Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.
2010-03-01
BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic
The dynamics of parabolic flight: Flight characteristics and passenger percepts
Karmali, Faisal; Shelhamer, Mark
2008-09-01
Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.
First Middle East Aircraft Parabolic Flights for ISU Participant Experiments
Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene
2017-06-01
Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.
A Review of Psycho-Physiological Responses to Parabolic Flight
Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.
2008-06-01
This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.
Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)
Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.
1999-01-01
The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.
Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.
Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier
2017-08-01
Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.
Motor skills under varied gravitoinertial force in parabolic flight
Ross, Helen E.
Parabolic flight produces brief alternating periods of high and low gravitoinertial force. Subjects were tested on various paper-and-pencil aiming and tapping tasks during both normal and varied gravity in flight. It was found that changes in g level caused directional errors in the z body axis (the gravity axis), the arm aiming too high under 0g and too low under 2g. The standard deviation also increased for both vertical and lateral movements in the mid-frontal plane. Both variable and directional errors were greater under 0g than 2g. In an unpaced reciprocal tapping task subjects tended to increase their error rate rather than their movement time, but showed a non-significant trend towards slower speeds under 0g for all movement orientations. Larger variable errors or slower speeds were probably due to the difficulty of re-organising a motor skill in an unfamiliar force environment, combined with anchorage difficulties under 0g.
A parabolic analogue of the higher-order comparison theorem of De Silva and Savin
Banerjee, Agnid; Garofalo, Nicola
2016-01-01
We show that the quotient of two caloric functions which vanish on a portion of the lateral boundary of a H k + α domain is H k + α up to the boundary for k ≥ 2. In the case k = 1, we show that the quotient is in H 1 + α if the domain is assumed to be space-time C 1 , α regular. This can be thought of as a parabolic analogue of a recent important result in [8], and we closely follow the ideas in that paper. We also give counterexamples to the fact that analogous results are not true at points on the parabolic boundary which are not on the lateral boundary, i.e., points which are at the corner and base of the parabolic boundary.
Microgravity Active Vibration Isolation System on Parabolic Flights
Dong, Wenbo; Pletser, Vladimir; Yang, Yang
2016-07-01
The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the
Biosignal alterations generated by parabolic flights of small aerobatic aircrafts
Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria
Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric
Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.
Directory of Open Access Journals (Sweden)
Gilles Clément
Full Text Available We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g, hypergravity (1.8 g, and normal gravity (1 g. Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.
Piracetam and fish orientation during parabolic aircraft flight
Hoffman, R. B.; Salinas, G. A.; Homick, J. L.
1980-01-01
Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.
The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2016-12-01
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.
Space-DRUMS trade mark sign experimental development using parabolic reduced gravity flights
International Nuclear Information System (INIS)
Guigne, J.Y.; Millan, D.; Davidson, R.
2000-01-01
Space-DRUMS trade mark sign is a microgravity containerless-processing facility that uses acoustic beams to position large diameter liquid or solid samples within a gas-filled chamber. Its capacity to control the position of large diameter (6 cm) low density solid materials was successfully demonstrated on NASA's DC-9 parabolic aircraft in July 1996; two subsequent flights occurred in 1998 using the KC-135 and A-300 aircraft to further refine the technology used in the system. The working environment for the Space-DRUMS trade mark sign facility is the Space Shuttle/Space Station where long duration microgravity experimentation can take place. Since the reduced gravity environment of an A-300 or a KC-135 parabolic flight is much harsher than that of the Space Shuttle in terms of residual acceleration magnitudes experienced by the samples to be held in position; this more extreme environment allows for most Space-DRUMS trade mark sign technical payload functionality tests to be conducted. In addition to flight hardware shakedowns, parabolic flights continue to be extensively used to study and evaluate the behavior of candidate-advanced materials proposed for ISS Space-DRUMS trade mark sign campaigns. The first samples to be processed in 2001 involve combustion synthesis (also known as SHS - Self-propagating High Temperature Synthesis) of large glass-ceramic and of porous ceramic spheres. Upmassing Space-DRUMS trade mark sign for the International Space Station is scheduled for early 2001
Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight
Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang
2017-12-01
The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.
Life science experiments during parabolic flight: The McGill experience
Watt, D. G. D.
1988-01-01
Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.
Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments
Hofmeister, Paul Gerke; Blum, Jürgen
2011-02-01
We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.
Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion.
Directory of Open Access Journals (Sweden)
Peiliang Wang
Full Text Available Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity, relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity.
Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger
Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.
Ogoh, Shigehiko; Marais, Michaël; Lericollais, Romain; Denise, Pierre; Raven, Peter B; Normand, Hervé
2018-05-10
The aim of the present study was to assess carotid baroreflex (CBR) during acute changes in otolithic activity in humans. To address this question, we designed a set of experiments to identify the modulatory effects of microgravity on CBR function at a tilt angle of -2{degree sign}, which was identified to minimize changes in central blood volume during parabolic flight. During parabolic flight at 0g and 1g, CBR function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid pulse trains of neck pressure (NP) and neck suction (NS) ranging from +40 to -80 Torr; CBR control of HR (carotid-HR) and MAP (carotid-MAP) baroreflex function curves, respectively. The maximal gain (G max ) of both carotid-HR and carotid-MAP baroreflex function curves were augmented during microgravity compared to 1g (carotid-HR, -0.53 to -0.80 beats/min/mmHg, Pflight-induced acute change of otolithic activity may modify CBR function and identifies that the vestibular system contributes to blood pressure regulation under fluctuations in gravitational forces.
Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion
Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu
2015-01-01
Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity. PMID:26208253
Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro
A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.
Directory of Open Access Journals (Sweden)
Vladimir Blazek
2005-01-01
Full Text Available All astronauts often feel uncomfortable during first encounter microgravity because of fluid shifts from the lower extremities to the head caused by weightlessness. Parabolic flights offer a great possibility for research of this phenomenon under “zero gravity”. With a combination of the optoelectronic sensor concepts PPG and PPGI and an ultrasound device it should be possible to measure all relevant parameters for description and further explanation of rapid fluid shifts along the body axis in humans during parabolic flights. A research team of the RWTH Aachen University and the Charité University Berlin will participate in the 7th German Parabolic Flight Campaign in September 2005 and perform the experiments under micro gravitation. A combination of used non-invasive strategies will reveal new insights into the human hemodynamics under microgravity conditions. The optoelectronic part of this interdisciplinary research experiment, details from the measuring setup, data collecting and post processing will be discussed.
Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.
2015-01-01
Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.
Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A
1991-09-01
During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10(-4) · g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 μm and 3.6 μm in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.
Perez-Poch, Antoni; González, Daniel Ventura; López, David
2016-12-01
We report on different research and educational activities related to parabolic flights conducted in Barcelona since 2008. We use a CAP10B single-engine aerobatic aircraft flying out of Sabadell Airport and operating in visual flight conditions providing up to 8 seconds of hypogravity for each parabola. Aside from biomedical experiments being conducted, different student teams have flown in parabolic flights in the framework of the international contest `Barcelona Zero-G Challenge', and have published their results in relevant symposiums and scientific journals. The platform can certainly be a good testbed for a proof-of-concept before accessing other microgravity platforms, and has proved to be excellent for motivational student campaigns.
Cardiopulmonary Resuscitation in Microgravity: Efficacy in the Swine During Parabolic Flight
Johnston, Smith L.; Campbell, Mark R.; Billica, Roger D.; Gilmore, Stevan M.
2004-01-01
INTRODUCTION: The International Space Station will need to be as capable as possible in providing Advanced Cardiac Life Support (ACLS) and cardiopulmonary resuscitation (CPR). Previous studies with manikins in parabolic microgravity (0 G) have shown that delivering CPR in microgravity is difficult. End tidal carbon dioxide (PetCO2) has been previously shown to be an effective non-invasive tool for estimating cardiac output during cardiopulmonary resuscitation. Animal models have shown that this diagnostic adjunct can be used as a predictor of survival when PetCO2 values are maintained above 25% of pre-arrest values. METHODS: Eleven anesthetized Yorkshire swine were flown in microgravity during parabolic flight. Physiologic parameters, including PetCO2, were monitored. Standard ACLS protocols were used to resuscitate these models after chemical induction of cardiac arrest. Chest compressions were administered using conventional body positioning with waist restraint and unconventional vertical-inverted body positioning. RESULTS: PetCO2 values were maintained above 25% of both 1-G and O-G pre-arrest values in the microgravity environment (33% +/- 3 and 41 +/- 3). No significant difference between 1-G CPR and O-G CPR was found in these animal models. Effective CPR was delivered in both body positions although conventional body positioning was found to be quickly fatiguing as compared with the vertical-inverted. CONCLUSIONS: Cardiopulmonary resuscitation can be effectively administered in microgravity (0 G). Validation of this model has demonstrated that PetCO2 levels were maintained above a level previously reported to be predictive of survival. The unconventional vertical-inverted position provided effective CPR and was less fatiguing as compared with the conventional body position with waist restraints.
Directory of Open Access Journals (Sweden)
Olivier eWhite
2015-02-01
Full Text Available In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force, normal to the finger/object contact, in anticipation of the expected tangential load force, resulting from the combination of the gravitational and the inertial forces. In many contexts, grip force and load force are linearly coupled. A few studies have examined how we adjust the parameters - gain and offset - of this linear relationship. However, the question remains open as to how the brain adjusts grip force regardless of whether load force is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of load force by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust grip force, the brain is sensitive to how load forces are produced at the fingertips. This provides clear evidence that the analysis of the origin of load force is performed centrally, and not only at the periphery.
Energy Technology Data Exchange (ETDEWEB)
Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)
2014-06-15
Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.
White, Olivier
2015-01-01
In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery. PMID:25717293
Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).
International Nuclear Information System (INIS)
Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk
2014-01-01
Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid
The behavioral responses of amphibians and reptiles to microgravity on parabolic flights.
Wassersug, Richard J; Roberts, Lesley; Gimian, Jenny; Hughes, Elizabeth; Saunders, Ryan; Devison, Darren; Woodbury, Jonathan; O'Reilly, James C
2005-01-01
In the present study, we exposed 53 animals from 23 different species of amphibians and reptiles to microgravity (mug). This nearly doubles the number of amphibians and reptiles observed so far in mug. The animals were flown on a parabolic flight, which provided 20-25s of mug, to better characterize behavioral reactions to abrupt exposure to mug. Highly fossorial limbless caecilians and amphisbaenians showed relatively limited movement in mug. Limbed quadrupedal reptiles that were non-arboreal in the genera Leiocephalus, Anolis, and Scincella showed the typical righting response and enormous amounts of body motion and tail rotation, which we interpreted as both righting responses and futile actions to grasp the substrate. Both arboreal and non-arboreal geckos in the genera Uroplatus, Palmatogecko, Stenodactylus, Tarentola, and Eublepharis instead showed a skydiving posture previously reported for highly arboreal anurans. Some snakes, in the genera Thamnophis and Elaphe, which typically thrashed and rolled in mug, managed to knot their own bodies with their tails and immediately became quiescent. This suggests that these reptiles gave stable physical contact, which would indicate that they were not falling, primacy over vestibular input that indicated that they were in freefall. The fact that they became quiet upon self-embrace further suggests a failure to distinguish self from non-self. The patterns of behavior seen in amphibians and reptiles in mug can be explained in light of their normal ecology and taxonomic relations.
ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students
Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian
The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2015-09-01
Aircraft parabolic flights repetitively provide up to 23 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and introduces the new A310 ZERO-G that will be used from 2015 onwards.
Neef, Maren; Ecke, Margret; Hampp, Rüdiger
2015-07-01
In plants, like in other organisms, calcium (Ca2+) is an important second messenger which participates in the conversion of environmental signals into molecular responses. There is increasing evidence, that sensing of changes in gravitation or reorientation of tissues is an example for such signaling cascades in which Ca2+ is involved. In order to determine g-dependent changes in the cytosolic calcium (Ca^{2+}_{ {cyt}}) concentration of plant cells, semisolid transgenic callus cell cultures of Arabidopsis thaliana (A.t.), expressing the calcium sensor YC3.6 (cameleon), were exposed to g-forces between 1.8 g and μ g during parabolic flights. Using such cells, intracellular calcium transients can be monitored by FRET in vivo and in real-time. Interestingly we observed a slight decrease of the Ca^{2+}_{ {cyt}} level during the hypergravity phases of a parabola but a significant increase of the Ca^{2+}_{ {cyt}} concentration during microgravity. Application of known Ca2+ inhibitors and antagonists yielded the following effects: nifedipine (Ca2+ channel blocker) showed no effect, whereas LaCl3, GdCl3 (both inhibitors of uptake at the plasma membrane), DPI (inhibitor of NADP oxidase), and DMSO (solvent) diminished the gravity-alteration-related Ca^{2+}_{ {cyt}} response. EGTA (binding of Ca2+) and eosin yellow (inhibitor of a plasma membrane-located Ca2+ pump) suppressed the respective Ca^{2+}_{ {cyt}} changes entirely. We thus conclude that the significant increase in Ca^{2+}_{ {cyt}} under microgravity is largely due to extracellular Ca2+ sources.
Perez-Poch, Antoni; Gonzalez, Daniel
Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with
Spinal Stiffness in Prone and Upright Postures During 0-1.8 g Induced by Parabolic Flight.
Swanenburg, Jaap; Meier, Michael L; Langenfeld, Anke; Schweinhardt, Petra; Humphreys, B Kim
2018-06-01
The purpose of this study was to analyze posterior-to-anterior spinal stiffness in Earth, hyper-, and microgravity conditions during both prone and upright postures. During parabolic flight, the spinal stiffness of the L3 vertebra of a healthy 37-yr-old man was measured in normal Earth gravity (1.0 g), hypergravity (1.8 g), and microgravity (0.0 g) conditions induced in the prone and upright positions. Differences in spinal stiffness were significant across all three gravity conditions in the prone and upright positions. Most effect sizes were large; however, in the upright posture, the effect size between Earth gravity and microgravity was medium. Significant differences in spinal stiffness between the prone and upright positions were found during Earth gravity and hypergravity conditions. No difference was found between the two postures during microgravity conditions. Based on repeated measurements of a single individual, our results showed detectable changes in posterior-to-anterior spinal stiffness. Spinal stiffness increased during microgravity and decreased during hypergravity conditions. In microgravity conditions, posture did not impact spinal stiffness. More data on spinal stiffness in variable gravitational conditions is needed to confirm these results.Swanenburg J, Meier ML, Langenfeld A, Schweinhardt P, Humphreys BK. Spinal stiffness in prone and upright postures during 0-1.8 g induced by parabolic flight. Aerosp Med Hum Perform. 2018; 89(6):563-567.
Spooner, Brian S.; Guikema, James A.; Barnes, Grady
1990-01-01
Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.
DEFF Research Database (Denmark)
Groemer, Gernot E.; Brimacombe, Joseph; Haas, Thorsten
2005-01-01
We determined the feasibility of laryngoscope-guided tracheal intubation (LG-TI) in microgravity obtained during parabolic flight and tested the hypothesis that LG-TI is similarly successful in the free-floating condition, with the patient's head gripped between the anesthesiologist's knees......, as in the restrained condition, with the torso strapped to the surface. Three personnel with no experience in airway management or microgravity participated in the study. LG-TI of a sophisticated full-size manikin was attempted on seven occasions in each condition by each investigator after ground-based training...... by squeezing the bag and noting whether the manikin sensors indicated a tidal volume >= 300 mL. There were no differences in ventilation success (41% versus 33%) or time to successful insertion (both 18 s) between the free-floating and the restrained conditions. More than 90% of failures were caused...
Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves
2018-06-01
A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.
Loposer, J. Dan; Rumsey, Charles B.
1954-01-01
Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.
Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja
Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.
Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco
2017-03-01
This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.
DEFF Research Database (Denmark)
Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao
2017-01-01
We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...
Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC
Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department
2018-01-01
Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).
Manufacturing parabolic mirrors
CERN PhotoLab
1975-01-01
The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.
2006-08-01
In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.
Parabolized stability equations
Herbert, Thorwald
1994-01-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
DEFF Research Database (Denmark)
1997-01-01
The present invention relates to a solid phase methodology for the preparation of a combinatorial library of structural analogues of the natural product balanol (ophiocordin, azepinostatin), which is a protein kinase C (PKC) and protein kinase A (PKA) inhibitor. The method comprises solid...
Sasakian and Parabolic Higgs Bundles
Biswas, Indranil; Mj, Mahan
2018-03-01
Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.
Strongly nonlinear parabolic variational inequalities.
Browder, F E; Brézis, H
1980-02-01
An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Improvement Design of Parabolic Trough
Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.
2017-03-01
The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.
Convergence of shock waves between conical and parabolic boundaries
Energy Technology Data Exchange (ETDEWEB)
Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)
2016-07-15
Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.
Solar parabolic dish technology evaluation report
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Controllability and stabilization of parabolic equations
Barbu, Viorel
2018-01-01
This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...
Zwart, Sara R.; Hargens, Alan R.; Smith, Scott M.
2004-01-01
BACKGROUND: Bone loss is a critical concern for space travelers, and a dietary countermeasure would be of great benefit. Dietary protein and potassium-associated bicarbonate precursors may have opposing effects on the acid-base balance in the body and therefore on bone loss. OBJECTIVE: In 2 studies, we examined the ability of dietary protein and potassium to predict markers of bone metabolism. DESIGN: In the first study, 8 pairs of male identical twins were assigned to 1 of 2 groups: bed rest (sedentary, or SED, group) or bed rest with supine treadmill exercise in a lower-body negative pressure chamber (EX group). In a second study, groups of 4 subjects lived in a closed chamber for 60 or 91 d, and dietary data were collected for two or three 5-d sessions. Urinary calcium, N-telopeptide, and pyridinium cross-links were measured before bed rest; on bed rest days 5-6, 12-13, 19-20, and 26-27; and daily during the chamber studies. Data were analyzed by Pearson's correlation (P animal protein intake to potassium intake was significantly correlated with N-telopeptide in the SED group during bed rest weeks 3 and 4 (r = 0.77 and 0.80) and during the 91-d chamber study (r = 0.75). The ratio of animal protein intake to potassium intake was positively correlated with pyridinium cross-links before bed rest in the EX group (r = 0.83), in the EX group during bed rest week 1 (r = 0.84), and in the SED group during bed rest week 2 (r = 0.72) but not during either chamber study. In both studies, these relations were not significant with the ratio of vegetable protein intake to potassium intake. CONCLUSIONS: The ratio of animal protein intake to potassium intake may affect bone in ambulatory and bed-rest subjects. Changing this ratio may help to prevent bone loss on Earth and during space flight.
Numerical Solution of Parabolic Equations
DEFF Research Database (Denmark)
Østerby, Ole
These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....
Photovoltaic applications of Compound Parabolic Concentrator (CPC)
Winston, R.
1975-01-01
The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.
International Workshop on Elliptic and Parabolic Equations
Schrohe, Elmar; Seiler, Jörg; Walker, Christoph
2015-01-01
This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.
