Controllability and stabilization of parabolic equations
Barbu, Viorel
2018-01-01
This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...
Compressible stability of growing boundary layers using parabolized stability equations
Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.
1991-01-01
The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.
Stability test for a parabolic partial differential equation
Vajta, Miklos
2001-01-01
The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.
Parabolized stability equations
Herbert, Thorwald
1994-01-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
Stability in terms of two measures for a class of semilinear impulsive parabolic equations
International Nuclear Information System (INIS)
Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I
2013-01-01
The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.
Stability and instability of stationary solutions for sublinear parabolic equations
Kajikiya, Ryuji
2018-01-01
In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.
Role of secondary instability theory and parabolized stability equations in transition modeling
El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.
1993-01-01
In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.
Conditional stability in determination of initial data for stochastic parabolic equations
International Nuclear Information System (INIS)
Yuan, Ganghua
2017-01-01
In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper. (paper)
Conditional stability in determination of initial data for stochastic parabolic equations
Yuan, Ganghua
2017-03-01
In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.
Ashyralyev, Allaberen; Cakir, Zafer
2016-08-01
In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.
Determination of source terms in a degenerate parabolic equation
International Nuclear Information System (INIS)
Cannarsa, P; Tort, J; Yamamoto, M
2010-01-01
In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation
An introduction to geometric theory of fully nonlinear parabolic equations
International Nuclear Information System (INIS)
Lunardi, A.
1991-01-01
We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs
On the behaviour of solutions of parabolic equations for large values of time
International Nuclear Information System (INIS)
Denisov, V N
2005-01-01
This paper is a survey of classical and new results on stabilization of solutions of the Cauchy problem and mixed problems for second-order linear parabolic equations. Proofs are given for some new results about exact sufficient conditions on the behaviour of lower-order coefficients of the parabolic equation; these conditions ensure stabilization of a solution of the Cauchy problem for the parabolic equation in the class of bounded or increasing initial functions
Stability analysis of a boundary layer over a hump using parabolized stability equations
Energy Technology Data Exchange (ETDEWEB)
Gao, B; Park, D H; Park, S O, E-mail: sopark@kaist.ac.kr [Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Gusong-dong, Yusong-gu, Daejeon 305-701 (Korea, Republic of)
2011-10-15
Parabolized stability equations (PSEs) were used to investigate the stability of boundary layer flows over a small hump. The applicability of PSEs to flows with a small separation bubble was examined by comparing the result with DNS data. It was found that PSEs can efficiently track the disturbance waves with an acceptable accuracy in spite of a small separation bubble. A typical evolution scenario of Tollmien-Schlichting (TS) wave is presented. The adverse pressure gradient and the flow separation due to the hump have a strong effect on the amplification of the disturbances. The effect of hump width and height is also examined. When the width of the hump is reduced, the amplification factor is increased. The height of the hump is found to obviously influence the stability only when it is greater than the critical layer thickness.
Stability analysis of a boundary layer over a hump using parabolized stability equations
International Nuclear Information System (INIS)
Gao, B; Park, D H; Park, S O
2011-01-01
Parabolized stability equations (PSEs) were used to investigate the stability of boundary layer flows over a small hump. The applicability of PSEs to flows with a small separation bubble was examined by comparing the result with DNS data. It was found that PSEs can efficiently track the disturbance waves with an acceptable accuracy in spite of a small separation bubble. A typical evolution scenario of Tollmien-Schlichting (TS) wave is presented. The adverse pressure gradient and the flow separation due to the hump have a strong effect on the amplification of the disturbances. The effect of hump width and height is also examined. When the width of the hump is reduced, the amplification factor is increased. The height of the hump is found to obviously influence the stability only when it is greater than the critical layer thickness.
Improved algorithm for solving nonlinear parabolized stability equations
International Nuclear Information System (INIS)
Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng
2016-01-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)
Improved algorithm for solving nonlinear parabolized stability equations
Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng
2016-08-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
International Nuclear Information System (INIS)
Gorshkov, A V
2003-01-01
The problem of the stabilization of a semilinear equation in the exterior of a bounded domain is considered. In view of the impossibility of an exponential stabilization of the form e -σt of the solution of a parabolic equation in an unbounded domain no matter what the boundary control is, one poses the problem of power-like stabilization by means of a boundary control. For a fixed initial condition and parameter k>0 of the rate of stabilization the existence of a boundary control such that the solution approaches zero at the rate 1/t k is demonstrated
Integration of equations of parabolic type by the method of nets
Saul'Yev, V K; Stark, M; Ulam, S
1964-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff
Identifying the principal coefficient of parabolic equations with non-divergent form
International Nuclear Information System (INIS)
Jiang, L S; Bian, B J
2005-01-01
We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well
Identifying the principal coefficient of parabolic equations with non-divergent form
Jiang, L. S.; Bian, B. J.
2005-01-01
We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.
Vector domain decomposition schemes for parabolic equations
Vabishchevich, P. N.
2017-09-01
A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
International Workshop on Elliptic and Parabolic Equations
Schrohe, Elmar; Seiler, Jörg; Walker, Christoph
2015-01-01
This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.
International Nuclear Information System (INIS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful
The parabolic equation method for outdoor sound propagation
DEFF Research Database (Denmark)
Arranz, Marta Galindo
The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...
Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity
International Nuclear Information System (INIS)
Leiler, Gregor; Rezzolla, Luciano
2006-01-01
The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion
Partial differential equations of parabolic type
Friedman, Avner
2008-01-01
This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta
Solving Variable Coefficient Fourth-Order Parabolic Equation by ...
African Journals Online (AJOL)
Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.
Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations
Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz
2016-11-01
The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.
Kuehl, Joseph
2016-11-01
The parabolized stability equations (PSE) have been developed as an efficient and powerful tool for studying the stability of advection-dominated laminar flows. In this work, a new "wavepacket" formulation of the PSE is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening and results in disturbance saturation amplitudes consistent with experiment. A Mach 6 flared-cone example is presented. Support from the AFOSR Young Investigator Program via Grant FA9550-15-1-0129 is gratefully acknowledges.
Lozano-Durán, A.; Hack, M. J. P.; Moin, P.
2018-02-01
We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.
Modeling mode interactions in boundary layer flows via the Parabolized Floquet Equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanović, Mihailo R.
2017-01-01
In this paper, we develop a linear model to study interactions between different modes in slowly-growing boundary layer flows. Our method consists of two steps. First, we augment the Blasius boundary layer profile with a disturbance field resulting from the linear Parabolized Stability Equations (PSE) to obtain the modified base flow; and, second, we combine Floquet analysis with the linear PSE to capture the spatial evolution of flow fluctuations. This procedure yields the Parabolized Floque...
Stability analysis of impulsive parabolic complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)
2011-11-15
Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Stability analysis of impulsive parabolic complex networks
International Nuclear Information System (INIS)
Wang Jinliang; Wu Huaining
2011-01-01
Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Linear and quasi-linear equations of parabolic type
Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N
1968-01-01
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Kamynin, V. L.; Bukharova, T. I.
2017-01-01
We prove the estimates of stability with respect to perturbations of input data for the solutions of inverse problems for degenerate parabolic equations with unbounded coefficients. An important feature of these estimates is that the constants in these estimates are written out explicitly by the input data of the problem.
Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.
Critical spaces for quasilinear parabolic evolution equations and applications
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
Ashyralyyeva, Maral; Ashyraliyev, Maksat
2016-08-01
In the present paper, a second order of accuracy difference scheme for the approximate solution of a source identification problem for hyperbolic-parabolic equations is constructed. Theorem on stability estimates for the solution of this difference scheme and their first and second order difference derivatives is presented. In applications, this abstract result permits us to obtain the stability estimates for the solutions of difference schemes for approximate solutions of two source identification problems for hyperbolic-parabolic equations.
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-01-01
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular
Moving interfaces and quasilinear parabolic evolution equations
Prüss, Jan
2016-01-01
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
A note on numerical solution of a parabolic-Schrödinger equation
Ozdemir, Yildirim; Alp, Mustafa
2016-08-01
In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.
Stabilization of the solution of a doubly nonlinear parabolic equation
International Nuclear Information System (INIS)
Andriyanova, È R; Mukminov, F Kh
2013-01-01
The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles
International Nuclear Information System (INIS)
Mukminov, F Kh; Bikkulov, I M
2004-01-01
The behaviour as t→∞ of the solution of a mixed problem for parabolic equations in an unbounded domain with two exits to infinity is studied. A certain class of domains is distinguished, in which an estimate characterizing the stabilization of solutions and determined by the geometry of the domain is established. This estimate is proved to be sharp in a certain sense for a broad class of domains with two exits to infinity.
He, Zi; Chen, Ru-Shan
2016-03-01
An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.
Singer, Bart A.; Choudhari, Meelan; Li, Fei
1995-01-01
A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.
Nonlinear anisotropic parabolic equations in Lm
Directory of Open Access Journals (Sweden)
Fares Mokhtari
2014-01-01
Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The present paper deals with the long-time behavior of a class of nonautonomous retarded semilinear parabolic differential equations. When the time delays are small enough and the spectral gap conditions hold, the inertial manifolds of the nonautonomous retard parabolic equations are constructed by using the Lyapunov-Perron method.
F John's stability conditions versus A Carasso's SECB constraint for backward parabolic problems
International Nuclear Information System (INIS)
Lee, Jinwoo; Sheen, Dongwoo
2009-01-01
In order to solve backward parabolic problems John (1960 Commun. Pure. Appl. Math.13 551–85) introduced the two constraints ||u(T)|| ≤ M and ||u(0) − g|| ≤ δ where u(t) satisfies the backward heat equation for t in (0, T) with the initial data u(0). The slow evolution from the continuation boundary (SECB) constraint was introduced by Carasso (1994 SIAM J. Numer. Anal. 31 1535–57) to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t = T. The additional 'SECB constraint' guarantees a significant improvement in stability up to t = T. In this paper, we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ||u(T)|| ≤ M is redundant. This implies that Carasso's SECB condition can be used to replace the a priori boundedness condition of John with an improved stability estimate. Also, a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally, numerical examples are provided
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
Interior Gradient Estimates for Nonuniformly Parabolic Equations II
Directory of Open Access Journals (Sweden)
Lieberman Gary M
2007-01-01
Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.
Approximation of entropy solutions to degenerate nonlinear parabolic equations
Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu
2017-12-01
We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
On some perturbation techniques for quasi-linear parabolic equations
Directory of Open Access Journals (Sweden)
Igor Malyshev
1990-01-01
Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in explicit form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.
International Nuclear Information System (INIS)
Karimov, Ruslan Kh; Kozhevnikova, Larisa M
2010-01-01
The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.
A gradient estimate for solutions to parabolic equations with discontinuous coefficients
Directory of Open Access Journals (Sweden)
Jishan Fan
2013-04-01
Full Text Available Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. That is, we gave a gradient estimate for parabolic equations of divergence forms with piecewise smooth coefficients. The coefficients are assumed to be independent of time and their discontinuities are likewise the previous elliptic equations. As an application of this estimate, we also gave a pointwise gradient estimate for the fundamental solution of a parabolic operator with piecewise smooth coefficients. Both gradient estimates are independent of the distances between manifolds of discontinuities.
Elliptic and parabolic equations for measures
Energy Technology Data Exchange (ETDEWEB)
Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)
2009-12-31
This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.
Some blow-up problems for a semilinear parabolic equation with a potential
Cheng, Ting; Zheng, Gao-Feng
The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].
ε-neighbourhoods of orbits of parabolic diffeomorphisms and cohomological equations
International Nuclear Information System (INIS)
Resman, Maja
2014-01-01
In this article, we study the analyticity of (directed) areas of ε-neighbourhoods of orbits of parabolic germs. The article is motivated by the question of analytic classification using ε-neighbourhoods of orbits in the simplest formal class. We show that the coefficient in front of the ε 2 term in the asymptotic expansion in ε, which we call the principal part of the area, is a sectorially analytic function in the initial point of the orbit. It satisfies a cohomological equation similar to the standard trivialization equation for parabolic diffeomorphisms. We give necessary and sufficient conditions on a diffeomorphism f for the existence of a globally analytic solution of this equation. Furthermore, we introduce a new classification type for diffeomorphisms implied by this new equation and investigate the relative position of its classes with respect to the analytic classes. (paper)
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Directory of Open Access Journals (Sweden)
Jiebao Sun
2011-01-01
parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model
Directory of Open Access Journals (Sweden)
Xiao-Wei Guan
2018-01-01
Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.
Application of the implicit MacCormack scheme to the parabolized Navier-Stokes equations
Lawrence, J. L.; Tannehill, J. C.; Chaussee, D. S.
1984-01-01
MacCormack's implicit finite-difference scheme was used to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method for solving the PNS equations does not require the inversion of block tridiagonal systems of algebraic equations and permits the original explicit MacCormack scheme to be employed in those regions where implicit treatment is not needed. The advantages and disadvantages of the present adaptation are discussed in relation to those of the conventional Beam-Warming scheme for a flat plate boundary layer test case. Comparisons are made for accuracy, stability, computer time, computer storage, and ease of implementation. The present method was also applied to a second test case of hypersonic laminar flow over a 15% compression corner. The computed results compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
Numerical Solution of Parabolic Equations
DEFF Research Database (Denmark)
Østerby, Ole
These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....
The fundamental solutions for fractional evolution equations of parabolic type
Directory of Open Access Journals (Sweden)
Mahmoud M. El-Borai
2004-01-01
Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.
