WorldWideScience

Sample records for parallel kinematic machine

  1. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  2. A self-calibrating robot based upon a virtual machine model of parallel kinematics

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Eiríksson, Eyþór Rúnar; Hansen, Hans Nørgaard

    2016-01-01

    A delta-type parallel kinematics system for Additive Manufacturing has been created, which through a probing system can recognise its geometrical deviations from nominal and compensate for these in the driving inverse kinematic model of the machine. Novelty is that this model is derived from...... a virtual machine of the kinematics system, built on principles from geometrical metrology. Relevant mathematically non-trivial deviations to the ideal machine are identified and decomposed into elemental deviations. From these deviations, a routine is added to a physical machine tool, which allows...

  3. Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links

    Science.gov (United States)

    Wang, Liping; Jiang, Yao; Li, Tiemin

    2014-09-01

    Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.

  4. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, Pekka [Lappeenranta University of Technology, Lappeenranta (Finland)], E-mail: pessi@lut.fi; Wu, Huapeng; Handroos, Heikki [Lappeenranta University of Technology, Lappeenranta (Finland); Jones, Lawrence [EFDA Close Support Unit, Boltzmannstrasse 2, Garching D-85748 (Germany)

    2007-10-15

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  5. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, Pekka; Wu, Huapeng; Handroos, Heikki; Jones, Lawrence

    2007-01-01

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  6. A Model of Parallel Kinematics for Machine Calibration

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Bæk Nielsen, Morten; Kløve Christensen, Simon

    2016-01-01

    Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components for cons......Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components...

  7. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  8. Optimizing the way kinematical feed chains with great distance between slides are chosen for CNC machine tools

    Science.gov (United States)

    Lucian, P.; Gheorghe, S.

    2017-08-01

    This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.

  9. Kinematics analysis of a novel planar parallel manipulator with kinematic redundancy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haibo; Guo, Sheng [Beijing Jiaotong University, Beijing (China)

    2017-04-15

    In this paper, a novel planar parallel manipulator with kinematic redundancy is proposed. First, the Degrees of freedom (DOF) of the whole parallel manipulator and the Relative DOF (RDOF) between the moving platform and fixed base are studied. The results indicate that the proposed mechanism is kinematically redundant. Then, the kinematics, Jacobian matrices and workspace of this proposed parallel manipulator with kinematic redundancy are analyzed. Finally, the statics simulation of the proposed parallel manipulator is performed. The obtained stress and displacement distribution can be used to determine the easily destroyed place in the mechanism configurations.

  10. Kinematics analysis of a novel planar parallel manipulator with kinematic redundancy

    International Nuclear Information System (INIS)

    Qu, Haibo; Guo, Sheng

    2017-01-01

    In this paper, a novel planar parallel manipulator with kinematic redundancy is proposed. First, the Degrees of freedom (DOF) of the whole parallel manipulator and the Relative DOF (RDOF) between the moving platform and fixed base are studied. The results indicate that the proposed mechanism is kinematically redundant. Then, the kinematics, Jacobian matrices and workspace of this proposed parallel manipulator with kinematic redundancy are analyzed. Finally, the statics simulation of the proposed parallel manipulator is performed. The obtained stress and displacement distribution can be used to determine the easily destroyed place in the mechanism configurations

  11. A mobile robot with parallel kinematics constructed under requirements for assembling and machining of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, P.; Huapeng Wu; Handroos, H.; Jones, L.

    2006-01-01

    ITER sectors require more stringent tolerances ± 5 mm than normally expected for the size of structure involved. The walls of ITER sectors are made of 60 mm thick stainless steel and are joined together by high efficiency structural and leak tight welds. In addition to the initial vacuum vessel assembly, sectors may have to be replaced for repair. Since commercially available machines are too heavy for the required machining operations and the lifting of a possible e-beam gun column system, and conventional robots lack the stiffness and accuracy in such machining condition, a new flexible, lightweight and mobile robotic machine is being considered. For the assembly of the ITER vacuum vessel sector, precise positioning of welding end-effectors, at some distance in a confined space from the available supports, will be required, which is not possible using conventional machines or robots. This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel, consisting of a ten-degree-of-freedom parallel robot mounted on a carriage driven by electric motor/gearbox on a track. The robot consists of a Stewart platform based parallel mechanism. Water hydraulic cylinders are used as actuators to reach six degrees of freedom for parallel construction. Two linear and two rotational motions are used for enlargement the workspace of the manipulator. The robot carries both welding gun such as a TIG, hybrid laser or e-beam welding gun to weld the inner and outer walls of the ITER vacuum vessel sectors and machining tools to cut and milling the walls with necessary accuracy, it can also carry other tools and material to a required position inside the vacuum vessel . For assembling an on line six degrees of freedom seam finding algorithm has been developed, which enables the robot to find welding seam automatically in a very complex environment. In the machining multi flexible machining processes carried out automatically by

  12. Design and test of a parallel kinematic solar tracker

    Directory of Open Access Journals (Sweden)

    Stefano Mauro

    2015-12-01

    Full Text Available This article proposes a parallel kinematic solar tracker designed for driving high-concentration photovoltaic modules. This kind of module produces energy only if they are oriented with misalignment errors lower than 0.4°. Generally, a parallel kinematic structure provides high stiffness and precision in positioning, so these features make this mechanism fit for the purpose. This article describes the work carried out to design a suitable parallel machine: an already existing architecture was chosen, and the geometrical parameters of the system were defined in order to obtain a workspace consistent with the requirements for sun tracking. Besides, an analysis of the singularities of the system was carried out. The method used for the singularity analysis revealed the existence of singularities which had not been previously identified for this kind of mechanism. From the analysis of the mechanism developed, very low nominal energy consumption and elevated stiffness were found. A small-scale prototype of the system was constructed for the first time. A control algorithm was also developed, implemented, and tested. Finally, experimental tests were carried out in order to verify the capability of the system of ensuring precise pointing. The tests have been considered passed as the system showed an orientation error lower than 0.4° during sun tracking.

  13. Hardware and software and machine-tool simulation with parallel structures mechanisms

    Directory of Open Access Journals (Sweden)

    Keba P.V.

    2016-12-01

    Full Text Available The usage spectrum of mechanisms with parallel structure is spreading all the time. The mechanisms of machine-tools and manipulators become more complicated and it is necessary to improve the program-controlled modules. Closed circuit mechanisms are mostly spread in robotic complexes, where manipulator performs complicated spatial movements by the given trajectory. The usage spectrum is very wide and the most popular are sorting, welding, assembling and others. However, the problem of designing the operating programs is still present even today. It is just because the developed post-processors are created for the equipment that we have for now. But new machine tool constructions appear every day and there is a necessity to control them. The problems associated with using of hardware and software of mechanisms with parallel structure in computer-aided simulation are considered. The program for inverse problem kinematics solving is designed. New method of designing the control programs is found. The kinematic analysis methods options and calculated data obtained by computer mathematics systems are shown with «Tools Glide» software taken as an example.

  14. Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine

    Science.gov (United States)

    Lee, C. S. G.; Lin, C. T.

    1989-01-01

    The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.

  15. Research on a Novel Parallel Engraving Machine and its Key Technologies

    Directory of Open Access Journals (Sweden)

    Zhang Shi-hui

    2008-11-01

    Full Text Available In order to compensate the disadvantages of conventional engraving machine and exert the advantages of parallel mechanism, a novel parallel engraving machine is presented and some key technologies are studied in this paper. Mechanism performances are analyzed in terms of the first and the second order influence coefficient matrix firstly. So the sizes of mechanism, which are better for all the performance indices of both kinematics and dynamics, can be confirmed and the restriction due to considering only the first order influence coefficient matrix in the past is broken through. Therefore, the theory basis for designing the mechanism size of novel engraving machine with better performances is provided. In addition, method for tool path planning and control technology for engraving force is also studied in the paper. The proposed algorithm for tool path planning on curved surface can be applied to arbitrary spacial curved surface in theory, control technology for engraving force based on fuzzy neural network(FNN has well adaptability to the changing environment. Research on teleoperation for parallel engraving machine based on B/S architecture resolves the key problems such as control mode, sharing mechanism for multiuser, real-time control for engraving job and real-time transmission for video information. Simulation results further show the feasibility and validity of the proposed methods.

  16. Research on a Novel Parallel Engraving Machine and its Key Technologies

    Directory of Open Access Journals (Sweden)

    Kong Ling-fu

    2004-12-01

    Full Text Available In order to compensate the disadvantages of conventional engraving machine and exert the advantages of parallel mechanism, a novel parallel engraving machine is presented and some key technologies are studied in this paper. Mechanism performances are analyzed in terms of the first and the second order influence coefficient matrix firstly. So the sizes of mechanism, which are better for all the performance indices of both kinematics and dynamics, can be confirmed and the restriction due to considering only the first order influence coefficient matrix in the past is broken through. Therefore, the theory basis for designing the mechanism size of novel engraving machine with better performances is provided. In addition, method for tool path planning and control technology for engraving force is also studied in the paper. The proposed algorithm for tool path planning on curved surface can be applied to arbitrary spacial curved surface in theory, control technology for engraving force based on fuzzy neural network(FNN has well adaptability to the changing environment. Research on teleoperation for parallel engraving machine based on B/S architecture resolves the key problems such as control mode, sharing mechanism for multiuser, real-time control for engraving job and real-time transmission for video information. Simulation results further show the feasibility and validity of the proposed methods.

  17. Numerical kinematic transformation calculations for a parallel link manipulator

    International Nuclear Information System (INIS)

    Killough, S.M.

    1993-01-01

    Parallel link manipulators are often considered for particular robotic applications because of the unique advantages they provide. Unfortunately, they have significant disadvantages with respect to calculating the kinematic transformations because of the high-order equations that must be solved. Presented is a manipulator design that exploits the mechanical advantages of parallel links yet also has a corresponding numerical kinematic solution that can be solved in real time on common microcomputers

  18. A general approach for optimal kinematic design of 6-DOF parallel ...

    Indian Academy of Sciences (India)

    Optimal kinematic design of parallel manipulators is a challenging problem. In this work, an attempt has been made to present a generalized approach of kinematic design for a 6-legged parallel manipulator, by considering only the minimally required design parameters. The same approach has been used to design a ...

  19. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng [Yanshan University, Hebei (China)

    2015-10-15

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  20. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    International Nuclear Information System (INIS)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng

    2015-01-01

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  1. The convergence of parallel Boltzmann machines

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.; Eckmiller, R.; Hartmann, G.; Hauske, G.

    1990-01-01

    We discuss the main results obtained in a study of a mathematical model of synchronously parallel Boltzmann machines. We present supporting evidence for the conjecture that a synchronously parallel Boltzmann machine maximizes a consensus function that consists of a weighted sum of the regular

  2. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing [Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei (China)

    2016-11-15

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.

  3. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    International Nuclear Information System (INIS)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing

    2016-01-01

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed

  4. Parallel Boltzmann machines : a mathematical model

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.

    1991-01-01

    A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a

  5. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  6. Pa2 kinematic bond in translational parallel manipulators

    Directory of Open Access Journals (Sweden)

    A. Hernández

    2018-01-01

    Full Text Available The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers. However, its practical application is very limited. One of the reasons for this can be the high number of redundant constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3 − P Pa2 parallel manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct and inverse kinematics, singularity study, and workspace computation and assessment.

  7. Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism

    Science.gov (United States)

    Balaji, K.; Khan, B. Shahul Hamid

    2018-02-01

    In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.

  8. Kinematic Identification of Parallel Mechanisms by a Divide and Conquer Strategy

    DEFF Research Database (Denmark)

    Durango, Sebastian; Restrepo, David; Ruiz, Oscar

    2010-01-01

    using the inverse calibration method. The identification poses are selected optimizing the observability of the kinematic parameters from a Jacobian identification matrix. With respect to traditional identification methods the main advantages of the proposed Divide and Conquer kinematic identification...... strategy are: (i) reduction of the kinematic identification computational costs, (ii) improvement of the numerical efficiency of the kinematic identification algorithm and, (iii) improvement of the kinematic identification results. The contributions of the paper are: (i) The formalization of the inverse...... calibration method as the Divide and Conquer strategy for the kinematic identification of parallel symmetrical mechanisms and, (ii) a new kinematic identification protocol based on the Divide and Conquer strategy. As an application of the proposed kinematic identification protocol the identification...

  9. Parallel Task Processing on a Multicore Platform in a PC-based Control System for Parallel Kinematics

    Directory of Open Access Journals (Sweden)

    Harald Michalik

    2009-02-01

    Full Text Available Multicore platforms are such that have one physical processor chip with multiple cores interconnected via a chip level bus. Because they deliver a greater computing power through concurrency, offer greater system density multicore platforms provide best qualifications to address the performance bottleneck encountered in PC-based control systems for parallel kinematic robots with heavy CPU-load. Heavy load control tasks are generated by new control approaches that include features like singularity prediction, structure control algorithms, vision data integration and similar tasks. In this paper we introduce the parallel task scheduling extension of a communication architecture specially tailored for the development of PC-based control of parallel kinematics. The Sche-duling is specially designed for the processing on a multicore platform. It breaks down the serial task processing of the robot control cycle and extends it with parallel task processing paths in order to enhance the overall control performance.

  10. Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2014-01-01

    This paper introduces an asymmetrical parallel robotic wrist, which can generate a decoupled unlimited-torsion motion and achieve high positioning accuracy. The kinematics, dexterity, and singularities of the manipulator are investigated to visualize the performance contours of the manipulator...

  11. Duality-based algorithms for scheduling on unrelated parallel machines

    NARCIS (Netherlands)

    van de Velde, S.L.; van de Velde, S.L.

    1993-01-01

    We consider the following parallel machine scheduling problem. Each of n independent jobs has to be scheduled on one of m unrelated parallel machines. The processing of job J[sub l] on machine Mi requires an uninterrupted period of positive length p[sub lj]. The objective is to find an assignment of

  12. Instantaneous Kinematics Analysis via Screw-Theory of a Novel 3-CRC Parallel Mechanism

    Directory of Open Access Journals (Sweden)

    Hussein de la Torre

    2016-06-01

    Full Text Available This paper presents the mobility and kinematics analysis of a novel parallel mechanism that is composed by one base, one platform and three identical limbs with CRC joints. The paper obtains closed-form solutions to the direct and inverse kinematics problems, and determines the mobility of the mechanism and instantaneous kinematics by applying screw theory. The obtained results show that this parallel robot is part of the family 2R1T, since the platform shows 3 DOF, i.e.: one translation perpendicular to the base and two rotations about skew axes. In order to calculate the direct instantaneous kinematics, this paper introduces the vector mh, which is part of the joint velocity vector that multiplies the overall inverse Jacobian matrix. This paper compares the results between simulations and numerical examples using Mathematica and SolidWorks in order to prove the accuracy of the analytical results.

  13. Nonlinear Elastodynamic Behaviour Analysis of High-Speed Spatial Parallel Coordinate Measuring Machines

    Directory of Open Access Journals (Sweden)

    Xiulong Chen

    2012-10-01

    Full Text Available In order to study the elastodynamic behaviour of 4- universal joints- prismatic pairs- spherical joints / universal joints- prismatic pairs- universal joints 4-UPS-UPU high-speed spatial PCMMs(parallel coordinate measuring machines, the nonlinear time-varying dynamics model, which comprehensively considers geometric nonlinearity and the rigid-flexible coupling effect, is derived by using Lagrange equations and finite element methods. Based on the Newmark method, the kinematics output response of 4-UPS-UPU PCMMs is illustrated through numerical simulation. The results of the simulation show that the flexibility of the links is demonstrated to have a significant impact on the system dynamics response. This research can provide the important theoretical base of the optimization design and vibration control for 4-UPS-UPU PCMMs.

  14. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  15. Kinematics and design of a class of parallel manipulators

    Science.gov (United States)

    Hertz, Roger Barry

    1998-12-01

    This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256

  16. Linear parallel processing machines I

    Energy Technology Data Exchange (ETDEWEB)

    Von Kunze, M

    1984-01-01

    As is well-known, non-context-free grammars for generating formal languages happen to be of a certain intrinsic computational power that presents serious difficulties to efficient parsing algorithms as well as for the development of an algebraic theory of contextsensitive languages. In this paper a framework is given for the investigation of the computational power of formal grammars, in order to start a thorough analysis of grammars consisting of derivation rules of the form aB ..-->.. A/sub 1/ ... A /sub n/ b/sub 1/...b /sub m/ . These grammars may be thought of as automata by means of parallel processing, if one considers the variables as operators acting on the terminals while reading them right-to-left. This kind of automata and their 2-dimensional programming language prove to be useful by allowing a concise linear-time algorithm for integer multiplication. Linear parallel processing machines (LP-machines) which are, in their general form, equivalent to Turing machines, include finite automata and pushdown automata (with states encoded) as special cases. Bounded LP-machines yield deterministic accepting automata for nondeterministic contextfree languages, and they define an interesting class of contextsensitive languages. A characterization of this class in terms of generating grammars is established by using derivation trees with crossings as a helpful tool. From the algebraic point of view, deterministic LP-machines are effectively represented semigroups with distinguished subsets. Concerning the dualism between generating and accepting devices of formal languages within the algebraic setting, the concept of accepting automata turns out to reduce essentially to embeddability in an effectively represented extension monoid, even in the classical cases.

  17. Workspace optimization and kinematic performance evaluation of 2-DOF parallel mechanisms

    International Nuclear Information System (INIS)

    Nam, Yun Joo; Park, Myeong Kwan

    2006-01-01

    This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix for each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. Finally, the kinematic optimization of the mechanisms is performed in consideration of their dexterity and rigidity. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields

  18. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  19. Boltzmann machines as a model for parallel annealing

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.

    1991-01-01

    The potential of Boltzmann machines to cope with difficult combinatorial optimization problems is investigated. A discussion of various (parallel) models of Boltzmann machines is given based on the theory of Markov chains. A general strategy is presented for solving (approximately) combinatorial

  20. Position Control of a 3-CPU Spherical Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Massimo Callegari

    2013-01-01

    Full Text Available The paper presents the first experimental results on the control of a prototypal robot designed for the orientation of parts or tools. The innovative machine is a spherical parallel manipulator actuated by 3 linear motors; several position control schemes have been tested and compared with the final aim of designing an interaction controller. The relative simplicity of machine kinematics allowed to test algorithms requiring the closed-loop evaluation of both inverse and direct kinematics; the compensation of gravitational terms has been experimented as well.

  1. Parallel-Machine Scheduling with Time-Dependent and Machine Availability Constraints

    Directory of Open Access Journals (Sweden)

    Cuixia Miao

    2015-01-01

    Full Text Available We consider the parallel-machine scheduling problem in which the machines have availability constraints and the processing time of each job is simple linear increasing function of its starting times. For the makespan minimization problem, which is NP-hard in the strong sense, we discuss the Longest Deteriorating Rate algorithm and List Scheduling algorithm; we also provide a lower bound of any optimal schedule. For the total completion time minimization problem, we analyze the strong NP-hardness, and we present a dynamic programming algorithm and a fully polynomial time approximation scheme for the two-machine problem. Furthermore, we extended the dynamic programming algorithm to the total weighted completion time minimization problem.

  2. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  3. Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2012-01-01

    parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped...

  4. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    Science.gov (United States)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  5. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongbo [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); The State Key Laboratory of Mechanical Transmission, Chongqing University (China); Pessi, Pekka [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Wu Huapeng [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)], E-mail: huapeng@lut.fi; Handroos, Heikki [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2009-06-15

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  6. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    International Nuclear Information System (INIS)

    Wang Yongbo; Pessi, Pekka; Wu Huapeng; Handroos, Heikki

    2009-01-01

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  7. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  8. Analysis of parameters for technological equipment of parallel kinematics based on rods of variable length for processing accuracy assurance

    Science.gov (United States)

    Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.

    2018-01-01

    A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.

  9. The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition

    Directory of Open Access Journals (Sweden)

    Ashkan Tousimojarad

    2013-12-01

    Full Text Available We present the Glasgow Parallel Reduction Machine (GPRM, a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.

  10. Kinematics and optimization of 2-DOF parallel manipulator with revolute actuators and a passive leg

    International Nuclear Information System (INIS)

    Nam, Yun Joo; Park, Myeong Kwan

    2006-01-01

    In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are found. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator

  11. Experience with a clustered parallel reduction machine

    NARCIS (Netherlands)

    Beemster, M.; Hartel, Pieter H.; Hertzberger, L.O.; Hofman, R.F.H.; Langendoen, K.G.; Li, L.L.; Milikowski, R.; Vree, W.G.; Barendregt, H.P.; Mulder, J.C.

    A clustered architecture has been designed to exploit divide and conquer parallelism in functional programs. The programming methodology developed for the machine is based on explicit annotations and program transformations. It has been successfully applied to a number of algorithms resulting in a

  12. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    Science.gov (United States)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  13. Safety in unlimited power supply. Method and means of parallel operation of flywheel aggregates. [parallel operation of flywheel machines

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E [Struever (A.) K.G., Hamburg (Germany, F.R.)

    1975-11-01

    A special type of Diesel emergency generator sets, i.e., with flywheel machines is described. Construction and operation of a flywheel machine are described and reasons are given for a possible or necessary parallel operation. The basic requirements for parallel operation are explained and the intrinsic operation is described. Special designs are also presented.

  14. Kinematics analysis and simulation of a new underactuated parallel robot

    Directory of Open Access Journals (Sweden)

    Wenxu YAN

    2017-04-01

    Full Text Available The number of degrees of freedom is equal to the number of the traditional robot driving motors, which causes defects such as low efficiency. To overcome that problem, based on the traditional parallel robot, a new underactuated parallel robot is presented. The structure characteristics and working principles of the underactuated parallel robot are analyzed. The forward and inverse solutions are derived by way of space analytic geometry and vector algebra. The kinematics model is established, and MATLAB is implied to verify the accuracy of forward and inverse solutions and identify the optimal work space. The simulation results show that the robot can realize the function of robot switch with three or four degrees of freedom when the number of driving motors is three, improving the efficiency of robot grasping, with the characteristics of large working space, high speed operation, high positioning accuracy, low manufacturing cost and so on, and it will have a wide range of industrial applications.

  15. Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs

    Directory of Open Access Journals (Sweden)

    Jianxun Fu

    2015-05-01

    Full Text Available This article presents a special 6-degree-of freedom parallel manipulator, and the mechanical structure of this robot has been introduced; with this structure, the kinematic constrain equations are decoupled. Based on this character, the polynomial solutions of the forward kinematics problem are also presented. In this method, the closed-loop kinematic chain of the manipulator is divided into two parts, the solution forward position kinematics is obtained by a first-degree polynomial equation first, and then an eighth-degree polynomial equation in a single variable for the forward orientation kinematics is obtained. Based on those solutions, the configurations of the robot, including position and orientation of the end-effector, are graphically displayed. A numerical simulation is given to verify the algorithm, and the result implies that for a given set of input values, the manipulator can be assembled in eight different configurations at most. And a set of experiments illustrate the motion ability for forward kinematics of the prototype of this manipulator.

  16. Parallel algorithms on the ASTRA SIMD machine

    International Nuclear Information System (INIS)

    Odor, G.; Rohrbach, F.; Vesztergombi, G.; Varga, G.; Tatrai, F.

    1996-01-01

    In view of the tremendous computing power jump of modern RISC processors the interest in parallel computing seems to be thinning out. Why use a complicated system of parallel processors, if the problem can be solved by a single powerful micro-chip. It is a general law, however, that exponential growth will always end by some kind of a saturation, and then parallelism will again become a hot topic. We try to prepare ourselves for this eventuality. The MPPC project started in 1990 in the keydeys of parallelism and produced four ASTRA machines (presented at CHEP's 92) with 4k processors (which are expandable to 16k) based on yesterday's chip-technology (chip presented at CHEP'91). These machines now provide excellent test-beds for algorithmic developments in a complete, real environment. We are developing for example fast-pattern recognition algorithms which could be used in high-energy physics experiments at the LHC (planned to be operational after 2004 at CERN) for triggering and data reduction. The basic feature of our ASP (Associate String Processor) approach is to use extremely simple (thus very cheap) processor elements but in huge quantities (up to millions of processors) connected together by a very simple string-like communication chain. In this paper we present powerful algorithms based on this architecture indicating the performance perspectives if the hardware quality reaches present or even future technology levels. (author)

  17. A Soft Parallel Kinematic Mechanism.

    Science.gov (United States)

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  18. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    International Nuclear Information System (INIS)

    El-Gazzar, H.M.; Ayad, N.M.A.

    2002-01-01

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done

  19. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    Energy Technology Data Exchange (ETDEWEB)

    El-Gazzar, H M; Ayad, N M.A. [Atomic Energy Authority, Reactor Dept., Computer and Control Lab., P.O. Box no 13759 (Egypt)

    2002-09-15

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done.

  20. Parallel phase model : a programming model for high-end parallel machines with manycores.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfeng (Syracuse University, Syracuse, NY); Wen, Zhaofang; Heroux, Michael Allen; Brightwell, Ronald Brian

    2009-04-01

    This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.

  1. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  2. A Review of Parallel Processing Approaches to Robot Kinematics and Jacobian

    OpenAIRE

    Henrich, Dominik; Karl, Joachim; Wörn, Heinz

    1997-01-01

    Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and class...

  3. Fast torque estimation of in-wheel parallel flux switching machines

    NARCIS (Netherlands)

    Ilhan, E.; Paulides, J.J.H.; Lomonova, E.

    2010-01-01

    Parallel ux switching machines (PFSM) come forward in automotive industry as a promising candidate for hybrid truck applications due to their high power density. Torque calculations, i.e cogging and electromagnetic, are important features of these machines, which require a ??nite element model (FEM)

  4. Advanced parallel strategy for strongly coupled fast transient fluid-structure dynamics with dual management of kinematic constraints

    International Nuclear Information System (INIS)

    Faucher, Vincent

    2014-01-01

    Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)

  5. Design of a novel parallel reconfigurable machine tool

    CSIR Research Space (South Africa)

    Modungwa, D

    2008-06-01

    Full Text Available of meeting the demands for high mechanical dexterity adaptation as well as high stiffness necessary for mould and die re-conditioning. This paper presents, the design of parallel reconfigurable machine tool (PRMT) based on both application...