Stability analysis of impulsive parabolic complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)
2011-11-15
Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Stability analysis of impulsive parabolic complex networks
International Nuclear Information System (INIS)
Wang Jinliang; Wu Huaining
2011-01-01
Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
A parabolic model for dimple potentials
International Nuclear Information System (INIS)
Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun
2013-01-01
We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)
Solutions to variational inequalities of parabolic type
Zhu, Yuanguo
2006-09-01
The existence of strong solutions to a kind of variational inequality of parabolic type is investigated by the theory of semigroups of linear operators. As an application, an abstract semi permeable media problem is studied.
Coercive properties of elliptic-parabolic operator
International Nuclear Information System (INIS)
Duong Min Duc.
1987-06-01
Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs
Partial differential equations of parabolic type
Friedman, Avner
2008-01-01
This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta
Directory of Open Access Journals (Sweden)
McNamara Darren
2006-01-01
Full Text Available In this contribution we propose an analogue receiver that can perform turbo detection in MIMO systems. We present the case for a receiver that is built from nonlinear analogue devices, which perform detection in a "free-flow" network (no notion of iterations. This contribution can be viewed as an extension of analogue turbo decoder concepts to include MIMO detection. These first analogue implementations report reductions of few orders of magnitude in the number of required transistors and in consumed energy, and the same order of improvement in processing speed. It is anticipated that such analogue MIMO decoder could bring about the same advantages, when compared to traditional digital implementations.
Air-borne shape measurement of parabolic trough collector fields
Prahl, Christoph; Röger, Marc; Hilgert, Christoph
2017-06-01
The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.
Directory of Open Access Journals (Sweden)
Fatima G. Khushtova
2016-03-01
Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.
Solving Variable Coefficient Fourth-Order Parabolic Equation by ...
African Journals Online (AJOL)
Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.
Chernoff's distribution and parabolic partial differential equations
P. Groeneboom; S.P. Lalley; N.M. Temme (Nico)
2013-01-01
textabstractWe give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting
Temperature Performance Evaluation of Parabolic Dishes Covered ...
African Journals Online (AJOL)
Aweda
The parabolic dish with glass material gave the highest temperature of .... 3: Second day variation temperature and time using different materials. 8. 10 .... the sun rays at that particular time. ... especially between 11:00 am and 3:00 pm when.
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
Temperature Performance Evaluation of Parabolic Dishes Covered ...
African Journals Online (AJOL)
Solar radiation reaching the earth is considered to be affected by some parameters like diffusion. This radiation is reflected or scattered by air molecules, cloud and aerosols (dust). Parabolic dishes made of different materials (glass, foil and painted surface) were used to concentrate energy on a copper calorimeter filled with ...
Nonlinear anisotropic parabolic equations in Lm
Directory of Open Access Journals (Sweden)
Fares Mokhtari
2014-01-01
Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
Self-accelerating parabolic cylinder waves in 1-D
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2016-11-25
Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.
Kritikos, Nikolaos; Tsantili-Kakoulidou, Anna; Loukas, Yannis L; Dotsikas, Yannis
2015-07-17
In the current study, quantitative structure-retention relationships (QSRR) were constructed based on data obtained by a LC-(ESI)-QTOF-MS/MS method for the determination of amino acid analogues, following their derivatization via chloroformate esters. Molecules were derivatized via n-propyl chloroformate/n-propanol mediated reaction. Derivatives were acquired through a liquid-liquid extraction procedure. Chromatographic separation is based on gradient elution using methanol/water mixtures from a 70/30% composition to an 85/15% final one, maintaining a constant rate of change. The group of examined molecules was diverse, including mainly α-amino acids, yet also β- and γ-amino acids, γ-amino acid analogues, decarboxylated and phosphorylated analogues and dipeptides. Projection to latent structures (PLS) method was selected for the formation of QSRRs, resulting in a total of three PLS models with high cross-validated coefficients of determination Q(2)Y. For this reason, molecular structures were previously described through the use of descriptors. Through stratified random sampling procedures, 57 compounds were split to a training set and a test set. Model creation was based on multiple criteria including principal component significance and eigenvalue, variable importance, form of residuals, etc. Validation was based on statistical metrics Rpred(2),QextF2(2),QextF3(2) for the test set and Roy's metrics rm(Av)(2) and rm(δ)(2), assessing both predictive stability and internal validity. Based on aforementioned models, simplified equivalent were then created using a multi-linear regression (MLR) method. MLR models were also validated with the same metrics. The suggested models are considered useful for the estimation of retention times of amino acid analogues for a series of applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechatronic Prototype of Parabolic Solar Tracker
Directory of Open Access Journals (Sweden)
Carlos Morón
2016-06-01
Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Mechatronic Prototype of Parabolic Solar Tracker.
Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz
2016-06-15
In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Moving interfaces and quasilinear parabolic evolution equations
Prüss, Jan
2016-01-01
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...
Parabolic dish collectors - A solar option
Truscello, V. C.
1981-05-01
A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.
Nanofocusing Parabolic Refractive X-Ray Lenses
International Nuclear Information System (INIS)
Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.
2004-01-01
Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV
Nanofocusing parabolic refractive x-ray lenses
International Nuclear Information System (INIS)
Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.
2003-01-01
Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Structured inverse modeling in parabolic diffusion processess
Schulz, Volker; Siebenborn, Martin; Welker, Kathrin
2014-01-01
Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.
Cyclotron heating rate in a parabolic mirror
International Nuclear Information System (INIS)
Smith, P.K.
1984-01-01
Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)
Elliptic and parabolic equations for measures
Energy Technology Data Exchange (ETDEWEB)
Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)
2009-12-31
This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
Building a parabolic solar concentrator prototype
International Nuclear Information System (INIS)
Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M
2011-01-01
In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.
Energy Technology Data Exchange (ETDEWEB)
Mendo, C
1988-09-01
Most analogue simulators have evolved from SPICE. The history and description of SPICE-like simulators are given. From a mathematical formulation of the electronic circuit the following analysis are possible: DC, AC, transient, noise, distortion, Worst Case and Statistical.
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
The parabolic equation method for outdoor sound propagation
DEFF Research Database (Denmark)
Arranz, Marta Galindo
The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...
Numerical Schemes for Rough Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)
2012-04-15
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.
Vector domain decomposition schemes for parabolic equations
Vabishchevich, P. N.
2017-09-01
A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
Alignment method for parabolic trough solar concentrators
Diver, Richard B [Albuquerque, NM
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Conversion of solar radiation using parabolic mirrors
Directory of Open Access Journals (Sweden)
Jolanta Fieducik
2017-08-01
Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.
A parabolic mirror x-ray collimator
Franks, A.; Jackson, K.; Yacoot, A.
2000-05-01
A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
DEFF Research Database (Denmark)
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...
Moduli space of Parabolic vector bundles over hyperelliptic curves
Indian Academy of Sciences (India)
27
This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...
Directory of Open Access Journals (Sweden)
M. Tshipa
2017-12-01
Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.
DEFF Research Database (Denmark)
1997-01-01
The present invention relates to new compounds being structurally and functionally similar to Actinomycin D and to combinatorial libraries of such compounds. The Actinomycin D analogues according to the present invention comprise two linear or cyclic peptide moieties constituted by $g...
DEFF Research Database (Denmark)
Hardlei, Tore Forsingdal; Obeid, Rima; Herrmann, Wolfgang
2013-01-01
BACKGROUND: Haptocorrin (HC) carries cobalamin analogues (CorA), but whether CorA are produced in the body is unknown. All cobalamins (Cbl) to the foetus are delivered by the Cbl-specific protein transcobalamin (TC), and therefore analysis of cord serum for CorA may help to clarify the origin...
NATURAL ANALOGUE SYNTHESIS REPORT
International Nuclear Information System (INIS)
Simmons, A.M.
2004-01-01
The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature along with results of quantitative studies conducted specifically for the Yucca Mountain Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement-drift degradation, waste-form degradation, waste-package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated-zone (SZ) transport, impact of radionuclide release on the biosphere
Natural Analogue Synthesis Report
Energy Technology Data Exchange (ETDEWEB)
A. M. Simmons
2002-05-01
The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the ''Yucca Mountain Site Description'' (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport
CEC natural analogue working group
International Nuclear Information System (INIS)
Come, B.; Chapman, N.A.
1986-01-01
The second meeting of the CEC Natural Analogue Working Group took place on June 17-19, 1986, hosted by the Swiss NAGRA in Interlaken (CH). A review of recent progress in natural analogue programmes was carried out, and complemented by detailed discussions about geomicrobiology, archaeological analogues, natural colloids, and use of analogues to increase confidence in safety assessments for radioactive waste disposal. A statement drafted by the Group, and the presentations made, are put together in this report
CEC Natural Analogue Working Group
International Nuclear Information System (INIS)
Come, B.; Chapman, N.A.
1989-01-01
The central theme for the third meeting of the CEC analogue working group was ''How can analogue data be used for performance assessments, both in support of the results and for presentation to the public''. This report puts together the most recent achievements in this field, together with a review of on-going natural analogue programmes
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Telescopic projective methods for parabolic differential equations
Gear, C W
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.
Telescopic projective methods for parabolic differential equations
International Nuclear Information System (INIS)
Gear, C.W.; Kevrekidis, Ioannis G.
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components
Two new designs of parabolic solar collectors
Directory of Open Access Journals (Sweden)
Karimi Sadaghiyani Omid
2014-01-01
Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.
Natural analogue working group
International Nuclear Information System (INIS)
Come, B.; Chapman, N.
1986-01-01
A Natural Analogue Working Group was established by the Commission of the European Communities in 1985. The purpose of this group is to bring together modellers with earth scientists and others, so that maximum benefit can be obtained from natural analogue studies with a view to safe geological disposal of radioactive waste. The first meeting of this group was held in Brussels from November 5 to 7, 1985. The discussions mainly concerned the identification of the modellers' needs and of the earth scientists' capacity to provide for them. Following the debates, a written statement was produced by the Group; this document forms the core of the present Report. Notes and outlines of many of the presentations made are grouped in four appendixes. The valuable contribution of all those involved in the meeting is gratefully acknowledged
Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.
1981-04-01
The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.
International Nuclear Information System (INIS)
Ahonen, L.; Blomqvist, R.; Suksi, J.
1993-01-01
The report gives a summary of the results of investigations carried out in 1992 at the Palmottu natural analogue study site, which is a small U-Th mineralization in Nummi-Pusula, southwestern Finland. Additionally, the report includes several separate articles dealing with various aspects of the Palmottu Analogue Project: (1) deep groundwater flow, (2) interpretation of hydraulic connections, (3) characterization of groundwater colloids, (4) uranium mineral-groundwater equilibrium, (5) water-rock interaction and (6) modelling of in situ matrix diffusion. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes (1) structural interpretations partly based on geophysical measurements, (2) hydrological studies including hydraulic drill-hole measurements, (3) flow modelling, (4) hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, (5) mineralogical studies, (6) geochemical interpretation and modelling, (7) studies of radionuclide mobilization and retardation including matrix diffusion, and (8) modelling of uranium series data. Palaeohydrogeological aspects, due to the anticipated future glaciation of the Fennoscandian Shield, are of special interest. Quaternary sediments are studied to gain information on post-glacial migration in the overburden. (orig.)
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Parabolic features and the erosion rate on Venus
Strom, Robert G.
1993-01-01
The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
Classification of conformal representations induced from the maximal cuspidal parabolic
Energy Technology Data Exchange (ETDEWEB)
Dobrev, V. K., E-mail: dobrev@inrne.bas.bg [Scuola Internazionale Superiore di Studi Avanzati (Italy)
2017-03-15
In the present paper we continue the project of systematic construction of invariant differential operators on the example of representations of the conformal algebra induced from the maximal cuspidal parabolic.
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-01-01
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular
Packing of equal discs on a parabolic spiral lattice
International Nuclear Information System (INIS)
Xudong, F.; Bursill, L.A.; Julin, P.
1989-01-01
A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low
Flux form Semi-Lagrangian methods for parabolic problems
Directory of Open Access Journals (Sweden)
Bonaventura Luca
2016-09-01
Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.
An introduction to geometric theory of fully nonlinear parabolic equations
International Nuclear Information System (INIS)
Lunardi, A.
1991-01-01
We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs
Linear and quasi-linear equations of parabolic type
Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N
1968-01-01
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Revealing Television's Analogue Heroes
Directory of Open Access Journals (Sweden)
Vanessa Jackson
2013-12-01
Full Text Available In this article I will argue that we need to create new archival models in order to preserve and share knowledge of historical, ‘hidden’ television professions and production cultures. Oral history traditions of recording life stories give us a useful starting point. Engineering ‘encounters’ between skilled television technicians, and the now obsolete equipment they operated in the 1970s and 80s, is challenging for a myriad of reasons, but videoing the interaction of man and machine provides us with a rich insight into how analogue television was produced and broadcast. Social media enables us to disseminate these histories in new and innovative ways..
A point focusing double parabolic trough concentrator
Energy Technology Data Exchange (ETDEWEB)
Murphree, Quincy C. [Kentucky Mountain Bible College, Vancleve, KY (United States)
2001-07-01
This article shows that a point focusing solar concentrator can be made from two reflective parabolic troughs, a primary and a secondary, by orienting their longitudinal axes in perpendicular directions and separating them by the difference of their focal lengths along the optical axis. This offers a new alternative to the conventional 3-D paraboloidal concentrator permitting more flexibility in designs for applications requiring high concentrations. Both advantages and disadvantages are discussed. The intensity concentration ratio distribution is calculated in the focal plane and has elliptically shaped contours due to the inherent compensation of errant rays by the concave secondary. The ratio of the major to minor axes was 2.61 for the case considered, resulting in a concentration {approx}2.61 times that of a comparable concentrator without the compensation afforded by a concave secondary. Still, geometrical constraints limit the concentration to about 2000 suns for mirror quality errors of 5 mr. Optimisation of the compensation effect holds potential for improved performance for other concentrator designs. Finally, the functional dependence of the peak concentration and shading factor upon design parameters are presented. (Author)
Parabolic Trough Solar Collector Initial Trials
Directory of Open Access Journals (Sweden)
Ghalya Pikra
2012-03-01
Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively.
Beryllium parabolic refractive x-ray lenses
International Nuclear Information System (INIS)
Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.
2004-01-01
Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given
... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...
Manipulating lightcone fluctuations in an analogue cosmic string
Directory of Open Access Journals (Sweden)
Jiawei Hu
2018-02-01
Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.
Manipulating lightcone fluctuations in an analogue cosmic string
Hu, Jiawei; Yu, Hongwei
2018-02-01
We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.
Alligator Rivers analogue project
International Nuclear Information System (INIS)
Duerden, P.
1990-01-01
Australian Nuclear Science and Technology Organization has extensively evaluated uranium ore bodies in the Alligator Rivers Uranium Province in Australia as analogues of radioactive waste repositories. The work was extended for a three-year program as an international project based on the Koongarra uranium deposit and sponsored by the OECD Nuclear Energy Agency. The technical program comprises six major sub-projects involving modelling and experimental work: modelling of radionuclide migration; hydrogeology of the Koongarra uranium deposit; uranium/thorium series disequilibria studies; groundwater and colloid studies; fission product studies; transuranic nuclide studies; an outline of the technical programs and a summary of progress in the technical sub-projects is given. This is followed by a series of technical reports which briefly describe current research tasks, and which have been separately indexed
DEFF Research Database (Denmark)
Shah, Peter Jivan
1992-01-01
A short term analogue memory is described. It is based on a well-known sample-hold topology in which leakage currents have been minimized partly by circuit design and partly by layout techniques. Measurements on a test chip implemented in a standard 2.4 micron analogue CMOS process show a droop...
Mixed hyperbolic-second-order-parabolic formulations of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios
2008-01-01
Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
Determination of source terms in a degenerate parabolic equation
International Nuclear Information System (INIS)
Cannarsa, P; Tort, J; Yamamoto, M
2010-01-01
In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation
Numerical performance of the parabolized ADM formulation of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei
2008-01-01
In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.
Interaction Potential between Parabolic Rotator and an Outside Particle
Directory of Open Access Journals (Sweden)
Dan Wang
2014-01-01
Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.
Federal technology alert. Parabolic-trough solar water heating
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-04-01
Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.
Critical spaces for quasilinear parabolic evolution equations and applications
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
Global Carleman estimates for degenerate parabolic operators with applications
Cannarsa, P; Vancostenoble, J
2016-01-01
Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.
Parabolic approximation method for fast magnetosonic wave propagation in tokamaks
International Nuclear Information System (INIS)
Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.
1985-07-01
Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters
Maximum principles for boundary-degenerate linear parabolic differential operators
Feehan, Paul M. N.
2013-01-01
We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...
Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
1995-12-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs
Arumugam, S.; Ramakrishna, P.; Sangavi, S.
2018-02-01
Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.
Chemopreventive properties of curcumin analogues ...
African Journals Online (AJOL)
Chemopreventive properties of curcumin analogues, ... These compounds .... using microscope with 400 × magnification. APC ... Figure 3: Microscopic images of rat colorectal tissue stained with APC rabbit polyclonal antibody with different.
Modeling, Simulation and Performance Evaluation of Parabolic Trough
African Journals Online (AJOL)
Mekuannint
Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...
A parabolic-hyperbolic system modelling a moving cell
Directory of Open Access Journals (Sweden)
Fabiana Cardetti
2009-08-01
Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.
Parabolic cyclinder functions : examples of error bounds for asymptotic expansions
R. Vidunas; N.M. Temme (Nico)
2002-01-01
textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
On the Schauder estimates of solutions to parabolic equations
International Nuclear Information System (INIS)
Han Qing
1998-01-01
This paper gives a priori estimates on asymptotic polynomials of solutions to parabolic differential equations at any points. This leads to a pointwise version of Schauder estimates. The result improves the classical Schauder estimates in a way that the estimates of solutions and their derivatives at one point depend on the coefficient and nonhomogeneous terms at this particular point
Modeling, Simulation and Performance Evaluation of Parabolic Trough
African Journals Online (AJOL)
Mekuannint
Heat Transfer Fluid (HTF); TRNSYS power plant model; STEC library; Solar Advisor Model (SAM);. TRNSYS solar field model; Solar Electric. Generation System (SEGS). INTRODUCTION. Parabolic troughs are currently most used means of power generation option of solar sources. Solar electric generation systems (SEGs) ...
Viscosity solutions of fully nonlinear functional parabolic PDE
Directory of Open Access Journals (Sweden)
Liu Wei-an
2005-01-01
Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.
Parabolic Trough Solar Power for Competitive U.S. Markets
International Nuclear Information System (INIS)
Price, Henry W.
1998-01-01
Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market
Attractors for a class of doubly nonlinear parabolic systems
Directory of Open Access Journals (Sweden)
Hamid El Ouardi
2006-03-01
Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.
A parabolic singular perturbation problem with an internal layer
Grasman, J.; Shih, S.D.
2004-01-01
A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner
On some perturbation techniques for quasi-linear parabolic equations
Directory of Open Access Journals (Sweden)
Igor Malyshev
1990-01-01
Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in explicit form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.