Harnack's Inequality for Degenerate and Singular Parabolic Equations
DiBenedetto, Emmanuele; Vespri, Vincenzo
2012-01-01
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive
Real-time optical laboratory solution of parabolic differential equations
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Sun, Jiebao; Zhang, Dazhi; Wu, Boying
2011-01-01
We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
Darboux transformations and linear parabolic partial differential equations
International Nuclear Information System (INIS)
Arrigo, Daniel J.; Hickling, Fred
2002-01-01
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor
Rothe's method for parabolic equations on non-cylindrical domains
Czech Academy of Sciences Publication Activity Database
Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.
2006-01-01
Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics
Computational partial differential equations using Matlab
Li, Jichun
2008-01-01
Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE
Mixed hyperbolic-second-order-parabolic formulations of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios
2008-01-01
Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.
International Nuclear Information System (INIS)
Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire
2015-01-01
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m 1 , n 1 ), (m 2 , n 2 ), such that the difference in azimuth and in frequency matches the desired “target” mode (m 1 − m 2 , n 1 − n 2 ). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Upwind algorithm for the parabolized Navier-Stokes equations
Lawrence, Scott L.; Tannehill, John C.; Chausee, Denny S.
1989-01-01
A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes equations. This method does not require the addition of user-specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming (1978) scheme in terms of accuracy, stability, computer time and storage requirements, and programming effort. The new algorithm has been validated by applying it to three laminar test cases, including flat-plate boundary-layer flow, hypersonic flow past a 15-deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with results obtained using the conventional Beam-Warming algorithm.
International Nuclear Information System (INIS)
Levenshtam, V B
2006-01-01
We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)
One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows
Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael
2016-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.
Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations
Abdulle, Assyr
2013-01-01
We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.
Stability of the Filter Equation for a Time-Dependent Signal on Rd
International Nuclear Information System (INIS)
Stannat, Wilhelm
2005-01-01
Stability of the pathwise filter equation for a time-dependent signal process induced by a d-dimensional stochastic differential equation and a linear observation is studied, using a variational approach. A lower bound for the rate of stability is identified in terms of the mass-gap of a parabolic ground state transform associated with the generator of the signal process and the square of the observation. The lower bound can be easily calculated a priori and provides hints on how precisely to measure the signal in order to reach a certain rate of stability. Ergodicity of the signal process is not needed
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-05-13
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.
Almost periodic solutions to systems of parabolic equations
Directory of Open Access Journals (Sweden)
Janpou Nee
1994-01-01
Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.
Tam, Christopher; Krothapalli, A
1993-01-01
The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.
Recovering the source and initial value simultaneously in a parabolic equation
International Nuclear Information System (INIS)
Zheng, Guang-Hui; Wei, Ting
2014-01-01
In this paper, we consider an inverse problem to simultaneously reconstruct the source term and initial data associated with a parabolic equation based on the additional temperature data at a terminal time t = T and the temperature data on an accessible part of a boundary. The conditional stability and uniqueness of the inverse problem are established. We apply a variational regularization method to recover the source and initial value. The existence, uniqueness and stability of the minimizer of the corresponding variational problem are obtained. Taking the minimizer as a regularized solution for the inverse problem, under an a priori and an a posteriori parameter choice rule, the convergence rates of the regularized solution under a source condition are also given. Furthermore, the source condition is characterized by an optimal control approach. Finally, we use a conjugate gradient method and a stopping criterion given by Morozov's discrepancy principle to solve the variational problem. Numerical experiments are provided to demonstrate the feasibility of the method. (papers)
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
Flux form Semi-Lagrangian methods for parabolic problems
Directory of Open Access Journals (Sweden)
Bonaventura Luca
2016-09-01
Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.
An upwind algorithm for the parabolized Navier-Stokes equations
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1986-01-01
A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method does not require the addition of user specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming scheme in terms of accuracy, stability, computer time and storage, and programming effort. The new algorithm has been validated by applying it to three laminar test cases including flat plate boundary-layer flow, hypersonic flow past a 15 deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with the results obtained using the conventional Beam-Warming algorithm.
Efficient solution of parabolic equations by Krylov approximation methods
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
Numerical Schemes for Rough Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)
2012-04-15
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.
On the Schauder estimates of solutions to parabolic equations
International Nuclear Information System (INIS)
Han Qing
1998-01-01
This paper gives a priori estimates on asymptotic polynomials of solutions to parabolic differential equations at any points. This leads to a pointwise version of Schauder estimates. The result improves the classical Schauder estimates in a way that the estimates of solutions and their derivatives at one point depend on the coefficient and nonhomogeneous terms at this particular point
Feshchenko, R. M.
Recently a new exact transparent boundary condition (TBC) for the 3D parabolic wave equation (PWE) in rectangular computational domain was derived. However in the obtained form it does not appear to be unconditionally stable when used with, for instance, the Crank-Nicolson finite-difference scheme. In this paper two new formulations of the TBC for the 3D PWE in rectangular computational domain are reported, which are likely to be unconditionally stable. They are based on an unconditionally stable fully discrete TBC for the Crank-Nicolson scheme for the 2D PWE. These new forms of the TBC can be used for numerical solution of the 3D PWE when a higher precision is required.
GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA
2014-01-01
AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
International Nuclear Information System (INIS)
Beauchard, K; Cannarsa, P; Yamamoto, M
2014-01-01
The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators of interest to this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse source problems for such operators, with locally distributed measurements in an arbitrary space dimension. For this purpose, we follow a mixed strategy which combines the approach due to Lebeau and Robbiano, relying on Fourier decomposition and Carleman inequalities for heat equations with non-smooth coefficients (solved by the Fourier modes). As a corollary, we obtain a direct proof of the observability of multidimensional Grushin-type parabolic equations, with locally distributed observations—which is equivalent to null controllability with locally distributed controls. (paper)
Control and Stabilization of the Benjamin-Ono Equation in {L^2({{T})}}
Laurent, Camille; Linares, Felipe; Rosier, Lionel
2015-12-01
We study the control and stabilization of the Benjamin-Ono equation in {L^2({T})}, the lowest regularity where the initial value problem is well-posed. This problem was already initiated in Linares and Rosier (Trans Am Math Soc 367:4595-4626, 2015) where a stronger stabilization term was used (that makes the equation of parabolic type in the control zone). Here we employ a more natural stabilization term related to the L 2-norm. Moreover, by proving a theorem of controllability in L 2, we manage to prove the global controllability in large time. Our analysis relies strongly on the bilinear estimates proved in Molinet and Pilod (Anal PDE 5:365-395, 2012) and some new extension of these estimates established here.
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
An accurate solution of parabolic equations by expansion in ultraspherical polynomials
International Nuclear Information System (INIS)
Doha, E.H.
1986-11-01
An ultraspherical expansion technique is applied to obtain numerically the solution of the third boundary value problem for linear parabolic partial differential equation in one-space variable. The differential equation with its boundary and initial conditions is reduced to a system of ordinary differential equations for the coefficients of the expansion. This system may be solved analytically or numerically in a step-by-step manner. The method in its present form may be considered as a generalization of that of Dew and Scraton. The extension of the method to the polar-type equations is also considered. (author). 12 refs, 1 tab
International Nuclear Information System (INIS)
Dehghan, Mehdi; Tatari, Mehdi
2008-01-01
In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases
Sound field computations in the Bay of Bengal using parabolic equation method
Digital Repository Service at National Institute of Oceanography (India)
Navelkar, G.S.; Somayajulu, Y.K.; Murty, C.S.
Effect of the cold core eddy in the Bay of Bengal on acoustic propagation was analysed by parabolic equation (PE) method. Source depth, frequency and propagation range considered respectively for the two numerical experiments are 150 m, 400 Hz, 650...
Beshtokov, M. Kh.
2016-10-01
A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
New model reduction technique for a class of parabolic partial differential equations
Vajta, Miklos
1991-01-01
A model reduction (or lumping) technique for a class of parabolic-type partial differential equations is given, and its application is discussed. The frequency response of the temperature distribution in any multilayer solid is developed and given by a matrix expression. The distributed transfer
Stabilization and asymptotic behavior of a generalized telegraph equation
Nicaise, Serge
2015-12-01
We analyze the stability of different models of the telegraph equation set in a real interval. They correspond to the coupling between a first-order hyperbolic system and a first-order differential equation of parabolic type. We show that some models have an exponential decay rate, while other ones are only polynomially stable. When the parameters are constant, we show that the obtained polynomial decay is optimal and in the case of an exponential decay that the decay rate is equal to the spectral abscissa. These optimality results are based on a careful spectral analysis of the operator. In particular, we characterize its full spectrum that is made of a discrete set of eigenvalues and an essential spectrum reduced to one point.
Beshtokov, M. Kh.
2017-12-01
Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.
2009-10-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.
2009-01-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-08-01
In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-12-01
In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form
Directory of Open Access Journals (Sweden)
Kairi Kasemets
2013-01-01
Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.
Directory of Open Access Journals (Sweden)
Fatima G. Khushtova
2016-03-01
Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
Numerical performance of the parabolized ADM formulation of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei
2008-01-01
In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.
Implementation of compact finite-difference method to parabolized Navier-Stokes equations
International Nuclear Information System (INIS)
Esfahanian, V.; Hejranfar, K.; Darian, H.M.
2005-01-01
The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-01-01
Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.
Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay
Czech Academy of Sciences Publication Activity Database
Chueshov, I.; Rezunenko, Oleksandr
2015-01-01
Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Telescopic projective methods for parabolic differential equations
Gear, C W
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.
Telescopic projective methods for parabolic differential equations
International Nuclear Information System (INIS)
Gear, C.W.; Kevrekidis, Ioannis G.
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components
A gradient estimate for solutions to parabolic equations with discontinuous coefficients
Fan, Jishan; Kim, Kyoungsun; Nagayasu, Sei; Nakamura, Gen
2011-01-01
Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. T...
Directory of Open Access Journals (Sweden)
Rubio Gerardo
2011-03-01
Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.
International Nuclear Information System (INIS)
Kozhevnikova, L M; Mukminov, F Kh
2000-01-01
A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {t>0}xΩ. In a broad class of unbounded domains Ω two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t→∞ of the L 2 -norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation
Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space
International Nuclear Information System (INIS)
Du Kai; Qiu, Jinniao; Tang Shanjian
2012-01-01
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.
Rubin, S. G.
1982-01-01
Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.
Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis
Directory of Open Access Journals (Sweden)
Mathias Jais
2008-01-01
Full Text Available We consider the solvability of the semilinear parabolic differential equation \\[\\frac{\\partial u}{\\partial t}(x,t- \\Delta u(x,t + c(x,tu(x,t = \\mathcal{P}(u + \\gamma (x,t\\] in a cylinder \\(D=\\Omega \\times (0,T\\, where \\(\\mathcal{P}\\ is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach operator \\(\\mathcal{P}\\ from overdetermined boundary data.
Recovering a coefficient in a parabolic equation using an iterative approach
Azhibekova, Aliya S.
2016-06-01
In this paper we are concerned with the problem of determining a coefficient in a parabolic equation using an iterative approach. We investigate an inverse coefficient problem in the difference form. To recover the coefficient, we minimize a residual functional between the observed and calculated values. This is done in a constructive way by fitting a finite-difference approximation to the inverse problem. We obtain some theoretical estimates for a direct and adjoint problem. Using these estimates we prove monotonicity of the objective functional and the convergence of iteration sequences.
Czech Academy of Sciences Publication Activity Database
Krisztin, T.; Rezunenko, Oleksandr
2016-01-01
Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf
The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation
Directory of Open Access Journals (Sweden)
Juan Wang
2013-01-01
Full Text Available We consider the existence, uniqueness, and asymptotic behavior of a classical solution to the initial and Neumann boundary value problem for a class nonlinear parabolic equation of Monge-Ampère type. We show that such solution exists for all times and is unique. It converges eventually to a solution that satisfies a Neumann type problem for nonlinear elliptic equation of Monge-Ampère type.
Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field
International Nuclear Information System (INIS)
Hyman, J.M.; Rosenau, P.
1984-01-01
We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required
Energy Technology Data Exchange (ETDEWEB)
Kirtley, K.R.
1988-10-01
A new coupled parabolic-marching method was developed to solve the three-dimensional incompressible Navier-Stokes equation for turbulent turbomachinery flows. Earlier space-marching methods were analyzed to determine their global stability during multiple passes of the computational domain. The methods were found to be unconditionally unstable even when an extra equation for the pressure, namely the Poisson equation for the pressure, was used between passes of the domain. Relaxation of one constraint during the solution process was found to be necessary for the successful calculation of a complex flow.Thus, the method of pseudocompressibility was introduced into the partially parabolized Navier-Stokes equation to relax the mass flow constraint during a forward-marching integration as well as globally stable during successive passes of the domain. With consistent discretization, the new method was found to be convergent.
A Note on the Asymptotic Behavior of Parabolic Monge-Ampère Equations on Riemannian Manifolds
Directory of Open Access Journals (Sweden)
Qiang Ru
2013-01-01
Full Text Available We study the asymptotic behavior of the parabolic Monge-Ampère equation in , in , where is a compact complete Riemannian manifold, λ is a positive real parameter, and is a smooth function. We show a meaningful asymptotic result which is more general than those in Huisken, 1997.