  6. Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators

    International Nuclear Information System (INIS)

    Cao, Yi; Zhou, Hui; Li, Baokun; Shen, Long

    2011-01-01

    This paper presents a new principle and method of kinematics to analyze the singularity of Stewart-Gough parallel manipulators and addresses the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulators for special orientations. Based on the kinematic relationship of a rigid body, a necessary and sufficient condition that three velocities of three non-collinear points in a moving rigid body can determine a screw motion is addressed and some typical singular configurations of the 6-3 Stewart-Gough parallel manipulators are also addressed in detail. With the above-mentioned condition, a symbolic analytical polynomial expression of degree three in the moving platform position parameters, representing the position-singularity locus of the 6-3 Stewart-Gough manipulators for special orientations, is derived: and the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulator for these special orientations is investigated at length. It is shown that position-singularity loci of the 6-3 Stewart-Gough parallel manipulator for these special orientations will be a plane and a hyperbolic paraboloid, even three intersecting planes

  7. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  8. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    1991-01-01

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  9. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  10. Highly parallel machines and future of scientific computing

    International Nuclear Information System (INIS)

    Singh, G.S.

    1992-01-01

    Computing requirement of large scale scientific computing has always been ahead of what state of the art hardware could supply in the form of supercomputers of the day. And for any single processor system the limit to increase in the computing power was realized a few years back itself. Now with the advent of parallel computing systems the availability of machines with the required computing power seems a reality. In this paper the author tries to visualize the future large scale scientific computing in the penultimate decade of the present century. The author summarized trends in parallel computers and emphasize the need for a better programming environment and software tools for optimal performance. The author concludes this paper with critique on parallel architectures, software tools and algorithms. (author). 10 refs., 2 tabs

  11. Machine translation with minimal reliance on parallel resources

    CERN Document Server

    Tambouratzis, George; Sofianopoulos, Sokratis

    2017-01-01

    This book provides a unified view on a new methodology for Machine Translation (MT). This methodology extracts information from widely available resources (extensive monolingual corpora) while only assuming the existence of a very limited parallel corpus, thus having a unique starting point to Statistical Machine Translation (SMT). In this book, a detailed presentation of the methodology principles and system architecture is followed by a series of experiments, where the proposed system is compared to other MT systems using a set of established metrics including BLEU, NIST, Meteor and TER. Additionally, a free-to-use code is available, that allows the creation of new MT systems. The volume is addressed to both language professionals and researchers. Prerequisites for the readers are very limited and include a basic understanding of the machine translation as well as of the basic tools of natural language processing.

  12. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  13. Very Large-Scale Neighborhoods with Performance Guarantees for Minimizing Makespan on Parallel Machines

    NARCIS (Netherlands)

    Brueggemann, T.; Hurink, Johann L.; Vredeveld, T.; Woeginger, Gerhard

    2006-01-01

    We study the problem of minimizing the makespan on m parallel machines. We introduce a very large-scale neighborhood of exponential size (in the number of machines) that is based on a matching in a complete graph. The idea is to partition the jobs assigned to the same machine into two sets. This

  14. Comparing and Optimising Parallel Haskell Implementations for Multicore Machines

    DEFF Research Database (Denmark)

    Berthold, Jost; Marlow, Simon; Hammond, Kevin

    2009-01-01

    In this paper, we investigate the differences and tradeoffs imposed by two parallel Haskell dialects running on multicore machines. GpH and Eden are both constructed using the highly-optimising sequential GHC compiler, and share thread scheduling, and other elements, from a common code base. The ...

  15. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

    Science.gov (United States)

    Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

  16. Complexity of preemptive minsum scheduling on unrelated parallel machines

    NARCIS (Netherlands)

    Sitters, R.A.

    2005-01-01

    We show that the problems of minimizing total completion time and of minimizing the number of late jobs on unrelated parallel machines, when preemption is allowed, are both NP-hard in the strong sense. The former result settles a long-standing open question and is remarkable since the non-preemptive

  17. Parallelization of MCNP Monte Carlo neutron and photon transport code in parallel virtual machine and message passing interface

    International Nuclear Information System (INIS)

    Deng Li; Xie Zhongsheng

    1999-01-01

    The coupled neutron and photon transport Monte Carlo code MCNP (version 3B) has been parallelized in parallel virtual machine (PVM) and message passing interface (MPI) by modifying a previous serial code. The new code has been verified by solving sample problems. The speedup increases linearly with the number of processors and the average efficiency is up to 99% for 12-processor. (author)

  18. Algorithm for Solution of Direct Kinematic Problem of Multi-sectional Manipulator with Parallel Structure

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available The article is aimed at creating techniques to study multi-sectional manipulators with parallel structure. To solve this task the analysis in the field concerned was carried out to reveal both advantages and drawbacks of such executive mechanisms and main problems to be encountered in the course of research. The work shows that it is inefficient to create complete mathematical models of multisectional manipulators, which in the context of solving a direct kinematic problem are to derive a functional dependence of location and orientation of the end effector on all the generalized coordinates of the mechanism. The structure of multisectional manipulators was considered, where the sections are platform manipulators of parallel kinematics with six degrees of freedom. The paper offers an algorithm to define location and orientation of the end effector of the manipulator by means of iterative solution of analytical equation of the moving platform plane for each section. The equation for the unknown plane is derived using three points, which are attachment points of the moving platform joints. To define the values of joint coordinates a system of nine non-linear equations is completed. It is necessary to mention that for completion of the equation system are used the equations with the same type of non-linearity. The physical sense of all nine equations of the system is Euclidean distance between the points of the manipulator. The result of algorithm execution is a matrix of homogenous transformation for each section. The correlations describing transformations between adjoining sections of the manipulator are given. An example of the mechanism consisting of three sections is examined. The comparison of theoretical calculations with results obtained on a 3D-prototype is made. The next step of the work is to conduct research activities both in the field of dynamics of platform parallel kinematics manipulators with six degrees of freedom and in the

  19. Research in the field of development of a new generation of metal-processing machines

    Directory of Open Access Journals (Sweden)

    L.Tanovič

    2017-12-01

    Full Text Available The paper presents a review of research in the field of development of a new generation of metal-working machines for manufacturing high-precision products with dimensions of several micrometers from various materials. Presented are several new, newly created micro-machines that have the ability to manufacture products of a wide range. Studies in the field of metalworking machines and robots of a new generation with parallel kinematics, creation of machining systems for multi-axis machining, improvement and application of controllable systems, testing of processing systems in production conditions, which are conducted at the Machine-Building Faculty of the Belgrade University (Serbia are considered.

  20. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1992-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  1. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well. (orig.)

  2. Performance analysis of parallel identical machines with a generalized shortest queue arrival mechanism

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, I.J.B.F.; Wessels, J.; Zijm, Willem H.M.

    In this paper we study a production system consisting of a group of parallel machines producing multiple job types. Each machine has its own queue and it can process a restricted set of job types only. On arrival a job joins the shortest queue among all queues capable of serving that job. Under the

  3. Combined spatial/angular domain decomposition SN algorithms for shared memory parallel machines

    International Nuclear Information System (INIS)

    Hunter, M.A.; Haghighat, A.

    1993-01-01

    Several parallel processing algorithms on the basis of spatial and angular domain decomposition methods are developed and incorporated into a two-dimensional discrete ordinates transport theory code. These algorithms divide the spatial and angular domains into independent subdomains so that the flux calculations within each subdomain can be processed simultaneously. Two spatial parallel algorithms (Block-Jacobi, red-black), one angular parallel algorithm (η-level), and their combinations are implemented on an eight processor CRAY Y-MP. Parallel performances of the algorithms are measured using a series of fixed source RZ geometry problems. Some of the results are also compared with those executed on an IBM 3090/600J machine. (orig.)

  4. Kinematics of the 3(RPSP-S Fully Spherical Parallel Manipulator by Means of Screw Theory

    Directory of Open Access Journals (Sweden)

    Jaime Gallardo-Alvarado

    2018-06-01

    Full Text Available In this work, the kinematics of a spherical parallel manipulator composed of three peripheral limbs equipped with linear actuators and a passive center shaft is approached by means of the theory of screws. The displacement analysis is carried out solving closure equations, which are obtained upon simple linear combinations of the components of two unit vectors describing the orientation of the moving platform. After, the input-output equations of velocity and acceleration of the spherical parallel manipulator are systematically obtained by resorting to reciprocal-screw theory. This strategy avoids the computation of the passive joint velocity and acceleration rates of the robot manipulator. Numerical examples illustrate the efficiency of the proposed method.

  5. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines

    KAUST Repository

    Woźniak, Maciej; Paszyński, Maciej R.; Pardo, D.; Dalcin, Lisandro; Calo, Victor M.

    2015-01-01

    This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution

  6. Jointly Production and Correlated Maintenance Optimization for Parallel Leased Machines

    Directory of Open Access Journals (Sweden)

    Tarek ASKRI

    2017-04-01

    Full Text Available This paper deals with a preventive maintenance strategy optimization correlated to production for a manufacturing system made by several parallel machines under lease contract. In order to minimize the total cost of production and maintenance by reducing the production system interruptions due to maintenance activities, a correlated group preventive maintenance policy is developed using the gravity center approach (GCA. The aim of this study is to determine an economical production plan and an optimal group preventive maintenance interval Tn at which all machines are maintained simultaneously. An analytical correlation between failure rate of machines and production level is considered and the impact of the preventive maintenance policy on the production plan is studied. Finally, the proposed maintenance policy GPM is compared with an individual simple strategy approach IPM in order to illustrate its efficiency.

  7. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    Science.gov (United States)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  8. Real-time solution of the forward kinematics for a parallel haptic device using a numerical approach based on neural networks

    International Nuclear Information System (INIS)

    Liu, Guan Yang; Zhang, Yuru; Wang, Yan; Xie, Zheng

    2015-01-01

    This paper proposes a neural network (NN)-based approach to solve the forward kinematics of a 3-RRR spherical parallel mechanism designed for a haptic device. The proposed algorithm aims to remarkably speed up computation to meet the requirement of high frequency rendering for haptic display. To achieve high accuracy, the workspace of the haptic device is divided into smaller subspaces. The proposed algorithm contains NNs of two different precision levels: a rough estimation NN to identify the index of the subspace and several precise estimation networks with expected accuracy to calculate the forward kinematics. For continuous motion, the algorithm structure is further simplified to save internal memory and increase computing speed, which are critical for a haptic device control system running on an embedded platform. Compared with the mostly used Newton-Raphson method, the proposed algorithm and its simplified version greatly increase the calculation speed by about four times and 10 times, respectively, while achieving the same accuracy level. The proposed approach is of great significance for solving the forward kinematics of parallel mechanism used as haptic devices when high update frequency is needed but hardware resources are limited.

  9. Two NP-hardness results for preemptive minsum scheduling of unrelated parallel machines

    NARCIS (Netherlands)

    Sitters, R.A.; Aardal, K.; Gerards, B.

    2001-01-01

    We show that the problems of minimizing total completion time and of minimizing the number of late jobs on unrelated parallel machines, when preemption is allowed, are both NP-hard in the strong sense. The former result settles a long-standing open question.

  10. Parallel Machine Scheduling with Batch Delivery to Two Customers

    Directory of Open Access Journals (Sweden)

    Xueling Zhong

    2015-01-01

    Full Text Available In some make-to-order supply chains, the manufacturer needs to process and deliver products for customers at different locations. To coordinate production and distribution operations at the detailed scheduling level, we study a parallel machine scheduling model with batch delivery to two customers by vehicle routing method. In this model, the supply chain consists of a processing facility with m parallel machines and two customers. A set of jobs containing n1 jobs from customer 1 and n2 jobs from customer 2 are first processed in the processing facility and then delivered to the customers directly without intermediate inventory. The problem is to find a joint schedule of production and distribution such that the tradeoff between maximum arrival time of the jobs and total distribution cost is minimized. The distribution cost of a delivery shipment consists of a fixed charge and a variable cost proportional to the total distance of the route taken by the shipment. We provide polynomial time heuristics with worst-case performance analysis for the problem. If m=2 and (n1-b(n2-b<0, we propose a heuristic with worst-case ratio bound of 3/2, where b is the capacity of the delivery shipment. Otherwise, the worst-case ratio bound of the heuristic we propose is 2-2/(m+1.

  11. A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    Directory of Open Access Journals (Sweden)

    Hadi Kalani

    2016-04-01

    Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.

  12. Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions.

  13. Parallel algorithms for testing finite state machines:Generating UIO sequences

    OpenAIRE

    Hierons, RM; Turker, UC

    2016-01-01

    This paper describes an efficient parallel algorithm that uses many-core GPUs for automatically deriving Unique Input Output sequences (UIOs) from Finite State Machines. The proposed algorithm uses the global scope of the GPU's global memory through coalesced memory access and minimises the transfer between CPU and GPU memory. The results of experiments indicate that the proposed method yields considerably better results compared to a single core UIO construction algorithm. Our algorithm is s...

  14. The R package "sperrorest" : Parallelized spatial error estimation and variable importance assessment for geospatial machine learning

    Science.gov (United States)

    Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander

    2017-04-01

    Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the

  15. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    Science.gov (United States)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  16. Analysis of Properties of Induction Machine with Combined Parallel Star-Delta Stator Winding

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 113, č. 1 (2017), s. 147-153 ISSN 0239-3646 R&D Projects: GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : induction machine * parallel combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering

  17. Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines

    Directory of Open Access Journals (Sweden)

    Eliana Marcela Peña Tibaduiza

    2017-01-01

    Full Text Available Context: The flow shop hybrid problem with unrelated parallel machines has been less studied in the academia compared to the flow shop hybrid with identical processors. For this reason, there are few reports about the kind of application of this problem in industries. Method: A literature review of the state of the art on flow-shop scheduling problem was conducted by collecting and analyzing academic papers on several scientific databases. For this aim, a search query was constructed using keywords defining the problem and checking the inclusion of unrelated parallel machines in such definition; as a result, 50 papers were finally selected for this study. Results: A classification of the problem according to the characteristics of the production system was performed, also solution methods, constraints and objective functions commonly used are presented. Conclusions: An increasing trend is observed in studies of flow shop with multiple stages, but few are based on industry case-studies.

  18. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines

    KAUST Repository

    Woźniak, Maciej

    2015-02-01

    This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution, both the computational cost and the communication cost of a direct solver are of order O(log(N)p2) for the one dimensional (1D) case, O(Np2) for the two dimensional (2D) case, and O(N4/3p2) for the three dimensional (3D) case, where N is the number of degrees of freedom and p is the polynomial order of the B-spline basis functions. The theoretical estimates are verified by numerical experiments performed with three parallel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available through PETIGA toolkit built on top of PETSc. Numerical results confirm these theoretical estimates both in terms of p and N. For a given problem size, the strong efficiency rapidly decreases as the number of processors increases, becoming about 20% for 256 processors for a 3D example with 1283 unknowns and linear B-splines with C0 global continuity, and 15% for a 3D example with 643 unknowns and quartic B-splines with C3 global continuity. At the same time, one cannot arbitrarily increase the problem size, since the memory required by higher order continuity spaces is large, quickly consuming all the available memory resources even in the parallel distributed memory version. Numerical results also suggest that the use of distributed parallel machines is highly beneficial when solving higher order continuity spaces, although the number of processors that one can efficiently employ is somehow limited.

  19. Estimation of uncertainty of measurements of 3D mechanisms after kinematic calibration

    International Nuclear Information System (INIS)

    Takamasu, K; Sato, O; Shimojima, K; Takahashi, S; Furutani, R

    2005-01-01

    Calibration methods for 3D mechanisms are necessary to use the mechanisms as coordinate measuring machines. The calibration method of coordinate measuring machine using artifacts, the artifact calibration method, is proposed in taking account of traceability of the mechanism. There are kinematic parameters and form-deviation parameters in geometric parameters for describing the forward kinematic of the mechanism. In this article, the estimation methods of uncertainties using the calibrated coordinate measuring machine after the calibration are formulated. Firstly, the calculation method which takes out the values of kinematic parameters using least squares method is formulated. Secondly, the estimation value of uncertainty of the measuring machine is calculated using the error propagation method

  20. Preemptive scheduling of independent jobs on identical parallel machines subject to migration delays

    NARCIS (Netherlands)

    Fishkin, A.V.; Jansen, K.; Sevastyanov, S.V.; Sitters, R.A.; Leonardi, S.

    2005-01-01

    We present hardness and approximation results for the problem of scheduling n independent jobs on m identical parallel machines subject to a migration delay d so as to minimize the makespan. We give a sharp threshold on the value of d for which the complexity of the problem changes from polynomial

  1. Preemptive scheduling of independent jobs on identical parallel machines subject to migration delays

    NARCIS (Netherlands)

    Sevastyanov, S. V.; Sitters, R. A.; Fishkin, A.V.

    2010-01-01

    We present hardness and approximation results for the problem of preemptive scheduling of n independent jobs on m identical parallel machines subject to a migration delay d with the objective to minimize the makespan. We give a sharp threshold on the value of d for which the complexity of the

  2. Machine Learning and Parallelism in the Reconstruction of LHCb and its Upgrade

    Science.gov (United States)

    De Cian, Michel

    2016-11-01

    The LHCb detector at the LHC is a general purpose detector in the forward region with a focus on reconstructing decays of c- and b-hadrons. For Run II of the LHC, a new trigger strategy with a real-time reconstruction, alignment and calibration was employed. This was made possible by implementing an offline-like track reconstruction in the high level trigger. However, the ever increasing need for a higher throughput and the move to parallelism in the CPU architectures in the last years necessitated the use of vectorization techniques to achieve the desired speed and a more extensive use of machine learning to veto bad events early on. This document discusses selected improvements in computationally expensive parts of the track reconstruction, like the Kalman filter, as well as an improved approach to get rid of fake tracks using fast machine learning techniques. In the last part, a short overview of the track reconstruction challenges for the upgrade of LHCb, is given. Running a fully software-based trigger, a large gain in speed in the reconstruction has to be achieved to cope with the 40 MHz bunch-crossing rate. Two possible approaches for techniques exploiting massive parallelization are discussed.

  3. Machine Learning and Parallelism in the Reconstruction of LHCb and its Upgrade

    International Nuclear Information System (INIS)

    Cian, Michel De

    2016-01-01

    The LHCb detector at the LHC is a general purpose detector in the forward region with a focus on reconstructing decays of c- and b-hadrons. For Run II of the LHC, a new trigger strategy with a real-time reconstruction, alignment and calibration was employed. This was made possible by implementing an offline-like track reconstruction in the high level trigger. However, the ever increasing need for a higher throughput and the move to parallelism in the CPU architectures in the last years necessitated the use of vectorization techniques to achieve the desired speed and a more extensive use of machine learning to veto bad events early on. This document discusses selected improvements in computationally expensive parts of the track reconstruction, like the Kalman filter, as well as an improved approach to get rid of fake tracks using fast machine learning techniques. In the last part, a short overview of the track reconstruction challenges for the upgrade of LHCb, is given. Running a fully software-based trigger, a large gain in speed in the reconstruction has to be achieved to cope with the 40 MHz bunch-crossing rate. Two possible approaches for techniques exploiting massive parallelization are discussed

  4. The kinematics of machinery outlines of a theory of machines

    CERN Document Server

    Reuleaux, Franz

    2012-01-01

    A classic on the kinematics of machinery, this volume was written by the Father of Kinematics. Reuleaux writes with authority and precision, developing the subject from its fundamentals. 450 figures. 1876 edition.

  5. Multi-objective problem of the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints

    Science.gov (United States)

    Amallynda, I.; Santosa, B.

    2017-11-01

    This paper proposes a new generalization of the distributed parallel machine and assembly scheduling problem (DPMASP) with eligibility constraints referred to as the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints. Within this generalization, we assume that there are a set non-identical factories or production lines, each one with a set unrelated parallel machine with different speeds in processing them disposed to a single assembly machine in series. A set of different products that are manufactured through an assembly program of a set of components (jobs) according to the requested demand. Each product requires several kinds of jobs with different sizes. Beside that we also consider to the multi-objective problem (MOP) of minimizing mean flow time and the number of tardy products simultaneously. This is known to be NP-Hard problem, is important to practice, as the former criterions to reflect the customer's demand and manufacturer's perspective. This is a realistic and complex problem with wide range of possible solutions, we propose four simple heuristics and two metaheuristics to solve it. Various parameters of the proposed metaheuristic algorithms are discussed and calibrated by means of Taguchi technique. All proposed algorithms are tested by Matlab software. Our computational experiments indicate that the proposed problem and fourth proposed algorithms are able to be implemented and can be used to solve moderately-sized instances, and giving efficient solutions, which are close to optimum in most cases.

  6. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    International Nuclear Information System (INIS)

    Pessi, P.

    2009-01-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  7. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, P.

    2009-07-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  8. Optimization and Openmp Parallelization of a Discrete Element Code for Convex Polyhedra on Multi-Core Machines

    Science.gov (United States)

    Chen, Jian; Matuttis, Hans-Georg

    2013-02-01

    We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.

  9. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  10. Primal Domain Decomposition Method with Direct and Iterative Solver for Circuit-Field-Torque Coupled Parallel Finite Element Method to Electric Machine Modelling

    Directory of Open Access Journals (Sweden)

    Daniel Marcsa

    2015-01-01

    Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.

  11. Kinematics of machinery through hyperworks

    CERN Document Server

    Rao, J S

    2011-01-01

    Using animations, this book explains the theory of machines concepts and the evolution of Kinematics. The book adopts HyperWorks MotionSolve to perform the analysis and visualizations, though the book is independent of the requirement of any software.

  12. Circular braiding take-up speed generation using inverse kinematics

    NARCIS (Netherlands)

    van Ravenhorst, J.H.; Akkerman, Remko

    2014-01-01

    Circular overbraiding of composite preforms on complex mandrels currently lacks automatic generation of machine control data. To solve this limitation, an inverse kinematics-based procedure was designed and implemented for circular braiding machines with optional guide rings, resulting in a take-up

  13. Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2016-01-01

    Full Text Available The Machine-Part Cell Formation Problem (MPCFP is a NP-Hard optimization problem that consists in grouping machines and parts in a set of cells, so that each cell can operate independently and the intercell movements are minimized. This problem has largely been tackled in the literature by using different techniques ranging from classic methods such as linear programming to more modern nature-inspired metaheuristics. In this paper, we present an efficient parallel version of the Migrating Birds Optimization metaheuristic for solving the MPCFP. Migrating Birds Optimization is a population metaheuristic based on the V-Flight formation of the migrating birds, which is proven to be an effective formation in energy saving. This approach is enhanced by the smart incorporation of parallel procedures that notably improve performance of the several sorting processes performed by the metaheuristic. We perform computational experiments on 1080 benchmarks resulting from the combination of 90 well-known MPCFP instances with 12 sorting configurations with and without threads. We illustrate promising results where the proposal is able to reach the global optimum in all instances, while the solving time with respect to a nonparallel approach is notably reduced.

  14. A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines

    International Nuclear Information System (INIS)

    Santolaria, J; Brau, A; Velázquez, J; Aguilar, J J

    2010-01-01

    A crucial task in the procedure of identifying the parameters of a kinematic model of an articulated arm coordinate measuring machine (AACMM) or robot arm is the process of capturing data. In this paper a capturing data method is analyzed using a self-centering active probe, which drastically reduces the capture time and the required number of positions of the gauge as compared to the usual standard and manufacturer methods. The mathematical models of the self-centering active probe and AACMM are explained, as well as the mathematical model that links the AACMM global reference system to the probe reference system. We present a self-calibration method that will allow us to determine a homogeneous transformation matrix that relates the probe's reference system to the AACMM last reference system from the probing of a single sphere. In addition, a comparison between a self-centering passive probe and self-centering active probe is carried out to show the advantages of the latter in the procedures of kinematic parameter identification and verification of the AACMM

  15. The vector and parallel processing of MORSE code on Monte Carlo Machine

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Higuchi, Kenji.

    1995-11-01

    Multi-group Monte Carlo Code for particle transport, MORSE is modified for high performance computing on Monte Carlo Machine Monte-4. The method and the results are described. Monte-4 was specially developed to realize high performance computing of Monte Carlo codes for particle transport, which have been difficult to obtain high performance in vector processing on conventional vector processors. Monte-4 has four vector processor units with the special hardware called Monte Carlo pipelines. The vectorization and parallelization of MORSE code and the performance evaluation on Monte-4 are described. (author)

  16. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  17. Anatomical kinematic constraints: consequences on muscular forces and joint reactions

    OpenAIRE

    MOISSENET, F; CHEZE, L; DUMAS, R

    2011-01-01

    This paper presents a method to determine musculo-tendon forces and joint reactions during gait, using a 3D right leg model with 5 DoFs: spherical joint at the hip and parallel mechanisms at both knee and ankle. A typical set of natural coordinates is used to obtain the dynamic equations. First, using a global optimization method, "anatomical" kinematic constraints (i.e., parallel mechanisms) are applied on the kinematics obtained from motion capture data. Consistent derivatives are computed ...

  18. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    Science.gov (United States)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  19. Experiments with parallel algorithms for combinatorial problems

    NARCIS (Netherlands)

    G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens

    1985-01-01

    textabstractIn the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines

  20. Fundamentals of machine theory and mechanisms

    CERN Document Server

    Simón Mata, Antonio; Cabrera Carrillo, Juan Antonio; Ezquerro Juanco, Francisco; Guerra Fernández, Antonio Jesús; Nadal Martínez, Fernando; Ortiz Fernández, Antonio

    2016-01-01

    This book covers the basic contents for an introductory course in Mechanism and Machine Theory. The topics dealt with are: kinematic and dynamic analysis of machines, introduction to vibratory behaviour, rotor and piston balance, kinematics of gears, ordinary and planetary gear trains and synthesis of planar mechanisms. A new approach to dimensional synthesis of mechanisms based on turning functions has been added for closed and open path generation using an optimization method based on evolutionary algorithms. The text, developed by a group of experts in kinematics and dynamics of mechanisms at the University of Málaga, Spain, is clear and is supported by more than 350 images. More than 60 outlined and explained problems have been included to clarify the theoretical concepts. .

  1. Identical parallel machine scheduling with nonlinear deterioration and multiple rate modifying activities

    Directory of Open Access Journals (Sweden)

    Ömer Öztürkoğlu

    2017-07-01

    Full Text Available This study focuses on identical parallel machine scheduling of jobs with deteriorating processing times and rate-modifying activities. We consider non linearly increasing processing times of jobs based on their position assignment. Rate modifying activities are also considered to recover the increase in processing times of jobs due to deterioration. We also propose heuristics algorithms that rely on ant colony optimization and simulated annealing algorithms to solve the problem with multiple RMAs in a reasonable amount of time. Finally, we show that ant colony optimization algorithm generates close optimal solutions and superior results than simulated annealing algorithm.