Stability test for a parabolic partial differential equation
Vajta, Miklos
2001-01-01
The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.
Almost periodic solutions to systems of parabolic equations
Directory of Open Access Journals (Sweden)
Janpou Nee
1994-01-01
Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.
The fundamental solutions for fractional evolution equations of parabolic type
Directory of Open Access Journals (Sweden)
Mahmoud M. El-Borai
2004-01-01
Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.
Rothe's method for parabolic equations on non-cylindrical domains
Czech Academy of Sciences Publication Activity Database
Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.
2006-01-01
Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics
Introduction to electronic analogue computers
Wass, C A A
1965-01-01
Introduction to Electronic Analogue Computers, Second Revised Edition is based on the ideas and experience of a group of workers at the Royal Aircraft Establishment, Farnborough, Hants. This edition is almost entirely the work of Mr. K. C. Garner, of the College of Aeronautics, Cranfield. As various advances have been made in the technology involving electronic analogue computers, this book presents discussions on the said progress, including some acquaintance with the capabilities of electronic circuits and equipment. This text also provides a mathematical background including simple differen
Characterization of a focusing parabolic guide using neutron radiography method
International Nuclear Information System (INIS)
Kardjilov, Nikolay; Boeni, Peter; Hilger, Andre; Strobl, Markus; Treimer, Wolfgang
2005-01-01
The aim of the investigation was to test the focusing properties of a new type of focusing neutron guide (trumpet) with parabolically shaped walls. The guide has a length of 431mm with an entrance area of 16x16mm 2 and an output area of 4x4mm 2 . The interior surfaces were coated with a supermirror-surface m=3 and due to their parabolic shape it was expected that an incident parallel beam can be focused in the focal point of the parabolas. To prove this statement the neutron intensity distribution at different distances behind the guide was recorded by means of a standard, high-resolution radiography detector. The experiments were performed at the V12b instrument at HMI with different levels of beam monochromatization demonstrating maximum intensity gains of about 25. The consideration for using the focusing guide for the purposes of cold neutron radiography will be presented
Shock wave convergence in water with parabolic wall boundaries
International Nuclear Information System (INIS)
Yanuka, D.; Shafer, D.; Krasik, Ya.
2015-01-01
The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger
Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Energy Technology Data Exchange (ETDEWEB)
Stynes, J. K.; Ihas, B.
2012-04-01
As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.
Laser propagation and compton scattering in parabolic plasma channel
Dongguo, L; Yokoya, K; Hirose, T
2003-01-01
A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)
Polarization properties of linearly polarized parabolic scaling Bessel beams
Energy Technology Data Exchange (ETDEWEB)
Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com
2016-10-07
The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.
Compressible stability of growing boundary layers using parabolized stability equations
Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.
1991-01-01
The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
Gordon, Jeffrey M.; Kashin, Peter
1994-01-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.
Integrated parabolic nanolenses on MicroLED color pixels
Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng
2018-04-01
A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.
Real-time optical laboratory solution of parabolic differential equations
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
Stability and instability of stationary solutions for sublinear parabolic equations
Kajikiya, Ryuji
2018-01-01
In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.
Theoretical Study of the Compound Parabolic Trough Solar Collector
Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen
2012-01-01
Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Analytic convergence of harmonic metrics for parabolic Higgs bundles
Kim, Semin; Wilkin, Graeme
2018-04-01
In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Design and Realisation of a Parabolic Solar Cooker
International Nuclear Information System (INIS)
Ouannene, M; Chaouachi, B; Gabsi, S
2009-01-01
The sun s energy is really powerful. Solar energy is renewable and it s free. We can use it to make electricity, to heat buildings and to cook. The field of cooking consumes many fossil fuels such as gas and wood. Million people cannot find enough gas and/or wood to cook, so using solar cookers is a good idea. During this work, we designed, built and studied a parabolic solar cooker. The characteristic equations and the experimental results are given
Real parabolic vector bundles over a real curve
Indian Academy of Sciences (India)
Abstract. We define real parabolic structures on real vector bundles over a real curve. Let (X,σX ) be a real curve, and let S ⊂ X be a non-empty finite subset of X such that σX (S) = S. Let N ≥ 2 be an integer. We construct an N-fold cyclic cover p : Y → X in the category of real curves, ramified precisely over each point of S, ...
Interior Gradient Estimates for Nonuniformly Parabolic Equations II
Directory of Open Access Journals (Sweden)
Lieberman Gary M
2007-01-01
Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.
Artificial neural networks approach on solar parabolic dish cooker
International Nuclear Information System (INIS)
Lokeswaran, S.; Eswaramoorthy, M.
2011-01-01
This paper presents heat transfer analysis of solar parabolic dish cooker using Artificial Neural Network (ANN). The objective of this study to envisage thermal performance parameters such as receiver plate and pot water temperatures of the solar parabolic dish cooker by using the ANN for experimental data. An experiment is conducted under two cases (1) cooker with plain receiver and (2) cooker with porous receiver. The Back Propagation (BP) algorithm is used to train and test networks and ANN predictions are compared with experimental results. Different network configurations are studied by the aid of searching a relatively better network for prediction. The results showed a good regression analysis with the correlation coefficients in the range of 0.9968-0.9992 and mean relative errors (MREs) in the range of 1.2586-4.0346% for the test data set. Thus ANN model can successfully be used for the prediction of the thermal performance parameters of parabolic dish cooker with reasonable degree of accuracy. (authors)
Humidification dehumidification desalination system using parabolic trough solar air collector
International Nuclear Information System (INIS)
Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.
2015-01-01
This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector
Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.; Erbes, M.
2011-03-01
A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.
Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology
International Nuclear Information System (INIS)
Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.
2015-01-01
We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)
Superconductive analogue of spin glasses
International Nuclear Information System (INIS)
Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.
1987-07-01
The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs
Causal structure of analogue spacetimes
International Nuclear Information System (INIS)
Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt
2004-01-01
The so-called 'analogue models of general relativity' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of perturbations in these condensed matter systems is described by 'effective metrics' that carry with them notions of 'causal structure' as determined by an exchange of quasi-particles. These quasi-particle-induced causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying analogue model is governed by its own specific physics, not necessarily by the Einstein equations.) In this paper we take a careful look at what can be said about the causal structure of analogue spacetimes, focusing on those containing quasi-particle horizons, both with a view to seeing what is different from standard general relativity, and what the similarities might be. For definiteness, and because the physics is particularly simple to understand, we will phrase much of the discussion in terms of acoustic disturbances in moving fluids, where the underlying physics is ordinary fluid mechanics, governed by the equations of traditional hydrodynamics, and the relevant quasi-particles are the phonons. It must however be emphasized that this choice of example is only for the sake of pedagogical simplicity and that our considerations apply generically to wide classes of analogue spacetimes
Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi
2018-05-01
This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.
International Nuclear Information System (INIS)
David Kearney; Hank Price
1999-01-01
Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop
Blasco, Julián.; Rico, Eloy; Genovard, Pablo; Sáez, Cristina; Navasquillo, Olga; Martí, Javier
2017-11-01
During past years, special efforts have been invested to develop optical links, both digital and analogue, for space applications, such as reference signal distribution or digital communication cables. The aim of this paper is to present the current DAS developments for these applications as well as future work to increase TRL levels and flight opportunities.
ESA parabolic flights, drop tower and centrifuge opportunities for university students
Callens, N; Ventura-Traveset, J.; de Lophem, T.L.; Lopez de Echazarreta, C.; Pletser, V.; van Loon, J.J.W.A
2011-01-01
"Fly Your Thesis!-An Astronaut Experience" is an educational programme launched by the ESA Education Office that aims to offer to European students the unique opportunity to design, build, and eventually fly, a scientific experiment as part of their Master or Ph.D. thesis. Selected teams accompany
ESA parabolic flights, drop tower and centrifuge opportunities for university students
Callens, N.; Ventura-Traveset, J.; de Lophem, T.L.; Lopez de Echazarreta, C.; Pletser, V.; van Loon, J.J.W.A.
2011-01-01
"Fly Your Thesis!—An Astronaut Experience" is an educational programme launched by the ESA Education Office that aims to offer to European students the unique opportunity to design, build, and eventually fly, a scientific experiment as part of their Master or Ph.D. thesis. Selected teams accompany
Buchen, B; Hejnowicz, Z; Braun, M; Sievers, A
1991-01-01
In-vivo videomicroscopy of Chara rhizoids under 10(-4)g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Numerical performance of the parabolized ADM (PADM) formulation of General Relativity
Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei
2007-01-01
In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...
On the behaviour of solutions of parabolic equations for large values of time
International Nuclear Information System (INIS)
Denisov, V N
2005-01-01
This paper is a survey of classical and new results on stabilization of solutions of the Cauchy problem and mixed problems for second-order linear parabolic equations. Proofs are given for some new results about exact sufficient conditions on the behaviour of lower-order coefficients of the parabolic equation; these conditions ensure stabilization of a solution of the Cauchy problem for the parabolic equation in the class of bounded or increasing initial functions
Status of natural analogue studies
International Nuclear Information System (INIS)
Sekine, Keiichi
1994-03-01
This report is based on the materials for the meeting at the Nuclear Safety Commission of Japan held on September 1993. Details are as follows: Alteration of glass as the study of alteration of natural minerals; alteration of uranium minerals, migration of uranium and thorium series radionuclides, alteration of chlorite, fixation of uranium alteration of minerals and migration of uranium as the study of alligator rivers analogue project held at Koongarra uranium deposit, Australia. (author)
A Systematic Approach to Higher-Order Parabolic Propagation in a Weakly Range-Dependent Duct
National Research Council Canada - National Science Library
Gragg, Robert F
2005-01-01
Energy-conserving transformations are exploited to split a monochromatic field in a weakly inhomogeneous waveguide into a pair of components that undergo uncoupled parabolic propagation in opposite...
On purpose simulation model for molten salt CSP parabolic trough
Caranese, Carlo; Matino, Francesca; Maccari, Augusto
2017-06-01
The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.
Processing of data from innovative parabolic strip telescope.
Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce
2015-12-01
This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.
Thermal behaviour of solar air heater with compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, Rene
2008-01-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%
Experimental studies on solar parabolic dish cooker with porous medium
International Nuclear Information System (INIS)
Lokeswaran, S.; Eswaramoorthy, M.
2012-01-01
The solar cooking is the alternate method of cooking to reduce consumptions of fossil fuels. An affordable, energy efficient solar cooking technology is much need due to the fossil fuels increasing cost and it is the hottest research topic in all over the world. This paper presents an experimental analysis of the heat transfer enhancement of solar parabolic dish cookers by a porous medium made of scrap material. Using the stagnation temperature test and water boiling test are conducted on the cooking vessel with and without porous medium. Experimental results are compared for both cases in terms of thermal performance, optical efficiency, heat loss factor and cooking power. (authors)
Theoretical Study of the Compound Parabolic Trough Solar Collector
Directory of Open Access Journals (Sweden)
Dr. Subhi S. Mahammed
2012-06-01
Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Overview of software development at the parabolic dish test site
Miyazono, C. K.
1985-01-01
The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.
Harnack's Inequality for Degenerate and Singular Parabolic Equations
DiBenedetto, Emmanuele; Vespri, Vincenzo
2012-01-01
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive
A compound parabolic concentrator as an ultracold neutron spectrometer
Energy Technology Data Exchange (ETDEWEB)
Hickerson, K.P., E-mail: hickerson@gmail.com; Filippone, B.W., E-mail: bradf@caltech.edu
2013-09-01
The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa{sup 2} creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment.
A compound parabolic concentrator as an ultracold neutron spectrometer
International Nuclear Information System (INIS)
Hickerson, K.P.; Filippone, B.W.
2013-01-01
The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa 2 creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.
2009-10-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
Analytic semigroups and optimal regularity in parabolic problems
Lunardi, Alessandra
2012-01-01
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.
2009-01-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
Tracking local control of a parabolic trough collector
International Nuclear Information System (INIS)
Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.
1992-01-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
Piecewise-parabolic methods for astrophysical fluid dynamics
International Nuclear Information System (INIS)
Woodward, P.R.
1983-01-01
A general description of some modern numerical techniques for the simulation of astrophysical fluid flow is presented. The methods are introduced with a thorough discussion of the especially simple case of advection. Attention is focused on the piecewise-parabolic method (PPM). A description of the SLIC method for treating multifluid problems is also given. The discussion is illustrated by a number of advection and hydrodynamics test problems. Finally, a study of Kelvin-Helmholtz instability of supersonic jets using PPM with SLIC fluid interfaces is presented
Shock unsteadiness in a thrust optimized parabolic nozzle
Verma, S. B.
2009-07-01
This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.
Experimental study on a parabolic concentrator assisted solar desalting system
International Nuclear Information System (INIS)
Arunkumar, T.; Denkenberger, David; Velraj, R.; Sathyamurthy, Ravishankar; Tanaka, Hiroshi; Vinothkumar, K.
2015-01-01
Highlights: • We optimized the augmentation of condense by enhanced desalination methodology. • Parabolic concentrator has been integrated with solar distillation systems. • We measured ambient together with solar radiation intensity. - Abstract: This paper presents a modification of parabolic concentrator (PC) – solar still with continuous water circulation using a storage tank to enhance the productivity. Four modes of operation were studied experimentally: (i) PC-solar still without top cover cooling; (ii) PC-solar still with top cover cooling, PC-solar still integrated with phase change material (PCM) without top cover cooling and PC-solar still integrated PCM with cooling. The experiments were carried out for the cooling water flow rates of 40 ml/min; 50 ml/min, 60 ml/min, 80 ml/min and 100 ml/min. Diurnal variations of water temperature (T_w), ambient air temperature (T_a), top cover temperature (T_o_c) and production rate are measured with frequent time intervals. Water cooling was not cost effective, but adding PCM was.
Classical behavior of few-electron parabolic quantum dots
International Nuclear Information System (INIS)
Ciftja, O.
2009-01-01
Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
A parabolic velocity-decomposition method for wind turbines
Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.
2017-02-01
An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.
Multi-parameter optimization design of parabolic trough solar receiver
International Nuclear Information System (INIS)
Guo, Jiangfeng; Huai, Xiulan
2016-01-01
Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The present paper deals with the long-time behavior of a class of nonautonomous retarded semilinear parabolic differential equations. When the time delays are small enough and the spectral gap conditions hold, the inertial manifolds of the nonautonomous retard parabolic equations are constructed by using the Lyapunov-Perron method.
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...
Some integral representations and limits for (products of) the parabolic cylinder function
Veestraeten, D.
2016-01-01
Recently, [Veestraeten D. On the inverse transform of Laplace transforms that contain (products of) the parabolic cylinder function. Integr Transf Spec F 2015;26:859-871] derived inverse Laplace transforms for Laplace transforms that contain products of two parabolic cylinder functions by exploiting
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Sun, Jiebao; Zhang, Dazhi; Wu, Boying
2011-01-01
We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Directory of Open Access Journals (Sweden)
Jiebao Sun
2011-01-01
parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
Spheroidal corrections to the spherical and parabolic bases of the hydrogen atom
International Nuclear Information System (INIS)
Mardyan, L.G.; Pogosyan, G.S.; Sisakyan, A.N.
1986-01-01
This paper introduces the bases of the hydrogen atom and obtains recursion relations that determine the expansion of the spheroidal basis with respect to its parabolic basis. The leading spheroidal corrections to the spherical and parabolic bases are calculated by perturbation theory
Well-posedness of nonlocal parabolic differential problems with dependent operators.
Ashyralyev, Allaberen; Hanalyev, Asker
2014-01-01
The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Natural and archaeological analogues: a review
International Nuclear Information System (INIS)
Brookins, D.G.
1987-01-01
In this chapter natural analogues in the geomedia for various aspects of radioactive waste disposal are discussed. Particular reference is made to the Okla Natural Reactor in Gabon. Igneous contact zones are discussed and natural analogues of waste-form materials. The importance of archaeological remains and anthropogenic materials left by man, in assessing weathering conditions and serving as radioactive waste analogues, is also emphasised. (UK)
The Valles natural analogue project
International Nuclear Information System (INIS)
Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.
1994-12-01
The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and 39 Ar/ 4O isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks
A laboratory analogue of the event horizon using slow light in an atomic medium.
Leonhardt, Ulf
2002-01-24
Singularities underlie many optical phenomena. The rainbow, for example, involves a particular type of singularity-a ray catastrophe-in which light rays become infinitely intense. In practice, the wave nature of light resolves these infinities, producing interference patterns. At the event horizon of a black hole, time stands still and waves oscillate with infinitely small wavelengths. However, the quantum nature of light results in evasion of the catastrophe and the emission of Hawking radiation. Here I report a theoretical laboratory analogue of an event horizon: a parabolic profile of the group velocity of light brought to a standstill in an atomic medium can cause a wave singularity similar to that associated with black holes. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum, a phenomenon related to Hawking radiation. The idea may initiate a theory of 'quantum' catastrophes, extending classical catastrophe theory.
Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors
Directory of Open Access Journals (Sweden)
F. Francini
2012-01-01
Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.
MEP parabolic hydrodynamical model for holes in silicon semiconductors
International Nuclear Information System (INIS)
Mascali, G.; Romano, V.; Sellier, J. M.
2005-01-01
Consistent hydrodynamical models for electron transport in semi-conductors, free of any fitting parameter, have been formulated on the basis of the maximum entropy principle in Continuum Mech. Thermodyn., 11 (1999) 307, 12 (2000) 31 for silicon and in Continuum Mech. Thermodyn., 14 (2002) 405 for GaAs. In this paper we use the same approach for studying the hole transport in Si, by considering a parabolic approximation for the valence energy band. Scattering of holes with non-polar optical phonons, acoustic phonons and impurities have been taken into account. On the basis of these results, a limiting energy-transport model and an explicit expression for the low field hole mobility have been obtained. The high field mobility is also analyzed by taking into account the influence of impurities
Approximation of entropy solutions to degenerate nonlinear parabolic equations
Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu
2017-12-01
We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
An upwind algorithm for the parabolized Navier-Stokes equations
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1986-01-01
A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method does not require the addition of user specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming scheme in terms of accuracy, stability, computer time and storage, and programming effort. The new algorithm has been validated by applying it to three laminar test cases including flat plate boundary-layer flow, hypersonic flow past a 15 deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with the results obtained using the conventional Beam-Warming algorithm.
Weyl states and Fermi arcs in parabolic bands
Doria, Mauro M.; Perali, Andrea
2017-07-01
Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.
A priori estimates of global solutions of superlinear parabolic systems
Directory of Open Access Journals (Sweden)
Julius Pacuta
2016-04-01
Full Text Available We consider the parabolic system $ u_{t}-\\Delta u = u^{r}v^{p}$, $v_{t}-\\Delta v = u^{q}v^{s}$ in $\\Omega\\times(0,\\infty$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v(\\cdot,0 = (u_{0},v_{0}$ in $\\Omega$, where $\\Omega $ is a smooth bounded domain in $ \\mathbb{R}^{N} $ and $ u_{0},v_{0}\\in L^{\\infty}(\\Omega$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel.