Differential invariants of generic parabolic Monge–Ampère equations
International Nuclear Information System (INIS)
Ferraioli, D Catalano; Vinogradov, A M
2012-01-01
Some new results on the geometry of classical parabolic Monge–Ampère equations (PMAs) are presented. PMAs are either integrable, or non-integrable according to the integrability of its characteristic distribution. All integrable PMAs are locally equivalent to the equation u xx = 0. We study non-integrable PMAs by associating with each of them a one-dimensional distribution on the corresponding first-order jet manifold, called the directing distribution. According to some property of this distribution, non-integrable PMAs are subdivided into three classes, one generic and two special. Generic PMAs are completely characterized by their directing distributions, and we study canonical models of the latter, projective curve bundles (PCB). A PCB is a one-dimensional sub-bundle of the projectivized cotangent bundle of a four-dimensional manifold. Differential invariants of projective curves composing such a bundle are used to construct a series of contact differential invariants for corresponding PMAs. These give a solution of the equivalence problem for generic PMAs with respect to contact transformations. The introduced invariants measure the nonlinearity of PMAs in an exact manner. (paper)
Iterative Splitting Methods for Differential Equations
Geiser, Juergen
2011-01-01
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Goswami, Deepjyoti; Pani, Amiya K.; Yadav, Sangita
2013-01-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a
Stability under persistent perturbation by white noise
International Nuclear Information System (INIS)
Kalyakin, L
2014-01-01
Deterministic dynamical system which has an asymptotical stable equilibrium is considered under persistent perturbation by white noise. It is well known that if the perturbation does not vanish in the equilibrium position then there is not Lyapunov's stability. The trajectories of the perturbed system diverge from the equilibrium to arbitrarily large distances with probability 1 in finite time. New concept of stability on a large time interval is discussed. The length of interval agrees the reciprocal quantity of the perturbation parameter. The measure of stability is the expectation of the square distance from the trajectory till the equilibrium position. The method of parabolic equation is applied to both estimate the expectation and prove such stability. The main breakthrough is the barrier function derived for the parabolic equation. The barrier is constructed by using the Lyapunov function of the unperturbed system
Nefedov, N. N.; Nikulin, E. I.
2018-01-01
A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.
Self-accelerating parabolic cylinder waves in 1-D
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2016-11-25
Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.
A model reduction approach to numerical inversion for a parabolic partial differential equation
International Nuclear Information System (INIS)
Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V
2014-01-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)
A model reduction approach to numerical inversion for a parabolic partial differential equation
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
Coercive properties of elliptic-parabolic operator
International Nuclear Information System (INIS)
Duong Min Duc.
1987-06-01
Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs
Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential
Directory of Open Access Journals (Sweden)
K. Atifi
2017-01-01
Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.
International Nuclear Information System (INIS)
Guidi, Leonardo F.; Marchetti, D.H.U.
2003-01-01
We establish a comparison between Rakib-Sivashinsky and Michelson-Sivashinsky quasilinear parabolic differential equations governing the weak thermal limit of flame front propagating in channels. For the former equation, we give a complete description of all steady solutions and present their local and global stability analysis. For the latter, bi-coalescent and interpolating unstable steady solutions are introduced and shown to be more numerous than the previous known coalescent solutions. These facts are argued to be responsible for the disagreement between the observed dynamics in numerical experiments and the exact (linear) stability analysis and give ingredients to construct quasi-stable solutions describing parabolic steadily propagating flame with centered tip
The concept of stability in numerical mathematics
Hackbusch, Wolfgang
2014-01-01
In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
Manning, Robert M.
2012-01-01
The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.
Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source
Directory of Open Access Journals (Sweden)
Pan Zheng
2012-01-01
Full Text Available We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul+uq, (x,t∈RN×(0,T, where N≥1, p>2 , and m, l, q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.
Well-posedness of nonlocal parabolic differential problems with dependent operators.
Ashyralyev, Allaberen; Hanalyev, Asker
2014-01-01
The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Chernoff's distribution and parabolic partial differential equations
P. Groeneboom; S.P. Lalley; N.M. Temme (Nico)
2013-01-01
textabstractWe give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
International Nuclear Information System (INIS)
Wu, Bin; Liu, Jijun
2011-01-01
We study the inverse problem of determining two spatially varying coefficients in a thermoelastic model with the following observation data: displacement in a subdomain ω satisfying ∂ω superset of ∂Ω along a sufficiently large time interval, both displacement and temperature at a suitable time over the whole spatial domain. Based on a Carleman estimate on the hyperbolic–parabolic system, we prove the Lipschitz stability and the uniqueness for this inverse problem under some a priori information
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
On the Stability of Three-Dimensional Boundary Layers. Part 1; Linear and Nonlinear Stability
Janke, Erik; Balakumar, Ponnampalam
1999-01-01
The primary stability of incompressible three-dimensional boundary layers is investigated using the Parabolized Stability Equations (PSE). We compute the evolution of stationary and traveling disturbances in the linear and nonlinear region prior to transition. As model problems, we choose Swept Hiemenz Flow and the DLR Transition Experiment. The primary stability results for Swept Hiemenz Flow agree very well with computations by Malik et al. For the DLR Experiment, the mean flow profiles are obtained by solving the boundary layer equations for the measured pressure distribution. Both linear and nonlinear results show very good agreement with the experiment.
Directory of Open Access Journals (Sweden)
Sukjung Hwang
2015-11-01
Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1
A parabolic model for dimple potentials
International Nuclear Information System (INIS)
Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun
2013-01-01
We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)
Convergence of method of lines approximations to partial differential equations
International Nuclear Information System (INIS)
Verwer, J.G.; Sanz-Serna, J.M.
1984-01-01
Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. The main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schroedinger equation are used for illustrating the ideas. (Auth.)
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management
Koleva, M. N.
2011-11-01
In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.
Lyapunov functionals and stability of stochastic functional differential equations
Shaikhet, Leonid
2013-01-01
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...
DEFF Research Database (Denmark)
Pedersen, Michael
1991-01-01
The stabilization problems for parabolic and hyperbolic partial differential equations with Dirichlet boundary condition are considered. The systems are stabilized by a boundary feedback in(1) The operator equation,(2) The boundary condition,(3) Both the operator equation and the boundary condition...... turns out to be a shortcut to some of the stabilization results of Lasiecka and Triggiani in [J. Differential Equations, 47 (1983), pp. 245-272], [SIAM J. Control Optim., 21(1983), pp. 766-802], and [Appl. Math. Optim., 8(1981), pp. 1-37], and it illuminates to some extent how a change of boundary...
Shishkin, G. I.
2015-11-01
An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
Nonlinear stability of supersonic jets
Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)
1996-01-01
The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.
Stable estimation of two coefficients in a nonlinear Fisher–KPP equation
International Nuclear Information System (INIS)
Cristofol, Michel; Roques, Lionel
2013-01-01
We consider the inverse problem of determining two non-constant coefficients in a nonlinear parabolic equation of the Fisher–Kolmogorov–Petrovsky–Piskunov type. For the equation u t = DΔu + μ(x) u − γ(x)u 2 in (0, T) × Ω, which corresponds to a classical model of population dynamics in a bounded heterogeneous environment, our results give a stability inequality between the couple of coefficients (μ, γ) and some observations of the solution u. These observations consist in measurements of u: in the whole domain Ω at two fixed times, in a subset ω⊂⊂Ω during a finite time interval and on the boundary of Ω at all times t ∈ (0, T). The proof relies on parabolic estimates together with the parabolic maximum principle and Hopf’s lemma which enable us to use a Carleman inequality. This work extends previous studies on the stable determination of non-constant coefficients in parabolic equations, as it deals with two coefficients and with a nonlinear term. A consequence of our results is the uniqueness of the couple of coefficients (μ, γ), given the observation of u. This uniqueness result was obtained in a previous paper but in the one-dimensional case only. (paper)
Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC
Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department
2018-01-01
Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).
Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation
Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi
2014-01-01
© 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.
2010-06-06
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.; Yadav, Sangita
2010-01-01
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
Orbital stability of solitary waves for Kundu equation
Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Numerical performance of the parabolized ADM (PADM) formulation of General Relativity
Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei
2007-01-01
In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...
Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.
Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Directory of Open Access Journals (Sweden)
Y. S. Kong
2013-01-01
Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
International Nuclear Information System (INIS)
Doering, C.R.
1985-01-01
Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory
Unconditionally stable difference methods for delay partial differential equations
Huang, Chengming; Vandewalle, Stefan
2012-01-01
This paper is concerned with the numerical solution of parabolic partial differential equations with time-delay. We focus in particular on the delay dependent stability analysis of difference methods that use a non-constrained mesh, i.e., the time step-size is not required to be a submultiple of the delay. We prove that the fully discrete system unconditionally preserves the delay dependent asymptotic stability of the linear test problem under consideration, when the following discretizati...
Numerical approximations of difference functional equations and applications
Directory of Open Access Journals (Sweden)
Zdzisław Kamont
2005-01-01
Full Text Available We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.
STRICT STABILITY OF IMPULSIVE SET VALUED DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper, we develop strict stability concepts of ODE to impulsive hybrid set valued differential equations. By Lyapunov’s original method, we get some basic strict stability criteria of impulsive hybrid set valued equations.
Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice
International Nuclear Information System (INIS)
Kevrekidis, P. G.; Carretero-Gonzalez, R.; Theocharis, G.; Frantzeskakis, D. J.; Malomed, B. A.
2003-01-01
We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schroedinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasiperiodic oscillations of the DS about the minimum of the parabolic trap
Viscosity solutions of fully nonlinear functional parabolic PDE
Directory of Open Access Journals (Sweden)
Liu Wei-an
2005-01-01
Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.
STABILITY OF SOME KIND OF STOCHASTIC DIFFERENTIAL EQUATION
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,a kind of stochastic differential equation is investigated and the almost sure exponential stability of the equation is obtained using Gronwall's inequality.Further,we also give other noise intensity function to keep the stability of the system.
Strongly nonlinear parabolic variational inequalities.
Browder, F E; Brézis, H
1980-02-01
An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.
Distribution-valued weak solutions to a parabolic problem arising in financial mathematics
Directory of Open Access Journals (Sweden)
Michael Eydenberg
2009-07-01
Full Text Available We study distribution-valued solutions to a parabolic problem that arises from a model of the Black-Scholes equation in option pricing. We give a minor generalization of known existence and uniqueness results for solutions in bounded domains $Omega subset mathbb{R}^{n+1}$ to give existence of solutions for certain classes of distributions $fin mathcal{D}'(Omega$. We also study growth conditions for smooth solutions of certain parabolic equations on $mathbb{R}^nimes (0,T$ that have initial values in the space of distributions.
A geometric theory for semilinear almost-periodic parabolic partial differential equations on RN
International Nuclear Information System (INIS)
Vuillermot, P.A.
1991-01-01
In this short expository article we review various applications of some geometric methods which have been recently devised to investigate the long time behaviour of classical solutions to certain semilinear almost-periodic reaction-diffusion equations on R N . As a consequence, we also show how to construct almost-periodic attractors for such equations and how to investigate their stability properties. The class of problems which we analyse here contains in particular well known equations of population genetics. (author). 17 refs
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
Directory of Open Access Journals (Sweden)
Wenwan Ding
2016-01-01
Full Text Available An improved fractal sea surface model, which can describe the capillary waves very well, is introduced to simulate the one-dimension rough sea surface. In this model, the propagation of electromagnetic waves (EWs is computed by the parabolic equation (PE method using the finite-difference (FD algorithm. The numerical simulation results of the introduced model are compared with those of the Miller-Brown model and the Elfouhaily spectrum inversion model. It has been shown that the effects of the fine structure of the sea surface on the EWs propagation in the introduced model are more apparent than those in the other two models.
Handbook of functional equations stability theory
2014-01-01
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
On stability of Random Riccati equations
Institute of Scientific and Technical Information of China (English)
王远; 郭雷
1999-01-01
Random Riccati equations (RRE) arise frequently in filtering, estimation and control, but their stability properties are rarely rigorously explored in the literature. First a suitable stochastic observability (or excitation) condition is introduced to guarantee both the L_r-and exponential stability of RRE. Then the stability of Kalman filter is analyzed with random coefficients, and the L_r boundedness of filtering errors is established.
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
Energy Technology Data Exchange (ETDEWEB)
Buerger, R.; Frid, H.; Karlsen, K.H.
2002-07-01
We consider a free boundary problem of a quasilinear strongly degenerate parabolic equation arising from a model of pressure filtration of flocculated suspensions. We provide definitions of generalized solutions of the free boundary problem in the framework of L2 divergence-measure fields. The formulation of boundary conditions is based on a Gauss-Green theorem for divergence-measure fields on bounded domains with Lipschitz deformable boundaries and avoids referring to traces of the solution. This allows to consider generalized solutions from a larger class than BV. Thus it is not necessary to derive the usual uniform estimates on spatial and time derivatives of the solutions of the corresponding regularized problem requires in the BV approach. We first prove existence and uniqueness of the solution of the regularized parabolic free boundary problem and then apply the vanishing viscosity method to prove existence of a generalized solution to the degenerate free boundary problem. (author)
Grinevich, P. G.; Santini, P. M.
2016-10-01
Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form v t = v x v y - ∂ x -1 ∂ y [ v y + v x 2], where the formal integral ∂ x -1 becomes the asymmetric integral - int_x^∞ {dx'} . We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f( X, Y) over a parabola in the plane ( X, Y) can be expressed in terms of the integrals of f( X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2014-01-01
Full Text Available The nonlocal boundary value problem for the parabolic differential equation v'(t+A(tv(t=f(t (0≤t≤T, v(0=v(λ+φ, 0<λ≤T in an arbitrary Banach space E with the dependent linear positive operator A(t is investigated. The well-posedness of this problem is established in Banach spaces C0β,γ(Eα-β of all Eα-β-valued continuous functions φ(t on [0,T] satisfying a Hölder condition with a weight (t+τγ. New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene
2011-10-01
The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.