  2. Comparing the performance of different meta-heuristics for unweighted parallel machine scheduling

    Directory of Open Access Journals (Sweden)

    Adamu, Mumuni Osumah

    2015-08-01

    Full Text Available This article considers the due window scheduling problem to minimise the number of early and tardy jobs on identical parallel machines. This problem is known to be NP complete and thus finding an optimal solution is unlikely. Three meta-heuristics and their hybrids are proposed and extensive computational experiments are conducted. The purpose of this paper is to compare the performance of these meta-heuristics and their hybrids and to determine the best among them. Detailed comparative tests have also been conducted to analyse the different heuristics with the simulated annealing hybrid giving the best result.

  3. Kinematic synthesis of a new 3D printing solution

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.

  4. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  5. 2nd Conference on Interdisciplinary Applications in Kinematics

    CERN Document Server

    Flores, Francisco

    2015-01-01

    This book collects a number of important contributions presented during the Second Conference on Interdisciplinary Applications of Kinematics (IAK 2013) held in Lima, Peru. The conference brought together scientists from several research fields, such as computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics, computational chemistry, and vibration analysis, and embraced all key aspects of kinematics, namely, theoretical methods, modeling, optimization, experimental validation, industrial applications, and design. Kinematics is an exciting area of computational mechanics and plays  a central role in a great variety of fields and industrial applications nowadays. Apart from research in pure kinematics, the field deals with problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The results presented in this book should be of interest for practicing and research engineers as well as Ph.D. stud...

  6. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  7. Machine learning and parallelism in the reconstruction of LHCb and its upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00260810

    2016-01-01

    The LHCb detector at the LHC is a general purpose detector in the forward region with a focus on reconstructing decays of c- and b-hadrons. For Run II of the LHC, a new trigger strategy with a real-time reconstruction, alignment and calibration was employed. This was made possible by implementing an oine-like track reconstruction in the high level trigger. However, the ever increasing need for a higher throughput and the move to parallelism in the CPU architectures in the last years necessitated the use of vectorization techniques to achieve the desired speed and a more extensive use of machine learning to veto bad events early on. This document discusses selected improvements in computationally expensive parts of the track reconstruction, like the Kalman filter, as well as an improved approach to get rid of fake tracks using fast machine learning techniques. In the last part, a short overview of the track reconstruction challenges for the upgrade of LHCb, is given. Running a fully software-based trigger, a l...

  8. Manufacturing of the ITER TF coils radial plates by means of P/M HIP and a hybrid machining center

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H., E-mail: huapeng@lut.fi [Lappeenranta University of Technology, Lappeenranta University of Technology, Department of Mechanical Engineering, Skinnarilankatu 34, Lappeenranta (Finland); Handroos, H. [Lappeenranta University of Technology, Lappeenranta University of Technology, Department of Mechanical Engineering, Skinnarilankatu 34, Lappeenranta (Finland); Lehtonen, J.T. [Metso Ltd. Finland (Finland); Pale, P. [Tekes (Finland); Li, M. [Lappeenranta University of Technology, Lappeenranta University of Technology, Department of Mechanical Engineering, Skinnarilankatu 34, Lappeenranta (Finland)

    2011-10-15

    The fabrication of the ITER radial plates (RPs) is a demanding task, which includes machining and welding. It requires high accuracy with respect to its large size. There are two issues remained: (i) the productivity reduced by the large amount of machining and welding work; and (ii) the tight tolerance. A conventional machining center can be used only when segments and blocks are small. As a solution, this paper presents a method, which improves the final accuracy and increases the productivity. The method combines the powder metallurgy hot isostatic pressing (P/M HIP) technology and the mobile parallel kinematics machine system for fabricating the RPs. This paper first introduces the P/M HIP technology and describes the benefits of using the technology in the fabrication of the RPs, and then introduces the mobile machining/welding unit developed (ad hoc) and describes the possible manufacturing process to be used for the production of the radial plates.

  9. A novel six-degrees-of-freedom series-parallel manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Alvarado, J.; Rodriguez-Castro, R.; Aguilar-Najera, C. R.; Perez-Gonzalez, L. [Instituto Tecnologico de Celaya, Celaya (Mexico)

    2012-06-15

    This paper addresses the description and kinematic analyses of a new non-redundant series-parallel manipulator. The primary feature of the robot is to have a decoupled topology consisting of a lower parallel manipulator, for controlling the orientation of the coupler platform, assembled in series connection with a upper parallel manipulator, for controlling the position of the output platform, capable to provide arbitrary poses to the output platform with respect to the fixed platform. The forward displacement analysis is carried-out in semi-closed form solutions by resorting to simple closure equations. On the other hand; the velocity, acceleration and singularity analyses of the manipulator are approached by means of the theory of screws. Simple and compact expressions are derived here for solving the infinitesimal kinematics by taking advantage of the concept of reciprocal screws. Furthermore, the analysis of the Jacobians of the robot shows that the lower parallel manipulator is practically free of singularities. In order to illustrate the performance of the manipulator, a numerical example which consists of solving the inverse/forward kinematics of the series-parallel manipulator as well as its singular configurations is provided.

  10. An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor

    Directory of Open Access Journals (Sweden)

    Ricardo Carelli

    2013-08-01

    Full Text Available This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

  11. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  12. 5-axes modular CNC machining center

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available The paper presents the development of a 5-axes CNC machining center. The main goal of the machine was to provide the students a practical layout for training in advanced CAM techniques. The mechanical structure of the machine was built in a modular way by a specialized company, which also implemented the CNC controller. The authors of this paper developed the geometric and kinematic model of the CNC machining center and the post-processor, in order to use the machine in a CAM environment.

  13. 3D printed soft parallel actuator

    Science.gov (United States)

    Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif

    2018-04-01

    This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.

  14. Practical parallel computing

    CERN Document Server

    Morse, H Stephen

    1994-01-01

    Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi

  15. STUDY OF THE flat die pellet mills kinematic diagram with active cylindrical press rolLS

    Directory of Open Access Journals (Sweden)

    Osokin Anton Vladislavovich

    2017-03-01

    Full Text Available Though being widely spread, the designs of such machines as flat die pellet mills have hardly been comprehensively theoretically studied. At the same time, the kinematic motion of the ring die pellet mill executive parts have been studied quite thoroughly. The machine executive parts kinematics determines the nature of their motion and velocity parameters, as well as the energy costs for the unit operation of the assembly. In addition, a detailed analysis of the facility kinematic diagram enables a rational approach to the design process for a new equipment. In view of this, this paper proposes a classification of flat matrix granulators over the kinematic diagrams of the executive parts interactions. We performed an analytical study of the kinematic diagram flat matrix granulator with active cylindrical press rolls. We considered the forces acting on the press roll during its operation. We determined the kinematic parameters and their interrelation with the design parameters of the press roll. We obtained the analytical equations for the of the neutral cross-section determination - the most characteristic section of the press-roll granulator

  16. Kinematic sensitivity of robot manipulators

    Science.gov (United States)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  17. Electromechanical model of machine for vibroabrasive treatment of machine parts

    OpenAIRE

    Gorbatiyk, Ruslan; Palamarchuk, Igor; Chubyk, Roman

    2015-01-01

    A lot of operations on trimming clean and finishing – stripping up treatment, first of all, removing of burrs, rounding and processing of borders, until recently time was carried out by hand, and hardly exposed to automation and became a serious obstacle in subsequent growth of the labor productivity. Machines with free kinematics connection between a tool and the treating parts is provided by the printing-down of all of the surface of the machine parts, that allows us to effectively treat bo...

  18. Parallelization for first principles electronic state calculation program

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Oguchi, Tamio.

    1997-03-01

    In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)

  19. Parallel computing works!

    CERN Document Server

    Fox, Geoffrey C; Messina, Guiseppe C

    2014-01-01

    A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop

  20. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  1. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  2. A Three-Stage Optimization Algorithm for the Stochastic Parallel Machine Scheduling Problem with Adjustable Production Rates

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-01-01

    Full Text Available We consider a parallel machine scheduling problem with random processing/setup times and adjustable production rates. The objective functions to be minimized consist of two parts; the first part is related with the due date performance (i.e., the tardiness of the jobs, while the second part is related with the setting of machine speeds. Therefore, the decision variables include both the production schedule (sequences of jobs and the production rate of each machine. The optimization process, however, is significantly complicated by the stochastic factors in the manufacturing system. To address the difficulty, a simulation-based three-stage optimization framework is presented in this paper for high-quality robust solutions to the integrated scheduling problem. The first stage (crude optimization is featured by the ordinal optimization theory, the second stage (finer optimization is implemented with a metaheuristic called differential evolution, and the third stage (fine-tuning is characterized by a perturbation-based local search. Finally, computational experiments are conducted to verify the effectiveness of the proposed approach. Sensitivity analysis and practical implications are also discussed.

  3. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers

    International Nuclear Information System (INIS)

    Roche-Lima, Abiel; Thulasiram, Ruppa K

    2012-01-01

    Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.

  4. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    Science.gov (United States)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  5. The Structure and Dimensional Design of a Reconfigurable PKM

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Tang

    2013-06-01

    Full Text Available Parallel Kinematic Machines (PKMs have many advantages and have been widely used in the machine industry. Benefitting from its modular structure, a PKM is more reconfigurable than traditional serial machines. In this paper, a new type of driving strut module and innovative joints are designed for the Reconfigurable Parallel Kinematic Machine (RPKM. The new driving strut module can be changed from linear drive mode to telescopic drive mode easily, and the new spherical joint and universal joint are designed to achieve a large rotation angle. The inverse kinematics problems in relation to the 6-DOF RPKM are analysed, and the Workspace Volume Index (WVI and the Global ConditionIndex (GCI are adopted to design the RPKM. According to the WVI and GCI analysis of the selected parameters for two types of 6-DOF PKM, the dimensional parameters of the RPKM are designed. In the end, the new type of RPKM prototype is built, with which a wax pattern is machined.

  6. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  7. Optimization on robot arm machining by using genetic algorithms

    Science.gov (United States)

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  8. A kinetic and Kinematic analysis in two assessment situation with bench press. Free Weight vs Smith Machine. Project pilot.

    Directory of Open Access Journals (Sweden)

    I. J. Bautista

    2012-06-01

    Full Text Available This pilot study examines the most relevant kinetic and kinematics variables in two bench press exercises; Smith Machine (PMS vs. free weights (PBL. Two trained subjects participated in the research following informed consent. To determine the maximum load (1-RM, two incremental protocols were used for PMS and PBL. Subject 1 (S-1 produced force values of 770N and 837N, peak force of 28ms and 12ms, in PBL and PMS respectively. Values for subject 2 (S-2 were 693N and 849N, PMF of 60ms and 66ms for PBL and PMS respectively. Detailed analyses of the following variables were performed; velocity curves for each load, the “sticking period”, the distances of grip width, and changes in bar inclination during the ascent phase of the lift were examined. The key findings of this research, and the basis for future research demonstrate that PBL is recommended as a training exercise, while more reliable information regarding force variables can be attained through using PMS in measurement sessions. Key Words: Bench Press, smith machine, free weight, strength assessment, upper limb.

  9. Pattern-Driven Automatic Parallelization

    Directory of Open Access Journals (Sweden)

    Christoph W. Kessler

    1996-01-01

    Full Text Available This article describes a knowledge-based system for automatic parallelization of a wide class of sequential numerical codes operating on vectors and dense matrices, and for execution on distributed memory message-passing multiprocessors. Its main feature is a fast and powerful pattern recognition tool that locally identifies frequently occurring computations and programming concepts in the source code. This tool also works for dusty deck codes that have been "encrypted" by former machine-specific code transformations. Successful pattern recognition guides sophisticated code transformations including local algorithm replacement such that the parallelized code need not emerge from the sequential program structure by just parallelizing the loops. It allows access to an expert's knowledge on useful parallel algorithms, available machine-specific library routines, and powerful program transformations. The partially restored program semantics also supports local array alignment, distribution, and redistribution, and allows for faster and more exact prediction of the performance of the parallelized target code than is usually possible.

  10. Parallelization of the MAAP-A code neutronics/thermal hydraulics coupling

    International Nuclear Information System (INIS)

    Froehle, P.H.; Wei, T.Y.C.; Weber, D.P.; Henry, R.E.

    1998-01-01

    A major new feature, one-dimensional space-time kinetics, has been added to a developmental version of the MAAP code through the introduction of the DIF3D-K module. This code is referred to as MAAP-A. To reduce the overall job time required, a capability has been provided to run the MAAP-A code in parallel. The parallel version of MAAP-A utilizes two machines running in parallel, with the DIF3D-K module executing on one machine and the rest of the MAAP-A code executing on the other machine. Timing results obtained during the development of the capability indicate that reductions in time of 30--40% are possible. The parallel version can be run on two SPARC 20 (SUN OS 5.5) workstations connected through the ethernet. MPI (Message Passing Interface standard) needs to be implemented on the machines. If necessary the parallel version can also be run on only one machine. The results obtained running in this one-machine mode identically match the results obtained from the serial version of the code

  11. Jefferson Lab E89-044 experiment: study of the quasi-elastic He3(e,e'p)d reaction in parallel kinematics

    International Nuclear Information System (INIS)

    Penel-Nottaris, E.

    2004-07-01

    The Jefferson Lab Hall A E89-044 experiment has measured the He 3 (e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up He 3 (e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the He 3 nucleus and the involved nuclear mechanisms beyond plane waves approximations, for missing momenta of 0 and +- 300 MeV/c and transferred momenta from 0.8 to 4.1 GeV 2 . Preliminary cross-sections have been obtained after calibration of the experimental setup by fitting theoretical models averaged over the experimental phase-space using a Monte-Carlo simulation. The 8% systematic error on cross-sections is linked mainly to the absolute normalization of the target density: the elastic scattering data analysis will allow to reduce this error. The preliminary results show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta and sensitivity to final state interactions and He 3 waves functions for missing momenta of 300 MeV/c. The longitudinal and transverse separation should constraint theoretical models more strongly. (author)

  12. A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2014-01-01

    Full Text Available This paper presents a comparison study of two important three-degree-of-freedom (DOF parallel manipulators, the Sprint Z3 head and the A3 head, both commonly used in industry. As an initial step, the inverse kinematics are derived and an analysis of two classes of limbs is carried out via screw theory. For comparison, three transmission indices are then defined to describe their motion/force transmission performance. Based on the same main parameters, the compared results reveal some distinct characteristics in addition to the similarities between the two parallel manipulators. To a certain extent, the A3 head outperforms the common Sprint Z3 head, providing a new and satisfactory option for a machine tool head in industry.

  13. Machine assembly with a new material handling mechanism in the sewing machine

    Directory of Open Access Journals (Sweden)

    Umarova Z.M.

    2017-05-01

    Full Text Available the paper presents the dynamic model of the machine assembly with a recommended mechanism for moving material and the definition of the law of rails motion under various system parameters. The author has suggested the solution implemented by the system of differential equations numerically on the PC and the system describing the motion of the machine set. Recommended values ​​of the parameters of elastic links of material transfer mechanism have been obtained. The researcher has developed the methods of kinematic and dynamic analysis of the material transfer mechanism with elastic elements of the sewing machine and has approved the parameters and development of the design.

  14. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Chunfeng Liu

    2013-01-01

    Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.

  15. A new accurate curvature matching and optimal tool based five-axis machining algorithm

    International Nuclear Information System (INIS)

    Lin, Than; Lee, Jae Woo; Bohez, Erik L. J.

    2009-01-01

    Free-form surfaces are widely used in CAD systems to describe the part surface. Today, the most advanced machining of free from surfaces is done in five-axis machining using a flat end mill cutter. However, five-axis machining requires complex algorithms for gouging avoidance, collision detection and powerful computer-aided manufacturing (CAM) systems to support various operations. An accurate and efficient method is proposed for five-axis CNC machining of free-form surfaces. The proposed algorithm selects the best tool and plans the tool path autonomously using curvature matching and integrated inverse kinematics of the machine tool. The new algorithm uses the real cutter contact tool path generated by the inverse kinematics and not the linearized piecewise real cutter location tool path

  16. Portable programming on parallel/networked computers using the Application Portable Parallel Library (APPL)

    Science.gov (United States)

    Quealy, Angela; Cole, Gary L.; Blech, Richard A.

    1993-01-01

    The Application Portable Parallel Library (APPL) is a subroutine-based library of communication primitives that is callable from applications written in FORTRAN or C. APPL provides a consistent programmer interface to a variety of distributed and shared-memory multiprocessor MIMD machines. The objective of APPL is to minimize the effort required to move parallel applications from one machine to another, or to a network of homogeneous machines. APPL encompasses many of the message-passing primitives that are currently available on commercial multiprocessor systems. This paper describes APPL (version 2.3.1) and its usage, reports the status of the APPL project, and indicates possible directions for the future. Several applications using APPL are discussed, as well as performance and overhead results.

  17. An Automatic Instruction-Level Parallelization of Machine Code

    Directory of Open Access Journals (Sweden)

    MARINKOVIC, V.

    2018-02-01

    Full Text Available Prevailing multicores and novel manycores have made a great challenge of modern day - parallelization of embedded software that is still written as sequential. In this paper, automatic code parallelization is considered, focusing on developing a parallelization tool at the binary level as well as on the validation of this approach. The novel instruction-level parallelization algorithm for assembly code which uses the register names after SSA to find independent blocks of code and then to schedule independent blocks using METIS to achieve good load balance is developed. The sequential consistency is verified and the validation is done by measuring the program execution time on the target architecture. Great speedup, taken as the performance measure in the validation process, and optimal load balancing are achieved for multicore RISC processors with 2 to 16 cores (e.g. MIPS, MicroBlaze, etc.. In particular, for 16 cores, the average speedup is 7.92x, while in some cases it reaches 14x. An approach to automatic parallelization provided by this paper is useful to researchers and developers in the area of parallelization as the basis for further optimizations, as the back-end of a compiler, or as the code parallelization tool for an embedded system.

  18. Design and Implementation of a New DELTA Parallel Robot in Robotics Competitions

    Directory of Open Access Journals (Sweden)

    Jonqlan Lin

    2015-10-01

    Full Text Available This investigation concerns the design and implementation of the DELTA parallel robot, covering the entire mechatronic process, involving kinematics, control design and optimizing methods. To accelerate the construction of the robot, 3D printing is used to fabricate end-effector parts. The parts are modular, low-cost, reconfigurable and can be assembled in less time than is required for conventionally fabricated parts. The controller, including the control algorithm and human-machine interface (HMI, is coded using the Borland C++ Builder 6 Personal software environment. The integration of the motion controller with image recognition into an opto-mechatronics system is presented. The robot system has been entered into robotic competitions in Taiwan. The experimental results reveal that the proposed DELTA robot completed the tasks in those competitions successfully.

  19. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  20. Porting Gravitational Wave Signal Extraction to Parallel Virtual Machine (PVM)

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Thompson, David E.; Redmon, Jeffery

    2009-01-01

    Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA mission to be launched around 2012. The Gravitational Wave detection is fundamentally the determination of frequency, source parameters, and waveform amplitude derived in a specific order from the interferometric time-series of the rotating LISA spacecrafts. The LISA Science Team has developed a Mock LISA Data Challenge intended to promote the testing of complicated nested search algorithms to detect the 100-1 millihertz frequency signals at amplitudes of 10E-21. However, it has become clear that, sequential search of the parameters is very time consuming and ultra-sensitive; hence, a new strategy has been developed. Parallelization of existing sequential search algorithms of Gravitational Wave signal identification consists of decomposing sequential search loops, beginning with outermost loops and working inward. In this process, the main challenge is to detect interdependencies among loops and partitioning the loops so as to preserve concurrency. Existing parallel programs are based upon either shared memory or distributed memory paradigms. In PVM, master and node programs are used to execute parallelization and process spawning. The PVM can handle process management and process addressing schemes using a virtual machine configuration. The task scheduling and the messaging and signaling can be implemented efficiently for the LISA Gravitational Wave search process using a master and 6 nodes. This approach is accomplished using a server that is available at NASA Ames Research Center, and has been dedicated to the LISA Data Challenge Competition. Historically, gravitational wave and source identification parameters have taken around 7 days in this dedicated single thread Linux based server. Using PVM approach, the parameter extraction problem can be reduced to within a day. The low frequency computation and a proxy signal-to-noise ratio are calculated in separate nodes that are controlled by the master

  1. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  2. Computer-Aided Parallelizer and Optimizer

    Science.gov (United States)

    Jin, Haoqiang

    2011-01-01

    The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.

  3. Research in Parallel Algorithms and Software for Computational Aerosciences

    Science.gov (United States)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  4. Multi-objective Design Optimization of a Parallel Schönflies-motion Robot

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2016-01-01

    . The dynamic performance is concerned mainly the capability of force transmission in the parallel kinematic chain, for which transmission indices are defined. The Pareto-front is obtained to investigate the influence of the design variables to the robot performance. Dynamic characteristics for three Pareto......This paper introduces a parallel Schoenflies-motion robot with rectangular workspace, which is suitable for pick-and-place operations. A multi-objective optimization problem is formulated to optimize the robot's geometric parameters with consideration of kinematic and dynamic performances...

  5. Parallel integer sorting with medium and fine-scale parallelism

    Science.gov (United States)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  6. Discussion paper for a highly parallel array processor-based machine

    International Nuclear Information System (INIS)

    Hagstrom, R.; Bolotin, G.; Dawson, J.

    1984-01-01

    The architectural plant for a quickly realizable implementation of a highly parallel special-purpose computer system with peak performance in the range of 6 billion floating point operations per second is discussed. The architecture is suitable to Lattice Gauge theoretical computations of fundamental physics interest and may be applicable to a range of other problems which deal with numerically intensive computational problems. The plan is quickly realizable because it employs a maximum of commercially available hardware subsystems and because the architecture is software-transparent to the individual processors, allowing straightforward re-use of whatever commercially available operating-systems and support software that is suitable to run on the commercially-produced processors. A tiny prototype instrument, designed along this architecture has already operated. A few elementary examples of programs which can run efficiently are presented. The large machine which the authors would propose to build would be based upon a highly competent array-processor, the ST-100 Array Processor, and specific design possibilities are discussed. The first step toward realizing this plan practically is to install a single ST-100 to allow algorithm development to proceed while a demonstration unit is built using two of the ST-100 Array Processors

  7. Algorithms for computational fluid dynamics n parallel processors

    International Nuclear Information System (INIS)

    Van de Velde, E.F.

    1986-01-01

    A study of parallel algorithms for the numerical solution of partial differential equations arising in computational fluid dynamics is presented. The actual implementation on parallel processors of shared and nonshared memory design is discussed. The performance of these algorithms is analyzed in terms of machine efficiency, communication time, bottlenecks and software development costs. For elliptic equations, a parallel preconditioned conjugate gradient method is described, which has been used to solve pressure equations discretized with high order finite elements on irregular grids. A parallel full multigrid method and a parallel fast Poisson solver are also presented. Hyperbolic conservation laws were discretized with parallel versions of finite difference methods like the Lax-Wendroff scheme and with the Random Choice method. Techniques are developed for comparing the behavior of an algorithm on different architectures as a function of problem size and local computational effort. Effective use of these advanced architecture machines requires the use of machine dependent programming. It is shown that the portability problems can be minimized by introducing high level operations on vectors and matrices structured into program libraries

  8. Variable Neighborhood Search for Parallel Machines Scheduling Problem with Step Deteriorating Jobs

    Directory of Open Access Journals (Sweden)

    Wenming Cheng

    2012-01-01

    Full Text Available In many real scheduling environments, a job processed later needs longer time than the same job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to many industrial applications. In this paper, we study a scheduling problem of minimizing the total completion time on identical parallel machines where the processing time of a job is a step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a mixed integer programming model is presented for the problem. And then, a modified weight-combination search algorithm and a variable neighborhood search are employed to yield optimal or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational experiments are performed on randomly generated test instances. Finally, computational results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time even for large-sized problems.

  9. Massively parallel evolutionary computation on GPGPUs

    CERN Document Server

    Tsutsui, Shigeyoshi

    2013-01-01

    Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened u

  10. Integrated configurable equipment selection and line balancing for mass production with serial-parallel machining systems

    Science.gov (United States)

    Battaïa, Olga; Dolgui, Alexandre; Guschinsky, Nikolai; Levin, Genrikh

    2014-10-01

    Solving equipment selection and line balancing problems together allows better line configurations to be reached and avoids local optimal solutions. This article considers jointly these two decision problems for mass production lines with serial-parallel workplaces. This study was motivated by the design of production lines based on machines with rotary or mobile tables. Nevertheless, the results are more general and can be applied to assembly and production lines with similar structures. The designers' objectives and the constraints are studied in order to suggest a relevant mathematical model and an efficient optimization approach to solve it. A real case study is used to validate the model and the developed approach.

  11. Circadian rhythms in handwriting kinematics and legibility.

    Science.gov (United States)

    Jasper, Isabelle; Gordijn, Marijke; Häussler, Andreas; Hermsdörfer, Joachim

    2011-08-01

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10 Dutch subjects) or in Berlin (9 German subjects). Both groups wrote every 3h a test sentence of similar structure in their native language. Kinematic handwriting performance was assessed with a digitizing tablet and evaluated by writing speed, writing fluency, and script size. Writing speed (frequency of strokes and average velocity) revealed a clear circadian rhythm, with a parallel decline during night and a minimum around 3:00 h in the morning for both groups. Script size and movement fluency did not vary with time of day in neither group. Legibility of handwriting was evaluated by intra-individually ranking handwriting specimens of the 13 sessions by 10 German and 10 Dutch raters. Whereas legibility ratings of the German handwriting specimens deteriorated during night in parallel with slower writing speed, legibility of the Dutch handwriting deteriorated not until the next morning. In conclusion, the circadian rhythm of handwriting kinematics seems to be independent of script language at least among the two tested western countries. Moreover, handwriting legibility is also subject to a circadian rhythm which, however, seems to be influenced by variations in the assessment protocol. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Hierarchical Kinematic Modelling and Optimal Design of a Novel Hexapod Robot with Integrated Limb Mechanism

    Directory of Open Access Journals (Sweden)

    Guiyang Xin

    2015-09-01

    Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.

  13. 6th International Workshop on Computational Kinematics

    CERN Document Server

    Gracia, Alba

    2014-01-01

    Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, construction of novel mechanical devices, as well as detection and treatment of singularities. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics. Indexed in Conference Proceedings Citation Index- Science (CPCI-S).

  14. Parallel R-matrix computation

    International Nuclear Information System (INIS)

    Heggarty, J.W.