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Mechhoud, Sarra
2016-01-01
In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
Darboux transformations and linear parabolic partial differential equations
International Nuclear Information System (INIS)
Arrigo, Daniel J.; Hickling, Fred
2002-01-01
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-05-13
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.
Test results, Industrial Solar Technology parabolic trough solar collector
Energy Technology Data Exchange (ETDEWEB)
Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)
1995-11-01
Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed
2015-07-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.
Solar water disinfecting system using compound parabolic concentrating collector
Energy Technology Data Exchange (ETDEWEB)
El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)
2000-05-31
Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential
Directory of Open Access Journals (Sweden)
K. Atifi
2017-01-01
Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.
Fifth parabolic dish solar thermal power program annual review: proceedings
Energy Technology Data Exchange (ETDEWEB)
None
1984-03-01
The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Development status of the PDC-1 Parabolic Dish Concentrator
Thostesen, T.; Soczak, I. F.; Pons, R. L.
1982-01-01
The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.
An experimental study of thermal characterization of parabolic trough receivers
International Nuclear Information System (INIS)
Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin
2013-01-01
Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed
CO2 Capture with Enzyme Synthetic Analogue
Energy Technology Data Exchange (ETDEWEB)
Cordatos, Harry
2010-11-08
Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.
Synthesis and anticancer evaluation of spermatinamine analogues
Moosa, Basem; Sagar, Sunil; Li, Song; Esau, Luke; Kaur, Mandeep; Khashab, Niveen M.
2016-01-01
analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell
A compact representation of drawing movements with sequences of parabolic primitives.
Directory of Open Access Journals (Sweden)
Felix Polyakov
2009-07-01
Full Text Available Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words" of a small number of elementary parabolic primitives ("letters". A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non
Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.
Ries, H; Spirkl, W
1996-05-01
For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.
Canonical generators of the cohomology of moduli of parabolic bundles on curves
International Nuclear Information System (INIS)
Biswas, I.; Raghavendra, N.
1994-11-01
We determine generators of the rational cohomology algebras of moduli spaces of parabolic vector bundles on a curve, under some 'primality' conditions on the parabolic datum. These generators are canonical in a precise sense. Our results are new even for usual vector bundles (i.e., vector bundles without parabolic structure) whose rank is greater than 2 and is coprime to the degree; in this case, they are generalizations of a theorem of Newstead on the moduli of vector bundles of rank 2 and odd degree. (author). 11 refs
Identifying the principal coefficient of parabolic equations with non-divergent form
International Nuclear Information System (INIS)
Jiang, L S; Bian, B J
2005-01-01
We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well
Identifying the principal coefficient of parabolic equations with non-divergent form
Jiang, L. S.; Bian, B. J.
2005-01-01
We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.
Synthesis and biological evaluation of febrifugine analogues.
Mai, Huong Doan Thi; Thanh, Giang Vo; Tran, Van Hieu; Vu, Van Nam; Vu, Van Loi; Le, Cong Vinh; Nguyen, Thuy Linh; Phi, Thi Dao; Truong, Bich Ngan; Chau, Van Minh; Pham, Van Cuong
2014-12-01
A series of febrifugine analogues were designed and synthesized. Antimalarial activity evaluation of the synthetic compounds indicated that these derivatives had a strong inhibition against both chloroquine-sensitive and -resistant Plasmodium falciparum parasites. Many of them were found to be more active than febrifugine hydrochloride. The tested analogues had also a significant cytotoxicity against four cancer cell lines (KB, MCF7, LU1 and HepG2). Among the synthetic analogues, two compounds 17b and 17h displayed a moderate cytotoxicity while they exhibited a remarkable antimalarial activity.
Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector
Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem
2017-01-01
This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.; Kim, I.; Lee, H.; Sheen, D.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely
Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003
Energy Technology Data Exchange (ETDEWEB)
Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.
2008-05-01
Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-01-01
Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.
Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2016-01-01
This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature
Sound field computations in the Bay of Bengal using parabolic equation method
Digital Repository Service at National Institute of Oceanography (India)
Navelkar, G.S.; Somayajulu, Y.K.; Murty, C.S.
Effect of the cold core eddy in the Bay of Bengal on acoustic propagation was analysed by parabolic equation (PE) method. Source depth, frequency and propagation range considered respectively for the two numerical experiments are 150 m, 400 Hz, 650...
On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problems
International Nuclear Information System (INIS)
Diaz, J. I.; Henry, J.; Ramos, A. M.
1998-01-01
We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem
International Nuclear Information System (INIS)
Pokotilovskij, Yu.N.
1999-01-01
The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method
American lookback option with fixed strike price—2-D parabolic variational inequality
Chen, Xiaoshan; Yi, Fahuai; Wang, Lihe
In this paper we study a 2-dimensional parabolic variational inequality with financial background. We define a suitable weak formula and obtain existence and uniqueness of the problem. Moreover we analyze the behaviors of the free boundary surface.
Antimicrobial Activity of Resveratrol Analogues
Directory of Open Access Journals (Sweden)
Malik Chalal
2014-06-01
Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the
Use of a Parabolic Microphone to Detect Hidden Subjects in Search and Rescue.
Bowditch, Nathaniel L; Searing, Stanley K; Thomas, Jeffrey A; Thompson, Peggy K; Tubis, Jacqueline N; Bowditch, Sylvia P
2018-03-01
This study compares a parabolic microphone to unaided hearing in detecting and comprehending hidden callers at ranges of 322 to 2510 m. Eight subjects were placed 322 to 2510 m away from a central listening point. The subjects were concealed, and their calling volume was calibrated. In random order, subjects were asked to call the name of a state for 5 minutes. Listeners with parabolic microphones and others with unaided hearing recorded the direction of the call (detection) and name of the state (comprehension). The parabolic microphone was superior to unaided hearing in both detecting subjects and comprehending their calls, with an effect size (Cohen's d) of 1.58 for detection and 1.55 for comprehension. For each of the 8 hidden subjects, there were 24 detection attempts with the parabolic microphone and 54 to 60 attempts by unaided listeners. At the longer distances (1529-2510 m), the parabolic microphone was better at detecting callers (83% vs 51%; P<0.00001 by χ 2 ) and comprehension (57% vs 12%; P<0.00001). At the shorter distances (322-1190 m), the parabolic microphone offered advantages in detection (100% vs 83%; P=0.000023) and comprehension (86% vs 51%; P<0.00001), although not as pronounced as at the longer distances. Use of a 66-cm (26-inch) parabolic microphone significantly improved detection and comprehension of hidden calling subjects at distances between 322 and 2510 m when compared with unaided hearing. This study supports the use of a parabolic microphone in search and rescue to locate responsive subjects in favorable weather and terrain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling mode interactions in boundary layer flows via the Parabolized Floquet Equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanović, Mihailo R.
2017-01-01
In this paper, we develop a linear model to study interactions between different modes in slowly-growing boundary layer flows. Our method consists of two steps. First, we augment the Blasius boundary layer profile with a disturbance field resulting from the linear Parabolized Stability Equations (PSE) to obtain the modified base flow; and, second, we combine Floquet analysis with the linear PSE to capture the spatial evolution of flow fluctuations. This procedure yields the Parabolized Floque...
Stability in terms of two measures for a class of semilinear impulsive parabolic equations
International Nuclear Information System (INIS)
Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I
2013-01-01
The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.
Effects of an electric field on the confined hydrogen atom in a parabolic potential well
International Nuclear Information System (INIS)
Xie Wenfang
2009-01-01
Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.
Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management
Koleva, M. N.
2011-11-01
In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.
A note on Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
2000-01-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E' = E-vertical bar M-barbackslashD compatible with the parabolic structure, and whose curvature is square integrable. (author)
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Energy Technology Data Exchange (ETDEWEB)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Full parabolic trough qualification from prototype to demonstration loop
Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark
2017-06-01
On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.
Efficient solution of parabolic equations by Krylov approximation methods
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
Improved algorithm for solving nonlinear parabolized stability equations
Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng
2016-08-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).
Upwind algorithm for the parabolized Navier-Stokes equations
Lawrence, Scott L.; Tannehill, John C.; Chausee, Denny S.
1989-01-01
A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes equations. This method does not require the addition of user-specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming (1978) scheme in terms of accuracy, stability, computer time and storage requirements, and programming effort. The new algorithm has been validated by applying it to three laminar test cases, including flat-plate boundary-layer flow, hypersonic flow past a 15-deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with results obtained using the conventional Beam-Warming algorithm.
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul
2016-01-01
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Development of compound parabolic concentrators for solar energy
Energy Technology Data Exchange (ETDEWEB)
O' Gallagher, J.; Winston, R.
1983-10-01
The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.
Parabolic heavy ion flow in the polar magnetosphere
International Nuclear Information System (INIS)
Horwitz, J.L.
1987-01-01
Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2015-01-07
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2016-01-06
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Improved algorithm for solving nonlinear parabolized stability equations
International Nuclear Information System (INIS)
Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng
2016-01-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)
Control concepts for direct steam generation in parabolic troughs
Energy Technology Data Exchange (ETDEWEB)
Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)
2005-02-01
A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)
Mechanical design of a low cost parabolic solar dish concentrator
Directory of Open Access Journals (Sweden)
Hamza Hijazi
2016-03-01
Full Text Available The objective of this research was to design a low cost parabolic solar dish concentrator with small-to moderate size for direct electricity generation. Such model can be installed in rural areas which are not connected to governmental grid. Three diameters of the dish; 5, 10 and 20 m are investigated and the focal point to dish diameter ratio is set to be 0.3 in all studied cases. Special attention is given to the selection of the appropriate dimensions of the reflecting surfaces to be cut from the available sheets in the market aiming to reduce both cutting cost and sheets cost. The dimensions of the ribs and rings which support the reflecting surface are optimized in order to minimize the entire weight of the dish while providing the minimum possible total deflection and stresses in the beams. The study applies full stress analysis of the frame of the dish using Autodesk Inventor. The study recommends to use landscape orientation for the reflective facets and increase the ribs angle and the distance between the connecting rings. The methodology presented is robust and can be extended to larger dish diameters.
Rethinking of the criteria for natural analogue study. A case of Tono natural analogue study
International Nuclear Information System (INIS)
Yoshida, Hidekazu
1996-01-01
Natural analogue regarding long-term performance of the geological disposal system for radioactive waste isolation is essentially the study of geochemical process which has been evolved in geological environment. All geochemical studies, however, will not be nominated as natural analogue studies. It is, therefore, important to be clear the criteria for natural analogue study with the view of analogy by following three categories, (1) Conceptual model development, (2) Data provision and (3) Model testing, for the concept of geological disposal and safety assessment model. Rethinking of the criteria for natural analogue study through the case of Tono Natural Analogue Study, and the usefulness of natural analogue study for the safety assessment of geological disposal system in Japan have been presented in this paper. (author)
Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.
Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Directory of Open Access Journals (Sweden)
Y. S. Kong
2013-01-01
Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene
2011-10-01
The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.
International video project on natural analogues
International Nuclear Information System (INIS)
Guentensperger, Marcel
1993-01-01
A natural analogue can be defined as a natural process which has occurred in the past and is studied in order to test predictions about the future evolution of similar processes. In recent years, natural analogues have been used increasingly to test the mathematical models required for repository performance assessment. Analogues are, however, also of considerable use in public relations as they allow many of the principles involved in demonstrating repository safety to be illustrated in a clear manner using natural systems with which man is familiar. The international Natural Analogue Working Group (NAWG), organised under the auspices of the CEC, has recognised that such PR applications are of considerable importance and should be supported from a technical level. At the NAWG meeting in Pitlochry, Scotland (June 1990), it was recommended that the possibilities for making a video film on this topic be investigated and Nagra was requested to take the lead role in setting up such a project
Natural analogues and radionuclide transport model validation
International Nuclear Information System (INIS)
Lever, D.A.
1987-08-01
In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)
The Planetary Terrestrial Analogues Library (PTAL)
Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team
2018-04-01
The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.
Optimising position control of a solar parabolic trough
Directory of Open Access Journals (Sweden)
Puramanathan Naidoo
2011-03-01
Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.
Use of solar parabolic cookers (SK-14) in Nepal
Energy Technology Data Exchange (ETDEWEB)
Shrestha, S. [Asia Network for Small Scale Bioresources, Kathmandu (Nepal)
2000-07-01
Solar Cooker is a device that uses only sunlight to cook food and pasteurise water. Solar cooker can be used along with other cooking devices to save cost, fuel and the time spent in gathering fuelwood. Solar cooking enables individual families to do without commercially sold fuel and help save money. In Nepal, supply of energy is one of the major problems for both urban and rural households. Increase in population, high migration, expensive fuel bills, environmental degradation, and unsafe drinking water have resulted in the keen interest from people of Nepal in the use of solar energy. The increasing number of tourists and trekkers are now one of the major sources of income and many people are engaged in running hotels, lodges, and restaurants. This has also increased the fuel demand. This paper highlights the current energy situation of Nepal, the technical details of solar parabolic cooker (SK-14), its uses throughout Nepal, strategies adopted by various organisations for its promotion. A lot of effort have been made by various organisations, educational, governmental and health related institutions in order to introduce solar cooking programs in villages of Nepal. The parameters, which have influenced the adoption of this technology in Nepal are also mentioned. Various awareness programs and the government subsidy program are playing considerable role in dissemination of such technologies. The promotion activities with the objective of mass awareness have long term effect and sustainable rather than instant business. Continued efforts to create awareness, development of models as well as proper promotion and dissemination are required. (au)
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Performance and durability testing of parabolic trough receivers
Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan
2017-06-01
The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.
Between Analogue and Digital Diagrams
Directory of Open Access Journals (Sweden)
Zoltan Bun
2012-10-01
Full Text Available This essay is about the interstitial. About how the diagram, as a method of design, has lead fromthe analogue deconstruction of the eighties to the digital processes of the turn of the millennium.Specifically, the main topic of the text is the interpretation and the critique of folding (as a diagramin the beginning of the nineties. It is necessary then to unfold its relationship with immediatelypreceding and following architectural trends, that is to say we have to look both backwards andforwards by about a decade. The question is the context of folding, the exchange of the analogueworld for the digital. To understand the process it is easier to investigate from the fields of artand culture, rather than from the intentionally perplicated1 thoughts of Gilles Deleuze. Both fieldsare relevant here because they can similarly be used as the yardstick against which the era itselfit measured. The cultural scene of the eighties and nineties, including performing arts, movies,literature and philosophy, is a wide milieu of architecture. Architecture responds parallel to itsera; it reacts to it, and changes with it and within it. Architecture is a medium, it has always beena medium, yet the relations are transformed. That’s not to say that technical progress, for exampleusing CAD-software and CNC-s, has led to the digital thinking of certain movements ofarchitecture, (it is at most an indirect tool. But the ‘up-to-dateness’ of the discipline, however,a kind of non-servile reading of an ‘applied culture’ or ‘used philosophy’2 could be the key.(We might recall here, parenthetically, the fortunes of the artistic in contemporary mass society.The proliferation of museums, the magnification of the figure of the artist, the existence of amassive consumption of printed and televised artistic images, the widespread appetite for informationabout the arts, all reflect, of course, an increasingly leisured society, but also relateprecisely to the fact
Computer aided FEA simulation of EN45A parabolic leaf spring
Directory of Open Access Journals (Sweden)
Krishan Kumar
2013-04-01
Full Text Available This paper describes computer aided finite element analysis of parabolic leaf spring. The present work is an improvement in design of EN45A parabolic leaf spring used by a light commercial automotive vehicle. Development of a leaf spring is a long process which requires lots of test to validate the design and manufacturing variables. A three-layer parabolic leaf spring of EN45A has been taken for this work. The thickness of leaves varies from center to the outer side following a parabolic pattern. These leaf springs are designed to become lighter, but also provide a much improved ride to the vehicle through a reduction on interleaf friction. The CAD modeling of parabolic leaf spring has been done in CATIA V5 and for analysis the model is imported in ANSYS-11 workbench. The finite element analysis (FEA of the leaf spring has been carried out by initially discretizing the model into finite number of elements and nodes and then applying the necessary boundary conditions. Maximum displacement, directional displacement, equivalent stress and weight of the assembly are the output targets of this analysis for comparison & validation of the work.
Insulin analogues with improved absorption characteristics.
Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R
1992-01-01
The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.
Synthesis and anticancer evaluation of spermatinamine analogues
Moosa, Basem
2016-02-04
Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.
Yan, Na; Baas, Andreas
2015-04-01
Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation
International Nuclear Information System (INIS)
Beauchard, K; Cannarsa, P; Yamamoto, M
2014-01-01
The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators of interest to this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse source problems for such operators, with locally distributed measurements in an arbitrary space dimension. For this purpose, we follow a mixed strategy which combines the approach due to Lebeau and Robbiano, relying on Fourier decomposition and Carleman inequalities for heat equations with non-smooth coefficients (solved by the Fourier modes). As a corollary, we obtain a direct proof of the observability of multidimensional Grushin-type parabolic equations, with locally distributed observations—which is equivalent to null controllability with locally distributed controls. (paper)
Some blow-up problems for a semilinear parabolic equation with a potential
Cheng, Ting; Zheng, Gao-Feng
The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].
International Nuclear Information System (INIS)
Budantsev, M. V.; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A.
2011-01-01
Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.
Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model
Directory of Open Access Journals (Sweden)
Xiao-Wei Guan
2018-01-01
Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.
International Nuclear Information System (INIS)
Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.
2006-01-01
Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists
A gradient estimate for solutions to parabolic equations with discontinuous coefficients
Directory of Open Access Journals (Sweden)
Jishan Fan
2013-04-01
Full Text Available Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. That is, we gave a gradient estimate for parabolic equations of divergence forms with piecewise smooth coefficients. The coefficients are assumed to be independent of time and their discontinuities are likewise the previous elliptic equations. As an application of this estimate, we also gave a pointwise gradient estimate for the fundamental solution of a parabolic operator with piecewise smooth coefficients. Both gradient estimates are independent of the distances between manifolds of discontinuities.
Wind load design methods for ground-based heliostats and parabolic dish collectors
Energy Technology Data Exchange (ETDEWEB)
Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.
1992-09-01
The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.
International Nuclear Information System (INIS)
Izuani Che Rosid, N A; Ahmadi, M T; Ismail, Razali
2016-01-01
The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. (paper)
Irreversible thermodynamics, parabolic law and self-similar state in grain growth
International Nuclear Information System (INIS)
Rios, P.R.
2004-01-01
The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery
Girardi, James D.; Davis, Dan M.
2010-02-01
Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.
State selective reactions of cosmic dust analogues at cryogenic temperatures
International Nuclear Information System (INIS)
Perry, James Samuel Anthony
2001-01-01
Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)
Analogue alternative the electronic analogue computer in Britain and the USA, 1930-1975
Small, James S
2013-01-01
We are in the midst of a digital revolution - until recently, the majority of appliances used in everyday life have been developed with analogue technology. Now, either at home or out and about, we are surrounded by digital technology such as digital 'film', audio systems, computers and telephones. From the late 1940s until the 1970s, analogue technology was a genuine alternative to digital, and the two competing technologies ran parallel with each other. During this period, a community of engineers, scientists, academics and businessmen continued to develop and promote the analogue computer.
