Pb is predicted at proton numbers between Z=114 and 126 and at neutron number N=184. All experimental efforts aiming at identifying SHEs (Z>=114) were negative so far. A highly sensitive search experiment was performed in November-December 1995 at SHIP. The isotope sup 2 sup 9 sup 0 116 produced by 'radiative capture' was searched for in the course of a 33 days irradiation of a sup 2 sup 0 sup 8 Pb target with sup 8 sup 2 Se projectiles, however, only cross-section limits were measured. Positive results were obtained in experiments searching for elements from 110 to 112 using cold fusion and the 1n evaporation channel. The produced isotopes were unambiguously identified by means of alpha-alpha correlations. Not fission, but alpha emission is the dominant decay mode. The measurement ...
The parallel volume at large distances
DEFF Research Database (Denmark)
Kampf, Jürgen
In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to . This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....
The parallel volume at large distances
DEFF Research Database (Denmark)
Kampf, Jürgen
In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to 0. This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....
A Parallel Approach to Fractal Image Compression
Directory of Open Access Journals (Sweden)
Lubomir Dedera
2004-01-01
Full Text Available The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.