    1999-06-01

    For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in

  15. Techniques applied in design optimization of parallel manipulators

    CSIR Research Space (South Africa)

    Modungwa, D

    2011-11-01

    Full Text Available the desired dexterous workspace " Robot.Comput.Integrated Manuf., vol. 23, pp. 38 - 46, 2007. [12] A.P. Murray, F. Pierrot, P. Dauchez and J.M. McCarthy, "A planar quaternion approach to the kinematic synthesis of a parallel manipulator " Robotica, vol... design of a three translational DoFs parallel manipulator " Robotica, vol. 24, pp. 239, 2005. [15] J. Angeles, "The robust design of parallel manipulators," in 1st Int. Colloquium, Collaborative Research Centre 562, 2002. [16] S. Bhattacharya, H...

  16. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington

    2004-06-01

    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  17. Stampi: a message passing library for distributed parallel computing. User's guide

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi

    1998-11-01

    A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on MPI2 specification. It realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Vender implemented MPI as a closed system in one parallel machine and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, and any communication on them can be processed on. (author)

  18. On the Parallel Elliptic Single/Multigrid Solutions about Aligned and Nonaligned Bodies Using the Virtual Machine for Multiprocessors

    Directory of Open Access Journals (Sweden)

    A. Averbuch

    1994-01-01

    Full Text Available Parallel elliptic single/multigrid solutions around an aligned and nonaligned body are presented and implemented on two multi-user and single-user shared memory multiprocessors (Sequent Symmetry and MOS and on a distributed memory multiprocessor (a Transputer network. Our parallel implementation uses the Virtual Machine for Muli-Processors (VMMP, a software package that provides a coherent set of services for explicitly parallel application programs running on diverse multiple instruction multiple data (MIMD multiprocessors, both shared memory and message passing. VMMP is intended to simplify parallel program writing and to promote portable and efficient programming. Furthermore, it ensures high portability of application programs by implementing the same services on all target multiprocessors. The performance of our algorithm is investigated in detail. It is seen to fit well the above architectures when the number of processors is less than the maximal number of grid points along the axes. In general, the efficiency in the nonaligned case is higher than in the aligned case. Alignment overhead is observed to be up to 200% in the shared-memory case and up to 65% in the message-passing case. We have demonstrated that when using VMMP, the portability of the algorithms is straightforward and efficient.

  19. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan; Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Jos; Wiering, Marco

    2014-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  20. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, V.; Dröge, B.; Williams, D.; Yasar, B.; Yang, P.; Liu, B.; Dong, F.; Surinta, O.; Schomaker, L.R.B.; Roerdink, J.B.T.M.; Wiering, M.A.

    2016-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  1. A Parallel Prefix Algorithm for Almost Toeplitz Tridiagonal Systems

    Science.gov (United States)

    Sun, Xian-He; Joslin, Ronald D.

    1995-01-01

    A compact scheme is a discretization scheme that is advantageous in obtaining highly accurate solutions. However, the resulting systems from compact schemes are tridiagonal systems that are difficult to solve efficiently on parallel computers. Considering the almost symmetric Toeplitz structure, a parallel algorithm, simple parallel prefix (SPP), is proposed. The SPP algorithm requires less memory than the conventional LU decomposition and is efficient on parallel machines. It consists of a prefix communication pattern and AXPY operations. Both the computation and the communication can be truncated without degrading the accuracy when the system is diagonally dominant. A formal accuracy study has been conducted to provide a simple truncation formula. Experimental results have been measured on a MasPar MP-1 SIMD machine and on a Cray 2 vector machine. Experimental results show that the simple parallel prefix algorithm is a good algorithm for symmetric, almost symmetric Toeplitz tridiagonal systems and for the compact scheme on high-performance computers.

  2. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  3. Transmission Index Research of Parallel Manipulators Based on Matrix Orthogonal Degree

    Science.gov (United States)

    Shao, Zhu-Feng; Mo, Jiao; Tang, Xiao-Qiang; Wang, Li-Ping

    2017-11-01

    Performance index is the standard of performance evaluation, and is the foundation of both performance analysis and optimal design for the parallel manipulator. Seeking the suitable kinematic indices is always an important and challenging issue for the parallel manipulator. So far, there are extensive studies in this field, but few existing indices can meet all the requirements, such as simple, intuitive, and universal. To solve this problem, the matrix orthogonal degree is adopted, and generalized transmission indices that can evaluate motion/force transmissibility of fully parallel manipulators are proposed. Transmission performance analysis of typical branches, end effectors, and parallel manipulators is given to illustrate proposed indices and analysis methodology. Simulation and analysis results reveal that proposed transmission indices possess significant advantages, such as normalized finite (ranging from 0 to 1), dimensionally homogeneous, frame-free, intuitive and easy to calculate. Besides, proposed indices well indicate the good transmission region and relativity to the singularity with better resolution than the traditional local conditioning index, and provide a novel tool for kinematic analysis and optimal design of fully parallel manipulators.

  4. Design of a 3-DOF Parallel Hand-Controller

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhu

    2017-01-01

    Full Text Available Hand-controllers, as human-machine-interface (HMI devices, can transfer the position information of the operator’s hands into the virtual environment to control the target objects or a real robot directly. At the same time, the haptic information from the virtual environment or the sensors on the real robot can be displayed to the operator. It helps human perceive haptic information more truly with feedback force. A parallel hand-controller is designed in this paper. It is simplified from the traditional delta haptic device. The swing arms in conventional delta devices are replaced with the slider rail modules. The base consists of two hexagons and several links. For the use of the linear sliding modules instead of swing arms, the arc movement is replaced by linear movement. So that, the calculating amount of the position positive solution and the force inverse solution is reduced for the simplification of the motion. The kinematics, static mechanics, and dynamic mechanics are analyzed in this paper. What is more, two demonstration applications are developed to verify the performance of the designed hand-controller.

  5. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    Science.gov (United States)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm

  6. Parallel-Batch Scheduling with Two Models of Deterioration to Minimize the Makespan

    Directory of Open Access Journals (Sweden)

    Cuixia Miao

    2014-01-01

    Full Text Available We consider the bounded parallel-batch scheduling with two models of deterioration, in which the processing time of the first model is pj=aj+αt and of the second model is pj=a+αjt. The objective is to minimize the makespan. We present O(n log n time algorithms for the single-machine problems, respectively. And we propose fully polynomial time approximation schemes to solve the identical-parallel-machine problem and uniform-parallel-machine problem, respectively.

  7. Workspace Analysis for Parallel Robot

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2013-05-01

    Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.

  8. Impedance Control of a Redundant Parallel Manipulator

    DEFF Research Database (Denmark)

    Méndez, Juan de Dios Flores; Schiøler, Henrik; Madsen, Ole

    2017-01-01

    This paper presents the design of Impedance Control to a redundantly actuated Parallel Kinematic Manipulator. The proposed control is based on treating each limb as a single system and their connection through the internal interaction forces. The controller introduces a stiffness and damping...

  9. Test generation for digital circuits using parallel processing

    Science.gov (United States)

    Hartmann, Carlos R.; Ali, Akhtar-Uz-Zaman M.

    1990-12-01

    The problem of test generation for digital logic circuits is an NP-Hard problem. Recently, the availability of low cost, high performance parallel machines has spurred interest in developing fast parallel algorithms for computer-aided design and test. This report describes a method of applying a 15-valued logic system for digital logic circuit test vector generation in a parallel programming environment. A concept called fault site testing allows for test generation, in parallel, that targets more than one fault at a given location. The multi-valued logic system allows results obtained by distinct processors and/or processes to be merged by means of simple set intersections. A machine-independent description is given for the proposed algorithm.

  10. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  11. Analysis of a closed-kinematic chain robot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  12. Type synthesis for 4-DOF parallel press mechanism using GF set theory

    Science.gov (United States)

    He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong

    2015-07-01

    Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.

  13. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  14. A Direct Kinematics Problem Solution for the Three-degree-of-freedom Parallel Structure Manipulator Based on Crank Mechanism

    Directory of Open Access Journals (Sweden)

    V. N. Paschenko

    2015-01-01

    Full Text Available The paper describes a mechanism representing a kind of mechanisms of parallel kinematics with three degrees of freedom based on the crank mechanism. This mechanism consists of two platforms, namely: the lower fixed and the upper movable. The upper platform is connected to the lower one by six movable elements, three of which are rods attached to the bases by means of spherical joints, and another three have a crank structure.The paper shows an approach to the solution of a direct task of kinematics based on mathematical modeling. The inverse problem of kinematics is formulated as follows: at specified angles of rotation drive (the values of generalized coordinates to determine the position of the top mobile platform.To solve this problem has been used a mathematical model describing the proposed system. On the basis of the constructed model were made the necessary calculations that allowed us using the values of crank angles connected with the engines to determine the position of the platform in space. To solve the problem we used the method of virtual points to reduce the number of equations and unknowns, which determine the position of the upper platform in space, at a crucial system from eighteen to nine, thus simplifying the solution.To check the solution correctness was carried out numerical experiment. Each generalized coordinate took on values in the range from -30 ° to 30 °; for them a direct positional problem was solved, and its result was inserted, as initial data, in the previous solved and proven inverse problem on the position of the platform under study.The paper presents comparative results of measurements with the calculated values of the generalized coordinates and draws the appropriate conclusions, that this model is in good compliance with the results observed in practice. One of the distinctive features of the proposed approach is that rotation angles of engines are used as the generalized coordinates. This allowed us

  15. Kinematical program package for nuclear reaction

    International Nuclear Information System (INIS)

    Dai Nengxiong; Xie Ying

    1988-01-01

    A FORTRAN package is designed to provide users as many conveniences as possible. Besides adopting man-machine interaction mode and setting nuclide mass file, there are still some other features which are, for examples, the functions of offering the initial values for some transcendental equations and evaluating all the kinematic variables in nuclear reactions at low energies of the form of T (p,1)2, T (p,12)3 and T (p,12)34. All these make the users much easier to use the package

  16. Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence-Dependent Setup Time

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    2016-01-01

    Full Text Available A parallel machine scheduling problem in plastic production is studied in this paper. In this problem, the processing time and arrival time are uncertain but lie in their respective intervals. In addition, each job must be processed together with a mold while jobs which belong to one family can share the same mold. Therefore, time changing mold is required for two consecutive jobs that belong to different families, which is known as sequence-dependent setup time. This paper aims to identify a robust schedule by min–max regret criterion. It is proved that the scenario incurring maximal regret for each feasible solution lies in finite extreme scenarios. A mixed integer linear programming formulation and an exact algorithm are proposed to solve the problem. Moreover, a modified artificial bee colony algorithm is developed to solve large-scale problems. The performance of the presented algorithm is evaluated through extensive computational experiments and the results show that the proposed algorithm surpasses the exact method in terms of objective value and computational time.

  17. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  18. The FORCE: A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them.

  19. The FORCE - A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    This paper explains why the FORCE parallel programming language is easily portable among six different shared-memory multiprocessors, and how a two-level macro preprocessor makes it possible to hide low-level machine dependencies and to build machine-independent high-level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared-memory multiprocessor executing them.

  20. Data parallel sorting for particle simulation

    Science.gov (United States)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  1. Concurrent computation of attribute filters on shared memory parallel machines

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.; Gao, Hui; Hesselink, Wim H.; Jonker, Jan-Eppo; Meijster, Arnold

    2008-01-01

    Morphological attribute filters have not previously been parallelized mainly because they are both global and nonseparable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings, and thickenings,

  2. A Novel Reconfiguration Strategy of a Delta-Type Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Albert Lester Balmaceda-Santamaría

    2016-02-01

    Full Text Available This work introduces a novel reconfiguration strategy for a Delta-type parallel robot. The robot at hand, whose patent is pending, is equipped with an intermediate mechanism that allows for modifying the operational Cartesian workspace. Furthermore, singularities of the robot may be ameliorated owing to the inherent kinematic redundancy introduced by four actuable kinematic joints. The velocity and acceleration analyses of the parallel manipulator are carried out by resorting to reciprocal-screw theory. Finally, the manipulability of the new robot is investigated based on the computation of the condition number associated with the active Jacobian matrix, a well-known procedure. The results obtained show improved performance of the robot introduced when compared with results generated for another Delta-type robot.

  3. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  4. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  5. Bases para el desarrollo de Micromáquinas Herramienta Paralelas

    Directory of Open Access Journals (Sweden)

    Ricardo Yáñez-Valdez

    2014-04-01

    Full Text Available Resumen: El presente trabajo pretende sentar las bases del desarrollo de micromáquinas herramienta paralelas. Se plantean condiciones básicas y se propone un proceso de selección de configuraciones paralelas con miras a su implementación como micromáquinas herramienta. Con base en requerimientos e índices de desempeño se seleccionó una configuración paralela con todas las cualidades solicitadas para desempeñar tareas de micromecanizado. Se aborda con mayor detalle el proceso de selección para un caso de estudio donde 3 ejes traslacionales de movimiento son requeridos. Con base en el resultado del proceso de selección y en especificaciones de diseño, se construyó y se evaluó un prototipo de micromáquina herramienta paralela. El resultado de la investigación realizada muestra que es factible realizar tareas de micromecanizado con el prototipo de micromáquina herramienta paralela. Abstract: This work aims to establish the development basis of parallel configurations based micromachine tools. Basic conditions are identified from typical micromachine tools in order to propose a selection process of parallel configurations with the aim to develop micro-parallel kinematic machines. Based on requirements and performance indices a 3DOF parallel configuration is selected. The selection process is applied for a case of study where 3 axes of movement are required. Based on previous results and specifications, a prototype of micro-parallel kinematic machine is built and evaluated. Through test analysis, the micro-parallel kinematic machine is proved to be feasible and applicable for micro-manufacturing. Palabras clave: Desacoplamiento cinemático, Espacio de trabajo, Índices de desempeño, Isotropía de fuerzas, Mecanismo paralelo, Micromáquina herramienta, Proceso de selección, Síntesis de tipo, Keywords: Decoupled motion, Force isotropy, Micromachine tool, Microparallel kinematic machine, Performance indices, Reachable workspace

  6. Differences in Muscle Activation and Kinematics Between Cable-Based and Selectorized Weight Training.

    Science.gov (United States)

    Signorile, Joseph F; Rendos, Nicole K; Heredia Vargas, Hector H; Alipio, Taislaine C; Regis, Rebecca C; Eltoukhy, Moataz M; Nargund, Renu S; Romero, Matthew A

    2017-02-01

    Signorile, JF, Rendos, NK, Heredia Vargas, HH, Alipio, TC, Regis, RC, Eltoukhy, MM, Nargund, RS, and Romero, MA. Differences in muscle activation and kinematics between cable-based and selectorized weight training. J Strength Cond Res 31(2): 313-322, 2017-Cable resistance training machines are showing resurgent popularity and allow greater number of degrees of freedom than typical selectorized equipment. Given that specific kinetic chains are used during distinct activities of daily living (ADL), cable machines may provide more effective interventions for some ADL, whereas others may be best addressed using selectorized equipment. This study examined differences in activity levels (root mean square of the EMG [rmsEMG]) of 6 major muscles (pectoralis major, PM; anterior deltoid, AD; biceps brachii, BB; rectus abdominis, RA; external obliques, EO; and triceps brachii, TB) and kinematics of multiple joints between a cable and standard selectorized machines during the biceps curl, the chest press, and the overhead press performed at 1.5 seconds per contractile stage. Fifteen individuals (9 men, 6 women; mean age ± SD, 24.33 ± 4.88 years) participated. Machine order was randomized. Significant differences favoring cable training were seen for PM and AD during biceps curl; BB, AD, and EO for chest press; and BB and EO during overhead press (p ≤ 0.05). Greater starting and ending angles were seen for the elbow and shoulder joints during selectorized biceps curl, whereas hip and knee starting and ending angles were greater for cable machine during chest and overhead presses (p < 0.0001). Greater range of motion (ROM) favoring the cable machine was also evident (p < 0.0001). These results indicate that utilization patterns of selected muscles, joint angles, and ROMs can be varied because of machine application even when similar exercises are used, and therefore, these machines can be used selectively in training programs requiring specific motor or biomechanical

  7. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.

    Science.gov (United States)

    Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël

    2018-03-01

    Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).

  8. Analisys and Choice of the Exoskeleton’s Actuator Kinematic Structure

    Directory of Open Access Journals (Sweden)

    A. A. Vereikin

    2014-01-01

    Full Text Available The urgency of designing of robotic exoskeletons as one of the most prospective means of modern robotics is proved. A literature review concerning the design issues of anthropomorphic walking robots and exoskeletons is performed. Some problems, accompanying the designing process of exoskeleton actuator, are highlighted. Among them synthesis of its tree-like kinematic structure takes leading place. Its complication is explained by the specific human-machine interaction.The problem of exoskeleton actuator kinematic scheme synthesis is formulated and possible approaches to its solution are shown. The paper presents the synthesis results obtained using the software complex CATIA-based means of ergonomic design. It investigates the degrees of freedom of human-operator’s foot, shin, and thigh. And it identifies a number of shortcomings of this software complex associated with the ambiguity to solve the inverse kinematics problem, leading to a significant complication of kinematics synthesis.A model of human lower limb on which further studies of the exoskeleton actuator kinematic scheme, ensuring fulfillment of the human-operator standard movements (squats, kick their feet, bending body, walking, running stairs, etc., are based, is developed in SolidWorks software complex. The reasonability of the exoskeleton kinematic scheme synthesis in software package SolidWorks using anthropometric data from the software complex CATIA, is justified.The proposed method allows to analyze different kinematic schemes of actuator for the stage of conceptual design and to choose the best of them in accordance with established criterions. Thus, the developer receives the final version of the kinematic scheme before the detailed design of the actuator starts, thus significantly reducing its labor costs.

  9. A program system for ab initio MO calculations on vector and parallel processing machines. Pt. 1

    International Nuclear Information System (INIS)

    Ernenwein, R.; Rohmer, M.M.; Benard, M.

    1990-01-01

    We present a program system for ab initio molecular orbital calculations on vector and parallel computers. The present article is devoted to the computation of one- and two-electron integrals over contracted Gaussian basis sets involving s-, p-, d- and f-type functions. The McMurchie and Davidson (MMD) algorithm has been implemented and parallelized by distributing over a limited number of logical tasks the calculation of the 55 relevant classes of integrals. All sections of the MMD algorithm have been efficiently vectorized, leading to a scalar/vector ratio of 5.8. Different algorithms are proposed and compared for an optimal vectorization of the contraction of the 'intermediate integrals' generated by the MMD formalism. Advantage is taken of the dynamic storage allocation for tuning the length of the vector loops (i.e. the size of the vectorization buffer) as a function of (i) the total memory available for the job, (ii) the number of logical tasks defined by the user (≤13), and (iii) the storage requested by each specific class of integrals. Test calculations carried out on a CRAY-2 computer show that the average number of finite integrals computed over a (s, p, d, f) CGTO basis set is about 1180000 per second and per processor. The combination of vectorization and parallelism on this 4-processor machine reduces the CPU time by a factor larger than 20 with respect to the scalar and sequential performance. (orig.)

  10. Researches Regarding The Circular Interpolation Algorithms At CNC Laser Cutting Machines

    Science.gov (United States)

    Tîrnovean, Mircea Sorin

    2015-09-01

    This paper presents an integrated simulation approach for studying the circular interpolation regime of CNC laser cutting machines. The circular interpolation algorithm is studied, taking into consideration the numerical character of the system. A simulation diagram, which is able to generate the kinematic inputs for the feed drives of the CNC laser cutting machine is also presented.

  11. Introduction to massively-parallel computing in high-energy physics

    CERN Document Server

    AUTHOR|(CDS)2083520

    1993-01-01

    Ever since computers were first used for scientific and numerical work, there has existed an "arms race" between the technical development of faster computing hardware, and the desires of scientists to solve larger problems in shorter time-scales. However, the vast leaps in processor performance achieved through advances in semi-conductor science have reached a hiatus as the technology comes up against the physical limits of the speed of light and quantum effects. This has lead all high performance computer manufacturers to turn towards a parallel architecture for their new machines. In these lectures we will introduce the history and concepts behind parallel computing, and review the various parallel architectures and software environments currently available. We will then introduce programming methodologies that allow efficient exploitation of parallel machines, and present case studies of the parallelization of typical High Energy Physics codes for the two main classes of parallel computing architecture (S...

  12. Feed-forward volume rendering algorithm for moderately parallel MIMD machines

    Science.gov (United States)

    Yagel, Roni

    1993-01-01

    Algorithms for direct volume rendering on parallel and vector processors are investigated. Volumes are transformed efficiently on parallel processors by dividing the data into slices and beams of voxels. Equal sized sets of slices along one axis are distributed to processors. Parallelism is achieved at two levels. Because each slice can be transformed independently of others, processors transform their assigned slices with no communication, thus providing maximum possible parallelism at the first level. Within each slice, consecutive beams are incrementally transformed using coherency in the transformation computation. Also, coherency across slices can be exploited to further enhance performance. This coherency yields the second level of parallelism through the use of the vector processing or pipelining. Other ongoing efforts include investigations into image reconstruction techniques, load balancing strategies, and improving performance.

  13. Modeling and simulation of five-axis virtual machine based on NX

    Science.gov (United States)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  14. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  15. PDDP, A Data Parallel Programming Model

    Directory of Open Access Journals (Sweden)

    Karen H. Warren

    1996-01-01

    Full Text Available PDDP, the parallel data distribution preprocessor, is a data parallel programming model for distributed memory parallel computers. PDDP implements high-performance Fortran-compatible data distribution directives and parallelism expressed by the use of Fortran 90 array syntax, the FORALL statement, and the WHERE construct. Distributed data objects belong to a global name space; other data objects are treated as local and replicated on each processor. PDDP allows the user to program in a shared memory style and generates codes that are portable to a variety of parallel machines. For interprocessor communication, PDDP uses the fastest communication primitives on each platform.

  16. Customizable Memory Schemes for Data Parallel Architectures

    NARCIS (Netherlands)

    Gou, C.

    2011-01-01

    Memory system efficiency is crucial for any processor to achieve high performance, especially in the case of data parallel machines. Processing capabilities of parallel lanes will be wasted, when data requests are not accomplished in a sustainable and timely manner. Irregular vector memory accesses

  17. Structural Synthesis of 3-DoF Spatial Fully Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Alfonso Hernandez

    2014-07-01

    Full Text Available In this paper, the architectures of three degrees of freedom (3-DoF spatial, fully parallel manipulators (PMs, whose limbs are structurally identical, are obtained systematically. To do this, the methodology followed makes use of the concepts of the displacement group theory of rigid body motion. This theory works with so-called ‘motion generators’. That is, every limb is a kinematic chain that produces a certain type of displacement in the mobile platform or end-effector. The laws of group algebra will determine the actual motion pattern of the end-effector. The structural synthesis is a combinatorial process of different kinematic chains’ topologies employed in order to get all of the 3-DoF motion pattern possibilities in the end-effector of the fully parallel manipulator.

  18. Parallel preconditioned conjugate gradient algorithm applied to neutron diffusion problem

    International Nuclear Information System (INIS)

    Majumdar, A.; Martin, W.R.

    1992-01-01

    Numerical solution of the neutron diffusion problem requires solving a linear system of equations such as Ax = b, where A is an n x n symmetric positive definite (SPD) matrix; x and b are vectors with n components. The preconditioned conjugate gradient (PCG) algorithm is an efficient iterative method for solving such a linear system of equations. In this paper, the authors describe the implementation of a parallel PCG algorithm on a shared memory machine (BBN TC2000) and on a distributed workstation (IBM RS6000) environment created by the parallel virtual machine parallelization software

  19. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    Science.gov (United States)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  20. Parallel computing works

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  1. On synchronous parallel computations with independent probabilistic choice

    International Nuclear Information System (INIS)

    Reif, J.H.

    1984-01-01

    This paper introduces probabilistic choice to synchronous parallel machine models; in particular parallel RAMs. The power of probabilistic choice in parallel computations is illustrate by parallelizing some known probabilistic sequential algorithms. The authors characterize the computational complexity of time, space, and processor bounded probabilistic parallel RAMs in terms of the computational complexity of probabilistic sequential RAMs. They show that parallelism uniformly speeds up time bounded probabilistic sequential RAM computations by nearly a quadratic factor. They also show that probabilistic choice can be eliminated from parallel computations by introducing nonuniformity

  2. Optimisation of a parallel ocean general circulation model

    OpenAIRE

    M. I. Beare; D. P. Stevens

    1997-01-01

    International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...

  3. Massively parallel Fokker-Planck calculations

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1990-01-01

    This paper reports that the Fokker-Planck package FPPAC, which solves the complete nonlinear multispecies Fokker-Planck collision operator for a plasma in two-dimensional velocity space, has been rewritten for the Connection Machine 2. This has involved allocation of variables either to the front end or the CM2, minimization of data flow, and replacement of Cray-optimized algorithms with ones suitable for a massively parallel architecture. Calculations have been carried out on various Connection Machines throughout the country. Results and timings on these machines have been compared to each other and to those on the static memory Cray-2. For large problem size, the Connection Machine 2 is found to be cost-efficient

  4. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  5. An efficient implementation of a backpropagation learning algorithm on quadrics parallel supercomputer

    International Nuclear Information System (INIS)

    Taraglio, S.; Massaioli, F.

    1995-08-01

    A parallel implementation of a library to build and train Multi Layer Perceptrons via the Back Propagation algorithm is presented. The target machine is the SIMD massively parallel supercomputer Quadrics. Performance measures are provided on three different machines with different number of processors, for two network examples. A sample source code is given

  6. A high performance parallel approach to medical imaging

    International Nuclear Information System (INIS)

    Frieder, G.; Frieder, O.; Stytz, M.R.

    1988-01-01

    Research into medical imaging using general purpose parallel processing architectures is described and a review of the performance of previous medical imaging machines is provided. Results demonstrating that general purpose parallel architectures can achieve performance comparable to other, specialized, medical imaging machine architectures is presented. A new back-to-front hidden-surface removal algorithm is described. Results demonstrating the computational savings obtained by using the modified back-to-front hidden-surface removal algorithm are presented. Performance figures for forming a full-scale medical image on a mesh interconnected multiprocessor are presented

  7. Parallel algorithms for boundary value problems

    Science.gov (United States)

    Lin, Avi

    1991-01-01

    A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are twofold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.

  8. Parallelization of applications for networks with homogeneous and heterogeneous processors

    International Nuclear Information System (INIS)

    Colombet, L.