Analogue particle identifier and test unit for automatic measuring of errors
International Nuclear Information System (INIS)
Boden, A.; Lauch, J.
1979-04-01
A high accuracy analogue particle identifier is described. The unit is used for particle identification or data correction of experimental based errors in magnetic spectrometers. Signals which are proportional to the energy, the time-of-flight or the position of absorption of the particles are supplied to an analogue computation circuit (multifunction converter). Three computation functions are available for different applications. The output of the identifier produces correction signals or pulses whose amplitudes are proportional to the mass of the particles. Particle identification and data correction can be optimized by the adjustment of variable parameters. An automatic test unit has been developed for adjustment and routine checking of particle identifiers. The computation functions can be tested by this unit with an accuracy of 1%. (orig.) [de
Distribution-valued weak solutions to a parabolic problem arising in financial mathematics
Directory of Open Access Journals (Sweden)
Michael Eydenberg
2009-07-01
Full Text Available We study distribution-valued solutions to a parabolic problem that arises from a model of the Black-Scholes equation in option pricing. We give a minor generalization of known existence and uniqueness results for solutions in bounded domains $Omega subset mathbb{R}^{n+1}$ to give existence of solutions for certain classes of distributions $fin mathcal{D}'(Omega$. We also study growth conditions for smooth solutions of certain parabolic equations on $mathbb{R}^nimes (0,T$ that have initial values in the space of distributions.
Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity
International Nuclear Information System (INIS)
Leiler, Gregor; Rezzolla, Luciano
2006-01-01
The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion
Integration of equations of parabolic type by the method of nets
Saul'Yev, V K; Stark, M; Ulam, S
1964-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff
Finite element simulation of cracks formation in parabolic flume above fixed service live
Bandurin, M. A.; Volosukhin, V. A.; Mikheev, A. V.; Volosukhin, Y. V.; Bandurina, I. P.
2018-03-01
In the article, digital simulation data on influence of defect different characteristics on cracks formation in a parabolic flume are presented. The finite element method is based on general hypotheses of the theory of elasticity. The studies showed that the values of absolute movements satisfy the standards of design. The results of the digital simulation of stresses and strains for cracks formation in concrete parabolic flumes after long-term service above the fixed service life are described. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks in reinforced concrete elements is determined.
International Nuclear Information System (INIS)
Dehghan, Mehdi; Tatari, Mehdi
2008-01-01
In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases
Binding energy of impurity states in an inverse parabolic quantum well under magnetic field
International Nuclear Information System (INIS)
Kasapoglu, E.; Sari, H.; Soekmen, I.
2007-01-01
We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions
Thermal analysis of a compound parabolic concentrator for refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100
Prussian Blue Analogues of Reduced Dimensionality
Gengler, Regis Y. N.; Toma, Luminita M.; Pardo, Emilio; Lloret, Francesc; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Gournis, Dimitrios; Rudolf, Petra
2012-01-01
Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While
The Palmottu analogue project: overview for 1993
International Nuclear Information System (INIS)
Ruskeeniemi, T.; Blomqvist, R.; Suksi, J.; Niini, H.
1994-01-01
This article gives a summary of the activities carried out within the Palmottu analogue project in 1993. It consists of (1) an introductory part, followed by (2) a geological description of the site, and (3)an up-to-date summary of the results of the project. (orig.) (33 refs., 6 figs.)
Somatostatin analogue scintigraphy and tuberculosis: case report
International Nuclear Information System (INIS)
Biancheri, I.; Rudenko, B.; Vautrin, P.; Raddoul, J.; Lamfichek, N.; Kantelip, B.; Mantion, G.
2005-01-01
Scintigraphy using a radiolabelled somatostatin analogue (111 In-pentetreotide) is useful in the detection of neuroendocrine tumors. But this radiopharmaceutical accumulates also in solid tumours or in inflammatory diseases such as granulomatosis. We present a case of 111 In-pentetreotide uptake in a tuberculous adenopathy. (author)
Analogue computer display of accelerator beam optics
International Nuclear Information System (INIS)
Brand, K.
1984-01-01
Analogue computers have been used years ago by several authors for the design of magnetic beam handling systems. At Bochum a small analogue/hybrid computer was combined with a particular analogue expansion and logic control unit for beam transport work. This apparatus was very successful in the design and setup of the beam handling system of the tandem accelerator. The center of the stripper canal was the object point for the calculations, instead of the high energy acceleration tube a drift length was inserted into the program neglecting the weak focusing action of the tube. In the course of the installation of a second injector for heavy ions it became necessary to do better calculations. A simple method was found to represent accelerating sections on the computer and a particular way to simulate thin lenses was adopted. The analogue computer system proved its usefulness in the design and in studies of the characteristics of different accelerator installations over many years. The results of the calculations are in very good agreement with real accelerator data. The apparatus is the ideal tool to demonstrate beam optics to students and accelerator operators since the effect of a change of any of the parameters is immediately visible on the oscilloscope
Scintigraphy with labelled analogues of the somatostatin
International Nuclear Information System (INIS)
Duet, M.; Ajzenberg, C.; Warnet, A.; Mundler, O.
1998-01-01
The receptors of the somatostatin have been localized in a big number of tumors, whom a great number are neuro-endocrine tumors. However, some tumors that have not this differentiation (breast cancer, lymphomas, cerebral tumors) possess them as well. Analogues of somatostatin, labelled with isotopes having a gamma emission, allow from now their detection in vivo. (N.C.)
Ultrasound exfoliation of inorganic analogues of graphene
Czech Academy of Sciences Publication Activity Database
Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra
2014-01-01
Roč. 9, APR (2014), s. 1-14 ISSN 1556-276X R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * Graphene inorganic analogues Subject RIV: CA - Inorganic Chemistry Impact factor: 2.779, year: 2014
MARSI: metabolite analogues for rational strain improvement
DEFF Research Database (Denmark)
Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian
2018-01-01
reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...
Energy Technology Data Exchange (ETDEWEB)
Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica
1990-12-31
This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.
A novel lunar bed rest analogue.
Cavanagh, Peter R; Rice, Andrea J; Licata, Angelo A; Kuklis, Matthew M; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Hanson, Andrea M
2013-11-01
Humans will eventually return to the Moon and thus there is a need for a ground-based analogue to enable the study of physiological adaptations to lunar gravity. An important unanswered question is whether or not living on the lunar surface will provide adequate loading of the musculoskeletal system to prevent or attenuate the bone loss that is seen in microgravity. Previous simulations have involved tilting subjects to an approximately 9.5 degrees angle to achieve a lunar gravity component parallel to the long-axis of the body. However, subjects in these earlier simulations were not weight-bearing, and thus these protocols did not provide an analogue for load on the musculoskeletal system. We present a novel analogue which includes the capability to simulate standing and sitting in a lunar loading environment. A bed oriented at a 9.5 degrees angle was mounted on six linear bearings and was free to travel with one degree of freedom along rails. This allowed approximately 1/6 body weight loading of the feet during standing. "Lunar" sitting was also successfully simulated. A feasibility study demonstrated that the analogue was tolerated by subjects for 6 d of continuous bed rest and that the reaction forces at the feet during periods of standing were a reasonable simulation of lunar standing. During the 6 d, mean change in the volume of the quadriceps muscles was -1.6% +/- 1.7%. The proposed analogue would appear to be an acceptable simulation of lunar gravity and deserves further exploration in studies of longer duration.
Cephalostatin analogues--synthesis and biological activity.
Flessner, Timo; Jautelat, Rolf; Scholz, Ulrich; Winterfeldt, Ekkehard
2004-01-01
Starting off in the early 90's the field of cephalostatin analogues has continually expanded over the last 10 years. First syntheses prepared symmetric analogues like 14b (119) and 26 (65), which were subsequently desymmetrized to provide analogues like beta-hydroxy ketone 31 (19). Importantly the straightforward approach provided already compounds with mu-molar potency and the same pattern of activity as cephalostatin 1 (1) (see Chapter 2.1). Chemically more demanding, two new methods for the directed synthesis of (bissteroidal) pyrazines were devised and subsequently applied to a wide variety of differently functionalized coupling partners. These new methods allowed for the synthesis of various analogues (Chapter 2.2.; and, last but not least, for the totals synthesis of several cephalostatin natural products; Chapter 1.). Functionalization and derivatization of the 12-position was performed (Chapter 2.1 and 3) and synthetic approaches to establish the D-ring double bond were successfully investigated (Chapter 3). [figure: see text] Dealing synthetically with the spiroketal moiety, novel oxidative opening procedures on monomeric delta 14, 15-steroids were devised as well as intensive studies regarding spiroketal synthesis and spiroketal rearrangements were conducted (Chapter 3.2. and 4.). Last but not least direct chemical modification of ritterazines and cephalostatins were studied, which provided a limited number of ritterazine analogues (Chapter 4.). All these synthetic activities towards analogues are summarized in Fig. 18. During this period of time the growing number of cephalostatins and ritterazines on the one hand and of analogues on the other hand provided several SAR trends, which can guide future analogue synthesis. The combined SAR findings are displayed in Fig. 19. So far it is apparent that: Additional methoxylations or hydroxylations in the steroidal A ring core structure (1-position) are slightly decreasing activity (compare cephalostatin 1 1 to
International Nuclear Information System (INIS)
Uko, L.U.
1990-02-01
We study a scheme for the time-discretization of parabolic variational inequalities that is often easier to use than the classical method of Rothe. We show that if the data are compatible in a certain sense, then this scheme is of order ≥1/2. (author). 10 refs
Radu, F.A.; Pop, I.S.; Knabner, P.; Bermúdez de Castro, A.; Gómez, D.; Quintela, P.; Salgado, P.
2006-01-01
In this paper we discuss some iterative approaches for solving the nonlinear algebraic systems encountered as fully discrete counterparts of some degenerate (fast diffusion) parabolic problems. After regularization, we combine a mixed finite element discretization with the Euler implicit scheme. For
a numerical analysis of the energy behavior of a parabolic trough ...
African Journals Online (AJOL)
M. Ghodbane
A computer program was developed in Matlab after discretization equations. For the calculation of energy balance was asks these assumptions: The heat transfer fluid is incompressible;. The parabolic shape is symmetrical;. The ambient temperature around the concentrator is uniform;. The effect of the shadow of ...
Time-optimal control of infinite order distributed parabolic systems involving time lags
Directory of Open Access Journals (Sweden)
G.M. Bahaa
2014-06-01
Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.
Ashyralyev, Allaberen; Cakir, Zafer
2016-08-01
In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.
A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators
Directory of Open Access Journals (Sweden)
Ngoc Hai Vu
2016-08-01
Full Text Available We present a cost-effective concentrating photovoltaic system composed of a prism and a compound parabolic concentrator (P-CPC. In this approach, the primary collector consists of a prism, a solid compound parabolic concentrator (CPC, and a slab waveguide. The prism, which is placed on the input aperture of CPC, directs the incoming sunlight beam to be parallel with the main axes of parabolic rims of CPC. Then, the sunlight is reflected at the parabolic rims and concentrated at the focal point of these parabolas. A slab waveguide is coupled at the output aperture of the CPC to collect focused sunlight beams and to guide them to the solar cell. The optical system was modeled and simulated with commercial ray tracing software (LightTools™. Simulation results show that the optical efficiency of a P-CPC can achieve up to 89%. when the concentration ratio of the P-CPC is fixed at 50. We also determine an optimal geometric structure of P-CPC based on simulation. Because of the simplicity of the P-CPC structure, a lower-cost mass production process is possible. A simulation based on optimal structure of P-CPC was performed and the results also shown that P-CPC has high angular tolerance for input sunlight. The high tolerance of the input angle of sunlight allows P-CPC solar concentrator utilize a single sun tracking system instead of a highly precise dual suntracking system as cost effective solution.
International Nuclear Information System (INIS)
Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang
2016-01-01
Highlights: • A parabolic primary mirror field is designed to reduce the gap between adjacent mirrors. • The movable receiver can reduce the end losses. • The thermal efficiency of 66% is achieved at Guangzhou in winter. - Abstract: This paper proposes a stretched parabolic linear Fresnel reflector (SPLFR) collecting system. The primary optical mirror field of the SPLFR collecting system and the second-stage concentrator of compound parabolic collector are designed. The mirrors located at the parabolic line are close to each other, which effectively reduce the gap between the adjacent mirrors. The end losses of the receiver are very important, especially in a small-scale collecting system. A movable receiver is introduced for the reduction of the end losses. Moreover, a stretched structure of SPLFR is designed for wind resistance. Finally, the thermal performance of the SPLFR collecting system with fixed and movable receiver located in Guangzhou is tested. The maximum thermal efficiency obtained by this collecting system with movable receiver is 66% which avoid the end losses effectively, and the solar collector thermal loss coefficient is 1.32 W/m"2 °C. The results show that the SPLFR collecting system has excellent thermal performance and a promising application future. Meanwhile, this system will provide a valuable reference for concentrating solar power technology.
On a non classical oblique derivative problem for parabolic singular integro-differential operators
International Nuclear Information System (INIS)
Nguyen Minh Chuong; Le Quang Trung
1989-10-01
In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs
On the Ext algebras of parabolic Verma modules and A infinity-structures
DEFF Research Database (Denmark)
Klamt, Angela; Stroppel, Catharina
2012-01-01
We study the Ext-algebra of the direct sum of all parabolic Verma modules in the principal block of the Bernstein–Gelfand–Gelfand category O for the Hermitian symmetric pair (gln+m,gln¿glm) and present the corresponding quiver with relations for the cases n=1,2. The Kazhdan–Lusztig combinatorics ...
Admissible solutions for a class of nonlinear parabolic problem with non-negative data
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Petzeltová, Hana; Simondon, F.
2001-01-01
Roč. 131, č. 5 (2001), s. 857-883 ISSN 0308-2105 R&D Projects: GA AV ČR IAA1019703 Keywords : admissible solutions%nonlinear parabolic problem * admissible solutions * comparison principle * non-negative data Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2001
Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form
Directory of Open Access Journals (Sweden)
Kairi Kasemets
2013-01-01
Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.
Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors
DEFF Research Database (Denmark)
Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos
2017-01-01
We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc...
L^p-continuity of solutions to parabolic free boundary problems
Directory of Open Access Journals (Sweden)
Abdeslem Lyaghfouri
2015-07-01
Full Text Available In this article, we consider a class of parabolic free boundary problems. We establish some properties of the solutions, including L^infinity-regularity in time and a monotonicity property, from which we deduce strong L^p-continuity in time.
Szabo, Szilard
2016-01-01
We extend our earlier construction of Nahm transformation for parabolic Higgs bundles on the projective line to solutions with not necessarily semisimple residues and show that it determines a holomorphic mapping on corresponding moduli spaces. The construction relies on suitable elementary modifications of the logarithmic Dolbeault complex.
Analysis of the stress-deformed condition of the disassembly parabolic antenna
Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.
2018-01-01
Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.
Energy Technology Data Exchange (ETDEWEB)
Davenport, C. M.
1977-02-01
The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.
Veestraeten, D.
2015-01-01
The Laplace transforms of the transition probability density and distribution functions for the Ornstein-Uhlenbeck process contain the product of two parabolic cylinder functions, namely Dv(x)Dv(y) and Dv(x)Dv−1(y), respectively. The inverse transforms of these products have as yet not been
Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space
International Nuclear Information System (INIS)
Du Kai; Qiu, Jinniao; Tang Shanjian
2012-01-01
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days
International Nuclear Information System (INIS)
Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd
2016-01-01
Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.
New model reduction technique for a class of parabolic partial differential equations
Vajta, Miklos
1991-01-01
A model reduction (or lumping) technique for a class of parabolic-type partial differential equations is given, and its application is discussed. The frequency response of the temperature distribution in any multilayer solid is developed and given by a matrix expression. The distributed transfer
A numerical analysis of the energy behavior of a parabolic trough ...
African Journals Online (AJOL)
The solar power is a clean and a durable energy; there are several techniques for using them. When necessary to elevated temperatures of heat transfer fluid, this energy must concentration. This paper presents the efficiencies study of a linear solar concentrator of a parabolic trough type. This study was conducted on the ...
Current-voltage relation for thin tunnel barriers: Parabolic barrier model
DEFF Research Database (Denmark)
Hansen, Kim; Brandbyge, Mads
2004-01-01
We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...
Study of weak solutions for parabolic variational inequalities with nonstandard growth conditions.
Dong, Yan
2018-01-01
In this paper, we study the degenerate parabolic variational inequality problem in a bounded domain. First, the weak solutions of the variational inequality are defined. Second, the existence and uniqueness of the solutions in the weak sense are proved by using the penalty method and the reduction method.
Quasilinear parabolic variational inequalities with multi-valued lower-order terms
Carl, Siegfried; Le, Vy K.
2014-10-01
In this paper, we provide an analytical frame work for the following multi-valued parabolic variational inequality in a cylindrical domain : Find and an such that where is some closed and convex subset, A is a time-dependent quasilinear elliptic operator, and the multi-valued function is assumed to be upper semicontinuous only, so that Clarke's generalized gradient is included as a special case. Thus, parabolic variational-hemivariational inequalities are special cases of the problem considered here. The extension of parabolic variational-hemivariational inequalities to the general class of multi-valued problems considered in this paper is not only of disciplinary interest, but is motivated by the need in applications. The main goals are as follows. First, we provide an existence theory for the above-stated problem under coercivity assumptions. Second, in the noncoercive case, we establish an appropriate sub-supersolution method that allows us to get existence, comparison, and enclosure results. Third, the order structure of the solution set enclosed by sub-supersolutions is revealed. In particular, it is shown that the solution set within the sector of sub-supersolutions is a directed set. As an application, a multi-valued parabolic obstacle problem is treated.
Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...
International Nuclear Information System (INIS)
Chen, J.; Lengsdorf, R.; Henein, H.; Herlach, D.M.; Dahlborg, U.; Calvo-Dahlborg, M.