A compactness lemma of Aubin type and its application to degenerate parabolic equations
Directory of Open Access Journals (Sweden)
Anvarbek Meirmanov
2014-10-01
Full Text Available Let $\\Omega\\subset \\mathbb{R}^{n}$ be a regular domain and $\\Phi(s\\in C_{\\rm loc}(\\mathbb{R}$ be a given function. If $\\mathfrak{M}\\subset L_2(0,T;W^1_2(\\Omega \\cap L_{\\infty}(\\Omega\\times (0,T$ is bounded and the set $\\{\\partial_t\\Phi(v|\\,v\\in \\mathfrak{M}\\}$ is bounded in $L_2(0,T;W^{-1}_2(\\Omega$, then there is a sequence $\\{v_k\\}\\in \\mathfrak{M}$ such that $v_k\\rightharpoonup v \\in L^2(0,T;W^1_2(\\Omega$, and $v_k\\to v$, $\\Phi(v_k\\to \\Phi(v$ a.e. in $\\Omega_T=\\Omega\\times (0,T$. This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solution.
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Peng, Qiujin; Qiao, Zhonghua; Sun, Shuyu
2017-01-01
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
Peng, Qiujin
2017-09-18
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
Analytic semigroups and optimal regularity in parabolic problems
Lunardi, Alessandra
2012-01-01
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p
Parabolized Navier-Stokes solutions of separation and trailing-edge flows
Brown, J. L.
1983-01-01
A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.
Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance
Directory of Open Access Journals (Sweden)
Pengcheng HAN
2017-12-01
Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.
Goswami, Deepjyoti
2013-05-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.
Directory of Open Access Journals (Sweden)
Yuan Wang
2015-01-01
Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.
Distributional Methods for a Class of Functional Equations and Their Stabilities
Institute of Scientific and Technical Information of China (English)
Jae Young CHUNG
2007-01-01
We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers-Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of functional equations to differential equations we find their solutions. Secondly,using approximate identities we prove the Hyers-Ulam stability of the equations.
Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene
Ang, Yee Sin; Ang, L. K.; Zubair, M.
Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.
Stability of Vector Functional Differential Equations: A Survey | Gil ...
African Journals Online (AJOL)
This paper is a survey of the recent results of the author on the stability of linear and nonlinear vector differential equations with delay. Explicit conditions for the exponential and absolute stabilities are derived. Moreover, solution estimates for the considered equations are established. They provide the bounds for the regions ...
Numerical Analysis of Partial Differential Equations
Lions, Jacques-Louis
2011-01-01
S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro
Stability and transition on swept wings
Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid
1993-01-01
This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.
An energy-stable convex splitting for the phase-field crystal equation
Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M.
2015-01-01
Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.
An energy-stable convex splitting for the phase-field crystal equation
Vignal, P.
2015-10-01
Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.
Weyl states and Fermi arcs in parabolic bands
Doria, Mauro M.; Perali, Andrea
2017-07-01
Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.
Energy Technology Data Exchange (ETDEWEB)
Addona, Davide, E-mail: d.addona@campus.unimib.it [Università degli Studi di Milano Bicocca, (MILANO BICOCCA) Dipartimento di Matematica (Italy)
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Stability results for the parameter identification inverse problem in cardiac electrophysiology
Lassoued, Jamila; Mahjoub, Moncef; Zemzemi, Néjib
2016-11-01
In this paper we prove a stability estimate of the parameter identification problem in cardiac electrophysiology modeling. We use the monodomain model which is a reaction diffusion parabolic equation where the reaction term is obtained by solving an ordinary differential equation (ODE). We are interested in proving the stability of the identification of the parameter {τ }{in}, which is the parameter that multiplies the cubic term in the reaction term. The proof of the result is based on a new Carleman-type estimate for both partial differential equation (PDE) and ODE problems. As a consequence of the stability result we prove the uniqueness of the parameter {τ }{in} giving some observations of both state variables at a given time t 0 in the whole domain and in the PDE variable in a non empty open subset w 0 of the domain.
Periodic feedback stabilization for linear periodic evolution equations
Wang, Gengsheng
2016-01-01
This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.
Razumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.
Wang, Qing; Zhu, Quanxin
2013-01-01
This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.
Razumikhin-type stability criteria for differential equations with delayed impulses
Directory of Open Access Journals (Sweden)
Qing Wang
2013-01-01
Full Text Available This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.
International Nuclear Information System (INIS)
Liang, Z.X.; Zhang, Z.D.; Liu, W.M.
2005-01-01
We present a family of exact solutions of the one-dimensional nonlinear Schroedinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background
Nobile, Fabio; Tempone, Raul
2009-01-01
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
Nobile, Fabio
2009-11-05
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
A comparative study of the parabolized Navier-Stokes code using various grid-generation techniques
Kaul, U. K.; Chaussee, D. S.
1985-01-01
The parabolized Navier-Stokes (PNS) equations are used to calculate the flow-field characteristics about the hypersonic research aircraft X-24C. A comparison of the results obtained using elliptic, hyperbolic and algebraic grid generators is presented. The outer bow shock is treated as a sharp discontinuity, and the discontinuities within the shock layer are captured. Surface pressures and heat-transfer results at angles of attack of 6 deg and 20 deg, obtained using the three grid generators, are compared. The PNS equations are marched downstream over the body in both Cartesian and cylindrical base coordinate systems, and the results are compared. A robust marching procedure is demonstrated by successfully using large marching-step sizes with the implicit shock fitting procedure. A correlation is found between the marching-step size, Reynolds number and the angle of attack at fixed values of smoothing and stability coefficients for the marching scheme.
Stability criteria for neutral delay differential-algebraic equations
Directory of Open Access Journals (Sweden)
FAN Ni
2013-10-01
Full Text Available The asymptotic stability of neutral delay differential-algebraic equations is studied in this paper.Two stability criteria described by evaluating a corresponding harmonic function on the boundary of a torus region are presented.
4th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDE’s
Ishige, Kazuhiro; Nitsch, Carlo; Salani, Paolo
2016-01-01
This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions. .
Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology
International Nuclear Information System (INIS)
Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.
2015-01-01
We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)
Lectures on partial differential equations
Petrovsky, I G
1992-01-01
Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.
A parabolic singular perturbation problem with an internal layer
Grasman, J.; Shih, S.D.
2004-01-01
A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner
Multiple solutions and stability of the steady transonic small-disturbance equation
Directory of Open Access Journals (Sweden)
Ya Liu
2017-09-01
Full Text Available Numerical solutions of the steady transonic small-disturbance (TSD potential equation are computed using the conservative Murman−Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.
CIME course on Control of Partial Differential Equations
Alabau-Boussouira, Fatiha; Glass, Olivier; Le Rousseau, Jérôme; Zuazua, Enrique
2012-01-01
The term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010. Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a fri...
Equations for studies of feedback stabilization
International Nuclear Information System (INIS)
Boozer, A.H.
1998-01-01
Important ideal magnetohydrodynamic (MHD) instabilities grow slowly when a conducting wall surrounds a toroidal plasma. Feedback stabilization of these instabilities may be required for tokamaks and other magnetic confinement concepts to achieve adequate plasma pressure and self-driven current for practical fusion power. Equations are derived for simulating feedback stabilization, which require the minimum information about an ideal plasma for an exact analysis. The equations are solved in the approximation of one unstable mode, one wall circuit, one feedback circuit, and one sensor circuit. The analysis based on a single unstable mode is shown to be mathematically equivalent to the standard analysis of feedback of the axisymmetric vertical instability of tokamaks. Unlike that analysis, the method presented here applies to multiple modes that are coupled by the wall and to arbitrary toroidal mode numbers. copyright 1998 American Institute of Physics
STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.
Parabolic equations in biology growth, reaction, movement and diffusion
Perthame, Benoît
2015-01-01
This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
Stability of Functional Differential Equations
Lemm, Jeffrey M
1986-01-01
This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.
Stability analysis of impulsive functional differential equations
Stamova, Ivanka
2009-01-01
This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
Classification of solutions of the forced periodic nonlinear Schrödinger equation
International Nuclear Information System (INIS)
Shlizerman, Eli; Rom-Kedar, Vered
2010-01-01
The integrable structure of the periodic one-dimensional nonlinear Schrödinger equation is utilized to gain insights regarding the perturbed near-integrable dynamics. After recalling the known results regarding the structure and stability of the unperturbed standing and travelling waves solutions, two new stability results are presented: (1) it is shown numerically that the stability of the 'outer' (cnoidal) unperturbed solutions depends on their power (the L 2 norm): they undergo a finite sequence of Hamiltonian–Hopf bifurcations as their power is increased. (2) another proof that the 'inner'(dnoidal) unperturbed solutions with multiplicity ≥2 are linearly unstable is presented. Then, to study the global phase-space structure, an energy–momentum bifurcation diagram (PDE-EMBD) that consists of projections of the unperturbed standing and travelling waves solutions to the energy–power plane and includes information regarding their linear stability is constructed. The PDE-EMBD helps us to classify the behaviour near the plane wave solutions: the diagram demonstrates that below some known threshold amplitude, precisely three distinct observable chaotic mechanisms arise: homoclinic chaos, homoclinic resonance and, for some parameter values, parabolic-resonance. Moreover, it appears that the dynamics of the PDE chaotic solutions that exhibit the parabolic-resonance instability may be qualitatively predicted: these exhibit the same dynamics as a recently derived parabolic-resonance low-dimensional normal form. In particular, these solutions undergo adiabatic chaos: they follow the level lines of an adiabatic invariant till they reach the separatrix set at which the adiabatic invariant undergoes essentially random jumps
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
The stability of quadratic-reciprocal functional equation
Song, Aimin; Song, Minwei
2018-04-01
A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.
Directory of Open Access Journals (Sweden)
Wansheng Wang
2010-01-01
Full Text Available This paper is devoted to generalize Halanay's inequality which plays an important rule in study of stability of differential equations. By applying the generalized Halanay inequality, the stability results of nonlinear neutral functional differential equations (NFDEs and nonlinear neutral delay integrodifferential equations (NDIDEs are obtained.
International Nuclear Information System (INIS)
Sydoriak, S.G.
1976-01-01
Although criteria for cryostatic stability of superconducting magnets cooled by pool boiling of liquid helium have been widely discussed the same cannot be said for magnets cooled by natural convection or forced flow boiling in channels. Boiling in narrow channels is shown to be qualitatively superior to pool boiling because the recovery heat flux equals the breakaway flux for narrow channels, whereas the two are markedly different in pool boiling. A second advantage of channel boiling is that it is well understood and calculable; pool peak nucleate boiling heat flux has been adequately measured only for boiling from the top of an immersed heated body. Peak boiling from the bottom is much less and (probably) depends strongly on the extent of the bottom surface. Equations are presented by which one can calculate the critical boiling heat flux for parallel wall vertical channels subject to either natural convection or forced flow boiling, with one or both walls heated. The one-heated-wall forced flow equation is discussed with regard to design of a spiral wound solenoid (pancake magnet) having a slippery insulating tape between the windings
International Nuclear Information System (INIS)
Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju
2010-01-01
Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.
Stability of numerical method for semi-linear stochastic pantograph differential equations
Directory of Open Access Journals (Sweden)
Yu Zhang
2016-01-01
Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.
An Alternative Stability Equation For Rock Armoured Rubble Mound Breakwaters
DEFF Research Database (Denmark)
Hald, Tue; Burcharth, H. F.
2000-01-01
Rubble mound breakwaters are by far the most common type of breakwater, the importance of which is clearly reflected in the vast amount of published research. Especially, the hydraulic stability of the main armour layer has been studied in order to obtain reliable design equations. It should...... equations and model test results still exists. When turning toward prototype the situation is even worse. With the objective to reduce some of the variability an alternative approach based on force considerations is presented. The paper will describe a new stability equation for rock armoured slopes derived...
Stability of the Exponential Functional Equation in Riesz Algebras
Directory of Open Access Journals (Sweden)
Bogdan Batko
2014-01-01
Full Text Available We deal with the stability of the exponential Cauchy functional equation F(x+y=F(xF(y in the class of functions F:G→L mapping a group (G, + into a Riesz algebra L. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.
Convergence of shock waves between conical and parabolic boundaries
Energy Technology Data Exchange (ETDEWEB)
Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)
2016-07-15
Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.
On the stability of some systems of exponential difference equations
Directory of Open Access Journals (Sweden)
N. Psarros
2018-01-01
Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.
Linear stability analysis of supersonic axisymmetric jets
Directory of Open Access Journals (Sweden)
Zhenhua Wan
2014-01-01
Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.
Institute of Scientific and Technical Information of China (English)
LI Shoufu
2005-01-01
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
International Nuclear Information System (INIS)
Zhang Weiguo; Dong Chunyan; Fan Engui
2006-01-01
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
Computation of the stability derivatives via CFD and the sensitivity equations
Lei, Guo-Dong; Ren, Yu-Xin
2011-04-01
The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.
Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
Directory of Open Access Journals (Sweden)
Shaikhet Leonid
2008-01-01
Full Text Available It is supposed that the fractional difference equation , has an equilibrium point and is exposed to additive stochastic perturbations type of that are directly proportional to the deviation of the system state from the equilibrium point . It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.
Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.
2016-05-01
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.
Some Remarks on Stability of Generalized Equations
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Henrion, R.; Kruger, A.Y.