    1994-01-01

    The aim of this thesis is to study and develop efficient methods for parallelization of scientific applications on parallel computers with distributed memory. The first part presents two libraries of PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) communication tools. They allow implementation of programs on most parallel machines, but also on heterogeneous computer networks. This chapter illustrates the problems faced when trying to evaluate performances of networks with heterogeneous processors. To evaluate such performances, the concepts of speed-up and efficiency have been modified and adapted to account for heterogeneity. The second part deals with a study of parallel application libraries such as ScaLAPACK and with the development of communication masking techniques. The general concept is based on communication anticipation, in particular by pipelining message sending operations. Experimental results on Cray T3D and IBM SP1 machines validates the theoretical studies performed on basic algorithms of the libraries discussed above. Two examples of scientific applications are given: the first is a model of young stars for astrophysics and the other is a model of photon trajectories in the Compton effect. (J.S.). 83 refs., 65 figs., 24 tabs

  9. Experiment E89-044 of quasi-elastic diffusion 3He(e,e'p) at Jefferson Laboratory: Analyze cross sections of the two body breakup in parallel kinematics; Experience E89-044 de diffusion quasi-elastique 3he(e,e'p) au Jefferson Laboratory : analyse des sections efficaces de desintegration a deux corps en cinematique parallele

    Energy Technology Data Exchange (ETDEWEB)

    Penel-Nottaris, Emilie [Univ. Joseph Fourier Grenoble (France)

    2004-07-01

    The Jefferson Lab Hall A experiment has measured the 3He(e,e'p) reaction cross sections. The separation of the longitudinal and transverse response functions for the two-body breakup reaction in parallel kinematics allows to study the bound proton electromagnetic properties in the 3He nucleus and the involved nuclear mechanisms beyond impulse approximation. Preliminary cross sections show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta, and sensitivity to final state interactions and 3He wave functions for missing momenta of 300 MeV/c.

  10. Stampi: a message passing library for distributed parallel computing. User's guide, second edition

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi

    2000-02-01

    A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on the MPI2 specification, and it realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Main features of Stampi are summarized as follows: (i) an automatic switch function between external- and internal communications, (ii) a message routing/relaying with a routing module, (iii) a dynamic process creation, (iv) a support of two types of connection, Master/Slave and Client/Server, (v) a support of a communication with Java applets. Indeed vendors implemented MPI libraries as a closed system in one parallel machine or their systems, and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, moreover on eight kinds of parallel machines, totally fourteen systems. Stampi provides us MPI communication functionality on them. This report describes mainly the usage of Stampi. (author)

  11. Direct Simulation Monte Carlo (DSMC) on the Connection Machine

    International Nuclear Information System (INIS)

    Wong, B.C.; Long, L.N.

    1992-01-01

    The massively parallel computer Connection Machine is utilized to map an improved version of the direct simulation Monte Carlo (DSMC) method for solving flows with the Boltzmann equation. The kinetic theory is required for analyzing hypersonic aerospace applications, and the features and capabilities of the DSMC particle-simulation technique are discussed. The DSMC is shown to be inherently massively parallel and data parallel, and the algorithm is based on molecule movements, cross-referencing their locations, locating collisions within cells, and sampling macroscopic quantities in each cell. The serial DSMC code is compared to the present parallel DSMC code, and timing results show that the speedup of the parallel version is approximately linear. The correct physics can be resolved from the results of the complete DSMC method implemented on the connection machine using the data-parallel approach. 41 refs

  12. Solution of direct kinematic problem for Stewart-Gough platform with the use of analytical equation of plane

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available The paper concerns the solution of direct kinematic problem for the Stewart-Gough platform of the type 6-3. The article represents a detailed analysis of methods of direct kinematic problem solution for platform mechanisms based on the parallel structures. The complexity of the problem solution is estimated for the mechanisms of parallel kinematics in comparison with the classic manipulators, characterized by the open kinematic chain.The method for the solution of this problem is suggested. It consists in setting up the correspondence between the functional dependence of Cartesian coordinates and the orientation of the moving platform centre on the values of generalized coordinates of the manipulator, which may be represented, in the case of platform manipulators, by the lengths of extensible arms to connect the foundation and the moving platform of the manipulator. The method is constructed in such a way that the solution of the direct kinematic problem reduces to solution of the analytical equation of plane where the moving platform is situated. The equation of the required plane is built according to three points which in this case are attachment points of moving platform joints. To define joints coordinates values it is necessary to generate a system of nine nonlinear equations. It ought to be noted that in generating a system of equation are used the equations with the same type of nonlinearity. The physical meaning of all nine equations of the system is Euclidean distance between the points of the manipulator. The location and orientation of the moving platform is represented as a homogeneous transformation matrix. The components of translation and rotation of this matrix can be defined through the required plane.The obtained theoretical results are supposed to be used in the decision support system during the complex research of multi-sectional manipulators of parallel kinematics to describe the geometrically similar 3D-prototype of the

  13. Development of structural schemes of parallel structure manipulators using screw calculus

    Science.gov (United States)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  14. Digital Hardware Realization of Forward and Inverse Kinematics for a Five-Axis Articulated Robot Arm

    Directory of Open Access Journals (Sweden)

    Bui Thi Hai Linh

    2015-01-01

    Full Text Available When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.

  15. Kinematic Analysis and Optimization of a New Compliant Parallel Micromanipulator

    Directory of Open Access Journals (Sweden)

    Qingsong Xu

    2008-11-01

    Full Text Available In this paper, a new three translational degrees of freedom (DOF compliant parallel micromanipulator (CPM is proposed, which has an excellent accuracy of parallel mechanisms with flexure hinges. The system is established by a proper selection of hardware and analyzed via the derived pseudo-rigid-body model. In view of the physical constraints imposed by both the piezoelectric actuators and flexure hinges, the CPM's reachable workspace is determined analytically, where a maximum cylinder defined as an usable workspace can be inscribed. Moreover, the optimal design of the CPM with the consideration of the usable workspace size and global dexterity index simultaneously is carried out by utilizing the approaches of direct search method, genetic algorithm (GA, and particle swarm optimization (PSO, respectively. The simulation results show that the PSO is the best method for the optimization, and the results are valuable in the design of a new micromanipulator.

  16. Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and re-entrant jobs

    Science.gov (United States)

    Huang, J. D.; Liu, J. J.; Chen, Q. X.; Mao, N.

    2017-06-01

    Against a background of heat-treatment operations in mould manufacturing, a two-stage flow-shop scheduling problem is described for minimizing makespan with parallel batch-processing machines and re-entrant jobs. The weights and release dates of jobs are non-identical, but job processing times are equal. A mixed-integer linear programming model is developed and tested with small-scale scenarios. Given that the problem is NP hard, three heuristic construction methods with polynomial complexity are proposed. The worst case of the new constructive heuristic is analysed in detail. A method for computing lower bounds is proposed to test heuristic performance. Heuristic efficiency is tested with sets of scenarios. Compared with the two improved heuristics, the performance of the new constructive heuristic is superior.

  17. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.

    Science.gov (United States)

    Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo

    2015-01-01

    Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.

  18. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    Science.gov (United States)

    Nadkarni, P M; Miller, P L

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations.

  19. Applications of the parallel computing system using network

    International Nuclear Information System (INIS)

    Ido, Shunji; Hasebe, Hiroki

    1994-01-01

    Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)

  20. Performance of a plasma fluid code on the Intel parallel computers

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Leboeuf, J.N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel σ machine gives an improvement factor close to 64 over the single-processor CRAY-2

  1. Performance of a plasma fluid code on the Intel parallel computers

    Science.gov (United States)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  2. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  3. Scaling up machine learning: parallel and distributed approaches

    National Research Council Canada - National Science Library

    Bekkerman, Ron; Bilenko, Mikhail; Langford, John

    2012-01-01

    .... Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements...

  4. PCG: A software package for the iterative solution of linear systems on scalar, vector and parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W. [Los Alamos National Lab., NM (United States); Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1994-12-31

    A great need exists for high performance numerical software libraries transportable across parallel machines. This talk concerns the PCG package, which solves systems of linear equations by iterative methods on parallel computers. The features of the package are discussed, as well as techniques used to obtain high performance as well as transportability across architectures. Representative numerical results are presented for several machines including the Connection Machine CM-5, Intel Paragon and Cray T3D parallel computers.

  5. Explorations in the History of Machines and Mechanisms : Proceedings of HMM2012

    CERN Document Server

    Ceccarelli, Marco

    2012-01-01

    This book contains the proceedings of HMM2012, the 4th International Symposium on Historical Developments in the field of Mechanism and Machine Science (MMS). These proceedings cover recent research concerning all aspects of the development of MMS from antiquity until the present and its historiography: machines, mechanisms, kinematics, dynamics, concepts and theories, design methods, collections of methods, collections of models, institutions and biographies.

  6. 2016 IFToMM Asian Conference on Mechanism and Machine Science (IFToMM Asian MMS 2016) & 2016 International Conference on Mechanism and Machine Science (CCMMS 2016)

    CERN Document Server

    Wang, Nianfeng; Huang, Yanjiang

    2017-01-01

    These proceedings collect the latest research results in mechanism and machine science, intended to reinforce and improve the role of mechanical systems in a variety of applications in daily life and industry. Gathering more than 120 academic papers, it addresses topics including: Computational kinematics, Machine elements, Actuators, Gearing and transmissions, Linkages and cams, Mechanism design, Dynamics of machinery, Tribology, Vehicle mechanisms, dynamics and design, Reliability, Experimental methods in mechanisms, Robotics and mechatronics, Biomechanics, Micro/nano mechanisms and machines, Medical/welfare devices, Nature and machines, Design methodology, Reconfigurable mechanisms and reconfigurable manipulators, and Origami mechanisms. This is the fourth installment in the IFToMM Asian conference series on Mechanism and Machine Science (ASIAN MMS 2016). The ASIAN MMS conference initiative was launched to provide a forum mainly for the Asian community working in Mechanism and Machine Science, in order to ...

  7. Unified Singularity Modeling and Reconfiguration of 3rTPS Metamorphic Parallel Mechanisms with Parallel Constraint Screws

    Directory of Open Access Journals (Sweden)

    Yufeng Zhuang

    2015-01-01

    Full Text Available This paper presents a unified singularity modeling and reconfiguration analysis of variable topologies of a class of metamorphic parallel mechanisms with parallel constraint screws. The new parallel mechanisms consist of three reconfigurable rTPS limbs that have two working phases stemming from the reconfigurable Hooke (rT joint. While one phase has full mobility, the other supplies a constraint force to the platform. Based on these, the platform constraint screw systems show that the new metamorphic parallel mechanisms have four topologies by altering the limb phases with mobility change among 1R2T (one rotation with two translations, 2R2T, and 3R2T and mobility 6. Geometric conditions of the mechanism design are investigated with some special topologies illustrated considering the limb arrangement. Following this and the actuation scheme analysis, a unified Jacobian matrix is formed using screw theory to include the change between geometric constraints and actuation constraints in the topology reconfiguration. Various singular configurations are identified by analyzing screw dependency in the Jacobian matrix. The work in this paper provides basis for singularity-free workspace analysis and optimal design of the class of metamorphic parallel mechanisms with parallel constraint screws which shows simple geometric constraints with potential simple kinematics and dynamics properties.

  8. A kinematic analysis of the modified flight telerobotic servicer manipulator system

    Science.gov (United States)

    Crane, Carl; Carnahan, Tim; Duffy, Joseph

    1992-01-01

    A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.

  9. An Adaptive Method For Texture Characterization In Medical Images Implemented on a Parallel Virtual Machine

    Directory of Open Access Journals (Sweden)

    Socrates A. Mylonas

    2003-06-01

    Full Text Available This paper describes the application of a new texture characterization algorithm for the segmentation of medical ultrasound images. The morphology of these images poses significant problems for the application of traditional image processing techniques and their analysis has been the subject of research for several years. The basis of the algorithm is an optimum signal modelling algorithm (Least Mean Squares-based, which estimates a set of parameters from small image regions. The algorithm has been converted to a structure suitable for implementation on a Parallel Virtual Machine (PVM consisting of a Network of Workstations (NoW, to improve processing speed. Tests were initially carried out on standard textured images. This paper describes preliminary results of the application of the algorithm in texture discrimination and segmentation of medical ultrasound images. The images examined are primarily used in the diagnosis of carotid plaques, which are linked to the risk of stroke.

  10. An M-step preconditioned conjugate gradient method for parallel computation

    Science.gov (United States)

    Adams, L.

    1983-01-01

    This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.

  11. Output Enhancement in the Transfer-Field Machine Using Rotor ...

    African Journals Online (AJOL)

    Output Enhancement in the Transfer-Field Machine Using Rotor Circuit Induced Currents. ... The output of a plain transfer-field machine would be much less than that of a conventional machine of comparable size and dimensions. The use of ... The same effects have their parallel for the asynchronous mode of operation.

  12. Lock-free parallel garbage collection

    NARCIS (Netherlands)

    H. Gao; J.F. Groote (Jan Friso); W.H. Hesselink (Wim)

    2005-01-01

    htmlabstract This paper presents a lock-free parallel algorithm for mark&sweep garbage collection (GC) in a realistic model using synchronization primitives compare-and-swap (CAS) and load-linked/store-conditional (LL/SC) offered by machine architectures. Mutators and collectors can simultaneously

  13. Writing parallel programs that work

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Serial algorithms typically run inefficiently on parallel machines. This may sound like an obvious statement, but it is the root cause of why parallel programming is considered to be difficult. The current state of the computer industry is still that almost all programs in existence are serial. This talk will describe the techniques used in the Intel Parallel Studio to provide a developer with the tools necessary to understand the behaviors and limitations of the existing serial programs. Once the limitations are known the developer can refactor the algorithms and reanalyze the resulting programs with the tools in the Intel Parallel Studio to create parallel programs that work. About the speaker Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and was involved in th...

  14. Performance of a plasma fluid code on the Intel parallel computers

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Leboeuf, J.N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2. 12 refs

  15. Block-Parallel Data Analysis with DIY2

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peterka, Tom [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-30

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial, parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.

  16. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease.

    Science.gov (United States)

    Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos

    2016-02-01

    We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  18. Parallelization and automatic data distribution for nuclear reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, L.M. [Liebrock-Hicks Research, Calumet, MI (United States)

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  19. Parallelization and automatic data distribution for nuclear reactor simulations

    International Nuclear Information System (INIS)

    Liebrock, L.M.

    1997-01-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed

  20. Implementations of BLAST for parallel computers.

    Science.gov (United States)

    Jülich, A

    1995-02-01

    The BLAST sequence comparison programs have been ported to a variety of parallel computers-the shared memory machine Cray Y-MP 8/864 and the distributed memory architectures Intel iPSC/860 and nCUBE. Additionally, the programs were ported to run on workstation clusters. We explain the parallelization techniques and consider the pros and cons of these methods. The BLAST programs are very well suited for parallelization for a moderate number of processors. We illustrate our results using the program blastp as an example. As input data for blastp, a 799 residue protein query sequence and the protein database PIR were used.

  1. Parallel computing solution of Boltzmann neutron transport equation

    International Nuclear Information System (INIS)

    Ansah-Narh, T.

    2010-01-01

    The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)

  2. Online Algorithms for Parallel Job Scheduling and Strip Packing

    NARCIS (Netherlands)

    Hurink, Johann L.; Paulus, J.J.

    We consider the online scheduling problem of parallel jobs on parallel machines, $P|online{−}list,m_j |C_{max}$. For this problem we present a 6.6623-competitive algorithm. This improves the best known 7-competitive algorithm for this problem. The presented algorithm also applies to the problem

  3. Tribology in machine design

    CERN Document Server

    Stolarski, T A

    1990-01-01

    Tribology in Machine Design aims to promote a better appreciation of the increasingly important role played by tribology at the design stage in engineering. This book shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications. The concept of tribodesign is introduced in Chapter 1. Chapter 2 is devoted to a brief discussion of the basic principles of tribology, including some concepts and models of lubricated wear and friction under complex kinematic conditions. Elements of contact mechanics, presented in Chapter 3, are confined to the

  4. Towards an abstract parallel branch and bound machine

    NARCIS (Netherlands)

    A. de Bruin (Arie); G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens

    1995-01-01

    textabstractMany (parallel) branch and bound algorithms look very different from each other at first glance. They exploit, however, the same underlying computational model. This phenomenon can be used to define branch and bound algorithms in terms of a set of basic rules that are applied in a

  5. Scaling up machine learning: parallel and distributed approaches

    National Research Council Canada - National Science Library

    Bekkerman, Ron; Bilenko, Mikhail; Langford, John

    2012-01-01

    ... presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters; concurrent programming frameworks that include CUDA, MPI, MapReduce, and DryadLINQ; and various learning settings: supervised, unsupervised, semi-supervised, and online learning. Extensive coverage of parallelizat...

  6. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  7. Parallel machine scheduling with release dates, due dates and family setup times

    NARCIS (Netherlands)

    Schutten, Johannes M.J.; Leussink, R.A.M.

    1996-01-01

    In manufacturing, there is a fundamental conflict between efficient production and delivery performance. Maximizing machine utilization by batching similar jobs may lead to poor delivery performance. Minimizing customers' dissatisfaction may lead to an inefficient use of the machines. In this paper,

  8. New Structural Representation and Digital-Analysis Platform for Symmetrical Parallel Mechanisms

    Directory of Open Access Journals (Sweden)

    Wenao Cao

    2013-05-01

    Full Text Available Abstract An automatic design platform capable of automatic structural analysis, structural synthesis and the application of parallel mechanisms will be a great aid in the conceptual design of mechanisms, though up to now such a platform has only existed as an idea. The work in this paper constitutes part of such a platform. Based on the screw theory and a new structural representation method proposed here which builds a one-to-one correspondence between the strings of representative characters and the kinematic structures of symmetrical parallel mechanisms (SPMs, this paper develops a fully-automatic approach for mobility (degree-of-freedom analysis, and further establishes an automatic digital-analysis platform for SPMs. With this platform, users simply have to enter the strings of representative characters, and the kinematic structures of the SPMs will be generated and displayed automatically, and the mobility and its properties will also be analysed and displayed automatically. Typical examples are provided to show the effectiveness of the approach.

  9. PRISMA database machine: A distributed, main-memory approach

    NARCIS (Netherlands)

    Schmidt, J.W.; Apers, Peter M.G.; Ceri, S.; Kersten, Martin L.; Oerlemans, Hans C.M.; Missikoff, M.

    1988-01-01

    The PRISMA project is a large-scale research effort in the design and implementation of a highly parallel machine for data and knowledge processing. The PRISMA database machine is a distributed, main-memory database management system implemented in an object-oriented language that runs on top of a

  10. Parallel algorithms for continuum dynamics

    International Nuclear Information System (INIS)

    Hicks, D.L.; Liebrock, L.M.

    1987-01-01

    Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors

  11. Parallel S/sub n/ iteration schemes

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.

    1986-01-01

    The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial

  12. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  13. A homotopy method for solving Riccati equations on a shared memory parallel computer

    International Nuclear Information System (INIS)

    Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.

    1993-01-01

    Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines

  14. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  15. Abstract quantum computing machines and quantum computational logics

    Science.gov (United States)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  16. Implementing Shared Memory Parallelism in MCBEND

    Directory of Open Access Journals (Sweden)

    Bird Adam

    2017-01-01

    Full Text Available MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.

  17. From parallel to distributed computing for reactive scattering calculations

    International Nuclear Information System (INIS)

    Lagana, A.; Gervasi, O.; Baraglia, R.

    1994-01-01

    Some reactive scattering codes have been ported on different innovative computer architectures ranging from massively parallel machines to clustered workstations. The porting has required a drastic restructuring of the codes to single out computationally decoupled cpu intensive subsections. The suitability of different theoretical approaches for parallel and distributed computing restructuring is discussed and the efficiency of related algorithms evaluated

  18. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

    Science.gov (United States)

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

  19. Kinematic space and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-dong [TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519082, Guangdong (China); Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, 5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China)

    2017-01-23

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,ℝ) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  20. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Lahdenoja Olli

    2007-01-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  1. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ari Paasio

    2006-12-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  2. Optimisation of a parallel ocean general circulation model

    Science.gov (United States)

    Beare, M. I.; Stevens, D. P.

    1997-10-01

    This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  3. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    Science.gov (United States)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  4. RAMA: A file system for massively parallel computers

    Science.gov (United States)

    Miller, Ethan L.; Katz, Randy H.

    1993-01-01

    This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.

  5. CALTRANS: A parallel, deterministic, 3D neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Carson, L.; Ferguson, J.; Rogers, J.

    1994-04-01

    Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.

  6. Determination of capacity of single-toggle jaw crusher, taking into account parameters of kinematics of its working mechanism

    Science.gov (United States)

    Golikov, N. S.; Timofeev, I. P.

    2018-05-01

    Efficiency increase of jaw crushers makes the foundation of rational kinematics and stiffening of the elements of the machine possible. Foundation of rational kinematics includes establishment of connection between operation mode parameters of the crusher and its technical characteristics. The main purpose of this research is just to establish such a connection. Therefore this article shows analytical procedure of getting connection between operation mode parameters of the crusher and its capacity. Theoretical, empirical and semi-empirical methods of capacity determination of a single-toggle jaw crusher are given, taking into account physico-mechanical properties of crushed material and kinematics of the working mechanism. When developing a mathematical model, the method of closed vector polygons by V. A. Zinoviev was used. The expressions obtained in the article give an opportunity to solve important scientific and technical problems, connected with finding the rational kinematics of the jaw crusher mechanism, carrying out a comparative assessment of different crushers and giving the recommendations about updating the available jaw crushers.

  7. Analysis of multigrid methods on massively parallel computers: Architectural implications

    Science.gov (United States)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  8. Massively parallel computation of conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M [Univ. Claude Bernard, Villeurbanne (France); Levine, D [Argonne National Lab., IL (United States)

    1990-01-01

    The authors present a new method for computing solutions of conservation laws based on the use of cellular automata with the method of characteristics. The method exploits the high degree of parallelism available with cellular automata and retains important features of the method of characteristics. It yields high numerical accuracy and extends naturally to adaptive meshes and domain decomposition methods for perturbed conservation laws. They describe the method and its implementation for a Dirichlet problem with a single conservation law for the one-dimensional case. Numerical results for the one-dimensional law with the classical Burgers nonlinearity or the Buckley-Leverett equation show good numerical accuracy outside the neighborhood of the shocks. The error in the area of the shocks is of the order of the mesh size. The algorithm is well suited for execution on both massively parallel computers and vector machines. They present timing results for an Alliant FX/8, Connection Machine Model 2, and CRAY X-MP.

  9. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  10. Technical diagnostics functioning machines and mechanisms

    Science.gov (United States)

    Kiselev, M. I.; Pronyakin, V. I.; Tulekbaeva, A. K.

    2018-02-01

    Article discusses the machines and mechanisms technical state monitoring problem. Approaches for estimating mechanical systems current technical state, defects detection and evaluation of mechanical elements degradation levels are considered. The paper analyzes the traditional methods offered in international and national standards, especially vibrodiagnostics. An advanced phase method is presented which is based on registration the kinematic parameters of the mechanism running cycle. The result of coupling the phase method and mathematical modeling is shown, and simulation comparison with the experimental data is presented.

  11. Modifying the test of understanding graphs in kinematics

    Science.gov (United States)

    Zavala, Genaro; Tejeda, Santa; Barniol, Pablo; Beichner, Robert J.

    2017-12-01

    In this article, we present several modifications to the Test of Understanding Graphs in Kinematics. The most significant changes are (i) the addition and removal of items to achieve parallelism in the objectives (dimensions) of the test, thus allowing comparisons of students' performance that were not possible with the original version, and (ii) changes to the distractors of some of the original items that represent the most frequent alternative conceptions. The final modified version (after an iterative process involving four administrations of test variations over two years) was administered to 471 students of an introductory university physics course at a large private university in Mexico. When analyzing the final modified version of the test it was found that the added items satisfied the statistical tests of difficulty, discriminatory power, and reliability; also, that the great majority of the modified distractors were effective in terms of their frequency selection and discriminatory power; and, that the final modified version of the test satisfied the reliability and discriminatory power criteria as well as the original test. Here, we also show the use of the new version of the test, presenting a new analysis of students' understanding not possible to do before with the original version of the test, specifically regarding the objectives and items that in the new version meet parallelisms. Finally, in the PhysPort project (physport.org), we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of graphs in kinematics, as well as their learning about them.

  12. Differences Between Distributed and Parallel Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.

  13. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  14. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  15. The Utilization of Parallel Corpora for the Extension of Machine ...

    African Journals Online (AJOL)

    grammar rules for the identification of the grammatical category of each .... An example of the first type of corpus-based machine translation is a sub- ..... The MINISTER OF AGRICULTURE: Mr Chairman, while prayers were being read this.

  16. A study on optimal task decomposition of networked parallel computing using PVM

    International Nuclear Information System (INIS)

    Seong, Kwan Jae; Kim, Han Gyoo

    1998-01-01

    A numerical study is performed to investigate the effect of task decomposition on networked parallel processes using Parallel Virtual Machine (PVM). In our study, a PVM program distributed over a network of workstations is used in solving a finite difference version of a one dimensional heat equation, where natural choice of PVM programming structure would be the master-slave paradigm, with the aim of finding an optimal configuration resulting in least computing time including communication overhead among machines. Given a set of PVM tasks comprised of one master and five slave programs, it is found that there exists a pseudo-optimal number of machines, which does not necessarily coincide with the number of tasks, that yields the best performance when the network is under a light usage. Increasing the number of machines beyond this optimal one does not improve computing performance since increase in communication overhead among the excess number of machines offsets the decrease in CPU time obtained by distributing the PVM tasks among these machines. However, when the network traffic is heavy, the results exhibit a more random characteristic that is explained by the random nature of data transfer time

  17. Mechatronics in the mining industry. Modelling of underground machines; Mechatronik im Bergbau. Modellbildung von Untertage-Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Bruckmann, Tobias; Brandt, Thorsten [mercatronics GmbH, Duisburg (Germany)

    2009-12-17

    The development of new functions for machines operating underground often requires a prolonged and cost-intensive test phase. Precisely the development of complex functions as occur in operating assistance systems, for example, is highly iterative. If a corresponding prototype is required for each iteration step of the development, the development costs will, of course, increase rapidly. Virtual prototypes and simulators based on mathematical models of the machine offer an alternative in this case. The article describes the same principles for modelling the kinematics of underground machines. (orig.)