2013-01-01
Highlights: ► A comparison between the solidification using electromagnetic levitation of Al–8 wt%Fe under terrestrial and reduced gravity conditions is shown. ► The microstructure evolution during solidification of Al–8 wt%Fe is formulated with the aid of a comprehensive set of complementary characterization techniques. ► Identification of Al–Fe intermetallics using TEM and Rietveld analysis. -- Abstract: Al–8 wt%Fe, a hypereutectic alloy, was studied under electromagnetic levitation (EML) solidification conditions in both terrestrial and reduced gravity conditions. The latter was carried out on the A300 aircraft using the TEMPUS facility. The solidified samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and neutron diffraction techniques. The results are interpreted in the light of the temperature–time measurements taken in situ during the solidification process in the EML. It is shown that both samples experienced some undercooling for the solidification of the primary Al–Fe intermetallic phase, which is likely Al m Fe. The solidification path continues with the nucleation and growth of Al 13 Fe 4 followed by primary α-Al. These last two phases do not seem to show any measureable undercooling and recalescence events. Finally, the metastable Al x Fe (where x = 5) nucleates starting with the formation of eutectic. This metastable intermetallic continues the eutectic growth as Al 13 Fe 4 . The morphology differences of the intermetallics growing under terrestrial and reduced gravity conditions are clear with acicular morphology for the former and a star like morphology for the latter. The primary α-Al has a clear strong textured structure in the reduced gravity sample, while a weak one is observed in the terrestrially processed sample. The difference in texture is attributed to the weaker fluid flow occurring in the droplet under reduced gravity conditions while the difference in the morphology of the primary intermetallic is attributed to the higher cooling rate experienced by the reduced gravity sample compared to that for the terrestrially processed sample
International Nuclear Information System (INIS)
Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling
2017-01-01
Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct
Spike-adding in parabolic bursters: The role of folded-saddle canards
Desroches, Mathieu; Krupa, Martin; Rodrigues, Serafim
2016-09-01
The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the Plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the Plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.
Insect flight muscle metabolism
Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van
1984-01-01
The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is
Boron hydride analogues of the fullerenes
International Nuclear Information System (INIS)
Quong, A.A.; Pederson, M.R.; Broughton, J.Q.
1994-01-01
The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful
Studies of natural analogues and geological systems
International Nuclear Information System (INIS)
Brandberg, F.; Grundfelt, B.; Hoeglund, L.; Skagius K.; Karlsson, F.; Smellie, J.
1993-04-01
This review has involved studies of natural analogues and natural geological systems leading to the identification and quantification of processes and features of importance to the performance and safety of repositories for radioactive waste. The features and processes selected for the study comprise general geochemical issues related to the performance of the near- and far-field, the performance and durability of construction materials and the effects of glaciation. For each of these areas a number of potentially important processes for repository performance have been described, and evidence for their existence, as well as quantification of parameters of models describing the processes have been sought from major natural analogue studies and site investigations. The review has aimed at covering a relatively broad range of issues at the expense of in-depth analysis. The quantitative data presented are in most cases compilations of data from the literature; in a few cases results of evaluations made within the current project are included
Lead optimization of antimalarial propafenone analogues.
Lowes, David; Pradhan, Anupam; Iyer, Lalitha V; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W Armand; Sigal, Martina; Clark, Julie A; Wilson, Emily; Tang, Liang; Connelly, Michele C; Derisi, Joseph L; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin
2012-07-12
Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.
The Brookhaven electron analogue, 1953--1957
Energy Technology Data Exchange (ETDEWEB)
Plotkin, M.
1991-12-18
The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
The Brookhaven electron analogue, 1953--1957
International Nuclear Information System (INIS)
Plotkin, M.
1991-01-01
The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary
Results of the first Seismometer to Investigate Ice and Ocean Structure (SIIOS) Analogue Mission
Della-Giustina, Daniella; Bray, Veronica; "Hop" Bailey, Samuel; Pettit, Erin; Schmerr, Nicholas; Dahl, Peter; Avenson, Brad; Byrne, Shane; SIIOS Team
2017-10-01
The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich interiors, likely providing the ingredients needed for life as we know it. The possibility of life forming in the ocean or in melt pockets, relies on the presence of a source of energy and chemistry for biological molecule formation. A thick, stagnant ice crust would likely prevent transfer of oxidants from the surface to the water, halting the development of life. The ice thickness and structure is therefore one of the most important and controversial topics in astrobiology.The best way to access an icy moon’s interior structure is with a lander-based seismometer. Our team has identified a commercial-off-the-shelf device as a flight-candidate for operation in the extreme environment of the icy moons. Based on estimates of Europan seismicity, the flight candidate device is sensitive enough to detect the ice-water boundary and pockets of liquid within the ice. Its low mass and low power enables deployment of multiple seismometers in a short-baseline array on a lander. The performance, mass, and volume of this device meet or exceed flight requirements identified in lander studies making a field test of these seismometers highly representative of a flight unit developed for an Ocean Worlds mission.We report the results of the first field campaign for the SIIOS Analogue Mission Program (AMP), which has evaluates the performance of the flight candidate seismometer in Ocean World terrestrial analogue environments. In particular, the first SIIOS AMP field exercise is performed at Gulkana Glacier, Alaska. During the summer melt season Gulkana provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing areas with the desired analogue seismic contrasts. During this first mission, we have demonstrated device sensitivity to the detection of seismicity from high frequency (> 50 Hz) active and passive sources, the depth of ice
GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA
2014-01-01
AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.
Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert
2016-10-01
Scopolamine is used to counteract motion sickness in parabolic flight (PF) experiments. Although the drug's anticholinergic properties effectively impede vomiting, recent studies document other sensory side-effects in the central nervous system that may considerably influence sensorimotor performance. This study aimed to quantify such effects in order to determine if they are of methodological and operational significance for sensorimotor control. Ten subjects of a PF campaign received a weight-sex-based dose of a subcutaneous scopolamine injection. Sensorimotor performance was recorded before medication, 20min, 2h and 4h after injection in four space-relevant paradigms: balance control in one-leg stance with eyes open (protocol 1) and closed as well as force-generating capacity in countermovement jumps and hops (protocol 2). Postural sway, forces and joint angles were recorded. Neuromuscular control was assessed by electromyography and peripheral nerve stimulation; H-reflexes and M-waves were used to monitor spinal excitability of the Ia afferent reflex circuitry and maximal motor output. (1) H-reflex amplitudes, latencies and functional reflexes remained unchanged after scopolamine injection. (2) M-waves, neuromuscular activation intensities and antagonistic muscle coordination did not change with scopolamine administration. (3) Balance performance and force-generating capacity were not impeded by scopolamine. We found no evidence for changes in sensorimotor control in response to scopolamine injection. Sensory processing of daily relevant reflexes, spinal excitability, maximal motor output and performance parameters were not sensitive to the medication. We conclude that scopolamine administration can be used to counteract motion sickness in PF without methodological and operational concerns or interference regarding sensorimotor skills associated with neuromuscular control.
Analogue to Digital and Digital to Analogue Converters (ADCs and DACs): A Review Update
Pickering, J.
2015-06-15
This is a review paper updated from that presented for CAS 2004. Essentially, since then, commercial components have continued to extend their performance boundaries but the basic building blocks and the techniques for choosing the best device and implementing it in a design have not changed. Analogue to digital and digital to analogue converters are crucial components in the continued drive to replace analogue circuitry with more controllable and less costly digital processing. This paper discusses the technologies available to perform in the likely measurement and control applications that arise within accelerators. It covers much of the terminology and 'specmanship' together with an application-oriented analysis of the realisable performance of the various types. Finally, some hints and warnings on system integration problems are given.
Efficacy of Antimicrobials on Bacteria Cultured in a Spaceflight Analogue
Nickerson, CA; Wotring, Virginia; Barrila, Jennifer; Crabbe, Aurelie; Castro, Sarah; Davis, Richard; Rideout, April; McCarthy, Breanne; Ott, C. Mark
2014-01-01
As humans travel in space, they will interact with microbial flora from themselves, other crewmembers, their food, and the environment. While evaluations of microbial ecology aboard the Mir and ISS suggest a predominance of common environmental flora, the presence of (and potential for) infectious agents has been well documented. Likewise, pathogens have been detected during preflight monitoring of spaceflight food, resulting in the disqualification of that production lot from flight. These environmental and food organisms range from the obligate pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium), which has been responsible for disqualification and removal of food destined for ISS and has previously been reported from Shuttle crew refuse, to the opportunistic pathogen Staphylococcus aureus, isolated numerous times from ISS habitable compartments and the crew. Infectious disease events have affected spaceflight missions, including an upper respiratory infection that delayed the launch of STS-36 and an incapacitating Pseudomonas aeruginosa urinary tract infection of a crewmember during Apollo 13. These observations indicate that the crew has the potential to be exposed to obligate and opportunistic pathogens. This risk of exposure is expected to increase with longer mission durations and increased use of regenerative life support systems. As antibiotics are the primary countermeasure after infection, determining if their efficacy during spaceflight missions is comparable to terrestrial application is of critical importance. The NASA Rotating Wall Vessel (RWV) culture system has been successfully used as a spaceflight culture analogue to identify potential alterations in several key microbial characteristics, such as virulence and gene regulation, in response to spaceflight culture. We hypothesized that bacteria cultured in the low fluid shear RWV environment would demonstrate changes in efficacy of antibiotics compared to higher fluid shear controls
Flight code validation simulator
Sims, Brent A.
1996-05-01
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Flight control actuation system
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2006-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
International Nuclear Information System (INIS)
Evans, H.E.; Norfolk, D.J.; Swan, T.
1978-01-01
A frequent observation in metal oxidation is the development of subparabolic kinetics, variously described as cubic or quartic. Although a number of detailed mechanisms have been proposed to account for this effect, none seem generally applicable. A model is presented of the oxidation process which is divorced from such restrictions. It is argued that deviations from parabolic behavior occur as a result of the concurrent development of stresses within the oxide. It is shown that the presence of stress fields can influence significantly the rate of transport of vacancy defects within the oxide such that tensile stresses produce positive deviations and compressive stresses, negative deviations from parabolic behavior. The model is applied in detail to Zircaloy-2 oxidation at 773 0 K. It is predicted that the kinetics should be insensitive to the oxygen potential of the environment and this has been confirmed by previous experimental work. 31 refs
Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves
Chang, Yu-Hsuan; Lin, De-Hone
2014-01-01
Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.
A parabolic model of drag coefficient for storm surge simulation in the South China Sea
Peng, Shiqiu; Li, Yineng
2015-01-01
Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Conditional stability in determination of initial data for stochastic parabolic equations
International Nuclear Information System (INIS)
Yuan, Ganghua
2017-01-01
In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper. (paper)
Conditional stability in determination of initial data for stochastic parabolic equations
Yuan, Ganghua
2017-03-01
In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.
Role of secondary instability theory and parabolized stability equations in transition modeling
El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.
1993-01-01
In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.
Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse
Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan
2011-11-01
A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.
Automatic Fourier transform and self-Fourier beams due to parabolic potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Zhong, Weiping [Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300 (China); Petrović, Milan S. [Institute of Physics, P.O. Box 68, 11001 Belgrade (Serbia); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2015-12-15
We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.
ε-neighbourhoods of orbits of parabolic diffeomorphisms and cohomological equations
International Nuclear Information System (INIS)
Resman, Maja
2014-01-01
In this article, we study the analyticity of (directed) areas of ε-neighbourhoods of orbits of parabolic germs. The article is motivated by the question of analytic classification using ε-neighbourhoods of orbits in the simplest formal class. We show that the coefficient in front of the ε 2 term in the asymptotic expansion in ε, which we call the principal part of the area, is a sectorially analytic function in the initial point of the orbit. It satisfies a cohomological equation similar to the standard trivialization equation for parabolic diffeomorphisms. We give necessary and sufficient conditions on a diffeomorphism f for the existence of a globally analytic solution of this equation. Furthermore, we introduce a new classification type for diffeomorphisms implied by this new equation and investigate the relative position of its classes with respect to the analytic classes. (paper)
DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER
Directory of Open Access Journals (Sweden)
O. A. Lasode
2011-06-01
Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.
Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2014-01-01
Full Text Available The nonlocal boundary value problem for the parabolic differential equation v'(t+A(tv(t=f(t (0≤t≤T, v(0=v(λ+φ, 0<λ≤T in an arbitrary Banach space E with the dependent linear positive operator A(t is investigated. The well-posedness of this problem is established in Banach spaces C0β,γ(Eα-β of all Eα-β-valued continuous functions φ(t on [0,T] satisfying a Hölder condition with a weight (t+τγ. New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver
Energy Technology Data Exchange (ETDEWEB)
Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2009-05-01
Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.
Study of the parabolic-spherical shape on the energy resolution in gamma spectrometry
International Nuclear Information System (INIS)
Silva, Joao Carlos Pereira da
1997-01-01
In gamma spectrometry, the energy resolution is an important parameter. This parameter measures the capability of the system to separate two photopeaks that are together. Scintillation systems have various factors that affect the energy resolution: energy deposition, light emission, light collection and electric signal processing. Light collection depended on the mechanisms of light transport until light strikes on the photocathode. In this trajectory the light losses energy by attenuation and refractions on the surfaces. In order to minimize these effects, a parabolic-spherical shape is proposed. The energy resolutions of hemispherical and parabolic-spherical shapes were measured. The results show a better resolution for the new shape, about 33% for Compton edge due to a 137 Cs radioactive source. (author)
A parabolic model of drag coefficient for storm surge simulation in the South China Sea
Peng, Shiqiu; Li, Yineng
2015-10-01
Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.
Effect of Phonon Drag on the Thermopower in a Parabolic Quantum Well
Energy Technology Data Exchange (ETDEWEB)
Hasanov, Kh. A., E-mail: xanlarhasanli@rambler.ru; Huseynov, J. I. [Azerbaijan State Pedagogical University (Azerbaijan); Dadashova, V. V. [Baku State University (Azerbaijan); Aliyev, F. F. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)
2016-03-15
The theory of phonon-drag thermopower resulting from a temperature gradient in the plane of a two-dimensional electron gas layer in a parabolic quantum well is developed. The interaction mechanisms between electrons and acoustic phonons are considered, taking into account potential screening of the interaction. It is found that the effect of electron drag by phonons makes a significant contribution to the thermopower of the two-dimensional electron gas. It is shown that the consideration of screening has a significant effect on the drag thermopower. For the temperature dependence of the thermopower in a parabolic GaAs/AlGaAs quantum well in the temperature range of 1–10 K, good agreement between the obtained theoretical results and experiments is shown.
Excitons in undoped AlGaAs/GaAs wide parabolic quantum wells
Energy Technology Data Exchange (ETDEWEB)
Tabata, A; Oliveira, J B B [Departamento de Fisica, Universidade Estadual Paulista, 17033-360, Bauru (Brazil); Silva, E C F da; Lamas, T E; Duarte, C A; Gusev, G M, E-mail: tabata@fc.unesp.b [Instituto de Fisica, Universidade de Sao Paulo, 05315-970, Sao Paulo (Brazil)
2010-02-01
In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 A and 3000 A) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs.
Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.
2011-08-01
Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.
Tails and bridges in the parabolic restricted three-body problem
Barrabés, Esther; Cors, Josep M.; Garcia-Taberner, Laura; Ollé, Mercè
2017-12-01
After a close encounter of two galaxies, bridges and tails can be seen between or around them. A bridge would be a spiral arm between a galaxy and its companion, whereas a tail would correspond to a long and curving set of debris escaping from the galaxy. The goal of this paper is to present a mechanism, applying techniques of dynamical systems theory, that explains the formation of tails and bridges between galaxies in a simple model, the so-called parabolic restricted three-body problem, i.e. we study the motion of a particle under the gravitational influence of two primaries describing parabolic orbits. The equilibrium points and the final evolutions in this problem are recalled,and we show that the invariant manifolds of the collinear equilibrium points and the ones of the collision manifold explain the formation of bridges and tails. Massive numerical simulations are carried out and their application to recover previous results are also analysed.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.
Breast cancer imaging using radiolabelled somatostatin analogues
International Nuclear Information System (INIS)
Dalm, Simone U.; Melis, Marleen; Emmering, Jasper; Kwekkeboom, Dik J.; Jong, Marion de
2016-01-01
Imaging and therapy using radiolabelled somatostatin analogues are methods successfully used in patients with somatostatin receptor (SSTR)-expressing neuroendocrine tumours. Since these techniques were first introduced, many improvements have been made. SSTR expression has also been reported on breast cancer (BC). Currently mammography, magnetic resonance imaging and ultrasound are the most frequent methods used for BC imaging. Since SSTR expression on BC was demonstrated, clinical studies examining the feasibility of visualizing primary BC using SSTR radioligands have been performed. However, to date SSTR-mediated nuclear imaging is not used clinically in BC patients. The aim of this review is to assess whether recent improvements made within nuclear medicine may enable SSTR-mediated imaging to play a role in BC management. For this we critically analysed results of past studies and discussed the potential of the improvements made within nuclear medicine on SSTR-mediated nuclear imaging of BC. Seven databases were searched for publications on BC imaging with SSTR radioligands. The papers found were analysed by 3 individual observers to identify whether the studies met the pre-set inclusion criteria defined as studies in which nuclear imaging using radiolabelled SST analogues was performed in patients with breast lesions. Twenty-four papers were selected for this review including studies on SSTR-mediated nuclear imaging in BC, neuroendocrine BC and other breast lesions. The analysed studies were heterogeneous with respect to the imaging method, imaging protocol, patient groups and the radiolabelled SST analogues used. Despite the fact that the analysed studies were heterogeneous, sensitivity for primary BC ranged from 36–100%. In a subset of the studies LN lesions were visualized, but sensitivity was lower compared to that for primary tumours. A part of the studies included benign lesions and specificity ranged from 22–100%. Furthermore, false negatives and
The Greenland analogue project. Yearly report 2010
Energy Technology Data Exchange (ETDEWEB)
Harper, J; Brinkerhoff, D; Johnson, J [University of Montana, Missoula (United States); Ruskeeniemi, T; Engstroem, J; Kukkonen, I [Geological Survey of Finland (Finland); and others
2012-04-15
A four-year field and modelling study of the Greenland ice sheet and subsurface conditions, Greenland Analogue Project (GAP), has been initiated collaboratively by SKB, Posiva and NWMO to advance the understanding of processes associated with glaciation and their impact on the long-term performance of a deep geological repository. The study site encompasses a land terminus portion of the Greenland ice sheet, east of Kangerlussuaq, and is in many ways considered to be an appropriate analogue of the conditions that are expected to prevail in much of Canada and Fennoscandia during future glacial cycles. The project begins in 2009 and is scheduled for completion in 2012. Our current understanding of the hydrological, hydrogeological and hydrogeochemical processes associated with cold climate conditions and glacial cycles, and their impact on the long-term performance of deep geological repositories for spent nuclear fuel, will be significantly improved by studying a modern analogue. The GAP will conduct the first in situ investigations of some of the parameters and processes needed to achieve a better understanding of how an ice sheet may impact a deep repository, and will provide measurements, observations and data that may significantly improve our safety assessments and risk analyses of glaciation scenarios. This report was produced by the GAP team members and presents an overview of the activities within the GAP during the interval January 1 to December 31, 2010, as well as research results obtained during this time frame. Research for the GAP is ongoing, and additional results related to the data presented here may become available in the future and will be presented in subsequent annual reports. (orig.)
The Greenland analogue project. Yearly report 2010
International Nuclear Information System (INIS)
Harper, J.; Brinkerhoff, D.; Johnson, J.; Ruskeeniemi, T.; Engstroem, J.; Kukkonen, I.