2013-01-01
Roč. 159, č. 3 (2013), s. 681-697 ISSN 0022-3239 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Parameterized generalized equation * Regular and limiting coderivative * Constant rank CQ * Mathematical program with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.406, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-some remarks on stability of generalized equations.pdf
Time-optimal control of infinite order distributed parabolic systems involving time lags
Directory of Open Access Journals (Sweden)
G.M. Bahaa
2014-06-01
Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.
Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
Elmetennani, Shahrazed
2016-11-09
This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.
a numerical analysis of the energy behavior of a parabolic trough ...
African Journals Online (AJOL)
M. Ghodbane
A computer program was developed in Matlab after discretization equations. For the calculation of energy balance was asks these assumptions: The heat transfer fluid is incompressible;. The parabolic shape is symmetrical;. The ambient temperature around the concentrator is uniform;. The effect of the shadow of ...
Cyclotron heating rate in a parabolic mirror
International Nuclear Information System (INIS)
Smith, P.K.
1984-01-01
Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)
Stability with respect to initial time difference for generalized delay differential equations
Directory of Open Access Journals (Sweden)
Ravi Agarwal
2015-02-01
Full Text Available Stability with initial data difference for nonlinear delay differential equations is introduced. This type of stability generalizes the known concept of stability in the literature. It gives us the opportunity to compare the behavior of two nonzero solutions when both initial values and initial intervals are different. Several sufficient conditions for stability and for asymptotic stability with initial time difference are obtained. Lyapunov functions as well as comparison results for scalar ordinary differential equations are employed. Several examples are given to illustrate the theory.
Exponential p-stability of impulsive stochastic differential equations with delays
International Nuclear Information System (INIS)
Yang Zhiguo; Xu Daoyi; Xiang Li
2006-01-01
In this Letter, we establish a method to study the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. By establishing an L-operator inequality and using the properties of M-cone and stochastic analysis technique, we obtain some new conditions ensuring the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. Two illustrative examples have been provided to show the effectiveness of our results
Stabilization of the hypersonic boundary layer by finite-amplitude streaks
Ren, Jie; Fu, Song; Hanifi, Ardeshir
2016-02-01
Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.
Engineering bright solitons to enhance the stability of two-component Bose-Einstein condensates
Radha, R.; Vinayagam, P. S.; Sudharsan, J. B.; Liu, Wu-Ming; Malomed, Boris A.
2015-12-01
We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.
Energy Technology Data Exchange (ETDEWEB)
Johansson, Lisa
2003-07-01
Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.
Radu, F.A.; Pop, I.S.; Knabner, P.; Bermúdez de Castro, A.; Gómez, D.; Quintela, P.; Salgado, P.
2006-01-01
In this paper we discuss some iterative approaches for solving the nonlinear algebraic systems encountered as fully discrete counterparts of some degenerate (fast diffusion) parabolic problems. After regularization, we combine a mixed finite element discretization with the Euler implicit scheme. For
Orbital stability of Gausson solutions to logarithmic Schrodinger equations
Directory of Open Access Journals (Sweden)
Alex H. Ardila
2016-12-01
Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.
On Robust Stability of Systems of Differential-Algebraic Equations
Directory of Open Access Journals (Sweden)
A. Shcheglova
2016-06-01
The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.
A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability
International Nuclear Information System (INIS)
Risteski, Ice B.
2008-01-01
In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices
Decay Rates of Interactive Hyperbolic-Parabolic PDE Models with Thermal Effects on the Interface
International Nuclear Information System (INIS)
Lasiecka, I.; Lebiedzik, C.
2000-01-01
We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0 -a flat surface of the boundary Ω. Thus, the coupling between the wave and the plate takes place on the interface Γ 0 . The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the 'minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0 , suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0 ; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations
International Nuclear Information System (INIS)
Aboanber, A E
2006-01-01
A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback
Shock wave convergence in water with parabolic wall boundaries
International Nuclear Information System (INIS)
Yanuka, D.; Shafer, D.; Krasik, Ya.
2015-01-01
The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger
Lyapunov functionals and stability of stochastic difference equations
Shaikhet, Leonid
2011-01-01
This book offers a general method of Lyapunov functional construction which lets researchers analyze the degree to which the stability properties of differential equations are preserved in their difference analogues. Includes examples from physical systems.
Maintaining the stability of nonlinear differential equations by the enhancement of HPM
International Nuclear Information System (INIS)
Hosein Nia, S.H.; Ranjbar, A.N.; Ganji, D.D.; Soltani, H.; Ghasemi, J.
2008-01-01
Homotopy perturbation method is an effective method to find a solution of a nonlinear differential equation. In this method, a nonlinear complex differential equation is transformed to a series of linear and nonlinear parts, almost simpler differential equations. These sets of equations are then solved iteratively. Finally, a linear series of the solutions completes the answer if the convergence is maintained. In this Letter, the need for stability verification is shown through some examples. Consequently, HPM is enhanced by a preliminary assumption. The idea is to keep the inherent stability of nonlinear dynamic, even the selected linear part is not
Stability and bifurcation analysis of a generalized scalar delay differential equation.
Bhalekar, Sachin
2016-08-01
This paper deals with the stability and bifurcation analysis of a general form of equation D(α)x(t)=g(x(t),x(t-τ)) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.
Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery
Girardi, James D.; Davis, Dan M.
2010-02-01
Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Cotté, B.
2018-05-01
This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.
On the wall-normal velocity of the compressible boundary-layer equations
Pruett, C. David
1991-01-01
Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.
Directory of Open Access Journals (Sweden)
Coşkun Yakar
2010-01-01
Full Text Available The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.
On Robust Stability of Differential-Algebraic Equations with Structured Uncertainty
Directory of Open Access Journals (Sweden)
A. Kononov
2018-03-01
Full Text Available We consider a linear time-invariant system of differential-algebraic equations (DAE, which can be written as a system of ordinary differential equations with non-invertible coefficients matrices. An important characteristic of DAE is the unsolvability index, which reflects the complexity of the internal structure of the system. The question of the asymptotic stability of DAE containing the uncertainty given by the matrix norm is investigated. We consider a perturbation in the structured uncertainty case. It is assumed that the initial nominal system is asymptotically stable. For the analysis, the original equation is reduced to the structural form, in which the differential and algebraic subsystems are separated. This structural form is equivalent to the input system in the sense of coincidence of sets of solutions, and the operator transforming the DAE into the structural form possesses the inverse operator. The conversion to structural form does not use a change of variables. Regularity of matrix pencil of the source equation is the necessary and sufficient condition of structural form existence. Sufficient conditions have been obtained that perturbations do not break the internal structure of the nominal system. Under these conditions robust stability of the DAE with structured uncertainty is investigated. Estimates for the stability radius of the perturbed DAE system are obtained. The text of the article is from the simpler case, in which the perturbation is present only for an unknown function, to a more complex one, under which the perturbation is also present in the derivative of the unknown function. We used values of the real and the complex stability radii of explicit ordinary differential equations for obtaining the results. We consider the example illustrating the obtained results.
Stability, bifurcation and a new chaos in the logistic differential equation with delay
International Nuclear Information System (INIS)
Jiang Minghui; Shen Yi; Jian Jigui; Liao Xiaoxin
2006-01-01
This Letter is concerned with bifurcation and chaos in the logistic delay differential equation with a parameter r. The linear stability of the logistic equation is investigated by analyzing the associated characteristic transcendental equation. Based on the normal form approach and the center manifold theory, the formula for determining the direction of Hopf bifurcation and the stability of bifurcation periodic solution in the first bifurcation values is obtained. By theoretical analysis and numerical simulation, we found a new chaos in the logistic delay differential equation
Design and Realisation of a Parabolic Solar Cooker
International Nuclear Information System (INIS)
Ouannene, M; Chaouachi, B; Gabsi, S
2009-01-01
The sun s energy is really powerful. Solar energy is renewable and it s free. We can use it to make electricity, to heat buildings and to cook. The field of cooking consumes many fossil fuels such as gas and wood. Million people cannot find enough gas and/or wood to cook, so using solar cookers is a good idea. During this work, we designed, built and studied a parabolic solar cooker. The characteristic equations and the experimental results are given
Laser propagation and compton scattering in parabolic plasma channel
Dongguo, L; Yokoya, K; Hirose, T
2003-01-01
A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals
Bhattacharya, Sayak; John, Sajeev
2018-04-01
We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.
Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains
International Nuclear Information System (INIS)
Shishkov, A E; Shchelkov, A G
1999-01-01
A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain
Gauge stability of 3+1 formulations of general relativity
International Nuclear Information System (INIS)
Khokhlov, A M; Novikov, I D
2002-01-01
We present a general approach to the analysis of gauge stability of 3+1 formulations of general relativity (GR). Evolution of coordinate perturbations and the corresponding perturbations of lapse and shift can be described by a system of eight quasi-linear partial differential equations. Stability with respect to gauge perturbations depends on the choice of gauge and a background metric, but it does not depend on a particular form of a 3+1 system if its constrained solutions are equivalent to those of the Einstein equations. Stability of a number of known gauges is investigated in the limit of short-wavelength perturbations. All fixed gauges except a synchronous gauge are found to be ill posed. A maximal slicing gauge and its parabolic extension are shown to be ill posed as well. A necessary condition is derived for well-posedness of metric-dependent algebraic gauges. Well-posed metric-dependent gauges are found, however, to be generally unstable. Both instability and ill-posedness are associated with the existence of growing modes of coordinate perturbations related to perturbations of physical accelerations of reference frames
Rohit Tripathi; Sumit Tiwari; G. N. Tiwari
2016-01-01
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...
Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control
International Nuclear Information System (INIS)
Masiero, Federica
2005-01-01
Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations
Theoretical Study of the Compound Parabolic Trough Solar Collector
Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen
2012-01-01
Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations
Abdulle, Assyr; Vilmart, Gilles; Zygalakis, Konstantinos C.
2013-01-01
We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer
TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations
Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio
2009-12-01
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.
Analytic method for solitary solutions of some partial differential equations
International Nuclear Information System (INIS)
Ugurlu, Yavuz; Kaya, Dogan
2007-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation
Exponential stability in a scalar functional differential equation
Directory of Open Access Journals (Sweden)
Pituk Mihály
2006-01-01
Full Text Available We establish a criterion for the global exponential stability of the zero solution of the scalar retarded functional differential equation whose linear part generates a monotone semiflow on the phase space with respect to the exponential ordering, and the nonlinearity has at most linear growth.
DEFF Research Database (Denmark)
Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao
2017-01-01
We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...
Annealed asymptotics for the parabolic Anderson model with a moving catalyst
Gärtner, J.; Heydenreich, M.O.
2006-01-01
This paper deals with the solution u to the parabolic Anderson equation ¿u/¿t=¿¿u+¿u on the lattice . We consider the case where the potential ¿ is time-dependent and has the form ¿(t,x)=d0(x-Yt) with Yt being a simple random walk with jump rate 2d. The solution u may be interpreted as the
Tracking local control of a parabolic trough collector
International Nuclear Information System (INIS)
Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.
1992-01-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
Lyapunov stability and its application to systems of ordinary differential equations
Kennedy, E. W.
1979-01-01
An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.
International Nuclear Information System (INIS)
Besnier, G.
1979-01-01
The longitudinal space-charge force is assumed to vary like the derivative of the longitudinal beam density. Solutions of the linearized Vlasov equation are then given as an expansion of normal modes for the longitudinal phase-space density of a bunched beam. For a given bunch intensity, the method allows calculation of the required synchrotron frequency spread inside a parabolic bunch, in order to stabilize the beam against coherent oscillations by Landau-damping. (Auth.)
Stability analysis of a class of fractional delay differential equations
Indian Academy of Sciences (India)
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form D y ( t ) = a f ( y ( t − ) ) − by ( t ) , where D is a Caputo fractional derivative of order 0 < ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic ...
Stability of a laser cavity with non-parabolic phase transformation elements
CSIR Research Space (South Africa)
Litvin, IA
2013-05-01
Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...
Theoretical Study of the Compound Parabolic Trough Solar Collector
Directory of Open Access Journals (Sweden)
Dr. Subhi S. Mahammed
2012-06-01
Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Analytic method for solitary solutions of some partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr
2007-10-22
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.
The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-04-01
Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves
Chang, Yu-Hsuan; Lin, De-Hone
2014-01-01
Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.
MHD stability properties of a system of reduced toroidal MHD equations
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1993-01-01
A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system
Kavallaris, Nikos I.; Suzuki, Takashi
2017-05-01
The purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor’s response to the activator’s growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a diffusion driven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns.
Hyers-Ulam stability for second-order linear differential equations with boundary conditions
Directory of Open Access Journals (Sweden)
Pasc Gavruta
2011-06-01
Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.
A note on Chudnovskyʼs Fuchsian equations
Brezhnev, Yurii V.
We show that four exceptional Fuchsian equations, each determined by the four parabolic singularities, known as the Chudnovsky equations, are transformed into each other by algebraic transformations. We describe equivalence of these equations and their counterparts on tori. The latters are the Fuchsian equations on elliptic curves and their equivalence is characterized by transcendental transformations which are represented explicitly in terms of elliptic and theta functions.
Stabilizing local boundary conditions for two-dimensional shallow water equations
Dia, Ben Mansour
2018-03-27
In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.
Stability of time-dependent particle-like solutions of some wave equations
International Nuclear Information System (INIS)
Voronov, N.A.