  18. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  19. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    Science.gov (United States)

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  20. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shuang Dong

    2014-01-01

    Full Text Available The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  1. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    1997-10-01

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  2. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  3. Rational kinematics

    CERN Document Server

    Angeles, Jorge

    1988-01-01

    A rational study of kinematics is a treatment of the subject based on invariants, i.e., quantities that remain essentially unchanged under a change of observer. An observer is understood to be a reference frame supplied with a clock (Truesdell 1966). This study will therefore include an introduction to invariants. The language of these is tensor analysis and multilinear algebra, both of which share many isomorphic relations, These subjects are treated in full detail in Ericksen (1960) and Bowen and Wang (1976), and hence will not be included here. Only a short account of notation and definitions will be presented. Moreover, definitions and basic concepts pertaining to the kinematics of rigid bodies will be also included. Although the kinematics of rigid bodies can be regarded as a particular case of the kinematics of continua, the former deserves attention on its own merits for several reasons. One of these is that it describes locally the motions undergone by continua. Another reason is that a whole area of ...

  4. Ocean circulation code on machine connection

    International Nuclear Information System (INIS)

    Vitart, F.

    1993-01-01

    This work is part of a development of a global climate model based on a coupling between an ocean model and an atmosphere model. The objective was to develop this global model on a massively parallel machine (CM2). The author presents the OPA7 code (equations, boundary conditions, equation system resolution) and parallelization on the CM2 machine. CM2 data structure is briefly evoked, and two tests are reported (on a flat bottom basin, and a topography with eight islands). The author then gives an overview of studies aimed at improving the ocean circulation code: use of a new state equation, use of a formulation of surface pressure, use of a new mesh. He reports the study of the use of multi-block domains on CM2 through advection tests, and two-block tests

  5. Type Synthesis of Parallel Mechanisms with the First Class GF Sets and Two-Dimensional Rotations

    Directory of Open Access Journals (Sweden)

    Jialun Yang

    2012-09-01

    Full Text Available The novel design of parallel mechanisms plays a key role in the potential application of parallel mechanisms. In this paper, the type synthesis of parallel mechanisms with the first class GF sets and two-dimensional rotations is studied. The rule of two-dimensional rotations is given, which lays the theoretical foundation for the intersection operations of specific GF sets. Next, kinematic limbs with specific characteristics are designed according to the 2-D and 3-D axes movement theorems. Finally, several synthesized parallel mechanisms with the first class GF sets and two-dimensional rotations are illustrated to show the effectiveness of the proposed methodology.

  6. Kinematics of the AM-50 heading machine cutting head

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Bak, K; Klich, R [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1987-01-01

    Analyzes motion of the cutter head of the AM-50 heading machine. Two types of head motion are comparatively evaluated: planar motion and spatial motion. The spatial motion consists of the head rotational motion and horizontal or vertical feed motion, while planar motion consists of rotational motion and vertical feed motion. Equations that describe head motion under conditions of cutter vertical or horizontal feed motion are derived. The angle between the cutting speed direction and working speed direction is defined. On the basis of these formulae variations of cutting speed depending on the cutting tool position on a cutter head are calculated. Calculations made for 2 extreme cutting tools show that the cutting speed ranges from 1,205 m/s to 3,512 m/s. 4 refs.

  7. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  8. Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Caro, Stéphane; Wang, Jiawei

    2015-01-01

    analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...

  9. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    International Nuclear Information System (INIS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-01-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines

  10. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    Science.gov (United States)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  11. Domain decomposition methods and parallel computing

    International Nuclear Information System (INIS)

    Meurant, G.

    1991-01-01

    In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset

  12. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  13. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

    Directory of Open Access Journals (Sweden)

    Qin Zhang

    2017-05-01

    Full Text Available In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA and independent component analysis (ICA are respectively employed for EMG mode decomposition with artificial neural network (ANN for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA and single ANN, the average estimation accuracy 91.12% (90.23% is obtained in 70-s intra-cross validation and 87.00% (86.30% is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA with single ANN for multi-joint kinematics estimation in variant application conditions.

  14. Parallel R

    CERN Document Server

    McCallum, Ethan

    2011-01-01

    It's tough to argue with R as a high-quality, cross-platform, open source statistical software product-unless you're in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets. You'll learn the basics of Snow, Multicore, Parallel, and some Hadoop-related tools, including how to find them, how to use them, when they work well, and when they don't. With these packages, you can overcome R's single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R's memory barrier.

  15. Treatment of Markup in Statistical Machine Translation

    OpenAIRE

    Müller, Mathias

    2017-01-01

    We present work on handling XML markup in Statistical Machine Translation (SMT). The methods we propose can be used to effectively preserve markup (for instance inline formatting or structure) and to place markup correctly in a machine-translated segment. We evaluate our approaches with parallel data that naturally contains markup or where markup was inserted to create synthetic examples. In our experiments, hybrid reinsertion has proven the most accurate method to handle markup, while alignm...

  16. Ab initio quantum chemistry in parallel-portable tools and applications

    International Nuclear Information System (INIS)

    Harrison, R.J.; Shepard, R.; Kendall, R.A.

    1991-01-01

    In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10 5 ) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs

  17. Kinematics of a Hybrid Manipulator by Means of Screw Theory

    International Nuclear Information System (INIS)

    Gallardo-Alvarado, J

    2005-01-01

    In this work the kinematics of a hybrid manipulator, namely a fully parallel-serial manipulator, with a particular topology is approached by means of the theory of screws. Given the length of the six independent limbs, the forward position analysis of the mechanism under study, indeed the computation of the resulting pose, position and orientation, of the end-platform with respect to the fixed platform, is carried out in closed-form solution. Therefore conveniently this initial analysis avoids the use of a numerical technique such as the Newton-Raphson method. Writing in screw form the reduced acceleration state of the translational platform, with respect to the fixed platform, a simple expression for the computation of the acceleration of the translational platform is derived by taking advantage of the properties of reciprocal screws, via the Klein form, a bilinear symmetric form of the Lie algebra e(3). Following a similar procedure, a simple expression for the computation of the angular acceleration of the end-platform, with respect to the translational platform, is easily derived. Naturally, as an intermediate step, this contribution also provides the forward and inverse velocity analyses of the chosen parallel-serial manipulator. Finally, in order to prove the versatility of the expressions obtained via screw theory for solving the kinematics, up to the acceleration analysis, of the proposed spatial mechanism, a numerical example is solved with the help of commercial computer codes

  18. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  19. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  20. Vector and parallel processors in computational science. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I S; Reid, J K

    1985-01-01

    This volume contains papers from most of the invited talks and from several of the contributed talks and poster sessions presented at VAPP II. The contents present an extensive coverage of all important aspects of vector and parallel processors, including hardware, languages, numerical algorithms and applications. The topics covered include descriptions of new machines (both research and commercial machines), languages and software aids, and general discussions of whole classes of machines and their uses. Numerical methods papers include Monte Carlo algorithms, iterative and direct methods for solving large systems, finite elements, optimization, random number generation and mathematical software. The specific applications covered include neutron diffusion calculations, molecular dynamics, weather forecasting, lattice gauge calculations, fluid dynamics, flight simulation, cartography, image processing and cryptography. Most machines and architecture types are being used for these applications. many refs.

  1. Metrological Evaluation of a Novel Medical Robot and Its Kinematic Calibration

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-09-01

    Full Text Available The vessels are twisted in a longitudinal 3D space in the lower limbs of humans. Thus, it is difficult to perform an ultrasound scanning examination in this area. In this paper, a new medical parallel robot is introduced to effectively diagnose vessel disease in the lower limbs. The robot's position repeatability and accuracy are evaluated. Furthermore, the robot's accuracy is improved through a calibration process in which the kinematic parameters are identified through a simple identification approach.

  2. Parallel iterative solution of the Hermite Collocation equations on GPUs II

    International Nuclear Information System (INIS)

    Vilanakis, N; Mathioudakis, E

    2014-01-01

    Hermite Collocation is a high order finite element method for Boundary Value Problems modelling applications in several fields of science and engineering. Application of this integration free numerical solver for the solution of linear BVPs results in a large and sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver especially for realistic simulations. In part I of this work an efficient parallel algorithm of the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB) iterative solver has been designed for multicore computing architectures with a Graphics Processing Unit (GPU). In the present work the proposed algorithm has been extended for high performance computing environments consisting of multiprocessor machines with multiple GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid memory treatment is needed for the development of the parallel algorithm. The realization of the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of the parallel implementation

  3. The FORCE: A portable parallel programming language supporting computational structural mechanics

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna

    1989-01-01

    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.

  4. Open Source Parallel Image Analysis and Machine Learning Pipeline, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Continuum Analytics proposes a Python-based open-source data analysis machine learning pipeline toolkit for satellite data processing, weather and climate data...

  5. Tune-shift with amplitude due to nonlinear kinematic effect

    CERN Document Server

    Wan, W

    1999-01-01

    Tracking studies of the Muon Collider 50 on 50 GeV collider ring show that the on-momentum dynamic aperture is limited to around 10 sigma even with the chromaticity sextupoles turned off. Numerical results from the normal form algorithm show that the tune-shift with amplitude is surprisingly large. Both analytical and numerical results are presented to show that nonlinear kinematic effect originated from the large angles of particles in the interaction region is responsible for the large tune-shift which in turn limits the dynamic aperture. A comparative study of the LHC collider ring is also presented to demonstrate the difference between the two machines. (14 refs).

  6. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Vincent Richard

    Full Text Available The use of multi-body optimisation (MBO to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm. The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

  7. Parallel Robot for Lower Limb Rehabilitation Exercises

    Directory of Open Access Journals (Sweden)

    Alireza Rastegarpanah

    2016-01-01

    Full Text Available The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.

  8. Wakefield calculations on parallel computers

    International Nuclear Information System (INIS)

    Schoessow, P.

    1990-01-01

    The use of parallelism in the solution of wakefield problems is illustrated for two different computer architectures (SIMD and MIMD). Results are given for finite difference codes which have been implemented on a Connection Machine and an Alliant FX/8 and which are used to compute wakefields in dielectric loaded structures. Benchmarks on code performance are presented for both cases. 4 refs., 3 figs., 2 tabs

  9. Automated Parallel Computing Tools for Multicore Machines and Clusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to improve productivity of high performance computing for applications on multicore computers and clusters. These machines built from one or more chips...

  10. Data-parallel tomographic reconstruction : A comparison of filtered backprojection and direct Fourier reconstruction

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Westenberg, M.A

    1998-01-01

    We consider the parallelization of two standard 2D reconstruction algorithms, filtered backprojection and direct Fourier reconstruction, using the data-parallel programming style. The algorithms are implemented on a Connection Machine CM-5 with 16 processors and a peak performance of 2 Gflop/s.

  11. The BLAZE language - A parallel language for scientific programming

    Science.gov (United States)

    Mehrotra, Piyush; Van Rosendale, John

    1987-01-01

    A Pascal-like scientific programming language, BLAZE, is described. BLAZE contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus BLAZE should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with conceptually sequential control flow. A central goal in the design of BLAZE is portability across a broad range of parallel architectures. The multiple levels of parallelism present in BLAZE code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of BLAZE are described and it is shown how this language would be used in typical scientific programming.

  12. The BLAZE language: A parallel language for scientific programming

    Science.gov (United States)

    Mehrotra, P.; Vanrosendale, J.

    1985-01-01

    A Pascal-like scientific programming language, Blaze, is described. Blaze contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus Blaze should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with onceptually sequential control flow. A central goal in the design of Blaze is portability across a broad range of parallel architectures. The multiple levels of parallelism present in Blaze code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of Blaze are described and shows how this language would be used in typical scientific programming.

  13. Meta-heuristic algorithms for parallel identical machines scheduling problem with weighted late work criterion and common due date.

    Science.gov (United States)

    Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie

    2015-01-01

    To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA.

  14. Boltzmann machines for travelling salesman problems

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.

    1989-01-01

    Boltzmann machines are proposed as a massively parallel alternative to the (sequential) simulated annealing algorithm. Our approach is tailored to the travelling salesman problem, but it can also be applied to a more general class of combinatorial optimization problems. For two distinct 0–1

  15. Art in the Age of Machine Intelligence

    Directory of Open Access Journals (Sweden)

    Blaise Agüera y Arcas

    2017-09-01

    Full Text Available In this wide‐ranging essay, the leader of Google’s Seattle AI group and founder of the Artists and Machine Intelligence program discusses the long‐standing and complex relationship between art and technology. The transformation of artistic practice and theory that attended the 19th century photographic revolution is explored as a parallel for the current revolution in machine intelligence, which promises not only to mechanize (or democratize the means of reproduction, but also of production.

  16. Parallel computing and networking; Heiretsu keisanki to network

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, E; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper describes the trend of parallel computers used in geophysical exploration. Around 1993 was the early days when the parallel computers began to be used for geophysical exploration. Classification of these computers those days was mainly MIMD (multiple instruction stream, multiple data stream), SIMD (single instruction stream, multiple data stream) and the like. Parallel computers were publicized in the 1994 meeting of the Geophysical Exploration Society as a `high precision imaging technology`. Concerning the library of parallel computers, there was a shift to PVM (parallel virtual machine) in 1993 and to MPI (message passing interface) in 1995. In addition, the compiler of FORTRAN90 was released with support implemented for data parallel and vector computers. In 1993, networks used were Ethernet, FDDI, CDDI and HIPPI. In 1995, the OC-3 products under ATM began to propagate. However, ATM remains to be an interoffice high speed network because the ATM service has not spread yet for the public network. 1 ref.

  17. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    Science.gov (United States)

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Extended Kalman Filter Based Sliding Mode Control of Parallel-Connected Two Five-Phase PMSM Drive System

    Directory of Open Access Journals (Sweden)

    Tounsi Kamel

    2018-01-01

    Full Text Available This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller.

  19. Error modelling and experimental validation of a planar 3-PPR parallel manipulator with joint clearances

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2012-01-01

    This paper deals with the error modelling and analysis of a 3-PPR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Using...

  20. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2014-11-01

    The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipeline model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.

  1. Testing machine for fatigue crack kinetic investigation in specimens under bending

    International Nuclear Information System (INIS)

    Panasyuk, V.V.; Ratych, L.V.; Dmytrakh, I.N.

    1978-01-01

    A kinematic diagram of testing mashine for the investigation of fatigue crack kinetics in prismatic specimens, subjected to pure bending is described. Suggested is a technique of choosing an optimum ratio of the parameters of ''the testing machine-specimen'' system, which provide the stabilization of the stress intensity coefficient for a certain region of crack development under hard loading. On the example of the 40KhS and 15Kh2MFA steel specimens the pliability of the machine constructed according to the described diagram and designed for the 30ONxm maximum bending moment. The results obtained can be used in designing of the testing machines for studying pure bending under hard loading and in choosing the sizes of specimens with rectangular cross sections for investigations into the kinetics of the fatigue crack

  2. An obstacle to building a time machine

    International Nuclear Information System (INIS)

    Carroll, S.M.; Farhi, E.; Guth, A.H.

    1992-01-01

    Gott has shown that a spacetime with two infinite parallel cosmic strings passing each other with sufficient velocity contains closed timelike curves. We discuss an attempt to build such a time machine. Using the energy-momentum conservation laws in the equivalent (2+1)-dimensional theory, we explicitly construct the spacetime representing the decay of one gravitating particle into two. We find that there is never enough mass in an open universe to build the time machine from the products of decays of stationary particles. More generally, the Gott time machine cannot exist in any open (2+1)-dimensional universe for which the total momentum is timelike

  3. FEM Optimal Design of Energy Efficient Induction Machines

    Directory of Open Access Journals (Sweden)

    TUDORACHE, T.

    2009-06-01

    Full Text Available This paper deals with a comparative numerical analysis of performances of several design solutions of induction machines with improved energy efficiency. Starting from a typical cast aluminum cage induction machine this study highlights the benefit of replacing the classical cast aluminum cage with a cast copper cage in the manufacture of future generation of high efficiency induction machines used as motors or generators. Then the advantage of replacement of standard electrical steel with higher grade steel with smaller losses is pointed out. The numerical analysis carried out in the paper is based on 2D plane-parallel finite element approach of the induction machine, the numerical results being discussed and compared with experimental measurements.

  4. Portable parallel programming in a Fortran environment

    International Nuclear Information System (INIS)

    May, E.N.

    1989-01-01

    Experience using the Argonne-developed PARMACs macro package to implement a portable parallel programming environment is described. Fortran programs with intrinsic parallelism of coarse and medium granularity are easily converted to parallel programs which are portable among a number of commercially available parallel processors in the class of shared-memory bus-based and local-memory network based MIMD processors. The parallelism is implemented using standard UNIX (tm) tools and a small number of easily understood synchronization concepts (monitors and message-passing techniques) to construct and coordinate multiple cooperating processes on one or many processors. Benchmark results are presented for parallel computers such as the Alliant FX/8, the Encore MultiMax, the Sequent Balance, the Intel iPSC/2 Hypercube and a network of Sun 3 workstations. These parallel machines are typical MIMD types with from 8 to 30 processors, each rated at from 1 to 10 MIPS processing power. The demonstration code used for this work is a Monte Carlo simulation of the response to photons of a ''nearly realistic'' lead, iron and plastic electromagnetic and hadronic calorimeter, using the EGS4 code system. 6 refs., 2 figs., 2 tabs

  5. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    Science.gov (United States)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  6. FEM analysis of an single stator dual PM rotors axial synchronous machine

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2017-01-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.

  7. A finite element solution method for quadrics parallel computer

    International Nuclear Information System (INIS)

    Zucchini, A.

    1996-08-01

    A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem

  8. Parallel computation

    International Nuclear Information System (INIS)

    Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.

    1997-01-01

    The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment

  9. Parallel plasma fluid turbulence calculations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.

    1994-01-01

    The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated

  10. Parallelization of ITOUGH2 using PVM

    International Nuclear Information System (INIS)

    Finsterle, Stefan

    1998-01-01

    ITOUGH2 inversions are computationally intensive because the forward problem must be solved many times to evaluate the objective function for different parameter combinations or to numerically calculate sensitivity coefficients. Most of these forward runs are independent from each other and can therefore be performed in parallel. Message passing based on the Parallel Virtual Machine (PVM) system has been implemented into ITOUGH2 to enable parallel processing of ITOUGH2 jobs on a heterogeneous network of Unix workstations. This report describes the PVM system and its implementation into ITOUGH2. Instructions are given for installing PVM, compiling ITOUGH2-PVM for use on a workstation cluster, the preparation of an 1.TOUGH2 input file under PVM, and the execution of an ITOUGH2-PVM application. Examples are discussed, demonstrating the use of ITOUGH2-PVM

  11. Parallel Computing:. Some Activities in High Energy Physics

    Science.gov (United States)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  12. Optimization of the parameter calculation the process of production historic by using Parallel Virtual Machine-PVM; Otimizacao do calculo de parametros no processo de ajuste de historicos de producao usando PVM

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Cuervo, Carlos Hernan

    1997-03-01

    The main objective of this work is to develop a methodology to optimize the simultaneous computation of two parameters in the process of production history matching. This work describes a procedure to minimize an objective function established to find the values of the parameters which are modified in the process. The parameters are chosen after a sensibility analysis. Two optimization methods are tested: a Region Search Method (MBR) and Polytope Method. Both are based in direct search methods which do not require the function derivative. The software PVM (Parallel Virtual Machine) is used to parallelize the simulation runs, allowing the acceleration of the process and the search of multiple solutions. The validation of the methodology is applied to two reservoir models: one homogeneous and other heterogeneous. The advantages of each method and of the parallelization are also present. (author)

  13. Parallel manipulators with two end-effectors : Getting a grip on Jacobian-based stiffness analysis

    NARCIS (Netherlands)

    Hoevenaars, A.G.L.

    2016-01-01

    Robots that are developed for applications which require a high stiffness-over-inertia ratio, such as pick-and-place robots, machining robots, or haptic devices, are often based on parallel manipulators. Parallel manipulators connect an end-effector to an inertial base using multiple serial

  14. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients

    Directory of Open Access Journals (Sweden)

    Sun Wook Park

    2017-01-01

    Full Text Available This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  15. Full Dynamic Reactions in the Basic Shaft Bearings of Big Band Saw Machines

    Science.gov (United States)

    Marinov, Boycho

    2013-03-01

    The band saws machines are a certain class woodworking machines for longitudinal or transversal cutting as well as for curvilinear wood cutting. These machines saw the wood through a band-saw blade and two feeding wheels. These wheels usually are very large and they are produced with inaccuracies. The centre of mass of the disc is displaced from the axis of rotation of the distance e (eccentricity) and the axis of the disk makes an angle with the axis of rotation. In this paper, the dy- namic reactions in the bearings of the basic shaft, which drives the band saw machines, are analyzed. These reactions are caused by the external loading and the kinematics and the mass characteristics of the rotating disk. The expressions for the full dynamic reactions are obtained. These expressions allow the parameters of the machines to be chosen in such a way that the loading in the shaft and the bearings to be minimal.

  16. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  17. The role of reversed kinematics and double kinematic solutions in nuclear reactions studies

    International Nuclear Information System (INIS)

    Kaplan, M.; Parker, W.E.; Moses, D.J.; Lacey, R.; Alexander, J.M.

    1993-01-01

    The advantages of reversed kinematics in nuclear reactions studies are discussed, with particular emphasis on the origin of double solutions in the reaction kinematics. This possibility for double solutions does not exist in normal kinematics, and provides the basis for a new method of imposing important experimental constraints on the uniqueness of fitting complex observations. By gating on one or the other of the two solutions, light particle kinematics can be greatly influenced in coincidence measurements. The power of the method is illustrated with data for the reaction 1030 MeV 121 Sb+ 27 Al, where charged particle emissions arise from several different sources. (orig.)

  18. Iteration schemes for parallelizing models of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    The time dependent Lawrence-Doniach model, valid for high fields and high values of the Ginzburg-Landau parameter, is often used for studying vortex dynamics in layered high-T{sub c} superconductors. When solving these equations numerically, the added degrees of complexity due to the coupling and nonlinearity of the model often warrant the use of high-performance computers for their solution. However, the interdependence between the layers can be manipulated so as to allow parallelization of the computations at an individual layer level. The reduced parallel tasks may then be solved independently using a heterogeneous cluster of networked workstations connected together with Parallel Virtual Machine (PVM) software. Here, this parallelization of the model is discussed and several computational implementations of varying degrees of parallelism are presented. Computational results are also given which contrast properties of convergence speed, stability, and consistency of these implementations. Included in these results are models involving the motion of vortices due to an applied current and pinning effects due to various material properties.

  19. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J

    2009-01-01

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  20. Parallel kinematic mechanisms for distributed actuation of future structures

    Science.gov (United States)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  1. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  2. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  3. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.

    Science.gov (United States)

    Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

  4. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation

    Science.gov (United States)

    Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420

  5. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation

    Directory of Open Access Journals (Sweden)

    Camilo Cortés

    2016-01-01

    Full Text Available Robot-Assisted Rehabilitation (RAR is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury. The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension. Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage. The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

  6. Feedrate optimization in 5-axis machining based on direct trajectory interpolation on the surface using an open cnc

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; In the common machining process of free-form surfaces, CAM software generates approximated tool paths because of the input tool path format of the industrial CNC. Then, marks on finished surfaces may appear due to non smooth feedrate planning during interpolation. The Direct Trajectory Interpolation on the Surface (DTIS) method allows managing the tool path geometry and the kinematical parameters to achieve higher productivity and a better surface quality. Machining ex...

  7. Parallelization methods study of thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Gaudart, Catherine

    2000-01-01

    The variety of parallelization methods and machines leads to a wide selection for programmers. In this study we suggest, in an industrial context, some solutions from the experience acquired through different parallelization methods. The study is about several scientific codes which simulate a large variety of thermal-hydraulics phenomena. A bibliography on parallelization methods and a first analysis of the codes showed the difficulty of our process on the whole applications to study. Therefore, it would be necessary to identify and extract a representative part of these applications and parallelization methods. The linear solver part of the codes forced itself. On this particular part several parallelization methods had been used. From these developments one could estimate the necessary work for a non initiate programmer to parallelize his application, and the impact of the development constraints. The different methods of parallelization tested are the numerical library PETSc, the parallelizer PAF, the language HPF, the formalism PEI and the communications library MPI and PYM. In order to test several methods on different applications and to follow the constraint of minimization of the modifications in codes, a tool called SPS (Server of Parallel Solvers) had be developed. We propose to describe the different constraints about the optimization of codes in an industrial context, to present the solutions given by the tool SPS, to show the development of the linear solver part with the tested parallelization methods and lastly to compare the results against the imposed criteria. (author) [fr

  8. Construction of a digital elevation model: methods and parallelization

    International Nuclear Information System (INIS)

    Mazzoni, Christophe

    1995-01-01

    The aim of this work is to reduce the computation time needed to produce the Digital Elevation Models (DEM) by using a parallel machine. It is made in collaboration between the French 'Institut Geographique National' (IGN) and the Laboratoire d'Electronique de Technologie et d'Instrumentation (LETI) of the French Atomic Energy Commission (CEA). The IGN has developed a system which provides DEM that is used to produce topographic maps. The kernel of this system is the correlator, a software which automatically matches pairs of homologous points of a stereo-pair of photographs. Nevertheless the correlator is expensive In computing time. In order to reduce computation time and to produce the DEM with same accuracy that the actual system, we have parallelized the IGN's correlator on the OPENVISION system. This hardware solution uses a SIMD (Single Instruction Multiple Data) parallel machine SYMPATI-2, developed by the LETI that is involved in parallel architecture and image processing. Our analysis of the implementation has demonstrated the difficulty of efficient coupling between scalar and parallel structure. So we propose solutions to reinforce this coupling. In order to accelerate more the processing we evaluate SYMPHONIE, a SIMD calculator, successor of SYMPATI-2. On an other hand, we developed a multi-agent approach for what a MIMD (Multiple Instruction, Multiple Data) architecture is available. At last, we describe a Multi-SIMD architecture that conciliates our two approaches. This architecture offers a capacity to apprehend efficiently multi-level treatment image. It is flexible by its modularity, and its communication network supplies reliability that interest sensible systems. (author) [fr

  9. Error Modeling and Design Optimization of Parallel Manipulators

    DEFF Research Database (Denmark)

    Wu, Guanglei

    /backlash, manufacturing and assembly errors and joint clearances. From the error prediction model, the distributions of the pose errors due to joint clearances are mapped within its constant-orientation workspace and the correctness of the developed model is validated experimentally. ix Additionally, using the screw......, dynamic modeling etc. Next, the rst-order dierential equation of the kinematic closure equation of planar parallel manipulator is obtained to develop its error model both in Polar and Cartesian coordinate systems. The established error model contains the error sources of actuation error...