2012-04-01
A four-year field and modelling study of the Greenland ice sheet and subsurface conditions, Greenland Analogue Project (GAP), has been initiated collaboratively by SKB, Posiva and NWMO to advance the understanding of processes associated with glaciation and their impact on the long-term performance of a deep geological repository. The study site encompasses a land terminus portion of the Greenland ice sheet, east of Kangerlussuaq, and is in many ways considered to be an appropriate analogue of the conditions that are expected to prevail in much of Canada and Fennoscandia during future glacial cycles. The project begins in 2009 and is scheduled for completion in 2012. Our current understanding of the hydrological, hydrogeological and hydrogeochemical processes associated with cold climate conditions and glacial cycles, and their impact on the long-term performance of deep geological repositories for spent nuclear fuel, will be significantly improved by studying a modern analogue. The GAP will conduct the first in situ investigations of some of the parameters and processes needed to achieve a better understanding of how an ice sheet may impact a deep repository, and will provide measurements, observations and data that may significantly improve our safety assessments and risk analyses of glaciation scenarios. This report was produced by the GAP team members and presents an overview of the activities within the GAP during the interval January 1 to December 31, 2010, as well as research results obtained during this time frame. Research for the GAP is ongoing, and additional results related to the data presented here may become available in the future and will be presented in subsequent annual reports. (orig.)
Prakash Loungani; Paolo Mauro
2000-01-01
This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...
1996-01-01
The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite
Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang
2017-10-01
Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Czech Academy of Sciences Publication Activity Database
Krisztin, T.; Rezunenko, Oleksandr
2016-01-01
Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf
International Nuclear Information System (INIS)
Wu, Bin; Liu, Jijun
2011-01-01
We study the inverse problem of determining two spatially varying coefficients in a thermoelastic model with the following observation data: displacement in a subdomain ω satisfying ∂ω superset of ∂Ω along a sufficiently large time interval, both displacement and temperature at a suitable time over the whole spatial domain. Based on a Carleman estimate on the hyperbolic–parabolic system, we prove the Lipschitz stability and the uniqueness for this inverse problem under some a priori information
International Nuclear Information System (INIS)
Karimov, Ruslan Kh; Kozhevnikova, Larisa M
2010-01-01
The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.
A note on numerical solution of a parabolic-Schrödinger equation
Ozdemir, Yildirim; Alp, Mustafa
2016-08-01
In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.
Hull, J. R.
Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.
2010-01-01
M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...
Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki
2014-01-01
Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...
YURCHENKO, VLADIMIR; YURCHENKO, EDUARD; ÇİYDEM, MEHMET; TOTUK, ONAT
2015-01-01
We present our developments in computer simulations and optimization of compound parabolic concentrators (CPCs) for solar heat collectors. Issues of both the optical and thermal optimization of CPC collectors of enclosed design are discussed. Ray tracing results for a CPC with a V-shaped absorber are presented. A range of optimal values for the apex angle of a V-shaped absorber is proposed for a CPC collector of typical design.
A gradient estimate for solutions to parabolic equations with discontinuous coefficients
Fan, Jishan; Kim, Kyoungsun; Nagayasu, Sei; Nakamura, Gen
2011-01-01
Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. T...
The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-04-01
Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.
10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles
Energy Technology Data Exchange (ETDEWEB)
Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica
2016-04-15
We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays
Czech Academy of Sciences Publication Activity Database
Rezunenko, Oleksandr
2012-01-01
Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf
Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay
Czech Academy of Sciences Publication Activity Database
Chueshov, I.; Rezunenko, Oleksandr
2015-01-01
Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier
International Nuclear Information System (INIS)
Chruscinski, Dariusz
2006-01-01
We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba
Annealed asymptotics for the parabolic Anderson model with a moving catalyst
Gärtner, J.; Heydenreich, M.O.
2006-01-01
This paper deals with the solution u to the parabolic Anderson equation ¿u/¿t=¿¿u+¿u on the lattice . We consider the case where the potential ¿ is time-dependent and has the form ¿(t,x)=d0(x-Yt) with Yt being a simple random walk with jump rate 2d. The solution u may be interpreted as the
Existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time
Directory of Open Access Journals (Sweden)
Nabila Bellal
2014-10-01
Full Text Available Using the penalty method, we prove the existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time. To find a solution, the original inequality is transformed into an equality by adding a positive function on the right-hand side and a complementary condition. This result can be seen as a generalization of the results by Mokrane in [11] where the obstacle is zero.
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-08-01
In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-12-01
In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
Garofalo, Anthony A.
2013-01-01
The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.
Application and use of spinal immobilization devices in zero-gravity flight
Krupa, Debra T.; Gosbee, John; Billica, Roger; Boyce, Joey B.
1991-01-01
A KC-135 parabolic flight was performed for the purpose of evaluation of spinal immobilization techniques in microgravity. The flight followed the standard 40 parabola profile with four NASA/KRUG experimenters involved. One performed as coordinator/recorder, one as test subject, and two as the Crew Medical Officers (CMO). The flight was to evaluate the application of spinal immobilization devices and techniques in microgravity as are performed during initial stabilization or patient transport scenarios. The sequence of detail for examination of the following objectives included: attempted cervical spine immobilization with all free floating, the patient restrained to the floor, various hand positioning techniques; c-collar placement; Kendrick Extrication Device (KED) application with various restraints for patient and CMO; patient immobilization and transport using the KED; patient transported on KED and spine board. Observations for each task are included. Major conclusions and issues are also included.
The Lehmer Matrix and Its Recursive Analogue
2010-01-01
LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b
Nuclear waste geochemistry: natural and anthropic analogues
International Nuclear Information System (INIS)
Petit, J.C.
1997-01-01
The geochemical evolution of nuclear waste storage is difficult to describe, due to the long time scales involved, the radioactivity confinement complexity and the un-natural radionuclides which evolution is not known. In order to carry out a long term prediction, a special approach is used, based on a combination of experiments conducted in laboratories and in situ, modelizations and comparisons with process and material analogues (natural or man-made, such as basaltic and rhyolitic volcanic glasses, plutonium, historical and archaeological artefacts)
Electronic analogue simulator of radio cardiograms
International Nuclear Information System (INIS)
Roux, G.; Lansiart, A.; Vernejoul, P. de; Kellershohn, C.
1967-01-01
The various parameters of the heart pump and of the blood circulation can be determined by radio-cardio-graphical techniques. The curves thus obtained can be more easily used in radiocardiography if the electronic analogue simulator described here is employed. The experimental and simulated radio-cardiograms are made to coincide by varying the electrical parameters of the simulator. Using simple charts it is possible to obtain directly the actual original physiological parameters from these electrical parameters. Some examples are given showing the excellent accuracy obtained in the determination of ejection indices by the simulator. (authors) [fr
Natural Analogues of CO2 Geological Storage
International Nuclear Information System (INIS)
Perez del Villar, L.; Pelayo, M.; Recreo, F.
2007-01-01
Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour
Digital and analogue industrial radiography, application fields
International Nuclear Information System (INIS)
Willems, Peter; Millord, Erik Yardin
2000-01-01
Full text: Reusable phosphor screens for computer radiography (CR), amorphous selenium screens for direct radiography (DR), film digitalisation (FD) constitute imaging methods accepted by industry and are used for non-destructive radiographic testing (RT). Economic pressures are involving and affecting digital RT technology. Standards and codes for film radiography and radioscopy qualification do no longer cover the wide range of digital RT applications. It will be our task to optimise the performance of digital RT characterisation and to create appropriate examination methods to use all these new and existent technologies. In the meantime, an increasing automation and control of manual methods of analogue radiography can as well be expected. (author)
International Nuclear Information System (INIS)
Djotian, A.P.; Kazarian, E.M.; Karakashinian, Y.V.
1993-01-01
Interband absorption of light in a quantizing wire with non-parabolic dispersion law of charge carries, as well as energy spectrum and state densities are studied. The effect of Coulomb interaction between particles on the spectral curve of interband absorption is considered. Non-parabolic dispersion law of charge carries leads to an essential displacement of absorption line to ground state of one-dimensional exciton. 7 refs
Rohit Tripathi; Sumit Tiwari; G. N. Tiwari
2016-01-01
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...
International Nuclear Information System (INIS)
Jayakumar, K.; Balasubramanian, S.; Tomak, M.
1985-08-01
A hydrogenic donor in a quantum well in the presence of a magnetic field perpendicular to the barrier is considered in the effective mass approximation. The non-parabolicity of the subband is included in the Hamiltonian by an energy-dependent effective mass. The donor binding energy is calculated variationally for different well widths and the effect of non-parabolicity is discussed in the light of recent experimental results. (author)
Putnam, Terrill W.; Ayers, Theodore G.
1989-01-01
Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.
Flight Standards Automation System -
Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....
Study on the optical properties of the off-axis parabolic collimator with eccentric pupil
Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin
2017-02-01
The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.
F John's stability conditions versus A Carasso's SECB constraint for backward parabolic problems
International Nuclear Information System (INIS)
Lee, Jinwoo; Sheen, Dongwoo
2009-01-01
In order to solve backward parabolic problems John (1960 Commun. Pure. Appl. Math.13 551–85) introduced the two constraints ||u(T)|| ≤ M and ||u(0) − g|| ≤ δ where u(t) satisfies the backward heat equation for t in (0, T) with the initial data u(0). The slow evolution from the continuation boundary (SECB) constraint was introduced by Carasso (1994 SIAM J. Numer. Anal. 31 1535–57) to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t = T. The additional 'SECB constraint' guarantees a significant improvement in stability up to t = T. In this paper, we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ||u(T)|| ≤ M is redundant. This implies that Carasso's SECB condition can be used to replace the a priori boundedness condition of John with an improved stability estimate. Also, a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally, numerical examples are provided
International Nuclear Information System (INIS)
Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.
2015-01-01
Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively
International Nuclear Information System (INIS)
Hinkel-Lipsker, D.E.; Fried, B.D.; Morales, G.J.
1993-01-01
This study provides an analytic solution to the general problem of mode conversion in an unmagnetized plasma. Specifically, an electromagnetic wave of frequency ω propagating through a plasma with a parabolic density profile of scale length L p is examined. The mode conversion points are located a distance Δ 0 from the peak of the profile, where the electron plasma frequency ω p (z) matches the wave frequency ω. The corresponding reflection, transmission, and mode conversion coefficients are expressed analytically in terms of parabolic cylinder functions for all values of Δ 0 . The method of solution is based on a source approximation technique that is valid when the electromagnetic and electrostatic scale lengths are well separated. For large Δ 0 , i.e., (cL p /ω) 1/2 much-lt Δ 0 p , the appropriately scaled result [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 559 (1992)] for a linear density profile is recovered as the parabolic cylinder functions asymptotically become Airy functions. When Δ 0 →0, the special case of conversion at the peak of the profile [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 1772 (1992)] is obtained
International Nuclear Information System (INIS)
Masood, R.
2013-01-01
The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)
Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region
International Nuclear Information System (INIS)
Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa
2014-01-01
Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%
International Nuclear Information System (INIS)
Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang
2016-01-01
Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.
Optical analysis and performance evaluation of a solar parabolic dish concentrator
Directory of Open Access Journals (Sweden)
Pavlović Saša R.
2016-01-01
Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics
Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients
Matevosyan, Norayr
2010-10-21
In this paper we extend the results of Caffarelli, Jerison, and Kenig [Ann. of Math. (2)155 (2002)] and Caffarelli and Kenig [Amer. J. Math.120 (1998)] by establishing an almost monotonicity estimate for pairs of continuous functions satisfying u± ≥ 0 Lu± ≥ -1, u+ · u_ = 0 ;in an infinite strip (global version) or a finite parabolic cylinder (localized version), where L is a uniformly parabolic operator Lu = LA,b,cu := div(A(x, s)∇u) + b(x,s) · ∇u + c(x,s)u - δsu with double Dini continuous A and uniformly bounded b and c. We also prove the elliptic counterpart of this estimate.This closes the gap between the known conditions in the literature (both in the elliptic and parabolic case) imposed on u± in order to obtain an almost monotonicity estimate.At the end of the paper, we demonstrate how to use this new almost monotonicity formula to prove the optimal C1,1-regularity in a fairly general class of quasi-linear obstacle-type free boundary problems. © 2010 Wiley Periodicals, Inc.
The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems
International Nuclear Information System (INIS)
Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George
2010-01-01
In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario. (author)
International Nuclear Information System (INIS)
Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor
2016-01-01
Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.
U.S. Nuclear Regulatory Commission natural analogue research program
International Nuclear Information System (INIS)
Kovach, L.A.; Ott, W.R.
1995-01-01
This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process
Conformationally restrained aromatic analogues of fosmidomycin and FR900098.
Kurz, Thomas; Schlüter, Katrin; Pein, Miriam; Behrendt, Christoph; Bergmann, Bärbel; Walter, Rolf D
2007-07-01
The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.
Andrographolide and analogues in cancer prevention.
Mishra, Siddhartha Kumar; Tripathi, Swati; Shukla, Archana; Oh, Seung Hyun; Kim, Hwan Mook
2015-01-01
Andrographis paniculata is a medicinal plant traditionally used for treatment of cough and cold, fever, laryngitis, and several infectious diseases. Extracts of A. paniculata have shown versatile potency against various diseases including cancer. The active biomolecules of A. paniculata mainly are lactone and diterpene. Andrographolide and analogues have been widely used for prevention of different diseases. Andrographolides have shown potent antiinflammatory and anticancer activities. It showed potentials as chemopreventive agents by suppressing growth of cancer cells by inhibiting NF-kappaB, PI3K/AKT and other kinase pathways and by inducing apoptosis. Andrographolide induced both intrinsic and extrinsic apoptosis pathway in different cancer cells via expression of different anti-apoptotic protein like Bax, p53, and activated caspases. Andrographolide was successfully used as an antineoplastic drug in cancer chemotherapy. Andrographolide inhibited the growth of human breast, prostate, and hepatoma tumors. Andrographolide and analogues need to be subjected to further clinical and biomedical studies in cancer chemoprevention. Andrographolide could be potent anticancer agent when used in combination with other chemotherapeutic agents.
Statistical analogues of thermodynamic extremum principles
Ramshaw, John D.
2018-05-01
As shown by Jaynes, the canonical and grand canonical probability distributions of equilibrium statistical mechanics can be simply derived from the principle of maximum entropy, in which the statistical entropy S=- {k}{{B}}{\\sum }i{p}i{log}{p}i is maximised subject to constraints on the mean values of the energy E and/or number of particles N in a system of fixed volume V. The Lagrange multipliers associated with those constraints are then found to be simply related to the temperature T and chemical potential μ. Here we show that the constrained maximisation of S is equivalent to, and can therefore be replaced by, the essentially unconstrained minimisation of the obvious statistical analogues of the Helmholtz free energy F = E ‑ TS and the grand potential J = F ‑ μN. Those minimisations are more easily performed than the maximisation of S because they formally eliminate the constraints on the mean values of E and N and their associated Lagrange multipliers. This procedure significantly simplifies the derivation of the canonical and grand canonical probability distributions, and shows that the well known extremum principles for the various thermodynamic potentials possess natural statistical analogues which are equivalent to the constrained maximisation of S.
Application of CFD to a generic hypersonic flight research study
Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.
1993-01-01
Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.
Baumann, Ethan
2006-01-01
A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.
Time lens for high-resolution neutron time-of-flight spectrometers
International Nuclear Information System (INIS)
Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.
2005-01-01
We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened
Galvanic Vestibular Stimulation (GVS) as an Analogue of Post-flight Sensorimotor Dysfunction
National Aeronautics and Space Administration — Aim 1A (complete): Tolerance to GVS. Dilda, V, MacDougall HG, Moore, ST. Tolerance to extended Galvanic vestibular stimulation: optimal exposure for astronaut...
Space Analogue Environments: Are the Populations Comparable?
Sandal, G. M.
Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that
Glaciation and geosphere evolution - Greenland Analogue Project
International Nuclear Information System (INIS)
Hirschorn, S.; Vorauer, A.; Belfadhel, M.B.; Jensen, M.
2011-01-01
The deep geological repository concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel in a suitable geological formation. A key objective of the Canadian Nuclear Waste Management Organization (NWMO) geoscience technical research program is to advance the understanding of geosphere stability and its resilience to perturbations over time frames of relevance to a deep geological repository. Glaciation has been identified as the most probable and intense perturbation relevant to a deep geological repository associated with long-term climate change in northern latitudes. Given that the North American continent has been re-glaciated nine times over the past million years, it is strongly expected that a deep geological repository within a suitable crystalline or sedimentary rock formation in Canada will be subject to glaciation events associated with long-term climate change. As such, NWMO's geoscience research program has placed particular emphasis on investigations of the response of the geosphere to glaciations. As surface conditions change from present day conditions to periglacial, followed by ice-sheet cover of variable thickness and rapid glacial retreat, transient geochemical, hydraulic, mechanical and temperature conditions will be simultaneously imposed on groundwater systems. NWMO research activities related to glaciation events and their impacts on groundwater system evolution are being undertaken using a multi-disciplinary approach aimed at collecting multiple lines of evidence. These investigations include assessment of the: Impact of an ice sheet on groundwater composition at repository depth using the Greenland Ice Sheet as an analogue to future glaciations in North America; Expected physical and temporal surface boundary conditions related to potential future glaciation events by estimating the magnitude and time rate of change of ice sheet thickness, ground surface temperature and
Electromagnetic wave analogue of an electronic diode
International Nuclear Information System (INIS)
Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I
2011-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of rotation of the polarization state and is also a key component in optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinarily strong nonlinear wave propagation effect in the same way as the electronic diode function is provided by the nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differs by a factor of 65.
Reflective analogue optical link operating issues
Batten, Jeremy
1996-01-01
The proposed readout of analogue data from CMS tracker will use an optical fibre link. The choice of transmitter/receiver technology, however, has been the subject of intense research and development by the RD23 collaboration. One solution uses passive devices, multi-quantum well modulators, at the detector front end, and continuous wave driving lasers at the readout back end. This system has been tested at Imperial College. We report on the following: problems of noise associated with multimoded behaviour of a degraded laser; measurements of laser wavelength dependence on both drive current and temperature; and modulator reflectance dependence on laser wavelength. We extrapolate the findings to system issues, highlighting the degree of temperature control required of the driving laser.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1984-06-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)
Gravitational analogue of the Witten effect
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))
1985-07-22
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
Foda, O.
1985-01-01
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (orig.)
Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.
Österholm, Anna M; Ponder, James F; Kerszulis, Justin A; Reynolds, John R
2016-06-01
We have designed fully soluble ProDOTx-EDOTy copolymers that are electrochemically equivalent to electropolymerized PEDOT without using any surfactants or dispersants. We show that these copolymers can be incorporated as active layers in solution processed thin film supercapacitors to demonstrate capacitance, stability, and voltage similar to the values of those that use electrodeposited PEDOT as the active material with the added advantage of the possibility for large scale, high-throughput processing. These Type I supercapacitors provide exceptional cell voltages (up to 1.6 V), highly symmetrical charge/discharge behavior, promising long-term stability exceeding 50 000 charge/discharge cycles, as well as energy (4-18 Wh/kg) and power densities (0.8-3.3 kW/kg) that are comparable to those of electrochemically synthesized analogues.
Synthesis of an Orthogonal Topological Analogue of Helicene
DEFF Research Database (Denmark)
Wixe, Torbjörn; Wallentin, Carl‐Johan; Johnson, Magnus T.
2013-01-01
The synthesis of an orthogonal topological pentamer analogue of helicene is presented. This analogue forms a tubular structure with its aromatic systems directed parallel to the axis of propagation, which creates a cavity with the potential to function as a host molecule. The synthetic strategy r...
Uncertainties and credibility building of safety analyses. Natural analogues
International Nuclear Information System (INIS)
Laciok, A.
2001-07-01
The substance of natural analogues and their studies is defined as a complementary method to laboratory and in-situ experiments and modelling. The role of natural analogues in the processes of development of repositories is defined, mainly in performance assessment of repository system and communication with public. The criteria for identification of natural analogues which should be evaluated in the phase of initiation of new studies are specified. Review part of this report is divided to study of natural analogues and study of anthropogenic and industrial analogues. The main natural analogue studies performed in various countries, in different geological setting, with various aims are characterized. New results acquired in recently finished studies are included: Palmottu (2nd phase of project financed by European Commission), Oklo (results of research financed also by European Commission), Maqarin (3rd phase) and other information obtained from last meetings and workshops of NAWG. In view of the fact that programmes of development of deep repositories in Czech and Slovak Republics are interconnected, the natural analogues studies carried out in the Czech republic are incorporated in separate chapter - study of uranium accumulation in Tertiary clays at Ruprechtov site and study of degradation of natural glasses. In final part the areas of natural analogue studies as an integral part of development of deep geological repository are proposed along with characterization of broader context and aspects of realization of these studies (international cooperation, preparation and evaluation of procedures, communication with public). (author)
Insulin analogues and severe hypoglycaemia in type 1 diabetes
DEFF Research Database (Denmark)
Kristensen, P L; Hansen, L S; Jespersen, M J
2012-01-01
The effect of insulin analogues on glycaemic control is well-documented, whereas the effect on avoidance of severe hypoglycaemia remains tentative. We studied the frequency of severe hypoglycaemia in unselected patients with type 1 diabetes treated with insulin analogues, human insulin, or mixed...
Magnetic properties of Proxima Centauri b analogues
Zuluaga, Jorge I.; Bustamante, Sebastian
2018-03-01
The discovery of a planet around the closest star to our Sun, Proxima Centauri, represents a quantum leap in the testability of exoplanetary models. Unlike any other discovered exoplanet, models of Proxima b could be contrasted against near future telescopic observations and far future in-situ measurements. In this paper we aim at predicting the planetary radius and the magnetic properties (dynamo lifetime and magnetic dipole moment) of Proxima b analogues (solid planets with masses of ∼ 1 - 3M⊕ , rotation periods of several days and habitable conditions). For this purpose we build a grid of planetary models with a wide range of compositions and masses. For each point in the grid we run the planetary evolution model developed in Zuluaga et al. (2013). Our model assumes small orbital eccentricity, negligible tidal heating and earth-like radiogenic mantle elements abundances. We devise a statistical methodology to estimate the posterior distribution of the desired planetary properties assuming simple lprior distributions for the orbital inclination and bulk composition. Our model predicts that Proxima b would have a mass 1.3 ≤Mp ≤ 2.3M⊕ and a radius Rp =1.4-0.2+0.3R⊕ . In our simulations, most Proxima b analogues develop intrinsic dynamos that last for ≥4 Gyr (the estimated age of the host star). If alive, the dynamo of Proxima b have a dipole moment ℳdip >0.32÷2.9×2.3ℳdip , ⊕ . These results are not restricted to Proxima b but they also apply to earth-like planets having similar observed properties.
Evolving a polymerase for hydrophobic base analogues.
Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp
2009-10-21
Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.
Natural analogues of nuclear waste glass corrosion
International Nuclear Information System (INIS)
Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.
1999-01-01
This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses
MAQARIN natural analogue study: phase III
Energy Technology Data Exchange (ETDEWEB)
Alexander, W R; Mazurek, M; Waber, H N [Univ. of Berne (Switzerland). Institutes of Geology, Mineralogy and Petrology, Rock-Water Interaction Group (GGWW); Arlinger, J; Erlandson, A C; Hallbeck, L; Pedersen, K [Goeteborg University (Sweden). Dept. of General and Marine Microbiology; Boehlmann, W; Fritz, P; Geyer, S; Geyer, W; Hanschman, G; Kopinke, F D; Poerschmann, J [Umweltforschungszentrum Leipzig-Halle (Germany); Chambers, A V; Haworth, A; Ilett, D; Linklater, C M; Tweed, C J [AEA Technology plc, Harwell (United Kingdom); Chenery, S R.N.; Kemp, S J; Milodowski, A E; Pearce, J M; Reeder, S; Rochelle, C A; Smith, B; Wetton, P D; Wragg, J [British Geological Survey, Keyworth (United Kingdom); Clark, I D [Univ. of Ottawa (Canada). Dept. of Geology; Hodginson, E; Hughes, C R [Univ. of Manchester (United Kingdom). Dept. of Earth Sciences; Hyslop, E K [British Geological Survey, Edinburgh (United Kingdom); Karlsson, F [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Khoury, H N; Salameh, E [Univ. of Jordan, Amman (Jordan); Lagerblad, B [Cement Institute, Stockholm (Sweden); Longworth, G [Univ. of Manchester (United Kingdom). Dept. of Geology; Pitty, A F [Private consultant, Norwich (United Kingdom); Savage, D [QuantiSci Ltd, Melton Mowbray (United Kingdom); Smellie, J A.T. [ed.; Conterra AB, Uppsala (Sweden)
1998-12-01
This report represents the conclusion to Phase III of the Maqarin Natural Analogue Study. The main thrust was to establish the origin and chemistry of the Western Springs hyper alkaline groundwaters (Na/K enriched Ca(OH){sub 2} type) and to study their interaction with rocks of different compositions, as natural analogues to key processes that might occur at an early stage within the `alkali disturbed zone` of cementitious repositories in different host rocks. Whilst earlier studies at Maqarin were very much site-specific and process-oriented, Phase III provided a regional perspective to the geological evolution of the Maqarin region. This was made possible by greater field access which allowed a more systematic structural and geomorphological study of the area. This has resulted in a greater understanding of the age and spatial relationships concerning formation of the cement zones through spontaneous combustion of the Bituminous Marls, and the subsequent formation of high pH groundwaters at the Eastern and Western Springs locations. At the Western Springs locality, hydrochemical and hydrogeological evaluation of new and published data (plus access to unpublished data), together with detailed mineralogical and geochemical studies, helped to clarify the very earliest stage of cement leachate/host rock interaction. The data were used also to test coupled flow/transport codes developed to assess the long-term evolution of a cementitious repository. Additional objectives addressed include: a) rock matrix diffusion, b) the occurrence and chemical controls on zeolite composition, e) the occurrence and chemical controls on clay stability, and d) the role of microbes, organics and colloids in trace element transport. The Maqarin site now provides a consistent picture explaining the origin of the hyperalkaline groundwaters, and is therefore a unique location for the examination of the mechanisms and processes associated with cementitious repositories. Application of these
MAQARIN natural analogue study: phase III
International Nuclear Information System (INIS)
Alexander, W.R.; Mazurek, M.; Waber, H.N.; Arlinger, J.; Erlandson, A.C.; Hallbeck, L.; Pedersen, K.; Chambers, A.V.; Haworth, A.; Ilett, D.; Linklater, C.M.; Tweed, C.J.; Chenery, S.R.N.; Kemp, S.J.; Milodowski, A.E.; Pearce, J.M.; Reeder, S.; Rochelle, C.A.; Smith, B.; Wetton, P.D.; Wragg, J.; Clark, I.D.; Karlsson, F.; Khoury, H.N.; Salameh, E.; Lagerblad, B.; Longworth, G.; Savage, D.; Smellie, J.A.T.
1998-12-01
This report represents the conclusion to Phase III of the Maqarin Natural Analogue Study. The main thrust was to establish the origin and chemistry of the Western Springs hyper alkaline groundwaters (Na/K enriched Ca(OH) 2 type) and to study their interaction with rocks of different compositions, as natural analogues to key processes that might occur at an early stage within the 'alkali disturbed zone' of cementitious repositories in different host rocks. Whilst earlier studies at Maqarin were very much site-specific and process-oriented, Phase III provided a regional perspective to the geological evolution of the Maqarin region. This was made possible by greater field access which allowed a more systematic structural and geomorphological study of the area. This has resulted in a greater understanding of the age and spatial relationships concerning formation of the cement zones through spontaneous combustion of the Bituminous Marls, and the subsequent formation of high pH groundwaters at the Eastern and Western Springs locations. At the Western Springs locality, hydrochemical and hydrogeological evaluation of new and published data (plus access to unpublished data), together with detailed mineralogical and geochemical studies, helped to clarify the very earliest stage of cement leachate/host rock interaction. The data were used also to test coupled flow/transport codes developed to assess the long-term evolution of a cementitious repository. Additional objectives addressed include: a) rock matrix diffusion, b) the occurrence and chemical controls on zeolite composition, e) the occurrence and chemical controls on clay stability, and d) the role of microbes, organics and colloids in trace element transport. The Maqarin site now provides a consistent picture explaining the origin of the hyperalkaline groundwaters, and is therefore a unique location for the examination of the mechanisms and processes associated with cementitious repositories. Application of these
Natural analogues in Posiva's Safety Case
International Nuclear Information System (INIS)
Marcos, Nuria; Seppaelae, T.
2008-01-01
The Safety Case is a broader concept than Performance Assessment that allows better the use of natural analogues and observations from nature to understand the behaviour of the system and the processes at the site. Natural analogues are mostly use to add confidence to the safety of geological disposal with respect to: Design (depth and multi-barrier system), Materials (long-term durability), and Processes (understanding the long-term behaviour/evolution of the system). Ice ages and erosion: largest boulders released and transported by ice during the most recent ice age are well below 20 m. 25 glacial cycles would be necessary to erode in this fashion 500 m of bedrock. During the last million years only about 8-9 glacial cycles are known to have occurred. Geosphere stability: Minor possibility of damaging earthquakes due to the geological position of the Olkiluoto site in the Fennoscandian Shield. Magnitudes of earthquakes historically and over the last 40 years have been less than 3 in the area next to Olkiluoto. Stability, U, and flow rates at Olkiluoto: Shallow ground-waters: Assuming a discharge flow rate (DFR) of about 200000 m"3/km"2/year, the average concentration of U in gw was 3.7 μg/L. At depth 375 m: Assuming a discharge flow rate of about 1680 m"3/km"2/year, the average concentration of U in gw was 0.21 μg/L. At depth 475 m: Discharge flow rate of about 730 m"3/km"2/year, the average concentration of U in gw was 0.04 μg/L
MAQARIN natural analogue study: phase III
Energy Technology Data Exchange (ETDEWEB)
Alexander, W R; Mazurek, M; Waber, H N [Univ. of Berne (Switzerland). Institutes of Geology, Mineralogy and Petrology, Rock-Water Interaction Group (GGWW); Arlinger, J; Erlandson, A C; Hallbeck, L; Pedersen, K [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology; Boehlmann, W; Fritz, P; Geyer, S; Geyer, W; Hanschman, G; Kopinke, F D; Poerschmann, J [Umweltforschungszentrum Leipzig-Halle (Germany); Chambers, A V; Haworth, A; Ilett, D; Linklater, C M; Tweed, C J [AEA Technology plc, Harwell (United Kingdom); Chenery, S R.N.; Kemp, S J; Milodowski, A E; Pearce, J M; Reeder, S; Rochelle, C A; Smith, B; Wetton, P D; Wragg, J [British Geological Survey, Keyworth (United Kingdom); Clark, I D [Univ. of Ottawa (Canada). Dept. of Geology; Hodginson, E; Hughes, C R [Univ. of Manchester (United Kingdom). Dept. of Earth Sciences; Hyslop, E K [British Geological Survey, Edinburgh (United Kingdom); Karlsson, F [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Khoury, H N; Salameh, E [Univ. of Jordan, Amman (Jordan); Lagerblad, B [Cement Inst., Stockholm (Sweden); Longworth, G [Univ. of Manchester (United Kingdom). Dept. of Geology; Pitty, A F [Private consultant, Norwich (United Kingdom); Savage, D [QuantiSci Ltd, Melton Mowbray (United Kingdom); Smellie, J A.T. [ed.; Conterra AB, Uppsala (Sweden)
1998-12-01
This report represents the conclusion to Phase III of the Maqarin Natural Analogue Study. The main thrust was to establish the origin and chemistry of the Western Springs hyper alkaline groundwaters (Na/K enriched Ca(OH){sub 2} type) and to study their interaction with rocks of different compositions, as natural analogues to key processes that might occur at an early stage within the `alkali disturbed zone` of cementitious repositories in different host rocks. Whilst earlier studies at Maqarin were very much site-specific and process-oriented, Phase III provided a regional perspective to the geological evolution of the Maqarin region. This was made possible by greater field access which allowed a more systematic structural and geomorphological study of the area. This has resulted in a greater understanding of the age and spatial relationships concerning formation of the cement zones through spontaneous combustion of the Bituminous Marls, and the subsequent formation of high pH groundwaters at the Eastern and Western Springs locations. At the Western Springs locality, hydrochemical and hydrogeological evaluation of new and published data (plus access to unpublished data), together with detailed mineralogical and geochemical studies, helped to clarify the very earliest stage of cement leachate/host rock interaction. The data were used also to test coupled flow/transport codes developed to assess the long-term evolution of a cementitious repository. Additional objectives addressed include: a) rock matrix diffusion, b) the occurrence and chemical controls on zeolite composition, e) the occurrence and chemical controls on clay stability, and d) the role of microbes, organics and colloids in trace element transport. The Maqarin site now provides a consistent picture explaining the origin of the hyperalkaline groundwaters, and is therefore a unique location for the examination of the mechanisms and processes associated with cementitious repositories. Application of these
Natural analogues of nuclear waste glass corrosion.
Energy Technology Data Exchange (ETDEWEB)
Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.
1999-01-06
This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.
Rohit Tripathi 1,*, G. N. Tiwari 2
2017-01-01
In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...
Analogue Hawking radiation from astrophysical black-hole accretion
International Nuclear Information System (INIS)
Das, Tapas K
2004-01-01
We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass
Solar parabolic dish Stirling engine system design, simulation, and thermal analysis
International Nuclear Information System (INIS)
Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.
2016-01-01
Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take
Segal, Meirav; Fischer, Bilha
2012-02-28
Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.
Analogue to Digital and Digital to Analogue (AD/DA) Conversion Techniques: An Overview
CERN. Geneva
2002-01-01
The basic ideas behind modern Analogue to Digital and Digital to Analogue (AD/DA) conversion methods will be introduced: a general view of the importance of these devices will be given, along with the digital representation of time-varying, real-world analogue signals. Some CERN applications will be outlined. The variety of conversion methods, their limitations, error sources and measurement methods will form the major part of this presentation. A review of the technological progress in this field over the last 30 years will be presented, concluding with the present 'state of the art' and a quick look at what is just around the corner. This Technical Training Seminar is in the framework of the FEED-2002 Lecture Series, and it is a prerequisite to attending to any of the FEED-2002 Terms. FEED-2002 is a two-term course that will review the techniques dealing with closed loop systems, focussing on time-invariant linear systems. (free attendance, no registration required) More information on the FEED-2002 ...
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle
International Nuclear Information System (INIS)
He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang
2012-01-01
Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.
An air-based corrugated cavity-receiver for solar parabolic trough concentrators
International Nuclear Information System (INIS)
Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo
2015-01-01
Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW
Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals
Bhattacharya, Sayak; John, Sajeev
2018-04-01
We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.
Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study
Energy Technology Data Exchange (ETDEWEB)
Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.
2011-01-01
As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.
National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...
Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene
Ang, Yee Sin; Ang, L. K.; Zubair, M.
Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.
International Nuclear Information System (INIS)
Sivakami, A.; Mahendran, M.
2010-01-01
The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.
Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D parabolic potential barrier
Chruściński, Dariusz
2006-04-01
We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
Fragnelli, Genni
2016-01-01
The authors consider a parabolic problem with degeneracy in the interior of the spatial domain, and they focus on observability results through Carleman estimates for the associated adjoint problem. The novelties of the present paper are two. First, the coefficient of the leading operator only belongs to a Sobolev space. Second, the degeneracy point is allowed to lie even in the interior of the control region, so that no previous result can be adapted to this situation; however, different cases can be handled, and new controllability results are established as a consequence.
The uniqueness of the solution for the definite problem of a parabolic variational inequality
Directory of Open Access Journals (Sweden)
Liping Song
2016-12-01
Full Text Available Abstract The uniqueness of the solution for the definite problem of a parabolic variational inequality is proved. The problem comes from the study of the optimal exercise strategies for the perpetual executive stock options with unrestricted exercise in financial market. Because the variational inequality is degenerate and the obstacle condition contains the partial derivative of an unknown function, it makes the theoretical study of the definite problem of the variational inequality problem very difficult. Firstly, the property which the value function satisfies is derived by applying the Jensen inequality. Then the uniqueness of the solution is proved by using this property and maximum principles.
Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction
Energy Technology Data Exchange (ETDEWEB)
Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)
2016-04-13
The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.
Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis
Directory of Open Access Journals (Sweden)
Mathias Jais
2008-01-01
Full Text Available We consider the solvability of the semilinear parabolic differential equation \\[\\frac{\\partial u}{\\partial t}(x,t- \\Delta u(x,t + c(x,tu(x,t = \\mathcal{P}(u + \\gamma (x,t\\] in a cylinder \\(D=\\Omega \\times (0,T\\, where \\(\\mathcal{P}\\ is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach operator \\(\\mathcal{P}\\ from overdetermined boundary data.
Stability of a laser cavity with non-parabolic phase transformation elements
CSIR Research Space (South Africa)
Litvin, IA
2013-05-01
Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...
Energy Technology Data Exchange (ETDEWEB)
Ajona, J I; Alberdi, J; Gamero, E; Blanco, J
1992-07-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
DEFF Research Database (Denmark)
Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren
2016-01-01
We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...
Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors
DEFF Research Database (Denmark)
Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren
2015-01-01
The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...
Stabilization of the solution of a doubly nonlinear parabolic equation
International Nuclear Information System (INIS)
Andriyanova, È R; Mukminov, F Kh
2013-01-01
The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles
International Nuclear Information System (INIS)
Levenshtam, V B
2006-01-01
We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)
Thermal behaviour of a solar air heater with a compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, R.
2005-11-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)
Energy Technology Data Exchange (ETDEWEB)
Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.
1991-01-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)
Energy Technology Data Exchange (ETDEWEB)
Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.
1991-12-31
In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)
Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed
Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.
2004-01-01
The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.