1978-01-01
The proof of the nonstability of the one-dimensional periodical localized solutions of the equation with a spontaneously broken symmetry is given. The stability of the one-dimensional oscillating solutions of the sine-Gordon equation was also considered with regard to such perturbations. As it was expected these solutions proved to be stable
An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion
Messelmi, Farid
2017-12-01
We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.
Remarks on the stability of some quadratic functional equations
Directory of Open Access Journals (Sweden)
Zygfryd Kominek
2008-01-01
Full Text Available Stability problems concerning the functional equations of the form \\[f(2x+y=4f(x+f(y+f(x+y-f(x-y,\\tag{1}\\] and \\[f(2x+y+f(2x-y=8f(x+2f(y\\tag{2}\\] are investigated. We prove that if the norm of the difference between the LHS and the RHS of one of equations \\((1\\ or \\((2\\, calculated for a function \\(g\\ is say, dominated by a function \\(\\varphi\\ in two variables having some standard properties then there exists a unique solution \\(f\\ of this equation and the norm of the difference between \\(g\\ and \\(f\\ is controlled by a function depending on \\(\\varphi\\.
Barker, Blake; Jung, Soyeun; Zumbrun, Kevin
2018-03-01
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Fragnelli, Genni
2016-01-01
The authors consider a parabolic problem with degeneracy in the interior of the spatial domain, and they focus on observability results through Carleman estimates for the associated adjoint problem. The novelties of the present paper are two. First, the coefficient of the leading operator only belongs to a Sobolev space. Second, the degeneracy point is allowed to lie even in the interior of the control region, so that no previous result can be adapted to this situation; however, different cases can be handled, and new controllability results are established as a consequence.
Weak self-adjoint differential equations
International Nuclear Information System (INIS)
Gandarias, M L
2011-01-01
The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006 J. Math. Anal. Appl. 318 742-57; 2007 Arch. ALGA 4 55-60). In Ibragimov (2007 J. Math. Anal. Appl. 333 311-28), a general theorem on conservation laws was proved. In this paper, we generalize the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. We find a class of weak self-adjoint quasi-linear parabolic equations. The property of a differential equation to be weak self-adjoint is important for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)
Discrete- and finite-bandwidth-frequency distributions in nonlinear stability applications
Kuehl, Joseph J.
2017-02-01
A new "wave packet" formulation of the parabolized stability equations method is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening, and results in disturbance representation more consistent with the experiment than traditional formulations. A Mach 6 flared-cone example is presented.
Stability analysis of internal ideal modes in low-shear tokamaks
International Nuclear Information System (INIS)
Wahlberg, C.; Graves, J. P.
2007-01-01
The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region
Stability of a simple Levi–Civitá functional equation on non-unital ...
Indian Academy of Sciences (India)
Ulam stability; Levi–Civitá equation; non-unital semigroup; 2-divisible group. 2010 Mathematics Subject Classification. Primary: 39B82. 1. Introduction ... for all x ∈ G? These kind of questions form the material for the stability theory of func-.
One-way spatial integration of hyperbolic equations
Towne, Aaron; Colonius, Tim
2015-11-01
In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.
Engineering bright solitons to enhance the stability of two-component Bose–Einstein condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.; Sudharsan, J.B.; Liu, Wu-Ming; Malomed, Boris A.
2015-01-01
We consider a system of coupled Gross–Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose–Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons. - Highlights: • We formulate a versatile mechanism to enhance the lifetime of vectorial condensates employing Feshbach Resonance. • Vectorial condensates in a transient harmonic trap are more long lived compared to their counterpart in a time independent harmonic trap. • Corroborate the exact analytical results with numerical simulations. • Addition of random noise does not impact the stability of vector BECs.
Engineering bright solitons to enhance the stability of two-component Bose–Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Radha, R., E-mail: radha_ramaswamy@yahoo.com [Centre for Nonlinear Science, PG and Research Dept. of Physics, Govt. College for Women (Autonomous), Kumbakonam 612001 (India); Vinayagam, P.S.; Sudharsan, J.B. [Centre for Nonlinear Science, PG and Research Dept. of Physics, Govt. College for Women (Autonomous), Kumbakonam 612001 (India); Liu, Wu-Ming, E-mail: wmliu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing-100190 (China); Malomed, Boris A., E-mail: malomed@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)
2015-12-04
We consider a system of coupled Gross–Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose–Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons. - Highlights: • We formulate a versatile mechanism to enhance the lifetime of vectorial condensates employing Feshbach Resonance. • Vectorial condensates in a transient harmonic trap are more long lived compared to their counterpart in a time independent harmonic trap. • Corroborate the exact analytical results with numerical simulations. • Addition of random noise does not impact the stability of vector BECs.
Stability of negative solitary waves for an integrable modified Camassa-Holm equation
International Nuclear Information System (INIS)
Yin Jiuli; Tian Lixin; Fan Xinghua
2010-01-01
In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.
Botta, E.F.F.; Dijkstra, D.; Veldman, A.E.P.
1972-01-01
The numerical method of solution for the semi-infinite flat plate has been extended to the case of the parabolic cylinder. Results are presented for the skin friction, the friction drag, the pressure and the pressure drag. The drag coefficients have been checked by means of an application of the
Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
A new design equation for drained stability of conical slopes in cohesive-frictional soils
Directory of Open Access Journals (Sweden)
Boonchai Ukritchon
2018-04-01
Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils
The Local Stability of Solutions for a Nonlinear Equation
Directory of Open Access Journals (Sweden)
Haibo Yan
2014-01-01
Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.
A global numerical solution of the radial Schroedinger equation by second-order perturbation theory
International Nuclear Information System (INIS)
Adam, G.
1979-01-01
A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations
Institute of Scientific and Technical Information of China (English)
2007-01-01
The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.
International Nuclear Information System (INIS)
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-01-01
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method
Energy Technology Data Exchange (ETDEWEB)
Bakhos, Tania, E-mail: taniab@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University (United States); Saibaba, Arvind K. [Department of Electrical and Computer Engineering, Tufts University (United States); Kitanidis, Peter K. [Institute for Computational and Mathematical Engineering, Stanford University (United States); Department of Civil and Environmental Engineering, Stanford University (United States)
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1996-08-01
The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)
Stabilizing local boundary conditions for two-dimensional shallow water equations
Dia, Ben Mansour; Oppelstrup, Jesper
2018-01-01
In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary
Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays
Czech Academy of Sciences Publication Activity Database
Rezunenko, Oleksandr
2012-01-01
Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf
Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid
2017-01-01
In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.
Three-dimensional boundary layer stability and transition
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Test results, Industrial Solar Technology parabolic trough solar collector
Energy Technology Data Exchange (ETDEWEB)
Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)
1995-11-01
Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.
Extrapolated stabilized explicit Runge-Kutta methods
Martín-Vaquero, J.; Kleefeld, B.
2016-12-01
Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.
Analysis of stability and Hopf bifurcation for a delayed logistic equation
International Nuclear Information System (INIS)
Sun Chengjun; Han Maoan; Lin Yiping
2007-01-01
The dynamics of a logistic equation with discrete delay are investigated, together with the local and global stability of the equilibria. In particular, the conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. Explicit algorithm for determining the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are derived by using the theory of normal form and center manifold [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.]. Global existence of periodic solutions is also established by using a global Hopf bifurcation result of Wu [Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 350:1998;4799-38.
STABILITY OF A FUNCTIONAL EQUATION IN COMPLEX BANACH SPACES
Directory of Open Access Journals (Sweden)
PRATAP MONDAL
2016-12-01
Full Text Available Using fixed point technique, in the present paper , we wish to examine gen- eralization of the Hyers-Ulam-Rassias stability theorem for the functional equations f ( 2 x + i y + f ( x + 2 i y = 4 f ( x + i y + f ( x + f ( y (0.1 and f ( 2 x + i y .
Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces
Directory of Open Access Journals (Sweden)
Yongjin Li
2013-08-01
Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.
Stability properties of solitary waves for fractional KdV and BBM equations
Angulo Pava, Jaime
2018-03-01
This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.
International Nuclear Information System (INIS)
Scannapieco, A.J.; Cranfill, C.W.
1978-11-01
There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code
Energy Technology Data Exchange (ETDEWEB)
Scannapieco, A.J.; Cranfill, C.W.
1978-11-01
There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code.
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.
A detailed description is presented of calculating the nonstationary electron distribution function in a weakly ionized collision-dominated plasma from the Boltzmann kinetic equation respecting the effects of the time-dependent electric field, collision processes and the electron formation and loss. The finite difference approximation was used for numerical solution. Using the Crank-Nicolson method and parabolic interpolation between the grid points the Boltzmann equation was transformed to a system of linear equations which was then solved by iterations at a preset accuracy. Using the calculated distribution function values, the macroscopic plasma parameters were determined and the balance of electron density and energy checked in each time step. The mathematical procedure is illustrated using a neon plasma perturbed by a rectangular electric pulse. The time development shown of the distribution function at moments when the pulse was switched on and off demonstrates the great stability of the numerical solution. (J.U.)
A Pseudodifferential Approach to Distributed Parameter Systems and Stabilization
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The recent developments in microlocal analysis and pdeudodifferential boundary calculus are well suited tools in the investigation of a large number of problems occurring in control theory for partial differential equations. We explain some of the basic ideas of a pseudodifferential model....... Differential Equations47 (1983); Appl. Math. Optim.10 (1983)). So far, this work seems to have simplified or unified many of the previous works cited above. We hope that in the future it will even provide stronger and newer results in the boundary control of distributed parameter systems....... (SIAM J. Control Optim.29 (1991)). The pseudo-differential techniques apply easily in the proof of existence of a feedback semigroup for the parabolic and hyperbolic evolution problems, and we reprove in this new setting some of the stabilization results of Lasiecka and Triggiani (see, e.g., J...
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul
2016-01-01
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2015-01-07
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2016-01-06
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoî t
2011-01-01
simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Institute of Scientific and Technical Information of China (English)
张铁; 李长军
2001-01-01
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril
2011-01-01
We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...
Fixed Point Methods in the Stability of the Cauchy Functional Equations
Directory of Open Access Journals (Sweden)
Z. Dehvari
2013-03-01
Full Text Available By using the fixed point methods, we prove some generalized Hyers-Ulam stability of homomorphisms for Cauchy and CauchyJensen functional equations on the product algebras and on the triple systems.
International Nuclear Information System (INIS)
Pierantozzi, T.; Vazquez, L.
2005-01-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case
Nonlinear streak computation using boundary region equations
Energy Technology Data Exchange (ETDEWEB)
Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)
2012-08-01
The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)
Numerical computation of the linear stability of the diffusion model for crystal growth simulation
Energy Technology Data Exchange (ETDEWEB)
Yang, C.; Sorensen, D.C. [Rice Univ., Houston, TX (United States); Meiron, D.I.; Wedeman, B. [California Institute of Technology, Pasadena, CA (United States)
1996-12-31
We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.
Chadha, Alka; Bora, Swaroop Nandan
2017-11-01
This paper studies the existence, uniqueness, and exponential stability in mean square for the mild solution of neutral second order stochastic partial differential equations with infinite delay and Poisson jumps. By utilizing the Banach fixed point theorem, first the existence and uniqueness of the mild solution of neutral second order stochastic differential equations is established. Then, the mean square exponential stability for the mild solution of the stochastic system with Poisson jumps is obtained with the help of an established integral inequality.
Effect of nose bluntness on boundary layer stability and transition
Malik, M. R.; Spall, R. E.; Chang, C.-L.
1990-01-01
The effect of nose bluntness on boundary layer instability is studied theoretically for a Mach 8 flow past a 7 degree semivertex cone. The basic flow is computed by solving the parabolized Navier-Stokes equations. Linear stability analysis of the basic flow reveals that, with small amount of bluntness, the critical Reynolds number for the onset of instability increases by an order of magnitude compared to the sharp cone value. The computed second mode frequencies are also in reasonable agreement with the experimental results. The results are used to explain the effect of unit Reynolds number on transition present in the quiet aeroballistic range data.
Solar parabolic dish technology evaluation report
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region
International Nuclear Information System (INIS)
Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa
2014-01-01
Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%
International Nuclear Information System (INIS)
Grigoriu, Mircea; Samorodnitsky, Gennady
2004-01-01
Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method
From ordinary to partial differential equations
Esposito, Giampiero
2017-01-01
This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.
Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato
2011-01-01
A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.
Ulam-Hyers Stability of Trigonometric Functional Equation with Involution
Directory of Open Access Journals (Sweden)
Jaeyoung Chung
2015-01-01
Full Text Available Let S and G be a commutative semigroup and a commutative group, respectively, C and R+ the sets of complex numbers and nonnegative real numbers, respectively, and σ:S→S or σ:G→G an involution. In this paper, we first investigate general solutions of the functional equation f(x+σy=f(xg(y-g(xf(y for all x,y∈S, where f,g:S→C. We then prove the Hyers-Ulam stability of the functional equation; that is, we study the functional inequality |f(x+σy-f(xg(y+g(xf(y|≤ψ(y for all x,y∈G, where f,g:G→C and ψ:G→R+.
Parabolic features and the erosion rate on Venus
Strom, Robert G.
1993-01-01
The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.
Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source
Directory of Open Access Journals (Sweden)
Yulan Wang
2014-01-01
Full Text Available This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a p-Laplacian equation with a localized reaction. We obtain the Fujita exponent qc of the equation.
Elliptic equation for random walks. Application to transport in microporous media
DEFF Research Database (Denmark)
Shapiro, Alexander
2007-01-01
We consider a process of random walks with arbitrary residence time distribution. We show that in many cases this process may not be described by the classical (Fick) parabolic diffusion equation, but an elliptic equation. An additional term proportional to the second time derivative takes into a...