  10. Implementation of neural networks on 'Connection Machine'

    International Nuclear Information System (INIS)

    Belmonte, Ghislain

    1990-12-01

    This report is a first approach to the notion of neural networks and their possible applications within the framework of artificial intelligence activities of the Department of Applied Mathematics of the Limeil-Valenton Research Center. The first part is an introduction to the field of neural networks; the main neural network models are described in this section. The applications of neural networks in the field of classification have mainly been studied because they could more particularly help to solve some of the decision support problems dealt with by the C.E.A. As the neural networks perform a large number of parallel operations, it was therefore logical to use a parallel architecture computer: the Connection Machine (which uses 16384 processors and is located at E.T.C.A. Arcueil). The second part presents some generalities on the parallelism and the Connection Machine, and two implementations of neural networks on Connection Machine. The first of these implementations concerns one of the most used algorithms to realize the learning of neural networks: the Gradient Retro-propagation algorithm. The second one, less common, concerns a network of neurons destined mainly to the recognition of forms: the Fukushima Neocognitron. The latter is studied by the C.E.A. of Bruyeres-le-Chatel in order to realize an embedded system (including hardened circuits) for the fast recognition of forms [fr

  11. Mapping robust parallel multigrid algorithms to scalable memory architectures

    Science.gov (United States)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

  12. Design of a planar 3-DOF parallel micromanipulator

    International Nuclear Information System (INIS)

    Lee, Jeong Jae; Dong, Yanlu; Jeon, Yong Ho; Lee, Moon Gu

    2013-01-01

    A planar three degree-of-freedom (DOF) parallel manipulator is proposed to be applied for alignment during assembly of microcomponents. It adopts a PRR (prismatic-revolute-revolute) mechanism to meet the requirements of high precision for assembly and robustness against disturbance. The mechanism was designed to have a large workspace and good dexterity because parallel mechanisms usually have a narrow range and singularity of motion compared to serial mechanisms. Inverse kinematics and a simple closed-loop algorithm of the parallel manipulator are presented to control it. Experimental tests have been carried out with high-resolution capacitance sensors to verify the performance of the mechanism. The results of experiments show that the manipulator has a large workspace of ±1.0 mm, ±1.0 mm, and ±10 mrad in the X-, Y-, and θ-directions, respectively. This is a large workspace when considering it adopts a parallel mechanism and has a small size, 100 ´ 100 ´ 100 mm3 . It also has a good precision of 2 μm, 3 μm, and 0.2 mrad, in the X-, Y-, and θ- axes, respectively. These are high resolutions considering the manipulator adopts conventional joints. The manipulator is expected to have good dexterity.

  13. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-07-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  14. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    International Nuclear Information System (INIS)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-01-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  15. Paging memory from random access memory to backing storage in a parallel computer

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  16. Parallel preconditioning techniques for sparse CG solvers

    Energy Technology Data Exchange (ETDEWEB)

    Basermann, A.; Reichel, B.; Schelthoff, C. [Central Institute for Applied Mathematics, Juelich (Germany)

    1996-12-31

    Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.

  17. Analisa Pengaruh Parallel-Misalignment dan Tingkat Getaran yang Terjadi pada Pulley Depericarper Fan

    OpenAIRE

    Situmorang, Lastri

    2016-01-01

    Depericarper fan consists of two pulleys, one as a driver and the other as a driven. The construction of the two pulleys that is not aligned can cause two pulleys run into parallel-misalignment.The parallel-misalignment pulley causing of vibration that can influence machine performance and decrease of power transmission. The purpose of the research are to known of influence parallel-misalignment against vibrations and rotation that occurs on depericarper fan. The research is done by using las...

  18. Speeding Up the String Comparison of the IDS Snort using Parallel Programming: A Systematic Literature Review on the Parallelized Aho-Corasick Algorithm

    Directory of Open Access Journals (Sweden)

    SILVA JUNIOR,J. B.

    2016-12-01

    Full Text Available The Intrusion Detection System (IDS needs to compare the contents of all packets arriving at the network interface with a set of signatures for indicating possible attacks, a task that consumes much CPU processing time. In order to alleviate this problem, some researchers have tried to parallelize the IDS's comparison engine, transferring execution from the CPU to GPU. This paper identifies and maps the parallelization features of the Aho-Corasick algorithm, which is used in Snort to compare patterns, in order to show this algorithm's implementation and execution issues, as well as optimization techniques for the Aho-Corasick machine. We have found 147 papers from important computer science publications databases, and have mapped them. We selected 22 and analyzed them in order to find our results. Our analysis of the papers showed, among other results, that parallelization of the AC algorithm is a new task and the authors have focused on the State Transition Table as the most common way to implement the algorithm on the GPU. Furthermore, we found that some techniques speed up the algorithm and reduce the required machine storage space are highly used, such as the algorithm running on the fastest memories and mechanisms for reducing the number of nodes and bit maping.

  19. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  20. Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters

    Science.gov (United States)

    Li, Hui; Shi, Yanjun

    2017-11-28

    A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate a pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.

  1. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses.

    Science.gov (United States)

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.

  2. Kinematic Model of NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Miloš D. Jovanović

    2014-06-01

    Full Text Available This paper presents synthesis of kinematic model of NAO humanoid robot of Aldebaran Robotics. NAO humanoid robot has complex kinematic structure with 25 active degrees of freedom (DOF. Humanoid system is formed through 5 mutually depended kinematic chains. After that we applied standard aspects of kinematic chains synthesis and Denavit-Hartenberg parameters of each of 5 chains of robotic structure were introduced. Also, mutual relationships between chains were described, as well as their physical and structural dependence. Generated kinematic model will be the starting point for further dynamical modeling of NAO humanoid robot and motion synthesis on actual platform.

  3. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  4. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  5. Parallel processing algorithms for hydrocodes on a computer with MIMD architecture (DENELCOR's HEP)

    International Nuclear Information System (INIS)

    Hicks, D.L.

    1983-11-01

    In real time simulation/prediction of complex systems such as water-cooled nuclear reactors, if reactor operators had fast simulator/predictors to check the consequences of their operations before implementing them, events such as the incident at Three Mile Island might be avoided. However, existing simulator/predictors such as RELAP run slower than real time on serial computers. It appears that the only way to overcome the barrier to higher computing rates is to use computers with architectures that allow concurrent computations or parallel processing. The computer architecture with the greatest degree of parallelism is labeled Multiple Instruction Stream, Multiple Data Stream (MIMD). An example of a machine of this type is the HEP computer by DENELCOR. It appears that hydrocodes are very well suited for parallelization on the HEP. It is a straightforward exercise to parallelize explicit, one-dimensional Lagrangean hydrocodes in a zone-by-zone parallelization. Similarly, implicit schemes can be parallelized in a zone-by-zone fashion via an a priori, symbolic inversion of the tridiagonal matrix that arises in an implicit scheme. These techniques are extended to Eulerian hydrocodes by using Harlow's rezone technique. The extension from single-phase Eulerian to two-phase Eulerian is straightforward. This step-by-step extension leads to hydrocodes with zone-by-zone parallelization that are capable of two-phase flow simulation. Extensions to two and three spatial dimensions can be achieved by operator splitting. It appears that a zone-by-zone parallelization is the best way to utilize the capabilities of an MIMD machine. 40 references

  6. A two-level real-time vision machine combining coarse and fine grained parallelism

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl

    2010-01-01

    In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....

  7. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2008-02-01

    Full Text Available One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU as an alternative to thePC’s traditional use of the central processing unit (CPU. The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC’s central processing

  8. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Wu, Huapeng; Wang, Yongbo; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-01-01

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance

  9. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huapeng; Wang, Yongbo, E-mail: yongbo.wang@lut.fi; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-10-15

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

  10. Parallel grid generation algorithm for distributed memory computers

    Science.gov (United States)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  11. KINEMATICS AND DYNAMICS OF BALLS WHILE BEING POLISHED BETWEEN MISALIGNED DISKS IN DRIVEN SEPARATOR

    Directory of Open Access Journals (Sweden)

    K. G. Schetnikovich

    2007-01-01

    Full Text Available The paper contains description of tool design which is used for rough polishing of balls made of brittle materials. This tool consists of top disk, which is fi-eely set on pouring bearing of the separator shaft, and a bottom disk with elastic coating. Theoretical investigations of ball kinematics have permitted to determine an angular velocity of the balls in the machining zone, value and direction oi slipping speed with respect to the tool.it has been determined that even change of the position of bail rotation instantaneous axis relative to the separator is reached at equality of angular velocities of the bottom disk and the separator. When the top disk is freely set slipping speed is equal for all the balls of the machined lot. When the top disk is stationary slipping speed is significantly increasing however its value becomes variable and depends on ball distance to separator rotation axis.The presented equations of ball dynamics in the machining zone have made it possible to detennine a cohesive force with the bottom disk, frictional forces against the top disk and separator. Recommendations on selection of machining modes at initial and final stages of ball polishing are given in the paper.

  12. Design and Analysis of Cooperative Cable Parallel Manipulators for Multiple Mobile Cranes

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-11-01

    Full Text Available The design, dynamic modelling, and workspace are presented in this paper concerning cooperative cable parallel manipulators for multiple mobile cranes (CPMMCs. The CPMMCs can handle complex tasks that are more difficult or even impossible for a single mobile crane. Kinematics and dynamics of the CPMMCs are studied on the basis of geometric methodology and d'Alembert's principle, and a mathematical model of the CPMMCs is developed and presented with dynamic simulation. The constant orientation workspace analysis of the CPMMCs is carried out additionally. As an example, a cooperative cable parallel manipulator for triple mobile cranes with 6 Degrees of Freedom is investigated on the basis of the above design objectives.

  13. Solution of task related to control of swiss-type automatic lathe to get planes parallel to part axis

    Science.gov (United States)

    Tabekina, N. A.; Chepchurov, M. S.; Evtushenko, E. I.; Dmitrievsky, B. S.

    2018-05-01

    The work solves the problem of automation of machining process namely turning to produce parts having the planes parallel to an axis of rotation of part without using special tools. According to the results, the availability of the equipment of a high speed electromechanical drive to control the operative movements of lathe machine will enable one to get the planes parallel to the part axis. The method of getting planes parallel to the part axis is based on the mathematical model, which is presented as functional dependency between the conveying velocity of the driven element and the time. It describes the operative movements of lathe machine all over the tool path. Using the model of movement of the tool, it has been found that the conveying velocity varies from the maximum to zero value. It will allow one to carry out the reverse of the drive. The scheme of tool placement regarding the workpiece has been proposed for unidirectional movement of the driven element at high conveying velocity. The control method of CNC machines can be used for getting geometrically complex parts on the lathe without using special milling tools.

  14. Vortex structure behind highly heated two cylinders in parallel arrangements

    International Nuclear Information System (INIS)

    Kurita, Eiichirou; Yahagi, Yuji

    2008-01-01

    Vortex structures behind twin, highly heated cylinders in parallel arrangements have been investigated experimentally. The experiments were conducted under the following conditions: cylinder diameter, D=4 mm; mean flow velocity, U ∞ =1.0 m/s; Reynolds number, Re=250; cylinder clearance, S/D=0.5 - 1.4; and cylinder heat flux, q=0 - 72.6 kW/m 2 . For S/D > 1.2, the Karman vortex street is formed alternately behind each cylinder divided on the slit flow. The slit flow velocity increases with a decrease in S/D and decreases with increasing heat flux. For S/D 2 ). As a result, the increased local kinematic viscosity and S/D play a key role for the vortex structure and formation behind arrangements of two parallel cylinders. (author)

  15. 2nd International Conference on Cable-Driven Parallel Robots

    CERN Document Server

    Bruckmann, Tobias

    2015-01-01

    This volume presents the outcome of the second forum to cable-driven parallel robots, bringing the cable robot community together. It shows the new ideas of the active researchers developing cable-driven robots. The book presents the state of the art, including both summarizing contributions as well as latest research and future options. The book cover all topics which are essential for cable-driven robots: Classification Kinematics, Workspace and Singularity Analysis Statics and Dynamics Cable Modeling Control and Calibration Design Methodology Hardware Development Experimental Evaluation Prototypes, Application Reports and new Application concepts

  16. Adaptive integrand decomposition in parallel and orthogonal space

    International Nuclear Information System (INIS)

    Mastrolia, Pierpaolo; Peraro, Tiziano; Primo, Amedeo

    2016-01-01

    We present the integrand decomposition of multiloop scattering amplitudes in parallel and orthogonal space-time dimensions, d=d ∥ +d ⊥ , being d ∥ the dimension of the parallel space spanned by the legs of the diagrams. When the number n of external legs is n≤4, the corresponding representation of multiloop integrals exposes a subset of integration variables which can be easily integrated away by means of Gegenbauer polynomials orthogonality condition. By decomposing the integration momenta along parallel and orthogonal directions, the polynomial division algorithm is drastically simplified. Moreover, the orthogonality conditions of Gegenbauer polynomials can be suitably applied to integrate the decomposed integrand, yielding the systematic annihilation of spurious terms. Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to irreducible scalar products of loop momenta and external ones. We revisit the one-loop decomposition, which turns out to be controlled by the maximum-cut theorem in different dimensions, and we discuss the integrand reduction of two-loop planar and non-planar integrals up to n=8 legs, for arbitrary external and internal kinematics. The proposed algorithm extends to all orders in perturbation theory.

  17. Adaptive integrand decomposition in parallel and orthogonal space

    Energy Technology Data Exchange (ETDEWEB)

    Mastrolia, Pierpaolo [Dipartimento di Fisica ed Astronomia, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,James Clerk Maxwell Building,Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland (United Kingdom); Primo, Amedeo [Dipartimento di Fisica ed Astronomia, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-08-29

    We present the integrand decomposition of multiloop scattering amplitudes in parallel and orthogonal space-time dimensions, d=d{sub ∥}+d{sub ⊥}, being d{sub ∥} the dimension of the parallel space spanned by the legs of the diagrams. When the number n of external legs is n≤4, the corresponding representation of multiloop integrals exposes a subset of integration variables which can be easily integrated away by means of Gegenbauer polynomials orthogonality condition. By decomposing the integration momenta along parallel and orthogonal directions, the polynomial division algorithm is drastically simplified. Moreover, the orthogonality conditions of Gegenbauer polynomials can be suitably applied to integrate the decomposed integrand, yielding the systematic annihilation of spurious terms. Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to irreducible scalar products of loop momenta and external ones. We revisit the one-loop decomposition, which turns out to be controlled by the maximum-cut theorem in different dimensions, and we discuss the integrand reduction of two-loop planar and non-planar integrals up to n=8 legs, for arbitrary external and internal kinematics. The proposed algorithm extends to all orders in perturbation theory.

  18. Design strategies for irregularly adapting parallel applications

    International Nuclear Information System (INIS)

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Sing, Jaswinder Pal

    2000-01-01

    Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance of dynamically adapting computations. In this work, we examine two major classes of adaptive applications, under five competing programming methodologies and four leading parallel architectures. Results indicate that it is possible to achieve message-passing performance using shared-memory programming techniques by carefully following the same high level strategies. Adaptive applications have computational work loads and communication patterns which change unpredictably at runtime, requiring dynamic load balancing to achieve scalable performance on parallel machines. Efficient parallel implementations of such adaptive applications are therefore a challenging task. This work examines the implementation of two typical adaptive applications, Dynamic Remeshing and N-Body, across various programming paradigms and architectural platforms. We compare several critical factors of the parallel code development, including performance, programmability, scalability, algorithmic development, and portability

  19. Development of a CPM Machine for Injured Fingers.

    Science.gov (United States)

    Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang

    2005-01-01

    Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.

  20. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  1. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    Science.gov (United States)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  2. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  3. An economic lot and delivery scheduling problem with the fuzzy shelf life in a flexible job shop with unrelated parallel machines

    Directory of Open Access Journals (Sweden)

    S. Dousthaghi

    2012-08-01

    Full Text Available This paper considers an economic lot and delivery scheduling problem (ELDSP in a fuzzy environment with the fuzzy shelf life for each product. This problem is formulated in a flexible job shop with unrelated parallel machines, when the planning horizon is finite and it determines lot sizing, scheduling and sequencing, simultaneously. The proposed model of this paper is based on the basic period (BP approach. In this paper, a mixed-integer nonlinear programming (MINLP model is presented and then it is changed into two models in the fuzzy shelf life. The main model is dependent to the multiple basic periods and it is difficult to solve the resulted proposed model for large-scale problems in reasonable amount of time; thus, an efficient heuristic method is proposed to solve the problem. The performance of the proposed model is demonstrated using some numerical examples.

  4. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  5. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  6. Finishing aeronautical planetary herringbone gear wheels in container vibrating smoothing machine

    Directory of Open Access Journals (Sweden)

    Jacek MICHALSKI

    2015-12-01

    Full Text Available The paper presents the technological process of abrasive-chemical machining wheel bearing surface of the cylindrical herringbone gears planetary gear in vibrating container smoothing machine according to Isotropic Finishing ISF® technology of the REM Chemicals Inc. company. Gear wheels are made of stainless Pyrowear 53 and subjected to carburizing, hardening, cold working and low tempering. The change in value of deviation indicators for the kinematic accuracy, smoothness and geometric structure of the machined surfaces of the gear teeth after smoothing compared with the contoured grinding were analyzed. The findings are different a characteristic performance on the surface of the tooth side along the outline, especially with a higher value at the head of the tooths. This creates a need for appropriate modification of the lateral surface of the teeth in the process of contoured grinding. The results of the mechanical strength of the samples gear wheel after the smoothing process and evaluating the hydrogen embrittlement are presented.

  7. Parallelization of applications for networks with homogeneous and heterogeneous processors; Parallelisation d`applications pour des reseaux de processeurs homogenes ou heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Colombet, L

    1994-10-07

    The aim of this thesis is to study and develop efficient methods for parallelization of scientific applications on parallel computers with distributed memory. The first part presents two libraries of PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) communication tools. They allow implementation of programs on most parallel machines, but also on heterogeneous computer networks. This chapter illustrates the problems faced when trying to evaluate performances of networks with heterogeneous processors. To evaluate such performances, the concepts of speed-up and efficiency have been modified and adapted to account for heterogeneity. The second part deals with a study of parallel application libraries such as ScaLAPACK and with the development of communication masking techniques. The general concept is based on communication anticipation, in particular by pipelining message sending operations. Experimental results on Cray T3D and IBM SP1 machines validates the theoretical studies performed on basic algorithms of the libraries discussed above. Two examples of scientific applications are given: the first is a model of young stars for astrophysics and the other is a model of photon trajectories in the Compton effect. (J.S.). 83 refs., 65 figs., 24 tabs.

  8. Performance evaluation for compressible flow calculations on five parallel computers of different architectures

    International Nuclear Information System (INIS)

    Kimura, Toshiya.

    1997-03-01

    A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)

  9. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique

  10. Implementation of PHENIX trigger algorithms on massively parallel computers

    International Nuclear Information System (INIS)

    Petridis, A.N.; Wohn, F.K.

    1995-01-01

    The event selection requirements of contemporary high energy and nuclear physics experiments are met by the introduction of on-line trigger algorithms which identify potentially interesting events and reduce the data acquisition rate to levels that are manageable by the electronics. Such algorithms being parallel in nature can be simulated off-line using massively parallel computers. The PHENIX experiment intends to investigate the possible existence of a new phase of matter called the quark gluon plasma which has been theorized to have existed in very early stages of the evolution of the universe by studying collisions of heavy nuclei at ultra-relativistic energies. Such interactions can also reveal important information regarding the structure of the nucleus and mandate a thorough investigation of the simpler proton-nucleus collisions at the same energies. The complexity of PHENIX events and the need to analyze and also simulate them at rates similar to the data collection ones imposes enormous computation demands. This work is a first effort to implement PHENIX trigger algorithms on parallel computers and to study the feasibility of using such machines to run the complex programs necessary for the simulation of the PHENIX detector response. Fine and coarse grain approaches have been studied and evaluated. Depending on the application the performance of a massively parallel computer can be much better or much worse than that of a serial workstation. A comparison between single instruction and multiple instruction computers is also made and possible applications of the single instruction machines to high energy and nuclear physics experiments are outlined. copyright 1995 American Institute of Physics

  11. Machine learning for Big Data analytics in plants.

    Science.gov (United States)

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. About the walking machine motion stability

    Directory of Open Access Journals (Sweden)

    V. V. Lapshin

    2014-01-01

    Full Text Available The use of legs as propulsive devices of the machine will increase its capability to cross rough and deformable terrain as compared with wheeled and trucked machines. Today it is already possible to speak about design of statically stable walking robots to be used in the certain areas of application. The most promising areas of their application are exploration and emergency-rescue operations in extremely complicated situations (e.g. in the zone of destruction after earthquakes, technogenic catastrophe, etc..In such dangerous situations there is a possibility for the walking machine to be overturned either because of loosing a support to one or several legs or due to significant displacement of the leg support points, which are caused by deformation or destruction of the terrain in the points of the legs support. Therefore, it is necessary to design motion control algorithms that enable teaching the motion control system of a walking robot: How to decrease the possibility of the robot overturning? How to stop the robot as quickly as possible keeping its static stability? What must be done if static stability is lost? Note that the loss of static stability does not inevitably result in the robot falling down. How to fall down better (with minimal robot destruction in inevitable case?This work investigates the first abovementioned problems, i.e. preventing a walking machine from overturning in dangerous situations. For this purpose it suggests to use a special cautious (safe gait, which allows the machine to remain statically stable if it suddenly looses support to its any leg. The natural price for the increased safety to prevent from overturning is the reduced capabilities of robot kinematics and, as a consequence, its capability to cross rough terrain. It is also suggested to reconsider the general definition of a walking machine static stability margin in order to obtain an adequate estimation of the robot overturning possibility

  13. Treatment of photon radiation in kinematics fits at future e+e- colliders

    International Nuclear Information System (INIS)

    Beckmann, M.; List, J.; List, B.

    2010-05-01

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e + e - colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p z,γ (η) is introduced, which is parametrized such that η follows a normal distribution. In the fit, η is treated as having a measured value of zero, which corresponds to p z,γ , = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e + e - →q anti qq anti q event sample at √(s)=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider. (orig.)

  14. Frontiers of massively parallel scientific computation

    International Nuclear Information System (INIS)

    Fischer, J.R.

    1987-07-01

    Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented

  15. Random and Systematic Errors Share in Total Error of Probes for CNC Machine Tools

    Directory of Open Access Journals (Sweden)

    Adam Wozniak

    2018-03-01

    Full Text Available Probes for CNC machine tools, as every measurement device, have accuracy limited by random errors and by systematic errors. Random errors of these probes are described by a parameter called unidirectional repeatability. Manufacturers of probes for CNC machine tools usually specify only this parameter, while parameters describing systematic errors of the probes, such as pre-travel variation or triggering radius variation, are used rarely. Systematic errors of the probes, linked to the differences in pre-travel values for different measurement directions, can be corrected or compensated, but it is not a widely used procedure. In this paper, the share of systematic errors and random errors in total error of exemplary probes are determined. In the case of simple, kinematic probes, systematic errors are much greater than random errors, so compensation would significantly reduce the probing error. Moreover, it shows that in the case of kinematic probes commonly specified unidirectional repeatability is significantly better than 2D performance. However, in the case of more precise strain-gauge probe systematic errors are of the same order as random errors, which means that errors correction or compensation, in this case, would not yield any significant benefits.

  16. Design, development and use of the finite element machine

    Science.gov (United States)

    Adams, L. M.; Voigt, R. C.

    1983-01-01

    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.

  17. A parallel algorithm for the non-symmetric eigenvalue problem

    International Nuclear Information System (INIS)

    Sidani, M.M.

    1991-01-01

    An algorithm is presented for the solution of the non-symmetric eigenvalue problem. The algorithm is based on a divide-and-conquer procedure that provides initial approximations to the eigenpairs, which are then refined using Newton iterations. Since the smaller subproblems can be solved independently, and since Newton iterations with different initial guesses can be started simultaneously, the algorithm - unlike the standard QR method - is ideal for parallel computers. The author also reports on his investigation of deflation methods designed to obtain further eigenpairs if needed. Numerical results from implementations on a host of parallel machines (distributed and shared-memory) are presented

  18. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  19. GTfold: Enabling parallel RNA secondary structure prediction on multi-core desktops

    DEFF Research Database (Denmark)

    Swenson, M Shel; Anderson, Joshua; Ash, Andrew

    2012-01-01

    achieved significant improvements in runtime, but their implementations were not portable from niche high-performance computers or easily accessible to most RNA researchers. With the increasing prevalence of multi-core desktop machines, a new parallel prediction program is needed to take full advantage...

  20. The Parallel Algorithm Based on Genetic Algorithm for Improving the Performance of Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Liu Miao

    2018-01-01

    Full Text Available The intercarrier interference (ICI problem of cognitive radio (CR is severe. In this paper, the machine learning algorithm is used to obtain the optimal interference subcarriers of an unlicensed user (un-LU. Masking the optimal interference subcarriers can suppress the ICI of CR. Moreover, the parallel ICI suppression algorithm is designed to improve the calculation speed and meet the practical requirement of CR. Simulation results show that the data transmission rate threshold of un-LU can be set, the data transmission quality of un-LU can be ensured, the ICI of a licensed user (LU is suppressed, and the bit error rate (BER performance of LU is improved by implementing the parallel suppression algorithm. The ICI problem of CR is solved well by the new machine learning algorithm. The computing performance of the algorithm is improved by designing a new parallel structure and the communication performance of CR is enhanced.

  1. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    Science.gov (United States)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  2. A parallel version of a multigrid algorithm for isotropic transport equations

    International Nuclear Information System (INIS)

    Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.

    1994-01-01

    The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown

  3. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  4. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  5. Kinematic parameters of signed verbs.

    Science.gov (United States)

    Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina

    2013-10-01

    Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.

  6. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  7. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    Science.gov (United States)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  8. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  9. A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860

    International Nuclear Information System (INIS)

    Chang, L.; Bourianoff, G.; Cole, B.; Machida, S.

    1993-05-01

    Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained

  10. On the Minimum Cable Tensions for the Cable-Based Parallel Robots

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2014-01-01

    Full Text Available This paper investigates the minimum cable tension distributions in the workspace for cable-based parallel robots to find out more information on the stability. First, the kinematic model of a cable-based parallel robot is derived based on the wrench matrix. Then, a noniterative polynomial-based optimization algorithm with the proper optimal objective function is presented based on the convex optimization theory, in which the minimum cable tension at any pose is determined. Additionally, three performance indices are proposed to show the distributions of the minimum cable tensions in a specified region of the workspace. An important thing is that the three performance indices can be used to evaluate the stability of the cable-based parallel robots. Furthermore, a new workspace, the Specified Minimum Cable Tension Workspace (SMCTW, is introduced, within which all the minimum tensions exceed a specified value, therefore meeting the specified stability requirement. Finally, a camera robot parallel driven by four cables for aerial panoramic photographing is selected to illustrate the distributions of the minimum cable tensions in the workspace and the relationship between the three performance indices and the stability.

  11. Continuous path control of a 5-DOF parallel-serial hybrid robot

    International Nuclear Information System (INIS)

    Uchiyama, Takuma; Terada, Hidetsugu; Mitsuya, Hironori

    2010-01-01

    Using the 5-degree of freedom parallel-serial hybrid robot, to realize the de-burring, new forward and inverse kinematic calculation methods based on the 'off-line teaching' method are proposed. This hybrid robot consists of a parallel stage section and a serial stage section. Considering this point, each section is calculated individually. And the continuous path control algorithm of this hybrid robot is proposed. To verify the usefulness, a prototype robot is tested which is controlled based on the proposed methods. This verification includes a positioning test and a pose test. The positioning test evaluates the continuous path of the tool center point. The pose test evaluates the pose on the tool center point. As the result, it is confirmed that this hybrid robot moves correctly using the proposed methods

  12. Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application

    Science.gov (United States)

    Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.

    2009-05-01

    This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.

  13. Flexbar 3.0 - SIMD and multicore parallelization.

    Science.gov (United States)

    Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut

    2017-09-15

    High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    Science.gov (United States)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  15. A new parallel molecular dynamics algorithm for organic systems

    International Nuclear Information System (INIS)

    Plimpton, S.; Hendrickson, B.; Heffelfinger, G.

    1993-01-01

    A new parallel algorithm for simulating bonded molecular systems such as polymers and proteins by molecular dynamics (MD) is presented. In contrast to methods that extract parallelism by breaking the spatial domain into sub-pieces, the new method does not require regular geometries or uniform particle densities to achieve high parallel efficiency. For very large, regular systems spatial methods are often the best choice, but in practice the new method is faster for systems with tens-of-thousands of atoms simulated on large numbers of processors. It is also several times faster than the techniques commonly used for parallelizing bonded MD that assign a subset of atoms to each processor and require all-to-all communication. Implementation of the algorithm in a CHARMm-like MD model with many body forces and constraint dynamics is discussed and timings on the Intel Delta and Paragon machines are given. Example calculations using the algorithm in simulations of polymers and liquid-crystal molecules will also be briefly discussed

  16. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code

  17. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, Robert

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)

  18. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    DEFF Research Database (Denmark)

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface...... is discussed. The cutting forces parallel and perpendicular to the cutting direction are measured for various parameters, and the results correlated to the formation of chips and the wear of the tool....

  19. DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations

    CERN Document Server

    Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations

    1995-01-01

    The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...

  20. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  1. Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing

    International Nuclear Information System (INIS)

    Park, Min Jae; Lee, Jae Sung; Kim, Soo Mee; Kang, Ji Yeon; Lee, Dong Soo; Park, Kwang Suk

    2009-01-01

    Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. The preliminary tests for the possibility on virtual machines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify

  2. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  3. Methodes spectrales paralleles et applications aux simulations de couches de melange compressibles

    OpenAIRE

    Male , Jean-Michel; Fezoui , Loula ,

    1993-01-01

    La resolution des equations de Navier-Stokes en methodes spectrales pour des ecoulements compressibles peut etre assez gourmande en temps de calcul. On etudie donc ici la parallelisation d'un tel algorithme et son implantation sur une machine massivement parallele, la connection-machine CM-2. La methode spectrale s'adapte bien aux exigences du parallelisme massif, mais l'un des outils de base de cette methode, la transformee de Fourier rapide (lorsqu'elle doit etre appliquee sur les deux dime...

  4. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  5. Parallelization of one image compression method. Wavelet, Transform, Vector Quantization and Huffman Coding

    International Nuclear Information System (INIS)

    Moravie, Philippe

    1997-01-01

    Today, in the digitized satellite image domain, the needs for high dimension increase considerably. To transmit or to stock such images (more than 6000 by 6000 pixels), we need to reduce their data volume and so we have to use real-time image compression techniques. The large amount of computations required by image compression algorithms prohibits the use of common sequential processors, for the benefits of parallel computers. The study presented here deals with parallelization of a very efficient image compression scheme, based on three techniques: Wavelets Transform (WT), Vector Quantization (VQ) and Entropic Coding (EC). First, we studied and implemented the parallelism of each algorithm, in order to determine the architectural characteristics needed for real-time image compression. Then, we defined eight parallel architectures: 3 for Mallat algorithm (WT), 3 for Tree-Structured Vector Quantization (VQ) and 2 for Huffman Coding (EC). As our system has to be multi-purpose, we chose 3 global architectures between all of the 3x3x2 systems available. Because, for technological reasons, real-time is not reached at anytime (for all the compression parameter combinations), we also defined and evaluated two algorithmic optimizations: fix point precision and merging entropic coding in vector quantization. As a result, we defined a new multi-purpose multi-SMIMD parallel machine, able to compress digitized satellite image in real-time. The definition of the best suited architecture for real-time image compression was answered by presenting 3 parallel machines among which one multi-purpose, embedded and which might be used for other applications on board. (author) [fr

  6. Performance study of a cluster calculation; parallelization and application under geant4

    International Nuclear Information System (INIS)

    Trabelsi, Abir

    2007-01-01

    This work concretizes the final studies project for engineering computer sciences, it is archived within the national center of nuclear sciences and technology. The project consists in studying the performance of a set of machines in order to determine the best architecture to assemble them in a cluster. As well as the parallelism and the parallel implementation of GEANT4, as a tool of simulation. The realisation of this project consists on : 1) programming with C++ and executing the two benchmarks P MV and PMM on each station; 2) Interpreting this result in order to show the best architecture of the cluster; 3) parallelism with TOP-C the two benchmarks; 4) Executing the two Top-C versions on the cluster; 5) Generalizing this results; 6)parallelism et executing the parallel version of GEANT4. (Author). 14 refs

  7. Concatenating algorithms for parallel numerical simulations coupling radiation hydrodynamics with neutron transport

    International Nuclear Information System (INIS)

    Mo Zeyao

    2004-11-01

    Multiphysics parallel numerical simulations are usually essential to simplify researches on complex physical phenomena in which several physics are tightly coupled. It is very important on how to concatenate those coupled physics for fully scalable parallel simulation. Meanwhile, three objectives should be balanced, the first is efficient data transfer among simulations, the second and the third are efficient parallel executions and simultaneously developments of those simulation codes. Two concatenating algorithms for multiphysics parallel numerical simulations coupling radiation hydrodynamics with neutron transport on unstructured grid are presented. The first algorithm, Fully Loosely Concatenation (FLC), focuses on the independence of code development and the independence running with optimal performance of code. The second algorithm. Two Level Tightly Concatenation (TLTC), focuses on the optimal tradeoffs among above three objectives. Theoretical analyses for communicational complexity and parallel numerical experiments on hundreds of processors on two parallel machines have showed that these two algorithms are efficient and can be generalized to other multiphysics parallel numerical simulations. In especial, algorithm TLTC is linearly scalable and has achieved the optimal parallel performance. (authors)

  8. Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients.

    Science.gov (United States)

    Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D

    2013-10-01

    Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.

  9. Inverse Kinematic Analysis Of A Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Muhammed Arif Sen

    2017-09-01

    Full Text Available This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometrical and mathematical methods are coded in MATLAB. And thus a program is obtained that calculate the legs joint angles corresponding to desired various orientations of robot and endpoints of legs. Also the program provides the body orientations of robot in graphical form. The angular positions of joints obtained corresponding to desired different orientations of robot and endpoints of legs are given in this study.

  10. Decentralization and mechanism design for online machine scheduling

    NARCIS (Netherlands)

    Arge, Lars; Heydenreich, Birgit; Müller, Rudolf; Freivalds, Rusins; Uetz, Marc Jochen

    We study the online version of the classical parallel machine scheduling problem to minimize the total weighted completion time from a new perspective: We assume that the data of each job, namely its release date $r_j$, its processing time $p_j$ and its weight $w_j$ is only known to the job itself,

  11. Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    R. Beira

    2011-01-01

    Full Text Available The large volume and reduced dexterity of current surgical robotic systems are factors that restrict their effective performance. To improve the usefulness of surgical robots in minimally invasive surgery (MIS, a compact and accurate positioning mechanism, named Dionis, is proposed in this paper. This spatial hybrid mechanism based on a novel parallel kinematics is able to provide three rotations and one translation for single port procedures. The corresponding axes intersect at a remote center of rotation (RCM that is the MIS entry port. Another important feature of the proposed positioning manipulator is that it can be placed below the operating table plane, allowing a quick and direct access to the patient, without removing the robotic system. This, besides saving precious space in the operating room, may improve safety over existing solutions. The conceptual design of Dionis is presented in this paper. Solutions for the inverse and direct kinematics are developed, as well as the analytical workspace and singularity analysis. Due to its unique design and kinematics, the proposed mechanism is highly compact, stiff and its dexterity fullfils the workspace specifications for MIS procedures.

  12. Investigating The Kinematics of Canids and Felids

    Science.gov (United States)

    Sur, D.

    2016-12-01

    For all organisms, metabolic energy is critical for survival. While moving efficiently is a necessity for large carnivores, the influence of kinematics on energy demand remains poorly understood. We measured the kinematics of dogs, wolves, and pumas to detect any differences in their respective energy expenditures. Using 22 kinematic parameters measured on 78 videos, we used one-way ANOVAs and paired T-tests to compare 5 experimental treatments among gaits in dogs (n=11 in 3 breed groups), wolves (n=2), and pumas (n=2). Across the measured parameters, we found greater kinematic similarity than expected among dog breeds and no trend in any of the 22 parameters regarding the effect of steepness on locomotion mechanics. Similarly, treadmill kinematics were nearly identical to those measured during outdoor movement. However, in 3 inches of snow, we observed significant differences (pwolf. When comparing canids (wolves and dogs) to a felid (pumas), we found that pumas and dogs are the most kinematically distinct (differing in 13 of 22 parameters, compared with 5 of 22 for wolves and pumas). Lastly, compared with wolves, walking pumas had larger head angles (p=0.0025), forelimb excursion angles (p=0.0045), and hindlimb excursion angles (p=0.0327). After comparing the energetics of pumas and dogs with their respective kinematics, we noted that less dynamic kinematics result in energy savings. Through tracking the locations and gait behavior of large carnivores, novel sensor technology can reveal how indoor kinematics applies to wild animals and improve the conservation of these species.

  13. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  14. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  15. Parallel Branch-and-Bound Methods for the Job Shop Scheduling

    DEFF Research Database (Denmark)

    Clausen, Jens; Perregaard, Michael

    1998-01-01

    Job-shop scheduling (JSS) problems are among the more difficult to solve in the class of NP-complete problems. The only successful approach has been branch-and-bound based algorithms, but such algorithms depend heavily on good bound functions. Much work has been done to identify such functions...... for the JSS problem, but with limited success. Even with recent methods, it is still not possible to solve problems substantially larger than 10 machines and 10 jobs. In the current study, we focus on parallel methods for solving JSS problems. We implement two different parallel branch-and-bound algorithms...

  16. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ikhsan Eka Prasetia

    2015-03-01

    Full Text Available In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desired position by Denso robot manipulator. Forward kinematics produce the desired position by the end-effector. Inverse kinematics produce joint angle, where the inverse kinematics produce eight conditions obtained from closed form solution with geometry approach to reach the desired position by the end-effector.

  17. Inverse Kinematics

    Directory of Open Access Journals (Sweden)

    Joel Sereno

    2010-01-01

    Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.

  18. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    OpenAIRE

    Ikhsan Eka Prasetia; Trihastuti Agustinah

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  19. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  20. First massively parallel algorithm to be implemented in Apollo-II code

    International Nuclear Information System (INIS)

    Stankovski, Z.

    1994-01-01

    The collision probability (CP) method in neutron transport, as applied to arbitrary 2D XY geometries, like the TDT module in APOLLO-II, is very time consuming. Consequently RZ or 3D extensions became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the CP method. Parallelization is applied to the energy groups, using the CMMD message passing library. In our case we use 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future fine multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 3 tabs., 4 figs., 4 refs

  1. First massively parallel algorithm to be implemented in APOLLO-II code

    International Nuclear Information System (INIS)

    Stankovski, Z.

    1994-01-01

    The collision probability method in neutron transport, as applied to arbitrary 2-dimensional geometries, like the two dimensional transport module in APOLLO-II is very time consuming. Consequently 3-dimensional extension became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the collision probability method. Parallelization is applied to the energy groups, using the CMMD massage passing library. In our case we used 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 4 refs., 4 figs., 3 tabs

  2. Computation and parallel implementation for early vision

    Science.gov (United States)

    Gualtieri, J. Anthony

    1990-01-01

    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.

  3. Computational fluid dynamics on a massively parallel computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.

  4. Electronically commutated serial-parallel switching for motor windings

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  5. Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets

    Science.gov (United States)

    Verma, R.

    2017-06-01

    We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.

  6. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  7. Massively parallel red-black algorithms for x-y-z response matrix equations

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Laurin-Kovitz, K.; Lewis, E.E.

    1992-01-01

    Recently, both discrete ordinates and spherical harmonic (S n and P n ) methods have been cast in the form of response matrices. In x-y geometry, massively parallel algorithms have been developed to solve the resulting response matrix equations on the Connection Machine family of parallel computers, the CM-2, CM-200, and CM-5. These algorithms utilize two-cycle iteration on a red-black checkerboard. In this work we examine the use of massively parallel red-black algorithms to solve response matric equations in three dimensions. This longer term objective is to utilize massively parallel algorithms to solve S n and/or P n response matrix problems. In this exploratory examination, however, we consider the simple 6 x 6 response matrices that are derivable from fine-mesh diffusion approximations in three dimensions

  8. Distributed and parallel approach for handle and perform huge datasets

    Science.gov (United States)

    Konopko, Joanna

    2015-12-01

    Big Data refers to the dynamic, large and disparate volumes of data comes from many different sources (tools, machines, sensors, mobile devices) uncorrelated with each others. It requires new, innovative and scalable technology to collect, host and analytically process the vast amount of data. Proper architecture of the system that perform huge data sets is needed. In this paper, the comparison of distributed and parallel system architecture is presented on the example of MapReduce (MR) Hadoop platform and parallel database platform (DBMS). This paper also analyzes the problem of performing and handling valuable information from petabytes of data. The both paradigms: MapReduce and parallel DBMS are described and compared. The hybrid architecture approach is also proposed and could be used to solve the analyzed problem of storing and processing Big Data.

  9. Fluid dynamics parallel computer development at NASA Langley Research Center

    Science.gov (United States)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  10. Component simulation in problems of calculated model formation of automatic machine mechanisms

    Directory of Open Access Journals (Sweden)

    Telegin Igor

    2017-01-01

    Full Text Available The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gaps in kinematic pairs, friction forces, design and technological loads. As an example in the paper there are considered a formalization of stages in the computer model formation of the cutting mechanism in cold stamping automatic machine AV1818 and methods of for the computation of their parameters on the basis of its solid-state model.

  11. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  12. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  13. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  14. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  15. A new scheduling algorithm for parallel sparse LU factorization with static pivoting

    Energy Technology Data Exchange (ETDEWEB)

    Grigori, Laura; Li, Xiaoye S.

    2002-08-20

    In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.

  16. WATERLOPP V2/64: A highly parallel machine for numerical computation

    Science.gov (United States)

    Ostlund, Neil S.

    1985-07-01

    Current technological trends suggest that the high performance scientific machines of the future are very likely to consist of a large number (greater than 1024) of processors connected and communicating with each other in some as yet undetermined manner. Such an assembly of processors should behave as a single machine in obtaining numerical solutions to scientific problems. However, the appropriate way of organizing both the hardware and software of such an assembly of processors is an unsolved and active area of research. It is particularly important to minimize the organizational overhead of interprocessor comunication, global synchronization, and contention for shared resources if the performance of a large number ( n) of processors is to be anything like the desirable n times the performance of a single processor. In many situations, adding a processor actually decreases the performance of the overall system since the extra organizational overhead is larger than the extra processing power added. The systolic loop architecture is a new multiple processor architecture which attemps at a solution to the problem of how to organize a large number of asynchronous processors into an effective computational system while minimizing the organizational overhead. This paper gives a brief overview of the basic systolic loop architecture, systolic loop algorithms for numerical computation, and a 64-processor implementation of the architecture, WATERLOOP V2/64, that is being used as a testbed for exploring the hardware, software, and algorithmic aspects of the architecture.

  17. A path-level exact parallelization strategy for sequential simulation

    Science.gov (United States)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  18. A Graph-Based Approach to Action Scheduling in a Parallel Database System

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Apers, Peter M.G.

    Parallel database machines are meant to obtain high performance in transaction processing, both in terms of response time adn throughput. To obtain high performance, a good scheduling of the execution of the various actions in transactions is crucial. This paper describes a graph-based technique for

  19. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  20. Structural and kinematic analysis from Montevideo Formation rocks

    International Nuclear Information System (INIS)

    Masquelin, E.; Gutierrez, L.; Sienra, M.

    2004-01-01

    The main purpose of this work is to bring new advances about structural and kinematic analysis from Montevideo Formation rocks. This information was collected by means of the classic methodology used for metamorphic terrains: (i) to recognize the nature of the protoliths, (ii) to discriminate the diversity of intrusive rocks and their relative age, (iii) to evaluate the intensity of strain, and (iv) to find the relationship between this strain and related displacements, in accordance to the unified theory for ductile shear zones. The exposed results show that there are not enough evidences to prove that the layering found in para-amphibolites and para-gneisses is the bedding surface. Although various lava primary structures were presented, these structures do not bring the bedding plane directly, and sedimentary structures are suspicious. In the other hand, the strain has proved to be very intense, by the development of isoclinal folds (may be intrafolial), highly strained veins of plagioclase-bearing gneiss and the boudinage of the duplicated sequence parallel to the axes of D2 later folds. The D2 fold axes parallel direction could be acted as the transport direction of a major strike-slip shear zone, striking N70 0 E. The fact is that various ductile flow vorticity indicators were found in para-amphibolites showing a dextral shear sense [es

  1. Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox

    Science.gov (United States)

    Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas

    In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.

  2. A database for on-line event analysis on a distributed memory machine

    CERN Document Server

    Argante, E; Van der Stok, P D V; Willers, Ian Malcolm

    1995-01-01

    Parallel in-memory databases can enhance the structuring and parallelization of programs used in High Energy Physics (HEP). Efficient database access routines are used as communication primitives which hide the communication topology in contrast to the more explicit communications like PVM or MPI. A parallel in-memory database, called SPIDER, has been implemented on a 32 node Meiko CS-2 distributed memory machine. The spider primitives generate a lower overhead than the one generated by PVM or PMI. The event reconstruction program, CPREAD of the CPLEAR experiment, has been used as a test case. Performance measurerate generated by CPLEAR.

  3. Treatment of photon radiation in kinematics fits at future e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.; List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); List, B. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2010-05-15

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e{sup +}e{sup -} colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p{sub z,{gamma}} ({eta}) is introduced, which is parametrized such that {eta} follows a normal distribution. In the fit, {eta} is treated as having a measured value of zero, which corresponds to p{sub z,{gamma}}, = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e{sup +}e{sup -}{yields}q anti qq anti q event sample at {radical}(s)=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider. (orig.)

  4. Oblique decision trees using embedded support vector machines in classifier ensembles

    NARCIS (Netherlands)

    Menkovski, V.; Christou, I.; Efremidis, S.

    2008-01-01

    Classifier ensembles have emerged in recent years as a promising research area for boosting pattern recognition systems' performance. We present a new base classifier that utilizes oblique decision tree technology based on support vector machines for the construction of oblique (non-axis parallel)

  5. Massively parallel performance of neutron transport response matrix algorithms

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1993-01-01

    Massively parallel red/black response matrix algorithms for the solution of within-group neutron transport problems are implemented on the Connection Machines-2, 200 and 5. The response matrices are dericed from the diamond-differences and linear-linear nodal discrete ordinate and variational nodal P 3 approximations. The unaccelerated performance of the iterative procedure is examined relative to the maximum rated performances of the machines. The effects of processor partitions size, of virtual processor ratio and of problems size are examined in detail. For the red/black algorithm, the ratio of inter-node communication to computing times is found to be quite small, normally of the order of ten percent or less. Performance increases with problems size and with virtual processor ratio, within the memeory per physical processor limitation. Algorithm adaptation to courser grain machines is straight-forward, with total computing time being virtually inversely proportional to the number of physical processors. (orig.)

  6. MCBooster: a tool for MC generation for massively parallel platforms

    CERN Multimedia

    Alves Junior, Antonio Augusto

    2016-01-01

    MCBooster is a header-only, C++11-compliant library for the generation of large samples of phase-space Monte Carlo events on massively parallel platforms. It was released on GitHub in the spring of 2016. The library core algorithms implement the Raubold-Lynch method; they are able to generate the full kinematics of decays with up to nine particles in the final state. The library supports the generation of sequential decays as well as the parallel evaluation of arbitrary functions over the generated events. The output of MCBooster completely accords with popular and well-tested software packages such as GENBOD (W515 from CERNLIB) and TGenPhaseSpace from the ROOT framework. MCBooster is developed on top of the Thrust library and runs on Linux systems. It deploys transparently on NVidia CUDA-enabled GPUs as well as multicore CPUs. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of perfor...

  7. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots.

    Science.gov (United States)

    Bengoa, Pablo; Zubizarreta, Asier; Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles; Mata, Sara

    2017-08-23

    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software.

  8. Kinematic aspects of pion-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Weiss, D.L.; Ernst, D.J.

    1982-01-01

    The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory

  9. Kinematic repeatability of a multi-segment foot model for dance.

    Science.gov (United States)

    Carter, Sarah L; Sato, Nahoko; Hopper, Luke S

    2018-03-01

    The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.

  10. An Optimal Parallel Algorithm for the Knapsack Problem Based on EREW

    Institute of Scientific and Technical Information of China (English)

    李肯立; 蒋盛益; 王卉; 李庆华

    2003-01-01

    A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2n/4)1-ε processors, 0≤ε≤1, and O(2n/2) memory to find a solution for the n-element knapsack problem in time O(2n/4(2n/4)ε). The cost of the proposed parallel algorithm is O(2n/2), which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.

  11. The Impact of the Support System’s Kinematic Structure on Selected Kinematic and Dynamic Quantities of an Experimental Crane

    Directory of Open Access Journals (Sweden)

    Trąbka Arkadiusz

    2014-12-01

    Full Text Available This paper presents a comparative analysis of two kinematic structures of the support system (with supports with bilateral and unilateral constraints, which were used in an experimental model of a crane. The computational model was developed by using the ADAMS software. The impact of the kinematic structure of the support system on selected kinematic and dynamic values that were recorded during the slewing motion was analysed. It was found, among other things, that an increased number of degrees of freedom of the support system leads to multiple distortions of time characteristics of kinematic and dynamic quantities.

  12. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    Science.gov (United States)

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  13. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension

    Science.gov (United States)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and

  14. Decoupled Sliding Mode Control for a Novel 3-DOF Parallel Manipulator with Actuation Redundancy

    Directory of Open Access Journals (Sweden)

    Niu Xuemei

    2015-05-01

    Full Text Available This paper presents a decoupled nonsingular terminal sliding mode controller (DNTSMC for a novel 3-DOF parallel manipulator with actuation redundancy. According to kinematic analysis, the inverse dynamic model for a novel 3-DOF redundantly actuated parallel manipulator is formulated in the task space using Lagrangian formalism and decoupled into three entirely independent subsystems under generalized coordinates to significantly reduce system complexity. Based on the dynamic model, a decoupled sliding mode control strategy is proposed for the parallel manipulator; the idea behind this strategy is to design a nonsingular terminal sliding mode controller for each subsystem, which can drive states of three subsystems to the original equilibrium points simultaneously by two intermediate variables. Additionally, a RBF neural network is used to compensate the cross-coupling force and gravity to enhance the control precision. Simulation and experimental results show that the proposed DNTSMC can achieve better control performances compared with the conventional sliding mode controller (SMC and the DNTSMC without compensator.

  15. Beam dynamics calculations and particle tracking using massively parallel processors

    International Nuclear Information System (INIS)

    Ryne, R.D.; Habib, S.

    1995-01-01

    During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking

  16. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  17. Kinematic relations in heavy-ion reactions

    International Nuclear Information System (INIS)

    Gippner, P.; Kalpakchieva, R.

    1988-01-01

    The present work gives a short overview of the non-relativistic kinematics of nuclear reactions derived on the basis of the conservation laws of energy and linear momentum. Section 2 contains kinematic relations valid for two-body reactions, sections 3 makes use of these relations to describe sequential fission as a special case of reactions with three particles in the exit channel. It is the aim of this work to comprise the kinematic formulae essential for planning of experiments, data analysis and critical examination of the obtained results. (author)

  18. Parallel processing at the SSC: The fact and the fiction

    International Nuclear Information System (INIS)

    Bourianoff, G.; Cole, B.

    1991-10-01

    Accurately modelling the behavior of particles circulating in accelerators is a computationally demanding task. The particle tracking code currently in use at SSC is based upon a ''thin element'' analysis (TEAPOT). In this model each magnet in the lattice is described by a thin element at which the particle experiences an impulsive kick. Each kick requires approximately 200 floating point operations (''FLOP''). For the SSC collider lattice consisting of 10 4 elements, performing a tracking of study for a set of 100 particles for 10 7 turns would require 2 x 10 15 FLOPS. Even on a machine capable of 100 MFLOP/sec (MFLOPS), this would require 2 x 10 7 seconds, and many such runs are necessary. It should be noted that the accuracy with which the kicks are to be calculated is important: the large number of iterations involved will magnify the effects of small errors. The inability of current computational resources to effectively perform the full calculation motivates the migration of this calculation to the most powerful computers available. A survey of the current research into new technologies for superconducting reveals that the supercomputers of the future will be parallel in nature. Further, numerous such machines exist today, and are being used to solve other difficult problems. Thus it seems clear that it is not early to begin developing the capability to develop tracking codes for parallel architectures. This report discusses implementing parallel processing on the SCC

  19. Precision Parameter Estimation and Machine Learning

    Science.gov (United States)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  20. Virtual Machine Language 2.1

    Science.gov (United States)

    Riedel, Joseph E.; Grasso, Christopher A.

    2012-01-01

    VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that