Sweilam, N. H.; Abou Hasan, M. M.
2017-05-01
In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
Estimating amplitude ratios in boundary layer stability theory: a comparison between two approaches
Govindarajan, Rama; Narasimha, R.
2001-07-01
We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R[minus sign]1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R[minus sign]2/3) and O(R[minus sign]1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.
Thermal behaviour of solar air heater with compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, Rene
2008-01-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%
Complex energy eigenvalues of a linear potential with a parabolical barrier
International Nuclear Information System (INIS)
Malherbe, J.B.
1978-01-01
The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af
International Nuclear Information System (INIS)
Selvakumar, P.; Somasundaram, P.; Thangavel, P.
2014-01-01
Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m 2 . • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
Manufacturing parabolic mirrors
CERN PhotoLab
1975-01-01
The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)
Partial differential equations in action complements and exercises
Salsa, Sandro
2015-01-01
This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.
A New Algorithm for System of Integral Equations
Directory of Open Access Journals (Sweden)
Abdujabar Rasulov
2014-01-01
Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.
Photovoltaic applications of Compound Parabolic Concentrator (CPC)
Winston, R.
1975-01-01
The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.
Use of fast Fourier transforms for solving partial differential equations in physics
Le Bail, R C
1972-01-01
The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Stabilization of the Wave Equation with Boundary Time-Varying Delay
Directory of Open Access Journals (Sweden)
Hao Li
2014-01-01
Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.
Stability of Jensen functional equation in intuitionistic fuzzy normed space
International Nuclear Information System (INIS)
Mohiuddine, S.A.
2009-01-01
In this paper, we determine some stability results concerning the Jensen functional equation 2f((x+y)/2)=f(x)+f(y) in intuitionistic fuzzy normed spaces (IFNS). We define the intuitionistic fuzzy continuity of the Jensen mappings and prove that the existence of a solution for any approximately Jensen mapping implies the completeness of IFNS.
Sensitivity of boundary-layer stability to base-state distortions at high Mach numbers
Park, Junho; Zaki, Tamer
2017-11-01
The stability diagram of high-speed boundary layers has been established by evaluating the linear instability modes of the similarity profile, over wide ranges of Reynolds and Mach numbers. In real flows, however, the base state can deviate from the similarity profile. Both the base velocity and temperature can be distorted, for example due to roughness and thermal wall treatments. We review the stability problem of high-speed boundary layer, and derive a new formulation of the sensitivity to base-state distortion using forward and adjoint parabolized stability equations. The new formulation provides qualitative and quantitative interpretations on change in growth rate due to modifications of mean-flow and mean-temperature in heated high-speed boundary layers, and establishes the foundation for future control strategies. This work has been funded by the Air Force Office of Scientific Research (AFOSR) Grant: FA9550-16-1-0103.
Stability of a nonlinear second order equation under parametric bounded noise excitation
International Nuclear Information System (INIS)
Wiebe, Richard; Xie, Wei-Chau
2016-01-01
The motivation for the following work is a structural column under dynamic axial loads with both deterministic (harmonic transmitted forces from the surrounding structure) and random (wind and/or earthquake) loading components. The bounded noise used herein is a sinusoid with an argument composed of a random (Wiener) process deviation about a mean frequency. By this approach, a noise parameter may be used to investigate the behavior through the spectrum from simple harmonic forcing, to a bounded random process with very little harmonic content. The stability of both the trivial and non-trivial stationary solutions of an axially-loaded column (which is modeled as a second order nonlinear equation) under parametric bounded noise excitation is investigated by use of Lyapunov exponents. Specifically the effect of noise magnitude, amplitude of the forcing, and damping on stability of a column is investigated. First order averaging is employed to obtain analytical approximations of the Lyapunov exponents of the trivial solution. For the non-trivial stationary solution however, the Lyapunov exponents are obtained via Monte Carlo simulation as the stability equations become analytically intractable. (paper)
Directory of Open Access Journals (Sweden)
Kuo-Shou Chiu
2011-11-01
Full Text Available We examine scalar differential equations with a general piecewise constant argument, in short DEPCAG, that is, the argument is a general step function. Criteria of existence of the oscillatory and nonoscillatory solutions of such equations are proposed. Necessary and sufficient conditions for stability of the zero solution are obtained. Appropriate examples are given to show our results.
Institute of Scientific and Technical Information of China (English)
Wan-sheng WANG; Shou-fu LI; Run-sheng YANG
2012-01-01
A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
Stability of the equation of homomorphism and completeness of the underlying space
Directory of Open Access Journals (Sweden)
Zenon Moszner
2008-01-01
Full Text Available We prove that all assumptions of a Theorem of Forti and Schwaiger (cf. [G. L. Forti, J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (1989, 215–220] on the coherence of stability of the equation of homomorphism with the completeness of the space of values of all these homomorphisms, are essential. We give some generalizations of this theorem and certain examples of applications.
Thin-Layer Solutions of the Helmholtz and Related Equations
Ockendon, J. R.
2012-01-01
This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.
Gil', M. I.
2005-08-01
We consider a class of nonautonomous functional-differential equations in a Banach space with unbounded nonlinear history-responsive operators, which have the local Lipshitz property. Conditions for the boundedness of solutions, Lyapunov stability, absolute stability and input-output one are established. Our approach is based on a combined usage of properties of sectorial operators and spectral properties of commuting operators.
Stability and square integrability of solutions of nonlinear fourth order differential equations
Directory of Open Access Journals (Sweden)
Moussadek Remili
2016-05-01
Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.
New finite volume methods for approximating partial differential equations on arbitrary meshes
International Nuclear Information System (INIS)
Hermeline, F.
2008-12-01
This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)
Integration of differential equations by the pseudo-linear (PL) approximation
International Nuclear Information System (INIS)
Bonalumi, Riccardo A.
1998-01-01
A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method
Nonlinear stability of source defects in the complex Ginzburg–Landau equation
International Nuclear Information System (INIS)
Beck, Margaret; Nguyen, Toan T; Sandstede, Björn; Zumbrun, Kevin
2014-01-01
In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction–diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg–Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for Green's function, which allow one to close a nonlinear iteration scheme. (paper)
Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem
2017-01-01
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Mechhoud, Sarra
2017-12-14
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Stability of Pexiderized Quadratic Functional Equation in Random 2-Normed Spaces
Directory of Open Access Journals (Sweden)
Mohammed A. Alghamdi
2015-01-01
Full Text Available The aim of this paper is to investigate the stability of Hyers-Ulam-Rassias type theorems by considering the pexiderized quadratic functional equation in the setting of random 2-normed spaces (RTNS, while the concept of random 2-normed space has been recently studied by Goleţ (2005.
Institute of Scientific and Technical Information of China (English)
Li XIE; Lihua XIE
2007-01-01
We consider the stability of a random Riccati equation with a Markovian binary jump coefficient. More specifically, we are concerned with the boundedness of the solution of a random Riccati difference equation arising from Kalman filtering with measurement losses. A sufficient condition for the peak covariance stability is obtained which has a simpler form and is shown to be less conservative in some cases than a very recent result in existing literature. Furthermore, we show that a known sufficient condition is also necessary when the observability index equals one.
Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.
Bedouelle, Hugues
2016-02-01
The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Controllability of partial differential equations governed by multiplicative controls
Khapalov, Alexander Y
2010-01-01
The goal of this monograph is to address the issue of the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The mathematical models we examine include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrödinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new, high-quality and intrinsically nonlinear methodology to approach the aforementioned highly nonlinear controllability problems.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Directory of Open Access Journals (Sweden)
Dandan Guo
2017-08-01
Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.
Stability of stationary states of non-local equations with singular interaction potentials
Fellner, Klemens
2011-04-01
We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.
Integral equation based stability analysis of short wavelength drift modes in tokamaks
International Nuclear Information System (INIS)
Hirose, A.; Elia, M.
2003-01-01
Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)
Federal technology alert. Parabolic-trough solar water heating
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-04-01
Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.
Handbook of Nonlinear Partial Differential Equations
Polyanin, Andrei D
2011-01-01
New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They
Stability equation and two-component Eigenmode for domain walls in scalar potential model
International Nuclear Information System (INIS)
Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima
2002-08-01
Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)
New stability and boundedness results to Volterra integro-differential equations with delay
Directory of Open Access Journals (Sweden)
Cemil Tunç
2016-04-01
Full Text Available In this paper, we consider a certain non-linear Volterra integro-differential equations with delay. We study stability and boundedness of solutions. The technique of proof involves defining suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.
Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan
2013-01-01
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method
Stability by fixed point theory for functional differential equations
Burton, T A
2006-01-01
This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia
Butuzov, V. F.
2017-06-01
We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.
Stability of line solitons for the KP-II equation in R2
Mizumachi, Tetsu
2015-01-01
The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\\to\\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward y=\\pm\\infty. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.
Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows
Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.
2009-01-01
A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Mechhoud, Sarra
2016-01-01
In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
Statistical Prediction of Laminar-turbulent Transition
National Research Council Canada - National Science Library
Rubinstein, Robert
2000-01-01
... on representative stability theories including the resonant triad model and the parabolized stability equations. The first type of model can describe the effect of initial phase differences among disturbance modes on transition location...
Thermal behaviour of a solar air heater with a compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, R.
2005-11-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
DEFF Research Database (Denmark)
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...
Stability of Nonlinear Neutral Stochastic Functional Differential Equations
Directory of Open Access Journals (Sweden)
Minggao Xue
2010-01-01
Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.
Orbital stability of periodic traveling-wave solutions for the log-KdV equation
Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício
2017-09-01
In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.
International Nuclear Information System (INIS)
Ignat'yev, A O
2003-01-01
A system of ordinary differential equations with impulse action at fixed moments of time is considered. The system is assumed to have the zero solution. It is shown that the existence of a corresponding Lyapunov function is a necessary and sufficient condition for the uniform asymptotic stability of the zero solution. Restrictions on perturbations of the right-hand sides of differential equations and impulse actions are obtained under which the uniform asymptotic stability of the zero solution of the 'unperturbed' system implies the uniform asymptotic stability of the zero solution of the 'perturbed' system
Pseudodifferential equations over non-Archimedean spaces
Zúñiga-Galindo, W A
2016-01-01
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applica...
International Nuclear Information System (INIS)
Ding Xiaohua; Su Huan; Liu Mingzhu
2008-01-01
The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
Chen, Huangxin
2017-09-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.
Directory of Open Access Journals (Sweden)
Cemil Tunç
2017-10-01
Full Text Available In this article, the authors obtain some clear assumptions for the asymptotic stability (AS and boundedness (B of solutions of non-linear retarded Volterra integro-differential equations (VIDEs of first order by constructing a new Lyapunov functional (LF. The results obtained are new and differ from those found in the literature, and they also contain and improve a result found in the literature under more less restrictive conditions. We establish an example and give a discussion to indicate the applicability of the weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of the (VIDEs considered. Keywords: Nonlinear, Volterra integro-differential equations, First order, Asymptotic stability, Boundedness, Lyapunov functional, MSC: 34D05, 34K20, 45J05
Directory of Open Access Journals (Sweden)
Wen-ku Shi
2016-01-01
Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.
On the controllability of the semilinear heat equation with hysteresis
International Nuclear Information System (INIS)
Bagagiolo, Fabio
2012-01-01
We study the null controllability problem for a semilinear parabolic equation, with hysteresis entering in the semilinearity. Under suitable hypotheses, we prove the controllability result and explicitly treat the cases where the hysteresis relationship is given by a Play or a Preisach operator.
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition
Directory of Open Access Journals (Sweden)
Carlos Alberto Raposo
2017-11-01
Full Text Available Well-posedness and exponential stability of nonlocal time-delayed of a wave equation with a integral conditions of the 1st kind forms the center of this work. Through semigroup theory we prove the well-posedness by the Hille-Yosida theorem and the exponential stability exploring the dissipative properties of the linear operator associated to damped model using the Gearhart-Huang-Pruss theorem.
Stability of finite difference schemes for generalized von Foerster equations with renewal
Directory of Open Access Journals (Sweden)
Henryk Leszczyński
2014-01-01
Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.
Moduli space of Parabolic vector bundles over hyperelliptic curves
Indian Academy of Sciences (India)
27
This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...
Stability of Solutions of Parabolic PDEs with Random Drift and Viscosity Limit
International Nuclear Information System (INIS)
Deck, T.; Potthoff, J.; Vage, G.; Watanabe, H.
1999-01-01
Let u α be the solution of the Ito stochastic parabolic Cauchy problem ∂u/∂t - L =ξ.∇u,u , where ξ is a space-time noise. We prove that u α depends continuously on α , when the coefficients in L α converge to those in L 0 . This result is used to study the diffusion limit for the Cauchy problem in the Stratonovich sense: when the coefficients of L α tend to 0 the corresponding solutions u α converge to the solution u 0 of the degenerate Cauchy problem ∂u 0 /∂t=ξ o ∇u 0 , u o . These results are based on a criterion for the existence of strong limits in the space of Hida distributions (S) * . As a by-product it is proved that weak solutions of the above Cauchy problem are in fact strong solutions
On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
Il'yasov, Ya. Sh.
2017-03-01
For semilinear elliptic equations -Δ u = λ| u| p-2 u-| u| q-2 u, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents p × q, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
Existence of extremal periodic solutions for quasilinear parabolic equations
Directory of Open Access Journals (Sweden)
Siegfried Carl
1997-01-01
bounded domain under periodic Dirichlet boundary conditions. Our main goal is to prove the existence of extremal solutions among all solutions lying in a sector formed by appropriately defined upper and lower solutions. The main tools used in the proof of our result are recently obtained abstract results on nonlinear evolution equations, comparison and truncation techniques and suitably constructed special testfunction.
A compact representation of drawing movements with sequences of parabolic primitives.
Directory of Open Access Journals (Sweden)
Felix Polyakov
2009-07-01
Full Text Available Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words" of a small number of elementary parabolic primitives ("letters". A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non
MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems
International Nuclear Information System (INIS)
Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.
1986-01-01
1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV
2008-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Arumugam, S.; Ramakrishna, P.; Sangavi, S.
2018-02-01
Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.
A One-Dimensional Wave Equation with White Noise Boundary Condition
International Nuclear Information System (INIS)
Kim, Jong Uhn
2006-01-01
We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations
Charalampidis, E. G.; Kevrekidis, P. G.; Farrell, P. E.
2018-01-01
In this work we employ a recently proposed bifurcation analysis technique, the deflated continuation algorithm, to compute steady-state solitary waveforms in a one-component, two-dimensional nonlinear Schrödinger equation with a parabolic trap and repulsive interactions. Despite the fact that this system has been studied extensively, we discover a wide variety of previously unknown branches of solutions. We analyze the stability of the newly discovered branches and discuss the bifurcations that relate them to known solutions both in the near linear (Cartesian, as well as polar) and in the highly nonlinear regimes. While deflated continuation is not guaranteed to compute the full bifurcation diagram, this analysis is a potent demonstration that the algorithm can discover new nonlinear states and provide insights into the energy landscape of complex high-dimensional Hamiltonian dynamical systems.
Yan, Na; Baas, Andreas
2015-04-01
Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation
Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi
2018-05-01
This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.
Projection scheme for a reflected stochastic heat equation with additive noise
Higa, Arturo Kohatsu; Pettersson, Roger
2005-02-01
We consider a projection scheme as a numerical solution of a reflected stochastic heat equation driven by a space-time white noise. Convergence is obtained via a discrete contraction principle and known convergence results for numerical solutions of parabolic variational inequalities.
Semigroup methods for evolution equations on networks
Mugnolo, Delio
2014-01-01
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity
Directory of Open Access Journals (Sweden)
Leonid Berezansky
2005-04-01
Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.
Lyapunov stability and poisson structure of the thermal TDHF and RPA equations
International Nuclear Information System (INIS)
Balian, R.; Veneroni, M.
1989-01-01
The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p) density ρ behave as classical dynamical variables. By introducing the Lie--Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a Hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered. copyright 1989 Academic Press, Inc
Lyapunov stability and Poisson structure of the thermal TDHF and RPA equations
International Nuclear Information System (INIS)
Veneroni, M.; Balian, R.
1989-01-01
The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p.) density ρ behave as classical dynamical variables. By introducing the Lie-Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered
The stability of coupled renewal-differential equations with econometric applications
Rhoten, R. P.; Aggarwal, J. K.
1969-01-01
Concepts and results are presented in the fields of mathematical modeling, economics, and stability analysis. A coupled renewal-differential equation structure is presented as a modeling form for systems possessing hereditary characteristics, and this structure is applied to a model of the Austrian theory of business cycles. For realistic conditions, the system is shown to have an infinite number of poles, and conditions are presented which are both necessary and sufficient for all poles to lie strictly in the left half plane.
Notes on spectrum and exponential decay in nonautonomous evolutionary equations
Directory of Open Access Journals (Sweden)
Christian Pötzsche
2016-08-01
Full Text Available We first determine the dichotomy (Sacker-Sell spectrum for certain nonautonomous linear evolutionary equations induced by a class of parabolic PDE systems. Having this information at hand, we underline the applicability of our second result: If the widths of the gaps in the dichotomy spectrum are bounded away from $0$, then one can rule out the existence of super-exponentially decaying (i.e. slow solutions of semi-linear evolutionary equations.
Directory of Open Access Journals (Sweden)
Khaled Zaki
2016-12-01
Full Text Available We establish the existence of solutions for the nonlinear parabolic problem with Dirichlet homogeneous boundary conditions, $$ \\frac{\\partial u}{\\partial t} - \\sum_{i=1}^N\\frac{\\partial}{\\partial x_i} \\Big( d_i(u\\frac{\\partial u}{\\partial x_i} \\Big =\\mu,\\quad u(t=0=u_0, $$ in a bounded domain. The coefficients $d_i(s$ are continuous on an interval $]-\\infty,m[$, there exists an index p such that $d_p(u$ blows up at a finite value m of the unknown u, and $\\mu$ is a diffuse measure.
Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method
Louaked, Mohammed; Seloula, Nour; Trabelsi, Saber
2017-01-01
In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017
Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method
Louaked, Mohammed
2017-07-20
In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017
Temperature waves and the Boltzmann kinetic equation for phonons
International Nuclear Information System (INIS)
Urushev, D.; Borisov, M.; Vavrek, A.
1988-01-01
The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs
On partial stabilization of a system of the Euler-Bernoulli beam equations
International Nuclear Information System (INIS)
Zuyev, Alexander
2003-11-01
The paper is focused on the stabilization problem for the following system of differential equations ∂ 2 (t) = v, t ≥ 0, (∂ 2 ω i (x,t))/∂t 2 + c 2 (∂ 4 ω i (x,t))/∂x 4 = ∂ 2 (t)ω i (x,t) - (x+d)v, x is an element of [0,l], i = 1,2,...,k, where v is an element of R is the control parameter. The above system describes a rotating rigid body endowed with a number of elastic beams. To solve the stabilization problem, we prove a sufficient condition for partial strong asymptotic stability which is valid for general nonlinear dynamical systems in a Banach space. This result is applied to deriving a feedback control explicitly. In addition, we prove strong (non-asymptotic) stability in the sense of Lyapunov as well as precompacness of the trajectories for the corresponding nonlinear semigroup. Some simulation results are given in conclusion. (author)
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
International Nuclear Information System (INIS)
David Kearney; Hank Price
1999-01-01
Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop
Directory of Open Access Journals (Sweden)
M. Tshipa
2017-12-01
Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.
Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
1995-12-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs
Explosive solutions of elliptic equations with absorption and non ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
control theory and have been first studied by Lasry and Lions [8]. The corresponding parabolic equation was considered in Quittner [12]. In terms of the dynamic programming approach, an explosive solution of (1) corresponds to a value function (or Bellman function) associated to an infinite exit cost (see [8]). Bandle and ...
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Non-parallel stability of compressible boundary layers
Chang, Chau-Lyan; Malik, Mujeeb R.
1993-01-01
Linear and nonlinear stability of compressible growing boundary layers is studied using parabolized stability equations (PSE). Linear PSE calculations are performed for Mach 1.6 and 4.5 plate-plate flow, and the results are compared with the predictions of the multiple-scales approach. In general, the nonparallel effect appears to be less significant for oblique waves near the lower neutral branch but it progressively becomes important at higher Reynolds numbers near the upper branch. In contrast, the nonparallel effect is more pronounced near the lower branch for two-dimensional first-mode waves. The PSE and multiple-scales results agree for the first mode waves, but in the first-second mode transition region, the latter approach tends to break down. Comparison with the first (oblique) and second mode growth rate data from Kendall's (1967) experiment shows good agreement; however, the peak second mode growth rate is over-predicted. Similar conclusions are drawn for the second mode experiment of Stetson et al. (1983) for Mach 8 flow past a sharp cone. We conjecture that the lower experimental growth rate is due to nonlinear saturation and provide supporting calculations.
Nonparallel linear stability analysis of unconfined vortices
Herrada, M. A.; Barrero, A.
2004-10-01
Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0
Energy Technology Data Exchange (ETDEWEB)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)
2016-11-15
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
International Nuclear Information System (INIS)
Fujimura, Kaoru
1980-11-01
The numerical treatment of Orr-Sommerfeld equation which is the fundamental equation of linear hydrodynamic stability theory is described. Present calculation procedure is applied to the two-dimensional quasi-parallel flow for which linearized disturbance equation (Orr-Sommerfeld equation) contains one simple turning point and αR >> 1. The numerical procedure for this problem and one numerical example for Jeffery-Hamel flow (J-H III 1 ) are presented. These treatment can be extended to the other velocity profiles by slight midifications. (author)
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2005-01-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Mihály Pituk
2005-03-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
DEFF Research Database (Denmark)
Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John
2015-01-01
In this work the stability properties of a partial differential equation (PDE) with state-dependent parameters and asymmetric boundary conditions are investigated. The PDE describes the temperature distribution inside foodstuff, but can also hold for other applications and phenomena. We show...
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
Mathematical analysis of partial differential equations modeling electrostatic MEMS
Esposito, Pierpaolo; Guo, Yujin
2010-01-01
Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing "electrostatically actuated" MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems-where the stationary MEMS models fit-are a well-developed
Mechatronic Prototype of Parabolic Solar Tracker.
Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz
2016-06-15
In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Unsteady transonic flow analysis for low aspect ratio, pointed wings.
Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.
1973-01-01
Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.
Shock structure in continuum models of gas dynamics: stability and bifurcation analysis
International Nuclear Information System (INIS)
Simić, Srboljub S
2009-01-01
The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound
The problem of birth of autowaves in parabolic systems with small diffusion
International Nuclear Information System (INIS)
Kolesov, A Yu; Rozov, N Kh; Sadovnichii, V A
2007-01-01
A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter ε>0, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order √ε born by a zero equilibrium at an Andronov-Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter μ≥0, and for μ=0 there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters ε and μ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed. Bibliography: 16 titles.
Ulam stability for fractional differential equations in the sense of Caputo operator
Directory of Open Access Journals (Sweden)
Rabha W. Ibrahim
2012-12-01
Full Text Available In this paper, we consider the Hyers-Ulam stability for the following fractional differential equations, in the sense ofcomplex Caputo fractional derivative defined, in the unit disk: cDßzf(z=G(f(z, cDázf(z,zf‘(z;z 0<á<1<ß<2 . Furthermore,a generalization of the admissible functions in complex Banach spaces is imposed and applications are illustrated.
Interaction Potential between Parabolic Rotator and an Outside Particle
Directory of Open Access Journals (Sweden)
Dan Wang
2014-01-01
Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.
Dinar, N.
1978-01-01
Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.
Fixed Points and Fuzzy Stability of Functional Equations Related to Inner Product
Directory of Open Access Journals (Sweden)
Hassan Azadi Kenary
2012-04-01
Full Text Available In , Th.M. Rassias introduced the following equality sum_{i,j=1}^m |x_i - x_j |^2 = 2m sum_{i=1}^m|x_i|^2, qquad sum_{i=1}^m x_i =0 for a fixed integer $m ge 3$. Let $V, W$ be real vector spaces. It is shown that if a mapping $f : V ightarrow W$ satisfies sum_{i,j=1}^m f(x_i - x_j = 2m sum_{i=1}^m f(x_i for all $x_1, ldots, x_{m} in V$ with $sum_{i=1}^m x_i =0$, then the mapping $f : V ightarrow W$ is realized as the sum of an additive mapping and a quadratic mapping. From the above equality we can define the functional equation f(x-y +f(2x+y + f(x+2y= 3f(x+ 3f(y + 3f(x+y , which is called a {it quadratic functional equation}. Every solution of the quadratic functional equation is said to be a {it quadratic mapping}. Using fixed point theorem we prove the Hyers-Ulam stability of the functional equation ( in fuzzy Banach spaces.
On the Gross–Pitaevskii Equation with Pumping and Decay: Stationary States and Their Stability
Sierra Nunez, Jesus Alfredo; Kasimov, Aslan R.; Markowich, Peter A.; Weishä upl, Rada Maria
2015-01-01
We investigate the behavior of solutions of the complex Gross–Pitaevskii equation, a model that describes the dynamics of pumped decaying Bose–Einstein condensates. The stationary radially symmetric solutions of the equation are studied, and their linear stability with respect to two-dimensional perturbations is analyzed. Using numerical continuation, we calculate not only the ground state of the system, but also a number of excited states. Accurate numerical integration is employed to study the general nonlinear evolution of the system from the unstable stationary solutions to the formation of stable vortex patterns.
On the Gross–Pitaevskii Equation with Pumping and Decay: Stationary States and Their Stability
Sierra Nunez, Jesus Alfredo
2015-02-11
We investigate the behavior of solutions of the complex Gross–Pitaevskii equation, a model that describes the dynamics of pumped decaying Bose–Einstein condensates. The stationary radially symmetric solutions of the equation are studied, and their linear stability with respect to two-dimensional perturbations is analyzed. Using numerical continuation, we calculate not only the ground state of the system, but also a number of excited states. Accurate numerical integration is employed to study the general nonlinear evolution of the system from the unstable stationary solutions to the formation of stable vortex patterns.
An air-based corrugated cavity-receiver for solar parabolic trough concentrators
International Nuclear Information System (INIS)
Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo
2015-01-01
Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW
Bonito, Andrea
2013-10-03
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
Mechatronic Prototype of Parabolic Solar Tracker
Directory of Open Access Journals (Sweden)
Carlos Morón
2016-06-01
Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Nanofocusing parabolic refractive x-ray lenses
International Nuclear Information System (INIS)
Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.
2003-01-01
Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV
International Nuclear Information System (INIS)
Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C
2006-01-01
With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods
Energy Technology Data Exchange (ETDEWEB)
Ajona, J I; Alberdi, J; Gamero, E; Blanco, J
1992-07-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.
2010-03-01
BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic